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Abstract

We compute the length of geodesics on a Riemannian manifold by reg-
ular polynomial interpolation of the global solution of the eikonal equation
related to the line element ds2 = gijdxidxj of the manifold. Our algorithm
approximates the length functional in arbitrarily strong Sobolev norms. Er-
ror estimates are obtained where the geometric information is used. It is
pointed out how the algorithm can be used to get accurate approximations of
solutions of linear parabolic partial differential equations leading to obvious
applications in finance, physics and other sciences.

1 Introduction

Let (M, g) is a Riemannian manifold, i.e. a differentiable n-dimensional manifold
with a function g, which defines for all p ∈ M a positive definite symmetric bilinear
form

gp : TpM × TpM → R (1)

such that for any given vector fields X, Y ∈ X(M) the map

g(X, Y ) : M → R, p → g(X, Y )(p) := gp(Xp, Yp) (2)

is differentiable. The Riemannian metric g allows to define a metric dM on M via
the length of curves

dM(x, y) := inf
γ diff.

{L(γ)|γ : [0, 1] → M, γ(0) = x, γ(1) = y} , (3)

with

L(γ) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt. (4)

With this definition any connected Riemannian manifold becomes a metric space,
and it is well known that for any compact Riemannian manifold any two points
x, y ∈ M can be connected by a geodesic whose length is dM(x, y). If ∇ denotes the
Levi-Civita connection, then a geodesic γ is characterized by the equation

∇γ̇ γ̇ = 0, (5)

which becomes (in terms of the coordinates of the values of the curve γ)

d2xλ

dt2
+ Γλ

µν

dxµ

dt

dxν

dt
= 0 , (6)
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where the well-known Christoffel symbols are

Γκ
µν =

1

2
gκρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (7)

This is an n-dimensional nonlinear ordinary differential equation with values in Rn

which is difficult to compute numerically in general (note the quadratic terms). For
computing the length of a geodesic it is easier to compute the solution of a eikonal
equation of the form

d2 =
1

4

∑
ij

aij(x)d2
xi

d2
xj

(8)

(boundary conditions considered later), where x → aij(x) are functions such that
at each x ∈ Rn the matrix (aij(x)) is the inverse of the positive matrix (gij(x)) at
each point x. Here fxi

:= ∂f
∂xi

denotes the derivative of f with respect to the variable

xi. In general we shall write ∂αf , ∂α
x f or ∂

∂xα f for the multivariate derivative with
multiindex α = (α1, · · · , αn). The connection between the length of a geodesic
which is given in local coordinates as in 6, 7 and the length function d2 defined by
equation 8 is considered in section 2. This way the problem of finding the length of
a geodesic is reduced to solving a nonlinear first-order partial differential equation
in some domain of Euclidean space.

The computation of d2 is still far from trivial, however. Even if the data gij are
analytic functions, power series expansion typically lead to power series solutions
for d2 with small radius of convergence. Hence, the question is how we can ap-
proximate the function d2 globally. Moreover, for some applications such as the
accurate computation of diffusions we need the approximation of d2 in strong norms
(Sobolev norms of form Hs,p for possibly any positive real s. For that matter recall
that H0,p (Rn) = Lp (Rn) and that for any s ∈ R we may define Hs,p to be the set
of all tempered distributions φ ∈ S ′ such that I−sφ is a function in Lp (Rn), where

Is is the pseudo-differential operator with symbol σs(ξ) = (1 + |ξ|2)−
s
2 , i.e.

Isφ = F−1σsFφ, φ ∈ S ′, (9)

F denoting the Fourier transform. The goal of the present paper can then be
formulated as follows: find for each ε > 0 and each real s, p (p ≥ 1) an approximative
solution q2

s,p to 8 such that

‖d2 − q2
s,p‖s,p ≤ ε. (10)

We shall call q2
s,p an Hs,p approximation to d2 for reasons which will become apparent

later. Let us motivate this ambitious task by looking at a specific application.
There are a lot of applications for computations of the length of a geodesic, where
applications to computations in general relativity are only one domain. Another
important example is the leading term of the expansion of the fundamental solution
of linear parabolic solutions (with variable coefficients). Varadhan showed that the
fundamental solution of the diffusion equation

∂u
∂t

= 1
2

∑
i,j aij

∂2u
∂xi∂xj

+
∑

i bi
∂u
∂xi

, (11)
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(where the diffusion coefficients aij and the first order coefficients bi in 11 depend on
the spatial variable x only) is connected to the length d of the geodesic with respect
to the line element ds2 =

∑
ij aijdxidxj (aij being the inverse of aij) via the relation

d2(x, y) = lim
t↓0

t ln p(t, x, y). (12)

Remark 1.1. Solving equation 8 we can assume that the matrix-valued function
x → (aij(x)) is symmetric, i.e. aij(x) = aji(x) for all 1 ≤ i, j ≤ n. This is because

d2(x, y) = 1
4

∑
ij aijd

2
xi

d2
xj

= 1
4

∑
ij

1
2
(aij + aji) d2

xi
d2

xj

+1
4

∑
ij

1
2
(aij − aji) d2

xi
d2

xj
= 1

4

∑
ij

1
2
(aij + aji) d2

xi
d2

xj
,

(13)

so we can always substitute the matrix aij by its symmetrization 1
2
(aij + aji) without

affecting the solution d2.

In [5] we have seen that for C∞ coefficient functions x → aij(x) and x → bi(x)
and if some boundedness conditions of the derivatives are satisfied the fundamental
solution has the pointwise valid form

p(t, x, y) =
1√
2πt

n exp

(
−d2(x, y)

2t
+

∞∑
k=0

ck(x, y)tk

)
, (14)

where the functions x → ck(x, y), k ≥ 0 are solutions of recursively defined linear
first order equations for each y. These equations can be solved by methods of char-
acteristics or approximated by regular polynomial interpolation methods outlined
in [6]. In the computation of the WKB-coefficients d2 and ck, k ≥ 0 the recur-
sive relations for ck+1 involve second order derivatives of ck, and therefore implicitly
derivatives of order 2k of the squared metric d2. Hence it is of great interest to com-
pute not only d2 but also its derivatives up to a given order with high accuracy. The
present work shows how his can be accomplished. In Section 2 we recapture some
facts about the connection of the geodesic equation 6, 7 and equation 8, and prove
global existence, regularity and uniqueness of the latter (family) of equation(s) lead-
ing us to theorem 2.3. Then in Section 3 we provide further analysis of the family of
eikonal equations which lead us to local representations of the solution. In Section
4 we construct first a weak approximation of the solution (in Lp sense), and then
extend this to a recursive construction of an Hs,p-approximation. In Section 5 we
provide error estimates by using geometric information. Section 6 points out how
the method may be applied for accurate approximation of diffusions, and we finish
with a conclusion in Section 7.

2 Global existence and regularity of the squared

Riemannian distance d2

We shall only sketch the connection between geodesics and the eikonal equation 8.
It is almost standard, and details can be found in [5] and [4]. Our interest here
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is that the eikonal equation together with careful chosen boundary conditions has
a global and unique solution. We shall have two different arguments for unique-
ness: one is via uniqueness of an associated diffusion and WKB-representations (or,
alternatively, Varadhan’s result, cf. [8]), but we will have the same insight from
an other point of view when we look at local representations of the solution in the
next Section. We consider Riemannian manifolds where any two points can be con-
nected by a minimal geodesic. For our purposes it is sufficient to consider manifolds
which are geodesically complete. Recall that a Riemannian manifold M is geodesi-
cally complete if for all p ∈ M the exponential map expp : TpM → M is defined
globally on TpM . Here, TpM denotes the tangential space of the manifold M at
p ∈ M . The Hopf-Rinow theorem provides conditions for Riemannian manifolds to
be geodesically complete. Especially we have

Theorem 2.1. For a Riemannian manifold M the following statements are equiv-
alent:

• M is complete as a metric space.

• The closed and bounded sets of M are compact.

• M is geodesically complete.

Each of these equivalent statements implies that geodesics are curves of shortest
length. Moreover, if M is geodesically complete, then any two points of M can be
joined by a minimal geodesic.

The connection between the arclength and equation 8 can be established as follows.
First equations for minimal geodesics are obtained from variation of the length func-
tional. Second Hamilton-Jacobi calculus shows that the length functional satisfies
the eikonal equation 8. Since this is known we only sketch the main steps for con-
venience of the reader. Setting the variation of the length functional to zero we
get

L
d

dr

(
1

L
2gijẋ

i

)
+ gij,kẋ

iẋj = 0 (15)

with L ≡
√

gij(x(r))ẋiẋj and where we use Einstein summation. Parameterizing by
arclength, i.e. setting L ≡ 1 (or r = s) we get

2gijẍ
i + 2gij,lẋ

lẋi + gij,kẋ
iẋj = 0 (16)

which, upon multiplcation by gmj (entries of inverse of (gmj)) and rearranging be-
comes the geodesic equation 6,7.

In order to show on the other hand that the squared length functional satisfies 8 we
may consider the length functional

l(r, x, s, y) =

∫ s

r

L (x(u), ẋ(u)) du (17)
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and invoke Hamilton-Jacobi calculus. This is done by introducing the variables
pi = Lẋi , and the associated Hamiltonian defined by

H(x, p) = ẋipi − L(x, ẋ). (18)

(here and henceforth we use Einstein summation if convenient). Then we may write

x(t) ≡ x(t; r, x, s, y) and p(t) ≡ p(t; r, x, s, y),

where x(r; r, x, s, y) = x and x(s; r, x, s, y) = y. and compute

ls = −H(x(s), p(s)). (19)

Then we may connect p to lyk by computing

lyk =
∫ s

r

(
∂ẋi

∂yk pi + ẋi ∂pi

∂yk −Hxi
∂xi

∂yk −Hpi

∂pi

∂yk

)
dt

∫ s

r

·(
∂xi

∂yk pi

)
dt = ∂xi

∂yk pi

∣∣∣s
r

= pk(s; r, x, s, y).

(20)

by invoking the canonical system of equations. This leads to

∂l

∂s
+
∑
ij

gij ∂l

∂yi

∂l

∂yj

= 0, (21)

and a similar equation with respect to the variables x. Then we get the equations
for l2 and d2, i. e. the equations 24 and 23 below.

Recall that a minimal geodesic is a global distance minimizing geodesic. This mini-
mal geodesic which connects x and y characterizes the Riemannian distance d(x, y)
in an obvious way. Moreover smoothness of (x, y) → d(x, y) for smooth diffusion
and drift coefficients aij, bi follows from the following fact about ordinary differential
equations.

Theorem 2.2. Let F : Rn × Rn → R be a smooth map. Consider the differential
system

d2x

dt2
= F

(
x,

dx

dt

)
, (22)

where x is a map I ⊂ R → Rn. Then for each point (x0, y0) there exists a neighbor-
hood U × V of this point and ε > 0 such that for (x, v) ∈ U × V equation (2.69) has
a unique solution xv :]− ε, ε[→ Rn with initial conditions xv(0) = x and x′v(0) = v.
Moreover, the map X : U×V×]−ε, ε[→ Rn defined by (t, x, v) → X(t, x, v) := xv(t)
is smooth.

Finally we get
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Theorem 2.3. Let Ω ⊆ Rn be some domain. The function d2 : Ω × Ω ⊆ Rn ×
Rn → R+ (the leading order term of the WKB-expansion of a parabolic equation
with diffusion coefficients aij) is the unique function which satisfies the equations

d2 =
1

4

∑
ij

d2
xi

aijd
2
xj

, (23)

d2 =
1

4

∑
ij

d2
yi
aijd

2
yj

(24)

for all x, y ∈ Rn and with the boundary condition

d(x, y) = 0 iff x = y for all x, y ∈ Rn. (25)

Moreover, the squareroot d is the Riemannian distance induced by

d(x, y) := inf

{∫ b

a

√
aij(γ)

.
γ

i .
γ

j
dt|γ : [a, b] → Rn is piecewise

smooth with γ(a) = x and γ(b) = y

}
.

(26)

The function d2 is a C∞-function with respect to both variables.

Proof. The variation of the length functional leads to the geodesic equation. On the
other hand, Hamilton-Jacobi calculus leads us to the fact that the squared length
functional d2 satisfies the equation 8. It is clear that the squared length functional
satisfies both equations 23 and 24 below. Moreover, it is clear that the squared
length functional satisfies the initial condition 25. Uniqueness is a bit more subtle.
In [8] Varadhan showed that

d2(x, y) = lim
t↓0

2t ln p(t, x, y), (27)

where p is the fundamental solution of a scalar parabolic equation with diffusion
coefficient function x → aij(x). Since p is unique for a strictly parabolic equation
d2 is uniquely determined by the equation 27. On the other hand one knows that
for small t > 0 ln p has for C∞ coefficients a representation of type 95 is valid (cf.
[3, 5]). Plugging this into the correspondend parabolic equation leads to the eikonal
equation 8 which is, hence, satisfied by d2. Moreover we know by V and the fact
that the squareroot of d2 is a metric. Hence d(x, y) = 0 if and only if x = y, and
the same holds for d2. Hence, we conclude that the global solution d2 of the system
of equations 8,25 and 25 is unique. Moreover, from the preceding theorem we can
conclude that the function (x, y) → d2(x, y) is also smooth with respect to both
variables.
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3 Further analysis of the equation for the squared

metric d2

Next we observe that the local representation of the solution of the equations 23,
24 with the boundary condition 25 has a local representation which starts with the
quadratic terms. This will be used in the construction of a global approximation.
The analysis presented here gives us two other insights. First, a powere series ansatz
leads atmost to local and not to global solutions. Even if there is a local power series
representation of the solution at each point of the domain, we do not know how a
global solution can be constructed from this information, because we do not know
the location of the geodesic the length of which we want to compute. If we knew,
then computing the length would be a rather trivial task. Even the derivatives of the
length functional would be better computed from the explicit geodesic. However,
as we mentioned the nonlinear ordinary differential equation describing the geodesic
is harder to solve in general than the eikonal equation. Second, we shall see from
an different point of view why the boundary condition 25 leads to uniqueness of
solutions (x, y) → d2(x, y) of the system 23, 24, and 25. We have

Theorem 3.1. The local representation d2 satisfying the equations 23, 24, together
with the boundary condition 25 is of the form

d2(x, y) =
∑

ij aij(y)∆xi∆xj +
∑

|α<M
d2

α(y)
α!

∆xα

+
∑

|γ|=M

∫ 1

0
(1− θ)M−1 ∆xγ

γ!
∂γd2(y + θ∆x, y)dθ.

(28)

The coefficients dα(y) are uniquely determined by a recursion obtained from the
equations 23, 24. In coordinates with second order normal form, i.e. where d2 is∑

ij λi(y)∆xi∆xj with λi(y), 1 ≤ i ≤ n is the spectrum of (aij(y)), the multiindex
recursion is

d2
β(y) = 1

(1−
P

i βi)

(∑
i (λ

i
0)

2 λ
β−̇2i
i

(β−̇2i)!
1{βi≥2}

+
∑

i

∑
|α|≥1,|γ|≥3,α+γ=β

λα
i

α!
λi

0d
2
γ(y)γi

+
∑

i

∑
α≥0,|δ|≥3,|γ|≥3,α+γ+δ−̇2i=β

λα
i

α!
δiγid

2
δ(y)d2

γ(y)

)
.

(29)

This confirms uniqueness. (Note that there is no loss of generality if we choose
the normal coordinates for the second order terms). In general the solution is not
globally analytic in the sense that d2 is not representable by a globally converging
power series.

Proof. A smooth solution d2 of the eikonal equation has the representation

d2(x, y) = d(y, y) +∇d(y, y) · (x− y)

+
∑

|γ|=2

∫ 1

0
(1− θ)1 ∆xγ

γ!
∂γd2(x + θ∆x, y)dθ.

(30)
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We abbreviate R(x, y) =
∑

|γ|=2

∫ 1

0
(1− θ)1 ∆xγ

γ!
∂γd2(x + θ∆x, y)dθ. Since d(y, y) = 0

we have
d2(x, y) = ∇d2(y, y) · (x− y) + R(x, y) (31)

The ’only if’-condition of the boundary condition leads to ∇d2(y, y) = 0. To see this
assume that ∇d2(y, y) 6= 0. Since R(x, y) ≤ C‖∆x‖2 there is a small ∆x such that
∇d2(y, y) ·µ∆x > C‖∆x‖2 and ∇d2(y, y) · (−µ)∆x < −C‖∆x‖2 for some µ ∈ (0, 1].
Hence there exists some ρ such that with x′ := y + (ρµ)∆x

d2(x′, y) = ∇d2(y, y) · (ρµ)∆x + R(x′, y) = 0, (32)

contradicting one part of the boundary condition d2(x, y) = 0 iff x = y. Next one
computes that

∑
ij aij(y)∆xi∆xj satisfies the equation

d2(x, y) =
1

4

∑
ij

aij(y)d2
xi

d2
xj

, (33)

and the uniqueness of theorem 2.3. (which we established by arguing with uniqueness
of related diffusions and Varadhan’s result, in the Atiyah-Singer spirit of short-range
analytic expansions) identifies the coefficients aij(y) as the second order terms of
local representations around y. Having obtained this the representation 28 is just
a multivariate version of Taylor’s theorem. Note, however, that we do not need
to invoke the uniqueness of theorem 2.3. but just consider a recursion obtained
from a power series ansatz starting with second order terms. However, this would
complicate the matter a bit so we take advantage that we know the second order
terms of a local representation by the preceding argument. Finally we have to
establish the recursion in 29. The recursion shows directly that the higher order
coefficients d2

β(y) for |β| ≥ 3 are uniquely determined. Moreover, it is clear from 29
that in general the convergence radius of the full power series is small (if not zero).
Hence in general there is no globally analytic solution the function d2 : Ω× Ω → R
globally analytic if for each y ∈ Rn the Taylor expansion of d2 at y ∈ Rn and x ∈ Rn

equals d2 globally, i.e.

d2(x, y) =
∑

α

∂αd2(y)

α!
(x− y)α forall x, y ∈ Rn. (34)

Invoking the implicit function theorem equation 8 is equivalent to

d2 =
1

4

∑
i

λi(x)d2
xi

d2
xi

, (35)

where λi(x), 1 ≤ i ≤ n is the spectrum of the positive (aij(x)). Since d2
xi

= 2ddxi

this is equivalent to

1 =
∑

i

λi(x)dxi
dxi

(36)
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The latter equation is easier but there is no Taylor expansion around y as can be
seen in the case of constant coefficients (and hence constant eigenvalues λ), where
the solution is

d(x, y) =

√√√√ n∑
i=1

∆x2
i

λi

(37)

Remark 3.2. We use equation 35 mainly for the theoretical purposes of this corol-
lary. In general it cannot be in general used for numerical purposes since this would
imply that we have an efficient procedure to compute the eigenvalue functions of a
space dependent matrix. Since we are looking for high precision in this paper, this is
not possible in general. An exception is the case of dimension n = 2 where we have

λ1,2(x) =
tr(A)(x)

2
±

√(
tr(A)(x)

2

)2

− det(A)(x) (38)

where A(x) = (aij(x)).

Next we plug in the power series expansion

d2(x, y) =
n∑

i=1

λi
0∆x2

i +
∑
|β|≥3

d2
β(y)∆xβ (39)

We have
d2

xi
= 2λi

0(y)∆xi +
∑
|β|≥3

d2
β(y)βi∆xβ−̇1i , (40)

where for any multiindex β we define

β−̇1i = (β1, · · · , βi, · · · βn)−̇1i :=

{
(β1, · · · , βi − 1, · · · βn) if βi ≥ 1
(β1, · · · , 0, · · · βn) else

(41)

The term β − 2i is defined analogously. Plugging in the power series ansatz and
using the relation λ0

i (λi
0)

2
= λ0

i , this leads to(∑
|β|≥3 d2

β(y)∆xβ
)

(1−
∑

i βiλ
i
0λ

0
i )

=
(∑

|β|≥3 d2
β(y)∆xβ

)
(1−

∑
i βi)

=
(∑

i

∑
|α|≥1

λα
i

α!
∆xα

)
(λi

0)
2
∆x2

i +

+
(∑

i

∑
|α|≥1

λα
i

α!
∆xα

)(
λi

0

∑
|β|≥3 d2

β(y)βi∆xβ
)

+
(∑

i

∑
α

λα
i

α!
∆xα

)
×

(∑
|β|≥3,|γ|≥3 βiγid

2
β(y)d2

γ(y)∆xβ−̇1∆xγ−̇1
)

.

(42)
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This leads to ∑
|β|≥3 d2

β(y)∆xβ

= 1

(1−
P

i βi)

((∑
i

∑
|α|≥1

λα
i

α!
∆xα

)
(λi

0)
2
∆x2

i +

+
(∑

i

∑
|α|≥1

λα
i

α!
∆xα

)(
λi

0

∑
|β|≥3 d2

β(y)βi∆xβ
)

+
(∑

i

∑
α

λα
i

α!
∆xα

)
×

(∑
|β|≥3,|γ|≥3 βiγid

2
β(y)d2

γ(y)∆xβ−̇1∆xγ−̇1
))

.

(43)

Simplifying and renaming multiindices in order to collect for multiindices of order
β we get ∑

|β|≥3 d2
β(y)∆xβ

= 1

(1−
P

i βi)

(∑
i

∑
|α|≥1 (λi

0)
2 λα

i

α!
∆xα+2i+

+
∑

i

∑
|α|≥1

∑
|γ|≥3

λα
i

α!
λi

0d
2
γ(y)γi∆xα+γ

+
∑

i

∑
α

∑
|δ|≥3,|γ|≥3

λα
i

α!
δiγid

2
δ(y)d2

γ(y)∆xα+γ+δ−̇2i

)
.

(44)

The latter equation leads directly to 29.

Let us draw some consequences out of our theoretical considerations. There is
neither an explicit solution nor leads a power series ansatz to a global solution
in general. Neither does it help to have local solutions in terms of power series.
Such representations are not sufficient for our purposes, since we are interested in
a global solution for x → d2(x, y) and do not know the intermediate points on the
corresponding geodesic in order to compute the global d2 by means of local power
series representations. This motivates our later construction of regular polynomial
interpolation of d2 as seemingly unavoidable.

4 Regular polynomial interpolation algorithm for

the Riemannian metric and its derivatives

For the moment let us denote again an interpolation polynomial which approximates
the squared Riemannian distance d2 in the Lp-sense on some bounded domain Ω by
q2
0,p and one that approximates the squared Riemannian distance d2 in the Hs,p-sense
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(again on Ω) by q2
s,p. How can we check that a given polynomial is an approximation

in either sense? The equation 8 gives us itself a hint how an approximation q2
s,p of

d2 performs. In order to obtain the Lp error of an Lp approximation q2
0,p of d2 we

may plug in the approximation q2
s,p into the right side of equation 8 and subtract

the left side, i.e. we compute

1

4

∑
ij

aij(x)
∂q2

0,p

∂xi

∂q2
0,p

∂xj

− q2
0,p = r0,p(x), (45)

We shall see that r0,p ∈ O(h3) locally (with h the mesh size of the interpolation
points) implies that

‖d(x, y)− q0,p‖Lp(Ω) (46)

converges to zero as the number of interpolation points N goes to infinity in such a
way that the mesh size of the set of interpolation points h goes to zero. Note that q0,p

denotes the squareroot of q2
0,p. We call an approximation q2

s,p an Hs,p-approximation
if it approximates not only d2 in the Lp sense but can be plugged in into all the
derivatives of 8 of order m (i.e. multivariate derivatives α for |α| ≤ m of the eikonal
equation) such that in

∂α

∂xα

(
1

4

∑
ij

aij(x)
∂q2

0,p

∂xi

∂q2
0,p

∂xj

)
− ∂α

∂xα
d2(x, y) =: rα,p (47)

the right side staisfies r0,p ∈ O(h3+m) locally implies that

‖d(x, y)− q0,p‖Hs,p(Ω) (48)

converges to zero as the number of interpolation points N goes to infinity in such a
way that the mesh size of the set of interpolation points h goes to zero. Accordingly,
we call such q2

0,p (q2
s,p) an Lp- (Hs,p) approximation of the boundary value problem 8.

In the next subsection we construct a Lp-approximation and refine the construction
in the following subsection in order to construct Hs,p-approximations.

4.1 Polynomial interpolation of eikonal equation in Lp sense

We may write the eikonal equation 8

d2(x, y) =
1

4

∑
ij

aijd
2
xi

d2
xj

=
1

4

〈
∇d2, A∇d2

〉
. (49)

Assume that A = (aij) is constant. The solution 8 with the boundary condition
d2(x, y) = 0 iff x = y is

d2(x, y) =
〈
∆x, A−1∆x

〉
, (50)

where ∆x = (x− y), and A−1 =: (aij) denotes the inverse of the matrix A. This is
easily verified by observing that

∇d2 = 2A−1x. (51)
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Define
d2

A−1(xj)(x, y) =
∑
ml

alm(xj)(x
l − yl)(xm − ym), j = 0, · · · , N (52)

we get the first recursively defined approximation algorithm for the Riemannian
distance based on N + 1 interpolation points x0 = y, x1, x2, · · · , xN . Note that the
squared distance is a function

d2 : Ω× Ω ⊆ Rn × Rn → R+, (53)

where we define R+ := {x|x ≥ 0}. There are several ways to approximate the
function d2. In order to approximate this function we approximate first the function
x → d2(x, y), then the function x → d2(x, x1) and so on up to x → d2(x, xN).

We start with the approximation of x → d2(x, y). First define

d2
00(x, y) = d2

A−1(y)(x, y) (54)

Next define

d2
10(x, y) = d2

A−1(y)(x, y) + c10Π
n
l=1(xl − yl)

2d2
A−1(x1)(x, y), (55)

and determine a real number c10 such that

d2
1(x1, y) =

1

4

∑
ij

aij(x1)d
2
1,xi

(x1, y)d2
1,xj

(x1, y), (56)

i.e. the eikonal equation 8 with respect to x and fixed parameter y is satisfied at x1.
Proceeding we get a series d2

10, d
2
20, · · · , d2

k0, · · · of approximations of the form

d2
k0(x, y) = d2

A−1(y)(x, y) +
k∑

j=1

cj0Π
j
r=0Π

n
l=1(xl − xr

l )
2d2

A−1(xj)(x, y). (57)

Having determined the real numbers c10, · · · c(k−1)0 we obtain the real number ck0 by
solving

d2
k0(xk, y) =

1

4

∑
ij

aij(xk)d
2
k0,xi

(xk, y)d2
k0,xj

(xk, y). (58)

for ck0. Continuing this procedure for N interpolation points we get a polynomial
of the form

d2
N0(x, y) = d2

A−1(y)(x, y) +
N∑

j=1

cj0Π
j
r=0Π

n
l=1(xl − xr

l )
2d2

A−1(xj)(x, y). (59)

with N real numbers cj0 obtained recursively by plugging in d2
j0 with one degree of

freedom cj0 into 58.

Analogous constructions are done to approximate x → d2(x, xj) for k = 1, · · · , N
with

d2
Nk(x, xk) = d2

A−1(y)(x, xk) +
N∑

j=1

cjkΠ
j
r=0Π

n
l=1(xl − xr

l )
2d2

A−1(xj)(x, xk), (60)

12



with cjk computed analogously. The construction of the functions d2
N0, · · · , d2

NN

suffices to approximate d2 (we do not need to synthesize these functions into one
function, for example by a Lagrangian polynomial interpolation). Note that for
j = 0, · · ·N the function d2

Nk satisfies the equation

d2(x, xk) = 1
4

∑
ij aij(x)d2

xi
(x, xk)d2

xj
(x, xk)

with boundary condition

d2(x, xk) = 0 iff x = xk.

(61)

at all interpolation points x0, · · ·xN by construction.

Remark 4.1. Note that in the preceding construction no restrictions on the choice
of the interpolation points are made. This does not mean that one may search for
an optimal choice of interpolation points and improve efficiency and convergence.
We are free to choose a certain set of interpolation points (for example Chebyshev
nodes). But these are purely computational aspects which will be exploited elsewhere.

Remark 4.2. Note that we have constructed an approximation of the squared metric
d2. The metric d is then approximated naturally by the squareroot of the approxi-
mation of the squared metric, i.e. we consider the function

x → dNk(x, xk) :=
√

d2
Nk(x, xk) (62)

to be the approximation of the metric function x → d(x, xk).

4.2 Construction of Hs,p-approximations

We refine the construction of the preceding section by construction of an approxima-
tion which solves not only 8, (or the set of equations 23, 24 with boundary conditions
25), but also all multivariate derivatives of 8 up to a given order m at the interpo-
lation points. It turns out then that these polynomials are Hs,p-approximations for
s ≤ m. The approximation is constructed recursively again. For a multiindex β of
order |β| = m ≥ 3 we denote the approximations of order d2

M(βm)n,N or just d2
M(βm) if

we do not want to refer to the number of interpolation points N and the dimension
of the problem n explicitly. The choice of the mesh is free again (in principle). We
just assume that a set {x1, · · · , xN} of interpolation points is given. Again we may
construct functions x → d2

M(β)0(x, y), x → d2
M(β)0(x, x1),..., and x → d2

M(β)0(x, xN).

We shall construct the first function x → d2
M(β)0(x, y) for arbitrary multiindex β.

The other functions can be constructed completely analogously. We start with the
Lp-approximation.

d2
N0(x, y) = d2

A−1(y)(x, y) +
N∑

j=1

cj0Π
j
r=1Π

n
l=1(xl − xr

l )
2d2

A−1(xj)
(x, y), (63)

13



where the numbers cj1 have been determined according to section 4.1.. Next we
define d2

M(β)0(x, xN) for multiindices of order |β| = 3. Let β0, · · · , βk, · · · , βR a list
of multiindices of order 3. The length R of this list is dependent of the dimension
n of course. Start with β0 = (β0

1 , · · · , β0
n) and let γ0 be an multiindex with |γ| = 2

such that β0 − γ = 1i for some index i. Define (recall that x0 = y)

d2
β00(x, y) = d2

N0(x, y) +
1

β0!
c0
β0(x− y)β0

. (64)

Then plug d2
β00(x, y) into the equation

∂
(β0−γ0)
x d2(x, y) = ∂

(β0−γ0)
x

(
1
4

∑
ij aij(x)∂d2

∂xi

∂d2

∂xj

)
, (65)

evaluate at x = x0 = y and solve for the real number c0
β0 . Then proceed recursively:

having defined the function x → d2
β0(k−1)(x, y) define

d2
β0k(x, y) = d2

β0(k−1)(x, y) + ck
β0Πk−1

l=0 (x− xl)β0+1 1

β0!
(x− xk)β0

, (66)

where 1 = (1, 1, · · · , 1). Then plug d2
β0k(x, y) into the equation 69, evaluate at y,

and solve for ck
β0 . When k = N we have got the approximation

d2
β0N(x, y) = d2

N0(x, y) +
N∑

k=0

ck
β0Πk−1

l=0 (x− xl)β0+1 1

β0!
(x− xk)β0

. (67)

with N + 1 real numbers ck
β0 for 0 ≤ k ≤ N determined recursively. Note that the

function x → d2
β0k(x, y) satisfies the equations 8 and 69 at all interpolation points

x0, · · · , xN . Then we take the next multiindex β1 from the list of multiindices of
order 3 (i.e. |β1| = 3) where we may assume that β1 − γ1 = 1k for some multiindex
γ1 with |γ1| = 2 and some index k. An analogous construction as in the case of β0

can be done. The only difference is that we start with d2
β0N(x, y) instead of d2

N0(x, y).
We get an approximation of the form

d2
β1N(x, y) = d2

β0k(x, y) +
N∑

k=0

ck
β1Πk−1

l=0 (x− xl)β1+1 1

β1!
(x− xk)β1

. (68)

where the real numbers are computed recursively by plugging the current approxi-
mation into the equation

∂
(β1−γ1)
x d2 = ∂

(β1−γ1)
x

(
1
4

∑
ij aij(x)∂d2

∂xi

∂d2

∂xj

)
, (69)

evaluating at the current interpolation point and solving for the currently undeter-
mined real number ck

β1 . Doing this for all the multiindices of order 3 in the list above
we get the approximation

d2
M(β3)(x, y) := d2

βNN(x, y). (70)
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Note that by construction the function x → d2
M(β3)(x, y) satisfies the equation 8 and

all its first order derivative equations

∂i
xd

2 =
1

4
∂i

x

(∑
lm

alm(x)d2
xl

d2
xm

)
, 1 ≤ i ≤ n, (71)

at all interpolation points x0 = y, x1, · · · , xN . This completes the stage of con-
struction for multiindices of order 3. Next assume that the construction for the
approximation

x → d2
M(βm)(x, y) (72)

of order m has been completed. Then we may list the multiindices of order m+1, i.e.
consider a list of multiindices δ0, δ1, · · · , δRm+1 such that |δ| = m+1. The procedure
is then quite similar as in the stage for multiindices of order 3. Therefore we give
a very short description. Starting with the multiindex δ0 there is a multiindex βk

of order m (i.e. |βk| = m) such that δ0 − βk = 1i for some index i. Then we get
successive approximations

d2
δ0k(x, y) = d2

M(βm)(x, y) +
k∑

r=0

cr
δ0Πr−1

l=0 (x− xl)δ0+1 1

δ0!
(x− xr)δ0

, (73)

where the real numbers ck
δ0 are succesively determined by plugging in the function

x → d2
δ0k(x, y) into the equation

∂βk

d2 =
1

4
∂βk

(∑
lm

alm(x)d2
xl

d2
xm

)
, (74)

evaluated at the interpolation point xk (Note that ∂βk
= ∂δ0−1i). After N + 1 steps

we get the approximation function x → d2
δ0N(x, y). Having defined x → d2

δlN
(x, y)

for l = 0, · · · p−1 the next multiindex δr may be such that there is an multiindex βh

of order m such that δr−βh = 1i for some index i. We may then define x → d2
δpk(x, y)

d2
δpk(x, y) = d2

M(βm)(x, y) +
k∑

r=0

cr
δpΠr−1

l=0 (x− xl)δp+1 1

δp!
(x− xr)δp

, (75)

and determine the constants cr
δp by plugging in the function x → d2

δrk(x, y) into the
equation

∂βh

d2 =
1

4
∂βh

(∑
lm

alm(x)d2
xl

d2
xm

)
, (76)

and evaluate at xk. Finally, we get the approximation of order m + 1, namely

d2
M(βm+1) = d2

δRm+1N
(x, y). (77)

Note that this approximation satisfies the eikonal equation 8 and all its derivatives
up to order m + 1, i.e. all equations

∂α
x d2 =

1

4
∂α

x

(∑
lm

alm(x)d2
xl

d2
xm

)
(78)
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with |α| ≤ m + 1 at all interpolation points x1, · · ·xN .

Remark 4.3. Note that at some stage of the construction we may have a multiindex
γ such that γ − α = 1i0 for some α and some index i0. Then the terms in the αth
derivative of the eikonal equation evaluated at xk that do not annihilate a term of
form ck

γΠ
k−1
l=0 (x − xl)γ+1(x − xk)γ are quite easily computed. For this reason the

constants of the form ck
γ are quite easily computed. You can see very easily this by

writing the αth derivative of the eikonal equation invoking symmetry aij = aji. We
have

∂αd2(x, y) = ∂α
(

1
4

∑
ij aij(x)∂d2

∂xi

∂d2

∂xj

)
= 1

2

∑
ij aij(x)

(
∂α ∂d2

∂xi

)
∂d2

∂xj
+ 1

4

∑
ij

(
∂α

∂xα aij(x)
)

∂d2

∂xi

∂d2

∂xj

+1
4

∑
ij

∑
β<α

∑
γ≤β

α!
β!(α−β)!

β!
γ!(β−γ)!

(
∂βaij(x)

) (
∂α−β−γ ∂d2

∂xi

)
∂γ ∂d2

∂xj

(79)

If the indicated approximation is plugged into 79 and evaluated at xk only the terms
1
2

∑
j ai0j(x)

(
∂α ∂d2

∂xi0

)
∂d2

∂xj
(evaluated for approximations d2

γk at interpolation point

xk) do not annihilate terms of form ck
γΠ

k−1
l=0 (x− xl)γ+1(x− xk)γ.

5 Error estimates for the regular polynomial in-

terpolation algorithm

We first consider error estimates for Lp-approximations, and then extend our esti-
mates to Hs,p-approximations. In the whole Section we consider a bounded domain
Ω ⊆ Rn and assume that the coefficient functions aij are C∞.

5.1 Error estimates for Lp approximation

We have

Theorem 5.1. The approximations d2
Nk defined in 60 are Lp- approximations of the

boundary value problems of form 61, i.e. Lp- approximations for functions of form
x → d2(x, xk) for p > 1.

Proof. Let x and y be two points connected by a geodesic curve γ given in local
coordinates with values in Rn. Let us assume also that x and y are interpolation
points. We have no solution for the curve γ in general, but there are lets say k
points z0 = x, z1 · · · zk = y in the image of the curve γ with Euclidean distance less
than a certain mesh size h. Clearly,

d(x, y) =
N∑

i=0

d(zi, zi+1) (80)

16



Next define an approximative distance along the geodesic of form

dg(x, y) =
n∑

i=0

dg(z
i, zi+1), (81)

where dg is the squareroot of d2
g(z

i, zi+1) :=
∑

lm alm(zi
m − zi+1

m )(zi
l − zi+1

l ). Since y
is fixed d is approximated by dN0 and we estimate

d(x, y)− dN0(x, y) = d(x, y)− dg(x, y) + dg(x, y)− dN0(x, y) (82)

Our analysis showed that the local approximation of d2 by d2
g is of order O(h3) hence

the approximation of d by dg is of order O
(
h

3
2

)
, hence with generic constant C we

have for the first summand on the right hand side of 82

|d(x, y)− dg(x, y)| =
N∑

i=0

|
(
d(zi, zi+1)− dg(z

i, zi+1)
)
| ≤ C

√
h (83)

The modulus of the first summand on the right hand side can be estimated by

|d(x, y)− dg(x, y)| ≤ C
√

h (84)

Since Ω is a compact bounded domain, the C∞ coefficient functions aij are Lipschitz
Only locally Lipschitz is needed). Assuming a suitable choice of the points on the
geodesic for the second summand we get by an elementary argument that

‖dg(x, y)− dN0(x, y)‖Lp ≤
N∑

i=0

‖d(zi, zi+1)− dg(z
i, zi+1)‖Lp ≤ Chp−1. (85)

5.2 Error estimates for Hs,p approximation

Theorem 5.2. The approximations d2
M(βm) defined in 77 are Hs,p- approximations

of the boundary value problems of form 61 for s ≤ m, i.e. Hs,p- approximations for
functions of form x → d2(x, xk) for p > 1.

Proof. For fixed y the function x → d2(x, y) and the function x → d2
M(βm)(x, y)

both satisfy the eikonal equation and its derivatives at any interpolation point by
construction. That means that for all interpolation points xj, 1 ≤ j ≤ N and all
derivatives γ ≤ m we have

∂γ
xd2(xj, y) = ∂γ

xd2
M(βm)(xj, y). (86)

Next recall a multivariate version of Taylor’s theorem
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Theorem 5.3. If f ∈ C∞, then for all positive integers M we have

f(x + y) =
∑

|α|<M
(∂αf)(x)

α!
yα

+M
∑

|γ|=M
yγ

γ!

∫ 1

0
(1− θ)M−1(∂γf)(x + θy)dθ

(87)

Applying this formula, we see from our construction of x → d2
M(βm)(x, y) that the

local order of approximation of x → d2(x, y) is O(h3+m). A similar reasoning as in
the preceding Section leads to the result. Note here that the same reasoning holds
when y is replaced by another interpolation point xj.

Remark 5.4. (Sharper error estimates) A little analysis shows that the local order
of approximation is

d2(x, y)− d2
M(βm)(x, y) ≤ CP

hm

m!
, (88)

where P is the number of multiindices of order m and

C := 2 max

∑
|γ|=M

sup
x∈Ω

∂γd2(x, y),
∑
|γ|=M

sup
x∈Ω

∂γd2
M(β)(x, y)

 (89)

Similarly for |β| ≤ m we get

∂βd2(x, y)− ∂βd2
M(βm)(x, y) ≤ C

hm−|β|

(m− |β|)!
, (90)

Since we are working on a bounded domain and d2 is C∞ there is some bound C, but
not a priori known. However bounds for C may be obtained from a priori estimates
by inspection of the eikonal equation. It is clear that

d2 =
1

4

∑
ij

aijd
2
xi

d2
xj

. (91)

is equivalent to

d2 =
1

4

∑
i

λid
2
xi

d2
xi

, (92)

and, hence

|d2
xi
| ≤ 4d2

λmin

, (93)

where λmin = mini infx∈Ω λ(x). Further a priori estimates for the derivatives may be
obtained from derivatives of the eikonal equation.
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6 Analytic approximations of the fundamental so-

lution of parabolic equations

Consider the parabolic equation

∂p

∂t
− 1

2

∑
ij

aij(x)
∂2p

∂xi∂xj

−
∑

i

bi(x)
∂p

∂xi

= 0 (94)

on some domain (0, T )×Ω ⊆ (0, T )×Rn, and where x → (aij(x)) is a matrix-valued
C∞-function with symmetric positive matrix (aij(x)) for all x ∈ Ω, and x → b(x) is
also a C∞-function. Plugging in the Ansatz

p(t, x, y) =
1√
2πt

n exp

(
−d2(x, y)

2t
+

∞∑
k=0

ck(x, y)tk

)
, (95)

leads to the recursive equation 8 for d2. Given d2 the first order recursive equation

−n

2
+

1

2
Ld2 +

1

2

∑
i

(∑
j

(aij(x) + aji(x))
d2

xj

2

)
∂c0

∂xi

(x, y) = 0, (96)

together with the boundary condition

c0(y, y) = −1

2
ln
√

det (aij(y)) (97)

determines c0 uniquely for each y ∈ Rn. Furthermore, having computed all WKB-
coefficient functions cl up to order k, for k + 1 ≥ 1 the coefficient function ck+1 can
be computed via the first order equation

(k + 1)ck+1(x, y) + 1
2

∑
ij aij(x)

(
d2

xi

2

∂ck+1

∂xj
+

d2
xj

2

∂ck+1

∂xi

)
= 1

2

∑
ij aij(x)

∑k
l=0

∂cl

∂xi

∂ck−l

∂xj
+ 1

2

∑
ij aij(x) ∂2ck

∂xi∂xj
+
∑

i bi(x)∂ck

∂xi
,

(98)

with the boundary conditions

ck+1(x, y) = Rk(y, y) if x = y, (99)

Rk being the right side of 98. We will show in a subsequent paper that equations
96 97, and 98,99 can be solved or approximated to higher order if 8 is solved or
approximated to higher order. We have

Proposition 6.1. In order to compute the WKB-approximation up to order k a
Hs,p approximation of d2 for s ≥ 2k is sufficient.

Proof. In each recursion step 98 an operator of order 2 is applied to the previously
computed WKB-coefficients.
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7 Conclusion and final remarks on computational

issues

We have established a stable algorithm for efficient computation of the length of
geodesics as a function of two arbitrary points on a Ck- Riemannian manifold with
minimal geodesic as well as of partial derivatives of the length functional with prin-
cipally any order of accuracy. We established error estimates in arbitrary Sobolev
norms. We showed how the algorithm can be applied in order to compute funda-
mental solutions of linear parabolic equations with irreducible second order diffusion
terms. There are many obvious applications to mathematical physics and finance
as well as to statistics, e.g. to the maximum log-likelihood method, to option pric-
ing, computing transition amplitudes etc.. Finally, we remark that the interpolation
polynomials should not be evaluated in the way they are constructed. Careful imple-
mentation of multivariate Horner schemes improves the computations. These and
related computational issues will be considered in a subsequent paper.

References
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