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ABSTRACT

In proton exchange membrane (PEM) fuel cells, the transport of the fuel to the active zones, and the removal
of the reaction products are realized using a combination of channels and porous diffusion layers. In order
to improve existing mathematical and numerical models of PEM fuel cells, a deeper understanding of the
coupling of the flow processes in the channels and diffusion layers is necessary.

After discussing different mathematical models for PEM fuel cells, the work will focus on the description of
the coupling of the free flow in the channel region with the filtration velocity in the porous diffusion layer as
well as interface conditions between them.

The difficulty in finding effective coupling conditions at the interface between the channel flow and the mem-
brane lies in the fact that often the orders of the corresponding differential operators are different, e.g., when
using stationary (Navier—)Stokes and Darcy’s equation. Alternatively, using the Brinkman model for the
porous media this difficulty does not occur. We will review different interface conditions, including the well—
known Beavers—Joseph—Saffman boundary condition and its recent improvement by Le Bars and Worster.

1. INTRODUCTION

Numerical simulation of coupled flows in plain and porous media is essential for many industrial and envi-
ronmental problems: proton exchange membrane (PEM) fuel cells, flow through (oil) filters [17], contaminant
transport from lakes by groundwater, CO , sequestration in the subsurface, salt water intrusion, etc..

In this work we will focus on coupling conditions between the pure liquid flow and the flow in the porous
media. Coupling conditions are well studied only in the simple case of parallel flow over a porous media.

In general, we distinguish two types of PEM fuel cells: H, PEM fuel cells (H,PEMFC) driven by gaseous
hydrogen, and direct methanol fuel cells (DMFC) operating on methanol in an aqueous solution. Both anode
and cathode consist of supply channels, a porous diffusion layer and an active zone. They are connected by a
proton conducting membrane. For details we refer the interested reader to [11], [12].

The most important chemical reactions in PEM fuel cells are

DMFC H,PEMFC
Anode CH30H + H,O0? CO,+6H* +6e 3H,? 6HT +6¢€
Cathode 20,+6H* +6e ? 3H,0

Consequently, in an H,PEMFC, ideally, the anode contains only hydrogen, while the cathode contains a
mixture of liquid water, water vapour and oxygen resp. air. While for an optimal supply of oxygen, it is
desirable to keep the amount of liquid water at the cathode minimal, the optimal proton conductivity of the
membrane is reached only if it contains enough water. Hence, the water management is an essential issue.

In a DMFC, which is operated on an aqueous solution of methanol, we always can assume that the membrane
is wet enough to ensure high conductivity. However for this type of fuel cell, methanol permeation through the
membrane, leading to a parasitic reaction on the cathode side, is a key problem. Another problem is clogging
of the anodic channels by CO , bubbles.

In spite of our remark on the validation of current coupling models, most models either focus on the processes
in the membrane electrode assembly (MEA), or in the fluidic channels, simplifying the other process, respec-
tively. A further complication comes from the fact that in both cases, the general process includes two phase
flow of a fluid and a gas mixture.

To start with, this paper discusses various options for coupling algorithms between porous transport layers and
fluid channels in the case of one-phase flow under the aspect of usefulness in the context of PEM fuel cells.
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Figure 1: Schematic of a Direct Methanol fuel cell with anodic and cathatkecfaces between porous trans-
port layers and supply channels.

2. NUMERICAL ALGORITHMS

All numerical algorithms for solving the coupled system of free fluid andpsmedia can be traditionally
classified into two groups of methods.

The first group of methods usdgdferent equations in different subdomaiesgy., the Navier—Stokes equation
in the liquid region and the Darcy / Brinkman model in the porous zones amgle®them through suitable
interface conditions. These kind of algorithms are (naturally) basetborain decompositiorechniques [9].
The advantage of this approach is that one can use existing algorithmsfamalre for solving Navier—Stokes
equations and porous media flows. However, the problem of this two—d@ppioach lies in coupling the
conservation equations in both regions through the use of appropriateléy conditions at the interface.
The second group consists of those algorithms, that solelyarsesystem of equations in the whole domain
(Navier—Stokes—Brinkman system) obtaining the transition between both fidigg@rous regions through
continuous spatial variations of properties ('single-domain approadsijally, like in most commercial CFD
software (e.g. Star-CD, etc.), the Navier—Stokes—Brinkman system sdsbivalgorithms developed for the
Navier—Stokes system modified such that the main term describing the flougthtbe porous media is
treated explicitly. Again, in some cases the algorithms converge very slomgyvén fail to converge).

3. MATHEMATICAL MODELS

In this section we will review some adequate (macroscopic) stationary mathahmatidels for the flow in
each subdomain. In the followirf@; denotes the pure fluid domain afig is the porous region (membrane).
Itis essential to recognize that the velocity and pressure variatfgsand(?,, have different meanings but we
will use the same notation for both. While in the fluid parandp denote the usual velocity and pressure, in
the porous media andp are spatially averaged (over a representative elementary volume (REYPscopic
quantities. The velocity in the porous domay is often referred to volumetric flux densitarcy velocity

or filtration velocity.

3.1 Models in the Free Fluid Region
The free flow in the fluid regiof); is modelled by the laminancompressible isothermal Navier—Stokes
equationgor by Stokes equations, i.e. neglecting the convective tpumV)u in the case of creeping flows):

—pAu+ (pu-V)u = fyg — Vp, V-u=0 inQy, 1)
where
Au = [Aut, ... AT, (u-Vju= [u VTR VUN]T with velocityu = (u!, ..., u™)T,

for dimensionsV = 2, 3. In eq. (1)p is the pressurgy the fluid viscosity angh denotes the density.
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3.2 (Macroscopic) Models in the Porous Media
Usually the saturated flow in the porous me@iais described by the famouBarcy modeldiscovered 1856

pKtu = fp — Vp, V-u=0 inQ,, (2)

with p the fluid dynamic viscosityliK permeability tensor of the porous medium dhdis a force term (e.g.
the gravity). In eq. (2h denotes the volumetric average of the velocity angithe average of the pressure.
An extension of this model (2), thBrinkman mode[4], is usually used in order to account for thiggh
porosityof the porous media or to impose no—slip conditions on solid walls:

—V - (pegVu) + pK lu=f3 —Vp, V-u=0 inQ,, (3)

wherep.g = /¢ is theeffective viscositgf the fluid in€2, and¢ denotes the porosity of the porous media.
In order to decide which model is adequate there existsleaof thumb the Brinkman model is used if
the Reynolds numbeie = pUL/u of the corresponding free flow is greater than 10. Hérand L are
characteristic values for the velocity and the length of the whole problem.

4. INTERFACE CONDITIONS BETWEEN FLUID AND POROUS MEDIA (DARCY)

In this section we will discuss the aspects of proper interface conditianebe different media. We consider
in the sequel the (Navier—)Stokes equations (1) in the free fluid régionoupled across an interface with the
Darcy equation (2) in the porous medidp. This is the most common and mathematically the most difficult
case, since these two models are completely different systems of PDEee,Htes not clear what kind of
conditions should be imposed at the interfacbetweer(); and(2,. Theclassical coupling conditionfor an
inviscid fluid are the continuity of the pressure and the continuity of the noralatities at the interface. For
a viscous flow, one would assume additionally the vanishing of the tangeeliality at the interface.

Now, if the interface would be a boundary, then in the fluid part the systsds) e.g., a prescribed velocity
(N conditions) and the equation i, must be supplied with a given pressure or normal flliegndition).
For coupling Darcy’s model (2) and Stokes equation (1) some (well-khovterface conditions are needed
to obtain a well-posed problem. Usually, these interface conditions desieeibentinuity of the mass flux

u-n|2p :u'n|2f7 (4)

whereX,, X is the same interface seen from porous and fluid parts. Let us note that eq. (4) is notisuiffic
to calculate the flow if2,,, since the flux is yet unknown.

4.1 The Interface Conditions of Ene, Levy and Sanchez—Palencia

For the choice of further interface conditions we neethasification of the flowThis was done 1975 by Ene,

Levy and Sanchez-Palencia [10], [27]: they distinguished two pritigipiéferent cases of flow situations

named in [22]:

npf (near parallel flow): the velocity i), is significantly larger than the filtration velocity #1,. The
pressure gradients are of similar magnitude in both subdomains.

nnf (near normal flow): the velocities are of similar magnitude in both subdomaththarpressure gradient
in Q is significantly smaller than i, and nearly orthogonal ta,,.

Depending on this classification different interface conditions addition@l)terere proposed in [10], [27].

4.1.1 The Case of 'Near Parallel Flow’
For the case afiear parallel flowEne, Levy and Sanchez-Palencia [10], [27] suggested to use td@ioon

npf:  ulg, =0,  pls, =pls,- (5)

The first condition in (5) originates from thedntinuity of velocityacross the interface where the filtration
velocity in €2, is neglected. Note that this simplification allows to compute (in principle) the floviysioléhe
domainf2y. Hence, the pressure field is known in the fluid gaytand via thecontinuity of pressureondition

in (5) also on the interfacE,,. Afterwards, the pressure field in the whole porous media can be deterbyne
solving the elliptic Darcy equation (2) with prescribed pressure valués,oDoing so, one obtains a nonzero
normal component of the filtration velocity {,, i.e., the mass flux condition (4) holds only roughly.
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4.1.2 The Case of 'Near Normal Flow’
For this case ofiear normal flowthe authors proposed in [27] the interface conditions

nnf: pls, = C, u-7ils, =0, j=1,...,N—1. (6)

C denotes an a-priorily unknown constant andare the orthogonal unit tangent vectors to the interfage
Since the pressure is usually defined only up to a constant, it is oftenrdenvéo assume that the presspre

at the porous interface,, takes a certain (arbitrary) constant valieDoing so, one neglects the dependence
of p|s, on the fluid flow inQ2; (compared to the strong dependence in the porous niggiaFor a chosen
constantC first the flow in€2,, can be determined and then the problem in the fluid domain is solved using the
mass flux condition (4) and the second condition in (6) for the tangentiatiyelmomponents.

4.2 The Beavers—Joseph Interface Condition

In 1967 Beavers and Joseph [3] performed several experimentsuidafiannel over a porous media and
found out that the mass flux throughy is larger than predicted by the Poiseuille flow (i.e. with no-slip
boundary conditions). This flow situation can be classified as a caseapfparallel flow(cf. Section 4.1.1)
with interface conditions (5). Beavers and Joseph explained this @ltigerwith aslip velocityat the interface
and proposed an empiricglip-flow conditionthat agreed well with their experiments (cf. Fig. 2):

gZ(x,O—i—) = %(u(w, 0+) — uD), @)
whereup denotes the uniform tangential (horizontal) Darcy velocitfin(—H < y < 0) obtained from the
Darcy equation (2) and(x, 0+) is the tangential velocity component in the fluid regiop (0 < y < G)
and K denotes the permeability. This interface condition (7) relates the gradi¢in dfee flow velocity at
the interfacey = 0 to the filtration velocityu. The Beavers—Joseph constantmeasured slip coefficient)
in eqg. (7) only depends on porous media properties. It denotes a dimEssi@uantity depending on the
material parameters which characterize the structure of the permeable maithiia the boundary region
and its values ranges between 0.01 and 5 [30]. Let us point out théf)emjlows for a discontinuity in the
tangential velocity, i.e., rapid changes in the velocity in a small boundary #agesubstituted through a jump.
Using the Beavers—Joseph condition (7) the agreement between rmeastgérom their experiments and the
predicted values was quite good, with 09éf% of the experimental values having errors of less tHan3].
The work of Beavers and Joseph was continued by investigations trTd9] and Richardson [34] and an
extension, thdones conditionwas proposed in [21].

Later on Payne and Straughan [33] showed the continuous depenafethe solution on the Beavers—Joseph
constantx in eq. (7). Moreover, the interface condition eq. (7) was mathematically pcstify Jager and
Mikeli € [18]. Although this condition is not justified in the general case, it is wideldlin practical compu-
tations for coupled fluid flows, e.g., in [8], [25], [28], [35], [41] ardpecially many tests in [6].

4.3 Saffman’s Modification of the Beavers—Joseph Interface Catition

In the article [36] Saffman gave a 'theoretical’ justification of the Beaw#wseph interface condition at a
physical level of rigor. Moreover, Saffman proposed in 1971 a madifo of the Beavers—Joseph law (7):
he found out that the tangential velocity on the interface is proportionaletsltear stress and proposed a
modification of the Beavers—Joseph condition:

u(z,04) = {fgg(x,o—l-) + O(K). (8)
While the Beavers—Joseph interface condition (7) couples the fluid veladity with the filtration velocity
in 2, the modified eq. (8) (Beavers—Joseph—Saffmann condition) contaips/ariables in the free fluid
domain(2; where the filtration velocity is usually much smaller than the slip velae{). If the slip velocity
is smaller than the maximal filtration velocity then setting the tangential velocity to zeaarésisonable
approximation. We remark that Dagan [7] came in 1979 to the same conclud®proposed a so-called
Slattery’s relation [38] between the pressure gradient and the first éneatives of the Darcy velocity in
order to obtain the condition (8).



5. INTERFACE CONDITIONS BETWEEN FLUID AND POROUS MEDIA (BRINKMAN)

Neale and Nader [31] suggested in 1974 the usage of the Brinkmarctonréo the Darcy model (3): they
proposed to assume continuity of velocity and stress (usigl across the fluid—porous interface since the
Stokes and the Brinkman equation are of the same order. Doing so, Nkalaaler obtained in the fluid
region the same solution as Beavers and Joseph provided that the dligieoefs chosen as = \/ et/ .-
Vafai and Kim [42] constructed 1990 an exact analytic solution for thefeate region, including boundary
and inertia effects. Later on, Alazmi and Vafai [1] classified and asayxe primary categories of interface
conditions between fluid layer and porous medium (modelled by Brinkmar3¥qg. (

In 1992 Sahraoui and Kaviany [37] performed a numerical study atzllated the slip coefficient: they
discovered that the Brinkman extension to the Darcy equation does ndac@tity model the flow field in
(2, . However, this can be overcome using a variable effective viscpsityn the porous medium.

On the contrary, for the Brinkman model for the flow{ this ambiguity does not occur. In this case, the
equations in the porous medig, and equations in the fluid regidn, are of the same type. Two types of
coupling conditions can be found in the literature. The more common choiceoaditions ofcontinuous
velocityandcontinuity of the normal component of the stress tensor

n- (,ueffvu - pI)|2p =n- (Mvu - pI)|2f7 (10)

whereX,, 3 is the same interface seen from porous and fluid parts. Such conditions would naturally arise,
if for some reasons (e.g. in the domain decomposition approach), the fijidchiie divided into subdomains,
where the Navier—Stokes equations are valid. Usually, the condition (9 fashone out ofV conditions on

the interface when considering a Stokes—Brinkman system. This appsoasdd numerically in [17], [24].

5.1 The Stress Jump Conditions of Ochoa-Tapia and Whitaker

Ochoa-Tapia and Whitaker [32] obtained 1995 at the interface continfittyeovelocity and the continuity

of the 'modified’ normal stress by a volume averaging technique of the momegruations in the interface
region. In their analysis they showed that the matching of Stokes equatiotheilBrinkman model conserves
the continuity of velocity but induces a jump in the shear stress. Hence, tbppged additionally to the

condition (9), astress jump conditiothat takes into account the momentum transfer at the interface

ou 1 ou I5]

9y (z,0+) o0 0y (z,0—) TR u. (11)
Here, 5 denotes a dimensionless parameter of order one that is defined as a solwictosure problem.
The authors investigated in [32] the conditions (9), (11) in a 1D charemihgtry and compared the results
with the classical Beavers—Joseph experiment. These boundary cosditioposed in [32] were used by
Kuznetsov [23] to compute solutions in channels partially filled with a porousriahte

Many attempts have been made to estimate the adjustable jump coefficietd obtain an expression for,
depending on the microstructure of the interface region. In [43] the eutleyived a stress jump boundary
condition at the interfackee of adjustable coefficient$he associated local closure problems, modelling the
microstructure of the interface, determine a mixed stress tensor which isassenrfor the jump.

Furthermore, only few authors have studied the physical nature of jin@gecoefficients. Jamet and Chan-
desris [19], [20] analyzed the physical meaning based on an upscaétigpd of the transport equations in
the interfacial region. Doing so, they were able to interpret the jump ceeftgas surface tension quantities
depending linearly on the position of the interface.

In the dissertation of Laptev [24] a new numerical method in 3D using theséaiogeconditions (9), (11) was
proposed. Furthermore, the mathematical model of the coupling of NatidesSand Brinkman equations
using the stress tensor jump interface condition (11) was validated foreadkgs of model problems [24].

5.2 The Transition Zone Approach

When studying a Poiseuille flow over a permeable region, e.g., by Chamdesr Jamet [5], in turned out
that the sharp interface with its jump conditions is only the limiting case (i.e. an idgatixaf atransition
region where the physical properties of the medium have a strong but still conignariations. Actually,

5



this idea goes back to Nield [29]. He proposed 1983 to use a Brinkmari@gum the transition region
between the fluid and the porous medium modeled by the Darcy equation. ppinsaah was also validated
experimentally by Goharzadeh et al. [13]. They found out experimerttadlythe thickness of the transition
region should be of the same order as the grain size of the porous medium.

In 2003, Goyeau et al. [14] studied the momentum balance at the inteffacevo-layer system and intro-
duced a heterogeneous continuously varying transition zone betwewutde fluid and porous zones. The
authors derived an explicit formula for the stress jump coefficigitvolved in the momentum transport.
However, this approach assumes the knowledge of the spatial depenadfetine effective quantities in the
region around the interface.

Chandesris and Jamet [5] solved in 2006 the problem in this transition zimg the technique ahatched
asymptotic expansionthey obtained an explicit representation of the stress jump coefficient trathgtion
zone depending only on the parameters of the porous medium (permealilippeosity).

Recently, Hill and Straughan [15] consideretheee-layerconstellation: a free fluid interfacing a Brinkman-
type porous transition layer, which overlies a porous medium modelled by dhey[2q. (2). The authors
discovered two instability modes that depend on the ratio of the thicknessgiars of the different layers.

5.3 The Interface Conditions of Le Bars and Worster

Recently, Le Bars and Worster [26] considered special 'analyticalbtabde’ cases for the one-domain ap-
proach with the Brinkman model for the porous medium. The authors complaeedfindings with the
two-domain approach of Section 4 using the Darcy equation and its prevjmeposed interface conditions,
especially the Beavers—Joseph condition (7). Le Bars and Worstsideoed the Brinkman equation in the
configuration studied by Beavers and Joseph, and found a new coralitioe fluid-porous interface

u(x, —6+) = up(x, —6), with § = eVK, (12)

wherec is a constant of order 1. They definediacous transition zoniside(2,, where the Stokes equation
still applies up to a depth, and imposed continuity of pressure and velocities (9) at the pogjtien —¢
(cf. Fig. 2). Here,6 denotes the characteristic size of this transition zone (a few pore lengikg)g this
new condition (12) the computed values have a (slightly) better coincideiticeh& experimental values of
Beavers and Joseph.

Let us remark that the authors of [14], [26] found good agreememigman the single-domain approach of
Section 5 and the two-domain approach of Section 4. However, this caplagned by the special configura-
tions, cf. [16], namely a one-dimensional tangential flow in [14] and engsgly very small vertical velocity
gradient on the interface in [26].

A Standard Beavers—Joseph Le Bars & Worster
du
dy |-
Fluid Region Q{ Yo
0 >
1/a d i X

U, = Darcy velocity
Porous Media Q p

_H 7 Z Z 7 Z Z 7 Z Z ZA4
Figure 2: Comparison of Different Interface Models for Porous Melam left to right: The standard case:
no-slip condition on the fluid—porous interface, the Beavers—Josamtitam (7): slip of sizel/a on the
fluid—porous interface and the Le Bars and Worster condition (12): glipibto the porous media.
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