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Abstract. We study the asymptotic behaviour of a stochastic particle sys-
tem that is determined by an independent motion of each particle and by an 
interadion mechanism between pairs of particles. The limit of the empirical 
measures of the system is characterized· by a nonlinear equation, which is 
related to the Boltzmann equation. Using a uniqueness result for the limit-
ing equation, we establish a law of large numbers. We also investigate the 
convergence of moments of the empirical measures. 
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1. Introduction 
We consider a Markov particle system 

Z(t) = (Z1(t), ... , Zn(t)), t 2:: 0, (1.1) 

with the generator 
n 

A(n)( 1> )(z) = L Ao,zi( 1> )(z)+ {1.2) 
i=l 

where z = (zi, ... , Zn) E (Rdt, q, is an appropriate function on (Rdt, and 

{ 

Zk, if k f:. i, j , 
( J ( z, i, j, z1, z2)] k = ~i , ~f k = i. , 

Z2, lf k = J. 
(1.3) 

We assume that Ao is the generator of a Markov process with the state 
space Rd, and that Q(z, z, ., .) are uniformly bounded measures on Rd x 
Rd. Thus, the time evolution of the particle system is characterized by an 
independent motion of the particles (governed by the generator Ao) and by 
a pairwise interaction (governed by the kernel Q). 

Let 

(1.4) 

be the empirical measures associated with the Markov process Z(t), where 
the symbol 6 z denotes the Dirac measure concentrated in z . We show, under 
suitable assumptions, that the limit (a~ n ~ oo) of the empirical measures is 
a deterministic function characterized as the unique solution of a nonlinear 
equation. This equation has the form 

(cp, >.( t)) = (cp, Ao) +la' (Ao( cp ), >.( s )) ds+ (1.5) 

la' k k { k k [cp(Z1) + cp(Z2) - cp(z1) - cp(z2)] X 

Q(z1, z2, dz1, dz2)} .A(s, dz1) .A(s, dz2) ds, Vt 2:: 0, Vcp E 'D(Ao), 
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where the measure .:\0 on Rd is a given initial value and 'D(Ao) is the domain 
of the generator Ao . 

Particle systems of the form (1.1 )-(1.3) have been studied for a long 
time. Early references are papers by M. A. Leontovich [14] and M. Kac [12]. 
Concerning the case Ao = 0 , we refer to the review papers [11] and [17] (see 
also the historical comments and the reference list in [19]). Various models 
of the form (1.1)-(1.3), for special choices of Ao (usually generating a drift) 
and Q, were considered in [16], [4], [7], [9], [13], [1], [15], [19]. Such particle 
systems were used in [18] to analyze stochastic numerical schemes for the 
Boltzmann equation. 

Convergence of the empirical measures to the solution of a nonlinear 
equation of the. form (1.5) with a special kernel Q was established in [16]. 
The proof was based on the approximation of the independent motion by 
Jump processes. 

In [13], [15] a concrete model related to the mollified Boltzmann equation 
(cf. Section 3 of the present paper) was studied via the correlation function 
approach. The k-marginals were shown to factorize in the limit n -7 oo. 
This gives a law of large numbers for fixed time. 

The purpose of [1], [19] was to generalize the approach from [16] to cover 
the case of the mollified Boltzmann equation. However, the proofs were not 
very transparent mainly due to the lack of a uniqueness result for the limiting 
equation (1.5). 

This gap is filled in the present paper. Our proof of the convergence 
theorem is divided into three steps - relative compactness of the sequence of 
empirical measures, characterization of the limiting points of the sequence as 
solutions to the limiting equation (1.5), and uniqueness for the solution of the 
limiting equation. Our results cover the case of A0 generating a diffusion and 
of fairly general continuous and bounded Q . Besides a law of large numbers 
we also study the behaviour of moments (unbounded functionals) of the 
empirical measures. This problem is of interest for numerical applications. 

The paper is organized as follows. The main assumptions and results 
are formulated in Section 2. In Section 3 we consider some examples of 
systems (1.1)~(1.3), for which the assumptions of the convergence theorem 
are fulfilled. In particular, the relationship with the Boltzmann equation is 
discussed. The proofs of the results are given in Section 4. Finally, Section 5 
contains some concluding remarks. 
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2. The convergence theorem 
We denote the state space of a single particle by Z = Rd. Let B(Z) 

be the Banach space of bounded Borel measurable functions on Z with the 
norm llcpll = supzez lcp(z)I, and let G(Z) denote the subspace of continuous 
functions vanishing at infinity. Furthermore, let M(Z) be the space of finite, 
positive Borel measures on ( Z, B z) and P( Z) be the space of probability 
measures on (Z, Bz), where Bz denotes the Borel-a-algebra. We write 

(cp, v) = l cp(z) v(dz), where cp E B(Z), v E M(Z). 

On P(Z) , we consider the bounded Lipschitz metric 

g(v1, v2) = sup l(cp, v1) - (cp, v2)l, (2.1) 
cpEB(Z): ll'PllL9 

where 

( 
lcp(x) - cp(y)I) 

llcpllL=max suplcp(x)I, sup II II . 
xEZ x,yEZ, xf=y X - Y 

(2.2) 

The metric g is equivalent to weak convergence (cf. [8, p. 150]). Let 
D'P(Z)[O, oo) denote the space of P(Z)-valued right continuous functions with 
left limits (cf. [8, Sect. 3.5]). 

For the convergence theorem, we need the following assumptions. 
Al: The semigroup (T0(t) : t ~ 0), which corresponds to Ao, is a Feller 
semigroup, i.e. T0(t) : O(Z) ~ G(Z) are positive contractions and 

lim llTo(t)cp - cpll = 0, Vcp E O(Z). t-.o (2.3) 

Moreover the process is conservative so that the semigroup and the generator 
can he extended to include functions with non-zero limits at infinity with 
T0(t)l = 1 for all t ~ 0. 
A2: There exists a core (cf. [8, Section 1.3]) D for Ao such that cp2 E D if 
cp ED. 
A3: There exists a function 7./;0 on [O, oo) satisfying 

7./;o(O) = 0, (2.4) 
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0 < 'if;o( x) :::; 'if;o(Y) :::; co < oo , V 0 < x :::; y, (2.5) 

lim'if;0 (x) == 0, 
x~o 

(2.6) 

and such that 

cpy E 'D(Ao), Vy E Z, and sup llAo(cpy)ll == c1 < oo, (2.7) 
yEZ 

where the functions cpy are defined as 

cpy(z) ='if;o(Jlz-yll). 

A4: The kernel Q(z1, z2, ., .) is weakly continuous in (z1, z2). 
A5: The kernel Q satisfies 

(2.8) 

(2.9) 

A6: Suppose T0 ( t) is given by the transition function U0 (cf. [8, Ch. 4, 
Sect. l]). There exists a function {; on [O, oo) satisfying 

0 ~ {;(x) ~ {;(y), VO~ x ~ y, (2.10) 

lim if; ( x) = oo , 
x~oo 

(2.11) 

and such that 

1 fz ..fa(JIZll) Uo( s, z, dZ) - ,fa(llzll) I ~ co + c1 ..fa(llzll), (2.12) 
Vz E Z, Vs E [O, t], for some t > 0 and c1 E (0, 1), 

l l [{;(llz1ll) + i/;(llz2ll)] Q(z1, z2, dz1, dz2) ~ (2.13) 

c2 [1 + i/;(llz1ll) + i/;(llz2ll)] , Vz1, z2 E Z, 

and 

limsupE(n) f {;(llzll)µ(n)(O,dz) < oo. 
n~oo Jz (2.14) 
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Theorem 2.1 Suppose that the assumptions A1-A6 are satisfied. Let µ(n) 
be the empirical measures defined in {1.4). 

If for some Ao E P(Z) 

J~~ E(n)l(cp, µCn)(O)) - (cp, Ao)I = 0, Vcp E C(Z), (2.15) 

then 

lim p(n) = 6>.., 
n-1-00 

(2.16) 

where p(n) denote the measures on DP(Z)[O, oo) associated with µCn) , A is the 
unique solution of Eq. {1.5), and E(n) denotes mathematical expectation. 

Corollary 2.2 Suppose that the assumptions of Theorem 2.1 are satisfied 
with a continuous function{;. Let cp be a continuous function such that 

(2.17) 

Then 

(2.18) 

3. Examples 
Consider the generator A0 of the form 

d a i d a2 
Ao(cp)(z) = L bi(z) a (i)cp(z) + - L aij(z) a (i) a (j)cp(z)' (3.1) 

'l Z 2 .. 1 .Z Z i= i,3= 

where z = (zC1), •.. , z(d)) E Rd. Assume b : Rd---t Rd is Lipschitz continu-
ous, and a : Rd ---t Rd x Rd is such that aii E C2(Rd), i, j = 1, ... d and 
az(if~z(j) akl, i, j, k, l = 1, ... d are bounded. According to [8, Ch. 8, Th. 2.5], 
Ao generates a Feller semigroup, and C;'(Rd) is a core. Thus, assumptions 
Al and A2 are fulfilled, and· assumption A3 can be checked easily. 

Assume further that 
d 

L laij(z)I ~ c(l + llzll 2
)' Vz E Rd' (3.2) 

i,j=l 
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and 

I ( z' b( z)) I ~ c ( 1 + 11z11 2
) ' v z E Rd . (3.3) 

Then, according to [8, Ch. 5, Th. 3.10], the corresponding process z(t) can 
be represented as the solution of a stochastic integral equation 

Z(t) = Z(O) + l b(Z(s))ds + l cr(Z(s))dW(s), 

where a= aaT. Applying Ito's formula to the function f(z) = llzll 2 , one 
obtains 

rt d t 
EllZ(t)11 2 = EjjZ(O)Jl2 + 2 E lo (Z(s ), b(Z(s))) ds + E ~la a;;(Z(s )) ds. 

Then, using (3.2), (3.3), and Gronwall's inequality, one easily obtains that 
(2.12) is fulfilled for the function 

{;( x) = x2
, x E [O, oo). (3.4) 

Consider the case of pure drift 

d a 
Ao( cp )(z) = ~ b;(z) iJz(i) cp(z), z = (z<1>, ... , z(d)) E 1?,d. (3.5) 

Then Uo(t, z, r) = 6F(t,z)(r), where 

F(t,z)=z+ lb(F(s,z))ds. 

Assume that b : Rd -7 Rd is Lipschitz continuous and satisfies 

l(z, b(z))I ~ c(l + llzll 2
), Vz E Rd. 

Then one easily checks that (2.12) is fulfilled for the function 

{;(x) = xa, x E [O, oo), a> 0. 

(3.6) 

(3.7) 

Consider the special case of z = ( x, v) E R 3 x R 3 , where x and v are 
interpreted as the position and the velocity of a particle. Let 

A0(cp)(z) = (v, Y'x) cp(x,v) + (/3(x,v), Y'v) cp(x,v), (3.8) 
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where the function /3 describes an external force acting on the particles. 
Condition (3.6) takes the form 

I (x, v) + ( v, /3( x, v ))I ::; c (1 + llxll 2 + llvll 2
). 

Suppose that the collision kernel Q has the form 

Q(z1, z2, dzi, dz2) == (3.9) 

6x1 ( dx1) 6x2 ( dx2) r 6v* ( dv1) 6v* ( dv2) ~ h( X1, x2) B( V1, V2, e) de' Js2 i 2 2 
where Z1 == ( X1, V1), Z2 == ( X2, V2), dz1 == ( dx1, dv1), dz2 == ( dx2, dv2), 

v; == v1 + e(e,v2 -vi), v; == v2 + e(e,v1 -v2), (3.10) 

h and B are bounded continuous functions, 8 2 denotes the unit sphere in 
R 3 and de is uniform surface measure. Then assumptions A4 and AS are 
fulfilled. We show that (2.13) is fulfilled for the function (3. 7). Note that the 
transformation (3.10) preserves momentum and energy, i.e.· 

(3.11) 

Using (3.11) and the inequality 
( xa + ya)lfa ::; ci ( x2 + y2)1/2 ::; c2 ( xa + ya)lfa, x, y 2:: O, 

one obtains 

fz fz [~(llz1ll) + ~(llz2ll)] Q(z1, z2, dz1, dz2)::; 

S:: . k k Cf [JIZ1Jl2+JIZ2ff2]"12 
Q(z1, z2, dZ1, dZ2) 

fs, Cf [ff :z:1112 + ff v;f f 2 + Jlx2ff2 + lfv;f f 2]"12 ~ h( :z:1, :z:2) B( vi, v2, e) de 

< ~ [ffz1ff" + Jlz2ff"] ~ h(x1,x2) fs, B(v1,v2,.e)de 

< c2 [~(llz1ll) + ~(1lz21l)] , Vz1, z2 E Z. 

With A0 defined in (3.8) and Q defined in (3.9), Eq. (1.5) takes the form 

( cp, A( t)) = (cp, Ao) + l (Ao( cp ), A( s )) ds+ (3.12) 

ft f f f -
2

1 
h(xi,x2)B(v1,v2,e) (cp(x1,v;)+cp(x2,v;) Jo Jn.a Jn.a Js2 . 

-cp(x1, v1) - cp(x2, v2)] de .A(s, dx2, dv2) .A(s, dx1, dv1) ds. 
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Assume the measures .A(t) are absolutely continuous with respect to Lebesgue 
measure, h is symmetric and the kernel B has the properties 

Then, after the substitution of the integration variables (vi, v2 ) by ( v;, v;) 
and removing the test function cp, Eq. (3.12) reduces to 

a 
Btp(t,x,v) + (v, Vx)p(t,x,v)+ (3.13) 

+CB(x,v), Vv)p(t,x,v) == f dy f dw f de Jna lna Js2 
h( x, y) B( v, w, e) [P( t, x, v*) p( t, y, w*) - p( t, x, v) p( t, y, w) J . 

Replacing formally h by the delta-function, one obtains the Boltzmann 
equation 

a . 
Btp(t,x,v) + (v, Vx)p(t,x,v) + (f3(x,v), Vv)p(t,x,v) == 

ha dw fs
2 

deB(v,w,e) [p(t,x,v*)p(t,x,w*)-p(t,x,v)p(t,x,w)]. 

This is the basic equation of the kinetic theory of dilute (monatomic) gases. 
It describes the time evolution of a density function p( t, x, v) that depends 
on a time variable t ~ 0, on coordinates x E R 3 representing the possible 
positi~ns of the gas particles, and on coordinates v E R 3 representing the 
possible velocities of the gas particles. The function B is called the collision 
kernel, and the function {3 describes an ext.ernal force acting on the particles. 
The objects v* and w* are defined as in (3.10) and are interpreted as the 
post-collision velocities of two particles with the pre-collision velocities v 
and w. We refer to [5] concerning more information about the Boltzmann 
equation. Eq. (3.13) is a mollified Boltzmann equation (with h called 
the mollifier) (cf. [5, Ch. 8, Sect. 3]). 

4. Proof of the convergence theorem 
The proof of Theorem 2.1 is based on the following three results. 
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Theorem 4.1 (relative compactness) Suppose the assumptions A3, AS 
and A6 are fulfilled. 

Then the sequence (P(n)) is relatively compact. 

Theorem 4.2 (characterization of limiting points) Let P 00 be any lim-
iting point of the sequence (P(n)). Let fl denote the set of all w E Dp(z)[O, oo) 
satisfying Eq. {1.5). Suppose the assumptions Al, A2, A4 and AS are ful-
filled. 

Then P 00 (0) == 1. 

Theorem 4.3 (uniqueness of solution) Suppose the assumptions Al and 
AS are fulfilled. 

Then there exists at most one solution of Eq. {1.5). 

Proof of Theorem 2.1. From Theorem 4.2 and Theorem 4.3 we obtain 
that any limiting point of the sequence (P(n)) is concentrated on the set 
fl == {A}. Thus, there is at most one limiting point, and (2.16) follows from 
Theorem 4.1. D 

The proofs of Theorems 4.1-4.3 are pr~pared by several lemmas. 

Lemma 4.4 Consider the function 
1 n 

~(z) == - L 'Pi(zi)' z = (zi, ... 'Zn) E zn' 
n i=l 

( 4.1) 

where 'Pi E 'D( A 0 ) , i = 1, ... , n . 
Then 

1 n 
A(n)( ~ )(z) == - L Ao( cpi)(zi)+ ( 4.2) 

n i=l 

~ L r r [cpi(z1) + cp;(z2) - 'Pi(zi) - cp;(z;)] Q(zi, Zj, dz1, dz2). 
n l~i:f:j~n 1.z 1.z 

If, in addition, 

cp~ E TJ( Ao) , i == 1, ... , n , ( 4.3) 

then 

IA(n)( ~2)(z) - 2 ~(z) A(n)( ~ )(z)I ~ ( 4.4) 

~ mµ ll'Pi Ao( 'Pi)ll + _!_ mµ II Ao( 'PDll + ~ 16 CQ max (mµ ll'Pill)2 
· n i n i n ' i 
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Proof. We introduce the notations 
n 

~n)( <P )(z) == L Ao,zi( <P )(z) ( 4.5) 
i=l 

and 

Q(n)( <P )( z) == ( 4.6) 

I. I: f f [<P(J(z,i,j,z1,z2))- <P(z)] Q(zi,zj,dzi,dz2), n 15_if:j5_n} Z} Z 

so that the generator (1.2) takes the form 

A (n) == ~n) + Q(n) . (4.7) 

Taking into account (1.3), we obtain 

<P( J(z, i, j, z1, z2)) == <P(z) + ~ ['Pi( z1) + 'Pi(z2) - 'Pi(zi) - 'Pi( zi)] , ( 4.8) . n 
and thus 

<P 2
( J( z, i, j, Z1, Z2)) - <T!2(Z) + 2 <P(z) ~ [ rp;( Z1) + rp;( Z2) - rp;( z;) - rp;( z;)] 

+ : 2 [rp;(Z1) + rp;(Z2) - rp;(z;) - rp;(z;)j2. ( 4.9) 

By ( 4.6), ( 4.8), and ( 4.9), we have 

Q(n)(<P)(z) == (4.10) 

~ I: f f [cpi(z1) + cpj(z2) - 'Pi(zi) - 'Pi(zi)] Q(zi, zj, dz1, dz2) 
n 15_if:j5_n} Z} Z 

and 

Q(n)( <P 2 )( z) == 2 <P( z) Q(n)( <P )( z)+ ( 4.11) 

~ I: f f [c,oi(z1) + cpj(z2) - 'Pi(zi) - cpj(zi.)]2 Q(zi, zj, dz1, dz2). 
n l<it:i<n lz lz 

Furthermore, it follows from ( 4.1) and ( 4.5) that 

( 4.12) 
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Since 

we obtain 

and, by ( 4.5), 

A~n)( <P 2)(z) == 2
2 t L Ao( 'Pk)(zk) cpj(zi) + ~ t Ao( cp%)(zk) ( 4.13) 

n k=1 ii:k n k=1 
2 n 1 n 

= 2 <P(z) ~n)(<P)(z) - 2 L Ao(cpk)(zk) 'Pk(zk) + 2 L Ao(cp%)(zk) · 
. n k=1 n k=1 

Now (4.2) follows from (4.7), (4.12), (4.10), and (4.4) is a consequence of 
( 4. 7), ( 4.13), ( 4.11 ), and (2.9). D 

Lemma 4.5 Let 'lj; be a function on [O, oo) satisfying (2.5). Let cp E B(Z) 
be such that ll'PllL ::; 1 {cf. {2.2)). 

Then 
2 

jcp(z) - cp(z)I ::; e + 'lf;(e) 'lf;(llz - zll), Ve> O, Vz, z E Z. 

Proof. If llz - zll ::; e' then jcp(z) - cp(z)I ::; e. 
If llz - .ill > e, then 'l/J(llz - zll) ~ 'lj;(e) and consequently 

lcp(z) - cp( Z)I S 2 = ,P~e) ,P( e) S ,P~e) ,P(lf z - Zll). D 

Lemma 4.6 Suppose there exists a function 'l/;0 on [O, oo) satisfying (2.4), 
(2. 5), and such that (2. 1) holds. 

Then 

E(n) [ e(µCnl( t + u ), µCnl( t) )IP,nl] S e + ,p~~) [i\ +4 Cq,max Co] , ( 4.14) 

Vt~ 0, Vu~ 0, Ve> 0, Vn .. 
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Proof. Using Lemma 4.5, one obtains 

1 n 
< - L lcp(Zi(t + u)) - cp(Zi(t))I 

n i=l 

2 1 n 

< t: + 'ljJo(t:);;: ~ 'ljJo(llZi(t + u) - Zi(t)ll), 

and, according to (2.1), 

2 1 n 
e(µ<nl( t+ u ), µ<nl( t)) ::;; e + ,Po( e) ;;-~ ,Po(llZo(t+ u) - Z;( t)ll). ( 4.15) 

Let E~) denote the conditional expectation under the condition 

Z(t) = z0
' where z0 = (z~, ... 'z~) E zn. 

Consider the functions 

'Pi(z) = 'ljJo(llz - z?ll), i = 1, .. ., n, 

and the function~ defined in ( 4.1). The assumption of Lemma 4.4 is fulfilled 
because of (2. 7), (2.8). Using the fact 

and the inequality 

which follows from ( 4.2), (2. 7), and (2 .. 5), we obtain 

E~)~(Z(t + u)) ::; ~(z0 ) + u [c1 + 4 Cq,maa: co] . ( 4.16) 

Now assertion ( 4 .. 14) follows from ( 4.15), ( 4.16), (2.4), and the Markov prop-
erty. D 

Lemma 4. 7 Let cp be a nonnegative function on Z such that 

I fz cp(Z) Uo(s, z, dZ) - cp(z)/ ::;; co+ c1 cp(z), Vz E 2, Vs E [O, t], ( 4.17) 
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for some t > 0 and c1 E (0, 1), and 

k k [cp( Z1) + cp( Z2)] Q( z1, z2, dZ1 , dZ2) :<:::: ( 4.18) 

c2 [1 + cp(z1) + cp(z2)], Vz1, z2 E Z. 

Then 

Proof. Consider the function 

1 n 
<I>(z) = - L [cp(zi) + 1] . 

n i=l 

We will show that 

( 4.20) . 

where T(n)(t) is the semigroup corresponding to the process Z(t). Assertion 
( 4.19) follows from ( 4.20),. since 

<I>(Z(s))= (cp,µ(n)(s))+l, Vs~O. 

Define Q(n) = Q(n) + (n -1) CQ,ma:r: Id. Then Q(n) is a positive operator. 
We use the series representation 

where To(n) ( t) denotes the semigroup corresponding to the generator ~n) 
defined in ( 4.5). We proceed in two steps showing 

( 4.22) 

and 
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Using ( 4.23), one obtains 

Q(n)(Ta(n)(s)(<I>))(z) == CQ,max(n - l)Ta(n\s)(<I>)(z) + Q(n)(Ta(n\s)(<I>))(z) 
~ [CQ,max (n -1) +cs] Ta(n)(s)(<I>)(z). 

Consequently, it follows from ( 4.21) and ( 4.22) that 

T(n)( t)( <I> )(z) ~ exp ( -CQ,max ( n - 1) t) [Ta(n) ( t)( <I> )(z)+ 

00 r rti-1 c ) J 
~lo dt1 ···lo dt1 Tan (t)( <I> )(z) [CQ,max (n - 1) + cs]l 

- Ta(n\t)(<I>)(z) exp ([-CQ,max (n - 1) + CQ,max (n - 1) +cs] t) 
< c4 exp (cs t) <I> ( z) . 

First we show ( 4.22). We have Ta(n)(t) == fli=l To,zi(t), where To,zi(t) 
denotes the semigroup corresponding, to the generator Ao , because of the 
independence of the components. Consequently, 

( 4.24) 

It follows from ( 4.17) that 

T0 (s)(cp)(z) ~ cp(z) +co+ c1 cp(z), Vs E [O, t]. (4.25) 

From ( 4.24) and ( 4.25), one obtains 

Ta(n) ( t )<I>( z) ~ [1 + co + c1] <I>( z) . 

Next we show ( 4.23). We have from ( 4.24) and ( 4.10) 

Q(n)(Tacn\s)(<I>))(z) == ~ I: r r 
n l<i;f:.j<n lz lz 

[To(s)cp(z1) + To(s)cp(z2)-To(s)cp(zi)-To(s)cp(zi)] Q(zi,zj,dz1,dz2) 

and 

I Q(n)(Ta(n)( s )(<I> ))(z)I ~ 2 CQ,max Ta(n\ s )(<I> )(z)+ ( 4.26) 

~ L r f [To(s)cp(z1) + To(s)cp(z2)] Q(zi, Zj, dz1, dz2). 
n l'5i#i'5n lz lz 
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Suppose we have 

k k [To(s)cp(z1) + To(s)cp(z2)] Q(z1, z2, dz1, dz2) 
::; c5 [1 + To(s)cp(z1) + To(s)cp(z2)]. (4.27) 

Then one obtains from ( 4.26) 

I Q ( n) (Ta( n) ( S) (<I>)) ( Z) I ::; 2 C Q ,max Ta( n) ( S) (<I>) ( Z) + 2 C5 Ta( n) ( S) (<I>) ( Z) , 

and ( 4.23) follows. 
It remains to show ( 4.27). Using ( 4.25) and assumption ( 4.18), we obtain 

fz fz [To( s )cp(zi) +To( s )cp(z2)] Q(z1, z2, dz1, dz2) ::; 

::; 2 co CQ,max + [1 + c1] fz fz [cp(z1) + cp(z2)] Q(z1, z2, dz1, dz2) 
::; 2 Co CQ,max + [1 + c1] C2 [1 + cp(zi) + cp( z2)] . ( 4.28) 

From ( 4.1 7) we have 

cp(z)::; T0 (s) cp(z) +co+ c1 cp(z), Vs E [O, t], 

or 

cp(z)::; [1- c1r1 [co+ To(s)cp(z)], Vs E [O,t]. (4.29) 

Consequently, by ( 4.28) and ( 4.29), 

lz fz [To(s )cp(z1) + To(s )cp(z2)] Q(z1, z2, dzi, dz2)::; 

2c1 CQ,max + [1 + c1] c2 [1- c1t1[1+2co + To(s)cp(z1) + To(s) cp(z2)], 

and ( 4.27) follows. D 

Proof of Theorem 4.1. According to [8, Ch. 3, Theorem 8.6]), it is suffi-
cient to check the con.di tions 
(a) VT/ > 0 , Vt 2:: 0 3 compact r 71 ,t c P( Z) such that 

li~~f Prob{µCn>(t) E I'71,t} 2:: 1 -T/ (4.30) 

and 
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(b) VT > 0 :3 (3 > 0 and :3 random variables [n ( 5) ~ 0 , 
5E(0,1),n~1 such that 

E(n)[ef3(µ(n)( t + U ), µ(n)( t)) IFt(n)] < E(n) [rn( 5) IFJn)], ( 4.31) 

Vt E [O, T], Vu E [O, 5], 
and 

limlim sup E(n)'Yn( 5) = 0. 
0-+0 n-+oo 

( 4.32) 

To check condition (a), we note that the sets 

Kc= {v E P(Z) : fz ,,b(llzlJ)v(dz) ::0 c}, c 2 0, 

are compact in P(Z), where the function{; is supposed to satisfy (2.10) and 
(2.11). Thus, condition (a) will be fulfilled if 
V77>0, Vt~O 3c(77,t)~O such that 

. li~~f Prob {µ(n)(t) E Kc(71 ,t)} ~ 1 - 77, 
or, 

limsupProb { f ,,,b(llzll) µ(n)(t, dz)> c(77, t)} 5= 7J. (4.33) 
n-+oo Jz 

From ( 4.33) and Chebyshev's inequality, one obtains that the condition 

limsupE(n) { ~(llzll)µ<n)(t,dz) < oo 
n-+oo lz 

is sufficient. This is assured by Lemma 4. 7 and the assumption A6. 
It remains to check condition (b ). According to Lemma 4.6 and assump-

tion A3, we obtain 

E<nl[e(µCnl( t + u ), µ<nl( t) )iFlnJ] :::; e+ ..P~(~) [Co + 4 Cq,m= ea) , 

Vt > 0, Vu E [O, 5] , Ve > 0, Vn. 
We choose e( 5) = 'l/;01 (-/8) (the inverse function exists because of (2.4)-(2.6)) 
and denote 

rn( 5) == e( 5) + 2 VS [co + 4 OQ,max co] . 
Then ( 4.31) is fulfilled with f3 = 1, and ( 4.32) holds because of (2.4) and 
(2.6). D 
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Lemma 4.8 Suppose Q satisfies {2.9) and assumption A4, and let <.p E 
V( Ao) be such that <.p and Ao( <.p) are bounded and continuous. 

Then the mapping W cp : DP(.Z) [O, oo) --+ D'R [O, oo), defined as 

\li\"(w)(t) = (cp,w(t)) - (cp,w(O)) - fo\Ao(cp),w(s))ds - (4.34) 

la' fz fz { fz fz [cp(Z1) + cp(Z2) - cp(z1) - cp(z2)] x 

Q(z1, z2, dzi, dz2)} w(s, dz1) w(s, dz2) ds, 

is continuous. 

Proof. First we notice that liIDn-+oo wn(O) = w(O) in P(Z), ifliIDn-+oo Wn = w 
in Dp(.z)[O, oo), according to [8, Ch. 3, Prop. 5.2], since 0 is a continuity point 
for any w. Thus, the mapping · 

w~1)(w)(t) = (cp,w(O)) ( 4.35) 

is continuous. 
Next, we use the fact (cf. [8, p. 153]) that the mapping 

f(x)(t) = l x(s) ds 

from D'R[O, oo) into D'R[O, oo) is continuous. Therefore, it remains to show 
that 

'1'"~2)( w )( t) = (cp, w( t)) , '1'"~3)( w )( t) = (Ao( cp ), w( t)) , 

and 

fz fz { fz fz [cp(zi) + cp(z2) -.cp(z1) - cp(z2)] x 

Q ( z1 , z2, dz1 , dz2)} w ( t, dz1) w ( t, dz2) 

are continuous mappings from DP(.Z) [O, oo) into Dn [O, oo). This is fulfilled 
(cf. [8, p. 151 ]), if 

~~3)( v) = (Ao( <.p ), v) , 
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and 

~~l(v) - k fz{ k k [<p(Z1 ) +<p(Z2 ) - rp(zi) - <p(z2 )] x 

Q(z1, z2, dzi, dz2)} v( dz1) v( dz2) 

are continuous mappings from P(.Z) into R. These properties are fulfilled 
because the functions cp and Ao( cp) are bounded and continuous, and the 
kernel Q satisfies (2.9) and assumption A4. D 

Proof of Theorem 4.2. If <I> E V(A(n)), then 

P(Z(t)) = P(Z(O)) + l A(nl(P)(Z(s)) ds + M(t), (4.36) 

where M(t) is a martingale (cf., e.g., [8, Ch. 4, Prop. 1.7]). If <I> 2 E V(A(n)), 
then one can show that 

We consider the function ( 4.1} with 'Pi = cp, where cp E V(Ao) is such 
that cp2 E 'D(Ao). Note that assumption ( 4.3) is fulfilled, <I> E V(A(n)), 
<I> 2 E V(A(n)), and 

<I>(Z(t)) = (cp, µCn)(t)). ( 4.38) 

Using .Lemma 4.4, (4.36), (4.37), and (4.38), we obtain 

(rp,µCnl(t)) = (<p,µ(nl(O)} + fo\Ao(<p),µ(n)(s)}ds+ (4.39) 

l k k { k k [<p(Z1) + <p(Z2) - <p(zd - <p(z2)] x 

Q(z1, z2, dz1, dz2)} µ(n)(s, dz1) µ(n)(s, dz2) ds + R(n)( cp, t) + M(n)( cp, t), 

where 

a.s., ( 4.40) 

and M(n) is a martingale such that 
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Consider the.mapping Wcp defined in (4.34). It follows from (4.39) that 

W cp(µ(n))( t) = R(n)( cp, t) + Af(n)( cp, t) 

and from ( 4.40) and ( 4.41) that 

limE(n) sup l'1Tcp(µ(n))(s)l==O, Vt>O. 
n-oo O~s9 

( 4.42) 

It is easy to see from the definition of the Skorokhod topology (cf. [8, p. 117]) 
that ( 4.42) implies 

lim E(n) dn(W (µ(n)) 0) == 0 
n-oo cp ' ' 

or 

lim ('!j;, p(n)) == 0, 
n-oo 

( 4.43) 

where ~he function 'ljJ is defined as 

( 4.44) 

and dn is a bounded metric in Dn[O, oo) giving the Skorokhod topology. 
The function ( 4.44) is bounded and continuous because of Lemma 4.8 and 

the obvious inequality ldn(x, 0)- dn(y, O)I ~ dn(x, y). Therefore, we obtain 

( 4.45) 

From ( 4.43) and ( 4.45), one obtains 

( 4.46) 

Next, we use the hypothesis (2.15) on the initial conditions. The function 

'l/;1(w) = l(cp,w(O)) - (cp, Ao)I, w E Dp(z)[O, oo), 

is continuous and bounded (cf. ( 4.35) ). Thus, we obtain 

P00 
( { w : ( cp, w( 0)) == ( cp, Ao)}) == l. ( 4.4 7) 

Remembering the definition ( 4.34) of W cp and denoting 

ncp == {w : Wcp(w) = 0 and (cp,w(O)) == (cp, Ao)}, (4.48) 
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we obtain from'(4.46) and (4.47) that 

(rp, w( t)) = ( <p, Ao) + l (Ao( <p ), w( s )) ds+ ( 4.49) 

l l l { l l [rp(Z1) + rp(Z2) - rp(z1) - rp(z2)] x 

Q(z1,z2,dz1,dz2)}w(s,dz1)w(s,dz2)ds, Vt~ 0, Vw E n<p, 

and P00 (f2cp) = 1, for any cp E V(Ao) such that cp2 E V(Ao). 
Let D be the core of the generator Ao given by assumption A2. Consider 

the sets 

9n(Ao) = {( cp, Ao( cp )) : cp ED} and Q(Ao) = {( cp, Ao( cp )) : cp E 'D(A0 )}. 

Then 

9n(Ao) C Q(Ao) C C(Z) x C(Z). 

Since C(Z) x C(Z) is separable, the subspace 9n(A0 ) is also separable. Let 
( 'l/Jn) be a dense subset of 9n(Ao), where 

'l/Jn = ( 'Pn, Aocpn), n = 1, 2, .... 

Then ( 'l/Jn) is also dense in Q(Ao), because D is a core. Thus, 

V'lj; E Q(Ao) 3 ('l/Jn,J such that lim 'l/Jnk = 'lj;, 
k-+oo 

and 

Vcp E V(Ao) 3 ( 'Pn,J ED such that 
lim 'Pnk = cp, and lim Ao('Pnk) = Ao(cp). (4.50) 

k-+oo k-+oo 

Consider the set n0 = n:=1n'Pn. (cf. ( 4.48)). Then P 00 (f2o) = 1, and 
Eq. ( 4.49) holds for all w E !10 and 'Pn, n = 1, 2, .... By ( 4.50), it holds 
for all cp E V(Ao) so that n0 C fl, and the assertion of the theorem follows. 
0 
Notation: If f E C(Z x [O, oo)) and t E [O, oo) then write ft: Z --t R for 
the function defined by ft(z) = J(z, t). 
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Let T0 (t): C(Z x [O,oo))-7 C(Z x [O,oo)) be defined by 

To(t)(f)(z,r) = To(t)(ft+r)(z). 

It is straightforward to check that the collection (T0(t) : t 2:: 0) forms a Feller 
semigroup. It is the semigroup of the process with time added as an extra 
coordinate. Now let Ao be the generator of ( T0 ( t) : t 2:: 0) . The following 
lemma calculates the value of the generator on sufficiently nice test functions. 

Lemma 4.9 If for 'lj;: Z x [O, oo) -7 R the maps · 

exist, are continuous from [O, oo) -7 C(Z) and converge in norm to zero as 
s -7 oo, then 

'l/; E '.D(Ao) and Ao('l/;)(z,s) = (8'l/;/8t)(z,s)+Ao('lfas)(z). 

The proof is omitted. 

Lemma 4.10 If C ~ '.D(Ao) is dense and T0(t) : C -7 C for all t 2:: 0 then C is 
a core i.e. for all 'lj; E '.D( Ao) there exist 'lfan E C with ( 'lfan, Ao'lfan) -7 ( 'l/;, Ao'l/;) 
in norm in C(Z x [O, oo)) x C(Z x [O, oo)). 

Lemma 4.10 is a direct consequence of [8, Chapter 1, Prop. 3.3]. 

Lemma 4.11 Suppose A : [O, oo) -7 P(Z) is measurable and satisfies for all 
cp E '.D( Ao) , t 2:: 0 

(>.( t), rp) = (>.o, rp) + l (>.( s ), A 0 rp ~ c rp) ds +la' {K( >.( s )), rp) ds ( 4.51) 

where c E [O, oo) and K : M ( Z) -7 M (Z) is measurable and 

K(µ)(Z) ~ const, Vµ E P(Z). ( 4.52) 

If 'lj; : Z x [O, t] -7 R satisfies 
Hl: the limit limh-o( 'lfas+h - 'lfas) / h exists in norm for each s E [O, t] {right 
and left hand derivatives at s = 0, t) 
H2: 'lfas E '.D(Ao) for alls E [O, t] 
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H3: the maps s ~ '1f;s, s ~ Ao('1f;s), s ~ (8'1j;/8t)s are continuous from 
[O, t] to C(Z) 

then for s E [O, t] 

(">i.(s),'lj;s) = (Ao,'1f;o)+ (4.53) 

+lo' [(>.(r),Ao,P, + (8,P/8t), - c,P,) + (K(A(r)),,P,)j dr. 

Proof. Define 

{ 
'lj;( s, x) == 2:f=1 'lj;i( s )cpi( x) where } 

C == 'lj; E C(Z x (0, oo )) : 'lj;i are differentiable with 'lj;i, 'lj;~ E 0((0, oo )) . 
and 'Pi E 1J( Ao) 

For 'lj; E C we can use integration by parts to directly calculate that for all s 

(A ( s), 'lj; s) == (Ao, '1f;o) 

+lo' [(A(r),Ao,P, + (8,P/8t), - c,P,) + (K(A(r)),,P,)j dr 

= (Ao,'1f;o) +las [(A(r),(Ao'1f;)r - c'lj;r) + (K(A(r)),'lj;r)] dr. (4.54) 

The aim is to extend this to all 'lj; E 1J( Ao) by checking that C is a core 
for A0 . Let C be the norm closure of C. Then C contains all functions 'lj; 
of the same form as in C but with 'Pi E C(Z) (since 1J(A0 ) is dense in 
C(Z)) and so separates points of Z x [O, oo ). So C contains an algebra 
which satisfies the assumptions ·of the Stone-Weierstrass theorem. So C is 
dense in C(Z x [O, oo )) . Since To(t) : 1J(A0 ) ~ 1J(A0 ) it follows easily that 
T0(t): C ~ C for each t ~ 0. Lemma 4.10 then shows that C is a core i.e. if 
'lj; E 1J( Ao) then there exist '1f;n E C so that ( 'lj;n, Ao'1f;n) ~ ( 'lj;, A0'1j;) in norm. 
We may then pass to the limit in ( 4.54) to see that it holds for all 'lj; E 1J(A0 ). 

Finally take 'lj; satisfying the hypotheses Hl-H3. Take also gn : [O, oo) ~ 
[O, 1] smooth, decreasing with g( x) = 0 for x ~ t and g( x) = 1 for x E 
[O, t - n - 1]. Then 'lj;n = 'lj; gn satisfies the hypotheses of Lemma 4. 9 so that 
'lj;n E 1J(Ao) and 

(Ao'1f;n)s == (8'1j;n/8t)s + Ao('1f;n)s · 

Applying (4.54) for 'lj;n and noting that 'lj;n(s) = 'lj;(s) for s E [O, t - n-1] we 
have that equation ( 4.53) holds on [O, t - n-1 ). Therefore by continuity it 
holds on [O, t] completing the proof. D 
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Remark: The technique used in Lemma 4.11 has been used in branching 
measure valued processes and was first shown to one of the authors by Ed 
Perkins. 

Lemma 4.12 If <p E V(Ao) then 

'lj;(s,x) == e-c(t-s)To(t- s)cp(x) for s E [O,t] 

satisfies Hl,H2,H3 of Lemma 4.11 and 

Ao'1f;s + ( 8'lj; / 8t)s - c'lj;s == 0 for s E [O, t]. ( 4.55) 

Proof. Recall that for <p E V(Ao) (see [8, Chapter 1, Prop. 1.5]) 

To(t)rp = <p +lo' To(s )A0rp ds ( 4.56) 

and that if ~(s, z) == T0(s)cp(z) then 

(8~/8t)s == To(s)Ao<p == AoTo(s)cp == Ao~s. 

The strong continuity of the semigroup implies that 

S ~ ~s, S ~ Ao(~s), S ~ (8~/8t)s 

are all continuous on [O, t]. So the hypotheses Hl ,H2,H3 are satisfied for ~ 
and this then implies that they hold for 'lj; in the lemma. Equation ( 4.55) 
follows from ( 4.56) and a little calculus. D · 

Proof of Theorem 4.3. We introduce a kernel 

Qmax(zi, z2, ri, r2) == Q(z1, z2, ri, r2)+ 
[CQ,max - Q(z1, z2, z, Z)] 6z1(r1)6z2(r2)' z1, Z2 E z' ri, r2 E Bz. 

Furthermore, we define the dual semigroup 

To(t)*(µ)(r) == fz µ(dz) U0 (t, z, r), µ E M(Z), r E Bz, (4.57) 

and a function 

K(µ)(r) = fzl [Qm=(z1,z2,r,z)+ (4.58) 

Qmax(z1,z2,Z,r)] µ(dz1) µ(dz2), µ E M(Z), r E Bz. 
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It is straightforward to see that ( 4.57) and ( 4.58) define operators A1(Z) -t 

M ( Z) , justifying the notations. 
On M ( Z) , we consider the distance induced by the total variation norm 

on the space of finite signed Borel measures (cf. [8, p. 495]), 

II V1 - v2 II == sup I ( cp, V1) - ( cp, v2) I . 
cpEB(Z):llc.oll9 

It follows immediately from the definitions that 

and 

llK(v1) - K(v2)ll ::; ( 4.60) 
llv1 - v2l14 CQ,max max(v1(Z), v2(Z)), Vv1, V2 E M(Z). 

Notice that 

fz cp(z) K(µ)(dz) == 2 CQ,max µ(Z) fz cp(z) µ(dz)+ 

fz fz { fz fz [cp( Z1) + cp(Z2) - cp(z1) - cp( z2) J x ( 4.61) 

Q(z1, z2, dz1, dz2)} µ(dz1) µ(dz2), Vcp E B(Z), Vµ E M(Z), 

so that Eq. (1.5) takes the form ( 4.51) with c == 2 CQ,max. 

Taking equation ( 4.53) with the choice of 'lj; in Lemma 4.12 gives 

(A( t), cp) = e-ct (Ao, To( t)cp) + l e-c(t-s) (ir( A( s) ), T0 ( t - s )cp) ds. ( 4.62) 

So 

(A( t) - e-ct To( t)* Ao - la' e-c(t-s) To( t - s )* K( A( s )) ds, cp) = 0. 

Since .this is true for all cp E V(Ao) which is dense in C(Z) (true for Feller 
process generators) we obtain that for all t 2:: 0 

A( t) = e-ct To( t)* Ao + l e-c(t-•) To( t - s )* K( A( s )) ds. ( 4.63) 

Uniqueness of the solution of Eq. ( 4.63) follows from the Lipschitz proper-
ties ( 4.59) and ( 4.60) of the operators To(t)* and K, respectively, and from 
Gronwall's inequality. D 
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Lemma 4.13 Let{; be a continuous function satisfying {2.10) and {2.11). 
Assume that 

fz {;(llzll) Uo(s, z, dz) ::; c1(t) [1 + {;(llzll)J, ( 4.64) 

Vz.EZ, VsE[O,t], forsome t>O, 

and that Q satisfies {2.13). 
Then 

l {l(z) A( t, dz) ~ canst l {l(z) Ao( dz), 

where ,\ is the solution of Eq. {1.5). 

Proof. We consider the equivalent form ( 4.62) of Eq. (1.5). According to 
( 4.61 ), this equation takes the form 

(A( t), rp) = e-d (Ao, To(t )rp) + l e-c(t-s) c (To( t - s) rp, A( s ))ds ( 4.65) 

+ l l l { l l [To(t - s) rp(Z1) + To(t - s) rp(Z2) - T0(t - s) rp(z1) 

-To( t - s) cp(z2)] Q(z1, z2, dz1, dz2)} .-\( s, dz1) .-\( s, dz2) ds. 

Using hp-limits of sequences of functions from C(Z), one finds that Eq. ( 4.65) 
holds for arbitrary bounded continuous functions cp. Consider the function 

{; ( ) _ { {; ( x) , if x ::; R , 
R x - {;( R) ' if x ~ R . 

First we show that 

l {JR(lf Zll) Uo( s, z, dZ) ( 4.66) 

::; max(l, c1(t)) (1 + {;R(llzll)], Vz E Z, Vs E (0, t], VR > 0, 

and 

fzfz [{;R(llz1ll) +{;R(1lz2ll)] Q(z1,z2,dz1,dz2)::; (4.67) 

max(2CQ,ma:x:,c2) [1 +{;R(llz1ll) +{;R(llz2ll)], Vz1,z2 E Z · 
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To show ( 4.66), one considers the cases llzll ~ R and llzll > R, and uses 
assumption ( 4. 64). To show ( 4. 67), one considers the cases max( II z1 II, II z2 II) ~ 
R and max(jjz1II,1lz21l) > R, and uses assumption (2.13). Using ( 4.66) and 
( 4.67), one obtains from Eq. ( 4.65) 

l ,bR(llzll) >.( t, dz) :S const [l ,bR( llzll) Ao( dz) + l l 'l,bR(llzll) >.( s, dz) ds) , 
and, via Gronwall's inequality, 

l ~R(llzll).-\(t,dz) ~ const l ~R(llzll).-\o(dz). (4.68) 

The assertion follows from ( 4.68), since the constant does not depend on R. 
D 

Proof of. Corollary 2.2. Using assumption (2.14) and Lemma 4. 7, we 
obtain 

, li~~P E(n) l ,b(llzll) µ(n)( t, dz) < oo, Vt ;::: 0. ( 4.69) 

Consider the function 

{ 

1 ' if II z II ~ R ' 
XR(z) = 1 + R - llzll, if llzll E (R, R + 1), 

0 ' if II z 11 ~ R + 1. 
Then we obtain 

limsupE(n)j(cp,µ(n)(t)) - (cp,.-\(t))I ~ ( 4. 70) 
n-1-00 

limsupE(n)l('PXR,µ(n)(t)) - ('PXR,.-\(t))I 
n-1-00 

+ limsupE(n)j(cp(l -XR),µCn)(t))I + j(cp(l - XR),.-\(t))j. 
n-1-00 

The first term on the right side of ( 4. 70) equals zero, for any R > 0, according 
to Theorem 2.1, since the function cp XR is continuous and bounded. The 
second term is estimated as 

limsupE(n)j(cp(l - XR),µ(n)(t))I ~ 
n-1-00 

~ sup (J(1izil1)) limsupE(n) f ~(llzjl)µCn)(t,dz), 
llzll~R Z n-1-00 J Z 

and tends to zero as R ~ oo, because of ( 4.69) and assumption (2.17). 
Finally, the third term tends to zero as R ~ oo according to Lemma 4.13. 
D 
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5. Concluding remarks 
The uniqueness result for the limiting equation (1.5) allowed us to avoid 

the approximation of the independent motion by jump processes, which was 
used in [16], [1], [19]. The convergence theorem became more transparent, 
since the deterministic limit of the empirical measures is characterized as 
the unique solution of the limiting equation. The case of the independent 
motion being a diffusion is covered now. Also convergence of moments of 
the empirical measures has been obtained. Such unbounded functionals are 
important in the applications, since they are the basis for the calculation of 
physical quantities like temperature or heat flow. 

The discussion of the relationship with the Boltzmann equation in Sec-
tion 3 shows that an interesting and practically important problem is to 
consider kernels Q depending on n, i.e. 

where Z1 = (x1,v1), Z2 = (x2;v2), dz1 = (dx1,dv1), dz2 = (dx2,dv2), with 
h(n) tending to the delta-function as n ~ oo. Under appropriate assumptions 
on h(n), one would expect convergence to the DiPerna-Lions solution [6] of 
the Boltzmann equation. 

Results concerning convergence to the solution of an unmolli:fied one-
dimensional Boltzmann equation have been obtained in [2], [3]. They are 
based on a different approach, studying the interaction trees of the particle 
system. An interaction graph technique has been used in [10] to study general 
(mollified) Boltzmann type equations. 
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