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Abstract

Competing nonlinear optical effects that act on femtosecond laser pulses
propagating in a self-generated plasma filament may give rise to a pronounced
radial deformation of the beam, similar to the z-pinch contraction of pulsed
high-current discharges. This self-pinching locally increases the photon den-
sity. The process is further identified as the first stage in the recently ob-
served self-compression of femtosecond laser pulses propagating in filaments.
Self-pinching also explains the complicated spatio-temporal shapes generally
observed in filament compression experiments.

Magneto-hydrodynamics provides effective mechanisms for increasing the electron
density within high-current pulsed discharges. In the plasma channel the self-
generated magnetic field may act to radially focus the electron fluence to near-
thermonuclear current densities, with the z-pinch [1] being one of the most prominent
examples. Such discharges have experienced an increasing degree of sophistication
over the recent decades [2]. While the magnetic field is a straightforward mechanism
for a dynamic increase of electron densities, no such mechanism appears at hand for
increasing photon fluences. In contrast, laser pulse compression [3] has traditionally
pursued energy concentration along the longitudinal axis rather than radial con-
traction. In the following we show that competing nonlinear optical effects inside a
filament, namely Kerr-based self-focusing and plasma-induced self-defocusing, lead
to a similar scenario of laser beam self-pinching. In this situation, energy is spa-
tially contracted inside a laser pulse, giving rise to an apparent self-compression of
the temporal pulse profile observed on the axis of filament propagation [4, 5].

Propagation of short pulses in a filament involves numerous linear and nonlinear
optical processes that are currently modeled in the framework of an extended 2D
or 3D Nonlinear Schrödinger Equation [5]. In this complex interplay it is gener-
ally difficult to isolate the primary processes leading to the observed phenomena.
Utilizing the concept of characteristic lengths of the participating processes [6], how-
ever, one can sort out group-velocity dispersion, absorption, Kerr-based temporal
self-phase modulation and self-steepening, leaving mainly plasma effects and trans-
verse self-focusing and -defocusing as suspected drivers behind the experimentally
observed self-compression. Such analysis, in particular neglection of dispersive ef-
fects, is indicative of vanishing energy exchange between temporal slices of a pulse
in the filament. This essentially leaves particle densities and respective fluences as
key parameters, similar to the situation in plasma hydrodynamics. Let us therefore
restrict ourselves to analyzing radial energy flow. We use an extended Nonlinear
Schrödinger Equation [7], which effectively couples the photon density to the elec-
tron density ρ. Compared to the set of full model equations [5], we neglect dissipative
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terms and energy exchange between time slices, which leaves an interplay between
Kerr-type self-focusing and plasma defocusing as primary dynamic effects during
filament formation in gases:
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Here, z is the propagation variable, t the retarded time, and ω0 is the central laser
frequency at λ0 = 2πn0/k0 = 800nm. For the radially symmetric case, we have
Δ = r−1∂rr∂r. n2 is the nonlinear index of refraction. Photon densities are de-
scribed via the complex optical field envelope E normalized such that the intensity
is I = |E|2. The wavelength-dependent critical plasma density is calculated from
the Drude model according to ρc ≡ ω2

0meε0/q
2
e , where qe and me are electron charge

and mass, respectively, ε0 is the dielectric constant, c the speed of light, and ρnt de-
notes the neutral density. Plasma generation is driven by the ionization rate W [I],
which is suitably described by Perelomov-Popov-Terent’ev (PPT) theory [8]. For
the analytical discussion and the numerical simulations, we use data for argon [5] at
atmospheric pressure as parameters.

In the following, we search for a field configuration that represents a stationary
state in regimes where the self-generated plasma strongly affects the filamentary
dynamics. The corresponding temporal intensity profiles that maintain a balance
between competing nonlinear effects in every temporal point are derived from a
time-dependent variational approach, with the following trial function
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Here the quadratic phase guarantees preservation of continuity equations through
self-similar substitutions, and the pulse radius R(z, t) depends on both the longi-
tudinal and temporal variables. For conservative systems preserving power P (t) ≡
2π

∞∫
0

I(t)rdr along z, straightforward algebra provides the virial-type identity [9]
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Inserting the trial function (3) with R(z, t) = w(z, t)/
√

2 being related to the Gaus-
sian spot size w(z, t), one obtains a dynamical equation governing the evolution

2



Delay (fs)
0

-20
-40

100%

50%

0In
te

ns
ity

(b)

0

100

Ra
di

us
 (µ

m
)

200

300

−45 −30 −15 0 15 30
0

10

20

30

40

50

60

70

Delay (fs)

In
te

ns
ity

 (T
W

/c
m

2
)

(a)

−t
*

Figure 1: (a) Spectrum of solutions I(t) of Eq. (5). (b) Spatiotemporal representa-
tion of the solution of Eq. (5) marked in red [see(a)], obtained by rotating the line
segment generated by R(t) =

√
P (t)/πI(t) around the t−axis. Color corresponds

to on-axis intensity.

of the pulse radius R along z [9]. For the derivation of analytical expressions
for the plasma term on the r.h.s. of Eq. (4), we approximate the PPT ionization
rate by a power law dependence W [I] = σN∗IN∗ , with parameters N∗ = 6.13 and
σN∗ = 1.94 × 10−74s−1cm2N∗

W−N∗ fitted to the PPT rate for the intensity range
of 80 TW/cm2. Using I(t) = P (t)/πR2(t), we impose a Gaussian power profile
P (t) = Pin exp(−2t2/t2p) with duration tp and peak input power Pin as a boundary
condition, which results in the following integral equation for steady state solutions
of the problem

0 = 1 − P (t)

Pcr
+ μP 2(t)

×
t∫

−∞

dt′
IN∗+1(t′)

P (t′)
1

(I(t) + N∗I(t′) P (t)
P (t′))

2
, (5)

where Pcr = λ2
0/(2πn0n2) and μ = k2

0N
∗σN∗ρnt/πρc.

The nonlinear integral Eq. (5) is basically a generalization of a Volterra-Urysohn in-
tegral equation [10], with a kernel depending not only on I(t′) but also on I(t). Using
additional simplifying assumptions, steady-state solutions with soliton-like qualities
have been previously discussed [7]. Here we solve Eq. (5) without the approximations
made in Ref. [7]. Taking into account that the integral term of Eq. (5) is strictly pos-
itive, it immediately follows that nontrivial solutions only exist on the temporal in-
terval −t∗ < t < t∗ where P (t) > Pcr, with t∗ = (ln

√
Pin/Pcr)

1/2
tp. From a physical

point of view, Kerr self-focusing can compensate for diffraction only on this interval,
enabling the existence of a stationary state. For computing a stationary solution
I(t) of the integral equation, we use the method presented in [11] which combines a
Chebyshev approximation of the unknown I(t) with a Clenshaw-Curtis quadrature
formula [12] for the integral term of Eq. (5). As the laser beam parameters, we
choose a ratio Pin/Pcr = 2 and a pulse duration tFWHM =

√
2 ln 2tp ≈ 100 fs, leading

to t∗ ≈ 50 fs. The spectrum of solutions thus obtained is depicted in Fig. 1(a).
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Figure 2: (a) Evolution of the on-axis temporal intensity profile along z for the
reduced numerical model governed by Eq. (1). (b) Same for the simulation of the
full model equations [5].

There exists a continuum of multiple roots because the problem is actually ill-posed
and cannot be solved uniquely. This is due to the vanishing first term 1 − P (t)/Pcr

at the boundaries. Despite the mathematical awkwardness, the spectrum of so-
lutions exhibits some important common features. All solutions show a strongly
asymmetric temporal shape, with an intense leading subpulse localized at t = −t∗
[7], a minimum [dashed line in Fig. 1(a)] localized near zero delay and followed by a
region of rapid intensity increase, suggesting singular behavior of the solutions. The
structure of the emerging solutions is exemplified in Fig. 1(b), indicating the forma-
tion of two areas of high on-axis intensity being separated by an approximately 20 fs
wide defocused zone of strongly reduced intensity. Similar double-peaked on-axis
intensities have frequently been observed in numerical simulations and, somewhat
less pronounced, also in experiments [4, 16, 13, 15, 14].

For a deeper substantiation of our analytical model, we perform direct numerical
simulations using the reduced radially symmetric evolution model Eq. (1) for the
envelope of the optical field. The incident field is modeled as a Gaussian in space and
time with w0 := w(z = 0, t) = 2.5 mm and identical peak input power and pulse du-
ration as used for the solutions of Eq. (5). The field is focused into the medium with
an f = 1.5 m lens. The result of these simulations can be considered as prototypical
for the pulse shaping effect inside filaments. These simulations also demonstrate that
spatial effects alone already suffice for filamentary self-compression. As the evolution
of the on-axis temporal intensity profile in Fig. 2(a) reveals, filamentary compression
always undergoes two distinct phases. Initially, while z approaches the nonlinear
focus (z = 1.4 − 1.5m), a dominant leading peak is observed. When the trailing
part of the pulse refocuses in the efficiently ionized zone (ρmax ≈ 5 × 1016cm−3)
a double-spiked structure emerges. This profile is compatible with the stationary
shapes detailed in Fig. 1(a). Subsequently, only one of the emerging peaks survives
and experiences further pulse shaping in the filamentary channel.

The transient double pulse structure confirms the pulse break-up predicted from the

4



0

20

40

60

80

I(r
=

0)
 (T

W
/c

m
2

)

0

1

2

3

4

5

Delay (fs)
−100 0 100

r (m
m

)

−0.5

0

0.5

Delay (fs)
−100 0 100

(b)(a)

(c) (d)

Delay (fs)

−100

0

100

0

100%

 50%

On-axis intensity

Figure 3: (a) Pulse sequence illustrating the two-stage self-compression mechanism.
Shown are the on-axis intensity profiles for z = 1.5m (solid line), z = 1.55m (dashed
line) and z = 1.7m (dashed-dotted line). At z = 2.5m, (b) depicts a self-compressed
few-cycle pulse. (c) and (d) show the spatiotemporal characteristic of the double-
spiked structure at z = 1.55m and the few-cycle pulse at z = 2.5m, respectively.

analysis of Eq. (5), see Figs. 3(a) and (c). At z = 1.7m the leading subpulse has
already been reduced to a fraction of its original on-axis intensity. This effective at-
tenuation of the leading pulse isolates the trailing pulse that now exhibits a duration
tFWHM = 27 fs. The combined split-up and isolation during the first phase therefore
already provides an about fourfold compression of the 100 fs input pulses. In the
subsequent weakly ionized zone of the filament (z > 1.6 m), the surviving, trailing
subpulse is then subject to additional temporal compression. At z = 2.5m, as de-
picted in Fig. 3(b), our simulations indicate pulses as short as tFWHM = 13 fs, which
agrees favorably with the experimental results in Ref [4]. In contrast to the plasma-
mediated self-compression in the strongly ionized zone, compression in the second
zone is solely driven by the Kerr nonlinearity (ρ < 1013cm−3). With time slices
of higher optical powers being able to compensate diffraction by Kerr self-focusing,
these portions of the pulse diffract less rapidly than time slices with less optical
power, causing the characteristically pinched spatial pulse structure in Fig. 3(d).

For an analytic description of temporal compression during the second stage of
filamentary propagation, we use the dynamical equation for the time dependent
beam radius derived from Eqs. (3) and (4) [9], yet neglecting the plasma term. With
the initial conditions R(z = 0, t) = R0 and ∂zR(z = 0, t) ≡ 0 the resulting problem
is analytically solvable, and we find R(z, t) = R0

√
1 + ξ2(1 − P (t)/Pcr) with ξ =
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Figure 4: Sequence of pulses illustrating temporal self-compression due to Kerr-
induced spatial self-pinching in the variational model corresponding to (a) z = 1.7m,
(b) z = 1.9m, (c) z = 2.1m and (d) z = 2.3m.

z/k0R
2
0. This equation models the evolution of the plasma-free filamentary channel

from z > 1.6m. The profile P (t) represents the power contained in the filament core
region only. For simplicity, we assume here P (t) = Pcr exp(−2t2/t2p), R0 = 100μm
and tp = 23 fs (tFWHM = 27 fs). This corresponds to the duration of the pulse at
z = 1.7m shown in Fig. 3(a). Resulting characteristic spatio-temporal shapes are
shown in Fig. 4. Self-pinching in this stage therefore serves to enhance temporal
compression.

So far our analysis has completely neglected dispersion, self-steepening and losses.
To convince ourselves that dissipation and temporal coupling between time slices
have only a modifying effect on the discussed self-compression scenario, we pursued
full simulations of the filament propagation, including few-cycle corrections and
space-time focusing, cf. Ref. [5]. As shown in Fig. 2(b), minor parameter adjustment,
setting w0 = 3.5mm and leaving all other laser beam parameters the same value,
suffices to see pulse self-compression within the full model equations. Now self-
steepening provides a much more effective compression mechanism in the trailing
part. However, the comparison of Fig. 2(a) with (b) also reveals that the dynamical
behavior changes only slightly upon inclusion of temporal effects. Clearly, the same
two-stage compression mechanism is observed as in the reduced model. We therefore
conclude that the pulse break-up dynamics in the efficiently ionized zone is already
inherent to the reduced dynamical system governed by Eq. (1), contrasting previous
work [13] which ascribes pulse break-up to the combined action of plasma losses
and group-velocity dispersion. In fact, these effects only enhance the emergence
of the discussed double-peaked pulse profiles. Moreover, rather than relying on
the interplay of self-phase modulation and dispersion as in traditional laser pulse
compression, filament self-compression is essentially a spatial effect, conveyed by the
interplay of Kerr self-focusing and plasma self-defocusing. This dominance of spatial
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effects favorably agrees with the spatial replenishment model of Moloney et al. [13].
However, our model indicates previously undiscussed consequences on the temporal
pulse structure on axis of the filament, leading to the emergence of the pinch-like
structure [Fig. 3(d)] that restricts effective self-compression to the spatial center of
the filament [5, 17]. Our analysis confirms the existence of a leading subpulse, in
the wake of which the short self-compressed pulse is actually shaped during the first
stage of filamentary propagation. This leading structure gives rise to a pronounced
temporal asymmetry of self-compressed pulses, which is confirmed in experiments
[5].

Our analysis sheds new light on the rather surprising effect of self-compression,
detailing the emergence of short pulses to occur in two separate steps. In a first
plasma-dominated stage, the initially single-peaked pulse structure experiences re-
focusing in its trailing part, causing the emergence of a double-hump structure. This
break-up process alone already results in an about fourfold reduction of the duration
of the individual pulses. Concomitantly, a central region of the temporal pulse profile
experiences strong defocusing. Choosing suitable parameters, the leading portion of
the break-up is found to diffract out and reduces its intensity, while the trailing pulse
can maintain a higher peak intensity. In a second Kerr-dominated stage this second
pulse experiences continuing compression, which may add up to a total tenfold on-
axis compression of the pulses. The main driver behind this complex scenario is a
dynamic interplay between radial effects, namely diffraction, Kerr-type self-focusing,
and, exclusively close to the geometric focus, plasma defocusing. The dominance of
radial effects clearly indicates the unavoidability of a pronounced spatio-temporal
pinch structure of self-compressed pulses. The frequently observed pedestals in this
method are identified as remainders of the suppressed leading pulse from the orig-
inal split-up. Our analysis also indicates that lower pulse energies < 1mJ that
require more nonlinear gases or higher pressures will see an increased influence of
dispersive coupling, which may eventually render pulse self-compression difficult to
achieve. Higher energies, however, do not see such limitation, opening a perspective
for future improvement of few-cycle pulse self-compression schemes.

Financial support by the Deutsche Forschungsgemeinschaft, grants DE 1209/1-1 and
STE 762/7-1, is gratefully acknowledged
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