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Abstract

We compare the dispersion relations for spinodally dewetting thin liquid
films for increasing magnitude of interfacial slip length in the lubrication limit.
While the shape of the dispersion relation, in particular the position of the
maximum, are equal for no-slip up to moderate slip lengths, the position of
the maximum shifts to much larger wavelengths for large slip lengths. Here,
we discuss the implications of this fact for recently developed methods to
assess the disjoining pressure in spinodally unstable thin films by measuring
the shape of the roughness power spectrum. For PS films on OTS covered Si
wafers (with slip length b &~ 1 um) we predict a 20% shift of the position of the
maximum of the power spectrum which should be detectable in experiments.

1 Introduction

Wetting and dewetting phenomena are not only part of our everyday life but
they are particularly relevant to technological applications (e.g., in coating
processes) and in biological systems. The dynamics of films of a thickness
smaller than 10 or 20 nanometers is not only governed by hydrodynamics, but
the finite range of intermolecular forces, which are responsible for the richness
of wetting phenomena (1; 2), becomes relevant (3). This is true in particular
for spinodally unstable films which have been analysed quantitatively in the
framework of the thin-film equation (4). In addition, the quantitative anal-
ysis of he roughness power spectrum has been used in order to measure the
disjoining pressure (DJP) (or the effective interface potential) between the
liquid-solid and the liquid-vapor interface which is a result of the interplay be-
ween the interactions among the fluid molecules and the interactions between
the fluid and the substrate (5-7).

In the spinodally dewetting systems studied in Refs. (4; 6; 7), i.e., polystyrene
(PS) on silicon (Si) wafers covered with a native oxide layer, hydrodynamic
slip between the fluid and the solid substrate could be neglected. However,
recently, the slip length of PS on octadecyltrichlorosilane (OTS) and decyl-
trichlorosilane (DTS) coated Si wafers was discovered to range up to the scale
of a micron (8-11). The dewetting patterns, in particular the shape of the
dewetting rims around the growing holes in the film were analyzed using a
thin-film equation valid in the regime of large slip lengths, the so-called strong-
slip model, (8; 12). The thickness of the films was on the order of a few 100 nm
and the dewetting mechanism was therefore nucleation rather than spinodal.
However, since the hydrodynamic boundary conditions influence the rim shape
it is to be expected that the power spectrum of spinodally unstable films is
affected as well. Some dependencies of the dominant wavelength and time



scale on the magnitude of the slip length for the case of an attracting van der
Waals potential are discussed in (13). In this study, we systematically com-
pare thin spinodally dewetting films with zero to large large slip lengths. Our
main motivation is the availability of experimental systems (PS on OTS or
DTS-covered Si wafers (8-11)) which exhibit extremely large slip lengths and
against which we can test our theoretical analysis in order to not only infer
qualitative but also quantitative results. In particular, we consider an effective
interface potential calculated from Hamaker constants as given in (7).

In the following Sec. 2 we first compare the dispersion relations for lubrica-
tion models for zero to moderate slip lengths with the dispersion relation for
the regime of large slip lengths. We establish that even though the energetics
is the same, films dewetting for large slip lengths have a qualitatively different
dispersion relation as compared to sticky films, and therefore their structure
factor has a maximum at a different wavenumber. We investigate the relevance
of the difference between the dispersion relations for the sample systems PS
on Si and on OTS(DTS)-covered Si in Sec. 3 and conclude in Sec. 4.

For clarity of presentation we restrict our analysis to one-dimensional inter-
faces. The generalization to real two-dimensional interfaces is straightforward
for the lubrication models for zero to moderate slip. The generalization of the
lubrication model for large slip is not completely obvious due to the appear-
ance of additional cross-terms and we have included it here in an appendix
(14). We note that omission of these cross-terms would be discovered at the
level of the dispersion relation, where the growth rate would not only depend
on the modulus of the wave vector but also on its direction, in contradiction
to the isotropy of the physical situation. For all slip regimes we obtain the
same dispersion relation for two-dimensional interfaces as for the correspond-
ing problem with one-dimensional interfaces, except that the wavenumber is
now replaced by the absolute value of the wave vector.

2 Spinodal dewetting

2.1 The no-, weak-, and intermediate slip limit

If the slip length b is small compared to the lateral length scale L in the
dewetting film (i.e., the spinodal wavelength, see below), or comparable to L,
the dynamics of a thin non-volatile Newtonian liquid film between a vapour
of negligible viscosity and density, and an impermeable substrate is given in
the lubrication approximation (i.e., for ¢ = H/L < 1, with the mean film
thickness H) by a degenerate parabolic partial differential equation of fourth
order for the film thickness h(z,t) (3)

Oh = —0y {M(h)9, [II(h) + o O2h] } (2.1)

with the surface tension of the liquid-vapour interface o, and the disjoining
pressure (DJP) II(h) = —0,®(h) (the negative derivative with respect to the
film thickness of the effective interface potential) (1; 2). If the slip length is on
the order of H or smaller, the so-called weak-slip regime, the mobility factor
is given by M(h) = (h*/3 + bh?) /n, with the fluid viscosity n. For b ~ L,
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we have M(h) = bh?/n, called the intermediate-slip regime. The well-known
no-slip regime is reached by taking the limit & — 0 in the weak-slip regime,
leading to M (h) = h3/(3n), see (12) for more details.

A homogeneous flat film of thickness H is linearly unstable if 7w(H) =
—OplI(H) < 0: In the early regime of dewetting, we can linearize Eq. (2.1)
about the base state H. For small perturbations oh(z,t) = H — h(z,t) we get

Ooh = —M (H) 02 [0p11(H) + 0 920h] . (2.2)

The ansatz oh(z,t) = dh(q,t) exp(igx) corresponds to a Fourier transforma-
tion with respect to = and leads to solutions of the form dh(q,t) = dh(q,0) exp [w(q)t]
with the dispersion relation

w(k) = M(H)* [hI1(H) - o]
= 2 (@/QP 2~ (/@) (2.3

For unstable films, i.e., for 9,II(H) > 0, there is a band of unstable modes with
wave number 0 < ¢ < ¢., with ¢. = /[OpII(H)/o. The dispersion relation
has a maximum at Q = ¢./ V2, which also defines the typical lateral length
scale L = 2x/@Q which is also called the spinodal wavelength. The typical
time scale, i.e., the inverse growth rate of the fastest growing mode, is given
by T =1/ [o M(H) Q"]

The dispersion relation w(q) has the form given in Eq. (2.3) in the no-slip
regime, in the weak-slip, as well as in the intermediate-slip regime. For b < L
changing the slip length therefore only changes the time scale 7" but not the
position @ of the maximum of w(q). @, on the other hand, is only determined
by the ratio of OpII(H) and o. If one knows o, measuring the position of
the maximum of w(q) for a number of film thicknesses allows to determine
OpII(h) and therefore the effective interface potential ®(h) (6; 7). This has
been accomplished experimentally by measuring the power spectrum of the
surface roughness S(g,t) = |%h(q,t)|?, which, in turn, can be calculated from
the initial spectrum S(q, 0) = |oh(q,0)|? and the dispersion relation w(q)

S(g,t) = 5(q,0) exp [2w(q)t] . (2.4)

If S(q,0) is flat in the range of unstable modes, then S(q,t) has a maximum
at the same position as w(q), i.e., at ¢ = Q.

2.2 Strong-slip limit

For the case of a slip length b much larger than L, the thin film evolution
can be captured by a different thin film model (12; 13), called the strong-slip
model by Miinch et al. (12). It can be written as

nu=4bn0; (h0yu) + bhd, [I1(h) + 92h]
—bhp (Oru+ udyu) (2.5a)
Oth = — 0, (hu), (2.5b)



with the fluid mass density p and the horizontal flow velocity w(z,t). We
note that this model is associated with plug flow in the cross-section. For the
experimental systems considered here we are not interested in the last term
in Eq. (2.5a) since the inertial term proportional to p is negligible. However,
for completeness, we calculate the dispersion relation including this term. The
first term on the right hand side of Eq. (2.5a) is proportional to the divergence
of the total longitudinal shear stress component parallel to the substrate. Note
that the velocity u cannot be eliminated from Eq. (2.5) even if the inertial term
is neglected.

If we perturb Eq. (2.5) about a resting [u(z,0) = 0] flat film of thickness
H we get to first order in the perturbation the problem

néu=4bHn025u +bH 0, [0II(H) &h + 92h]
—bH pdsdu (2.6a)
d0h = — H dydu. (2.6b)

With the normal modes ansatz oh(q,t) = dh(q,0) exp [w(q) t + i q x| and du(q,t)
du(q,0) exp [w(q) t + i qx] we get, after taking the derivative of Eq. (2.6b) with
respect to x and subsequently eliminating o (g,0), a quadratic equation for
the dispersion relation w(q)

nw(q) =—4bHnq*w(q) +bH?¢* [011(H) — 0 ¢°]
—bH p [w(g))? (2.7)

with the two solutions

1
wi/2(q) = —% (4612 + b—H>

x [1+£ |1+

H¢? [0p11(H) — 0 ¢?]
2
(44 + 517

(2.8)

While the first solution wj(g), corresponding to the plus sign in Eq. (2.8),
is negative for all ¢ and does therefore not contribute significantly to the
roughness spectrum, the second solution wy(q) is zero for ¢% [0, I1(H) — 0 ¢?] =
0, i.e., for ¢ = 0 and for ¢ = ¢. = V2 Q. For sufficiently small p or sufficiently
large b the term under the square root is negative for large enough ¢ > ¢.. The
corresponding modes oscillate in time. However, there real part is given by
Rewsy(q) = —n [4¢* +1/(bH)] /(2p) < 0 and thus, these modes are heavily
damped.

If inertia is negligible we can ignore the last term proportional to p in
Eq. (2.7) (or take the limit p — 0 in Eq. (2.7)) and we get

B b H? ¢? [8hH(H) —0q2]
wig) = n(1+4bH ¢?)

~ (q/Q)? [2-(q/Q)?]
= T B@QY (29)




with the time scale T' = n/ (0 b H? Q4), as in the intermediate-slip regime. As
expected, taking the limit B — 0 (b — 0) we recover the dispersion relation of
the intermediate-slip model. As compared to Eq. (2.3), we have one additional
dimensionless parameter B = 4 b H QQ? determining the relevance of slip, which
is of order unity in the strong-slip limit discussed here. Both the time scale
T as well as B depend on the slip length. Introducing the b-independent time
scale T' = BT = 4n/(c H Q*) we can study the dependence of the dispersion
relation on the slip length more easily. In the strong-slip model, neither T
nor T” are the inverse of the maximum of the dispersion relation. Since the
numerator in Eq. (2.9) is proportional to the dispersion relation of the weak-
and no-slip models discussed in the previous section and since the denominator
is positive, the strong slip model has the same band of unstable modes ¢ < g..
Taking the derivative of Eq. (2.9) we get the position gmax of the maximum of

w(q) at
Gmax = @ \/ —.112;3—1. (2.10)

Fig. 1 shows the dispersion relation for the strong-slip regime for various values
of B. For B — 0 we recover the shape of the dispersion relation for the weak
and intermediate slip regime, but the time scale T' diverges in this limit. For
increasing B the location ¢max of the maximum moves to smaller values of ¢
and the height of the maximum w(gmax) approaches 2/7” from below. In the
limit B — oo we get w(q) — [2— (¢/Q)?] /T".

3 Experimental relevance

In the experiments discussed in (6) the shift of @ with the film thickness
was used to determine the effective interface potential ®(z), assuming the
dispersion relation in Eq. (2.3), i.e., for the weak/intermediate slip regime.
The surface tension coefficient was o = 31 mN/m and the DJP had the form
II(z) = —A/ (67 2%), with the Hamaker constant 2.2 x 1072° Nm. From this
we get for the dimensionless slip length B = 0.23nm?b/H3. Therefore, in
order to have, e.g., B > 1 or B > 0.1 for the lowest film thickness H = 2 nm
in the experiment, b has to be larger than 35 nm and 3.5 nm, respectively.

The position of the peak in the power spectrum as a function of H and b
normalized to the position in the weak /intermediate slip model that one would
observe for the material combination studied in (6) is shown in Fig. 2. Cleary,
the shift in the peak is larger for smaller film thicknesses H and larger slip
length b. In order to get a deviation of the peak position on the order of 5%
for the smallest film thicknesses of H = 2 nm, the slip length has to be larger
than 8 nm, i.e., much larger than expected for PS on Si.

If, on the other hand, the strong-slip regime was to apply and one tried
to determine OpII from the measured peak position gmax [see Eq. (2.10)] with
the equation valid only in the weak and intermediate slip regime, i.e., gmax =
VORIl*/ (20) with an “apparent” DJP IT*, one would produce a systematic
error in the measurment. The ratio of the actual DJP 9,11 and the “apparent”
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Figure 1: Dispersion relation in the strong slip limit in Eq. (2.9) (full lines) vor
various values of B (see upper axis tics). The location of the maximum of the
dispersion relation shifts to smaller values ¢/@ and the height approaches 2/7" from
below for increasing B (dashed line).
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as compared to the position expected for the weak and intermediate slip model and
experimental parameters from (6) as a function of the film thickness H and the slip
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length b. The contour lines indicate the slip length b necessary in order to obtain a

Figure 2: Shift of the position of the maximum ¢,y of the dispersion relation w(q)
deviation of 0.1%, 1%, 5%, 10%, and 20%.



DJP OyIT* is obtained by squaring Eq. (2.10)

vV1i+2B -1

OpIT* (H) = =

O II(H). (3.1)
In order to get a first estimate on the error we assume that only non-retarded
dispersion forces are relevant and get to first order in B

A A%

ahH*(H)%2wH4_47T20H7' (32)

Therefore, a spurious subleading term o 1/2° is generated in the “apparent”
effective interface potential ®*(z) = — [“II*(2') d2'.

The system considered in (6), i.e., PS on a Si wafer covered with a native
oxide layer, is known not to exhibit significant slip. However, recently it has
been demonstrated, that covering the same wafer with an OTS or DTS brush
leads to very large slip lengths up to the order of microns (8-10). With the
material parameters of OTS, SiO, and Si together with the thickness of the
OTS layer and of the SiO layer in (8) we calculate the effective interface
potential for a PS film on an OTS covered Si waver using Eq. (3) in Ref. (7).
With this, we can calculate the deviation of the position of the maximum of
the dispersion relation gu,ax from the position in the weak-slip limit ) as shown
in Fig. 3. With a film thickness of 4 nm a slip length of b = 1 yum is enough to
generate a 20% shift in the maximum of the dispersion relation. Such a large
shift should be detectable in the experiments.

4 Conclusions

In this paper we demonstrated that the hydrodynamic boundary condition at
the substrate surface significantly changes the power spectrum of film thick-
ness variations in spinodal dewetting for experimentally relevant systems.
Analysing only the peak position without knowledge of the hydrodynamic
boundary conditions can lead to significant systematic errors in the data anal-
ysis. As pointed out in (15), viscoelastic thin films show a similar behaviour:
while the position of the maximum of the dispersion relation is identical to
the position in the Newtonian weak-/intermediate-slip case, in the strong-slip
case it shifts to smaller wave numbers for increasing slip length (15-17).

The power spectrum of capillary waves should be affected by hydrody-
namic slip as well. However, up to now, a stochastic version of the thin-film
equation is available only for substrates without slip (18; 19) and the phe-
nomenological ansatz taken in (20) can be extended directly to the case of
weak- and intermediate-slip only. In the case of vanishing slip the position
of the maximum of the power spectrum approaches () from above as time
proceeds (21). Since the no-slip, the weak-slip, and the intermediate-slip case
differ only in the mobility factor M, the same behaviour can be expected for
the weak and intermediate-slip case. The mechanism for this noise-induced
coarsening is simple: thermal fluctuations generate short wavelength fluctua-
tions rather rapidly before the instability sets in, amplifying modes with larger
wavelength. In the strong slip case, the maximum of the dispersion relation

8
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film thickness H and the slip length b. The contour lines indicate the slip length b
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and experimental parameters for a PS film on OTS from (7) as a function of the
necessary in order to obtain a deviation of 0.1%, 1%, 5%, 10%, and 20%.

Figure 3: Shift of the position of the maximum ¢,.x of the dispersion relation w(q)
as compared to the position expected for the weak and intermediate slip model



shifts to very large wavelengths for increasing b, which could emphasize the
effect of noise-induced coarsening. However, a detailed analysis of a stochastic
strong-slip thin-film equation is needed to reach a conclusion on this point.
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Appendix
The generalization of the strong-slip model to 3D has been derived in (14).

With the two lateral velocity components u and v in the x and y-direction,
respectively, the model equations in non-dimensional form are

1
Re% “h [0z (4h0yu + 2h0yv) + Oy (hOzv + hoyu)]
u
Ah+T0(h)] — - 1
+ 0, (AR +TI(0)] = 75 L1
dv 1
Re'y =1 [0, (4h0yv + 2hd;u) + Oy (hdyv + hdyu)]
v
—|—8y [Ah—i—H(h)] — w (.lb)
Oth = = 0y (hu) — 0y (hv). (10)

Here, we abbreviate the total/materials derivative d/dt = 0; +u 0, + v 0, and
the two-dimensional Laplace operator A = 92 + 85 and Re is the Reynolds
number. The lateral length scale L, the vertical length scale H, and the time
scale T" have been introduced in the main text. For this model the slip length
is large and of order b = 3/¢2, where 3 is an O(1) constant. The scale for the
(disjoining) pressure is P = n/T. The capillary numberis Ca =nL/(c T) = ¢.

The linear stability of a flat film is again a straightforward calculation, by
taking the first order in the perturbation, the problem for u = fu, v = &
and h = H + éh and making the normal modes ansatz (&u,¥,dh)(q,t) =
(0u(q,0), v(q,0),0h(q,0)) explw(q)t +iq - 7], with ¢ = (¢z,qy) and 7= (z,y).

Abbreviating qu(q,0) = dug, (g, 0) = dvg, h(q,0) = dhy, we obtain the

linear eigenvalue problem

noug =—bnH [(4¢; + q )5U0+3Qx6]y500]

+ibH q, [8HH(H)—Jq | o (.2a)
novg =—bnH [(4qy + qx)évo + 3qqu6uo]
+ibH qy [8[{1_[( )—aq] o (.2b)
w((f) oho :—’L'I'I(Q;E 5u0—|—qy 500), (.2(2)
with ¢ = |7]?. Here, we have neglected the contributions from the inertial

terms and we have switched to dimensional quantities in order to connect to

10



the main body of the article. From (.2) we find the same dispersion relation
as we obtained for the 2D case in (2.9), i.e., w(q) = w(q), by setting the
determinant of the matrix corresponding to the linear system to zero and by
solving for w(q). Alternatively, one can determine g, dup+gy dvo from Egs. (.2a)
and (.2b) which yields

(qu Gug + gy dvo) (1 +4b H ¢*) =

A o auI(H) — 0] She. (3)

Inserting this in Eq. (.2¢) we recover Eq. (2.9).
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