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Abstract

A constrained Delaunay tetrahedralization of a domain in R3 is a tetra-
hedralization such that it respects the boundaries of this domain, and it has
properties similar to those of a Delaunay tetrahedralization. Such objects
have various applications such as finite element analysis, computer graphics
rendering, geometric modeling, and shape analysis.

This article is devoted to presenting recent developments on constrained
Delaunay tetrahedralizations of piecewise linear domains. The focus is on the
application of numerically solving partial differential equations using finite
element or finite volume methods. We survey various related results and
detail two core algorithms that have provable guarantees and are amenable
to practical implementation. We end this article by listing a set of open
questions.

1 Introduction

Meshing of geometric domains has various applications such as finite element analy-
sis, computer graphics rendering, geometric modeling, and shape analysis. Although
a vast literature exists on mesh generation, many fundamental three-dimensional
meshing problems are still challenging in both theory and practice. This article
deals with two closely related meshing problems, namely boundary conformity and
mesh refinement, in their applications to adaptive finite element analysis. As a
common theme, we illustrate how a special object, called constrained Delaunay
tetrahedralizations, can be used to solve these problems.

1.1 Boundary Conformity

Let F be a surface mesh which is a discretization of the boundary of a three-
dimensional domain Ω, see Fig. 1 for an example. The problem of boundary confor-
mity asks to generate a tetrahedral mesh T conforming to F , i.e., F is represented
by a union of elements of T . Additional points (so-called Steiner points) are al-
lowed in T , but the number of Steiner points should be limited as small as possible.
This problem is fundamental to many applications. For example, many engineering
mesh generation methods [4, 59, 58, 28, 53] make use of such tetrahedral meshes
as the intermediate objects to obtain good quality meshes suitable for numerical
simulations. Some applications, e.g., local re-meshing and anisotropic meshing, use
a pre-discrized surface mesh as input, and require that the tetrahedral mesh must
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Figure 1: A surface mesh of an airfoil.

match the surface exactly. This imposes an additional requirement for this problem,
i.e., no Steiner points should be added on F .

In three dimensions, this problem faces many difficulties. There are simple polyhedra
which may not be tetrahedralized without Steiner points [44]. The problem of
determining whether or not a non-convex polyhedron can be tetrahedralized without
Steiner points is NP-complete [43]. Chazelle [8] showed that a large number of
Steiner points may be needed to tetrahedralize a simple polyhedron.

A number of engineering methods have been proposed which provided a constructive
proof of the existence of a solution to the problem, see e.g., [30, 31, 58, 6, 33, 29, 20,
21]. A common feature of these methods is to insert the Steiner points directly in
the places where the boundaries (edges and faces) and an initial tetrahedralization
intersect. These methods showed great success in solving some realistic cases arising
from engineering applications. However, they are not designed for arbitrary inputs.
Particularly, the number of Steiner points may be large for some pathological cases.

Chazelle and Palios [9] proved an upper bound for the number of Steiner points by
giving an algorithm to decompose a simple polyhedron P using O(n + r2) Steiner
points, where r is the number of reflex edges (a quantitative measure of noncon-
vexity) of P . However, their algorithm will usually introduce an unnecessarily large
number of Steiner points even for a simply-shaped polyhedron, see Fig. 2 (b). Hence
it is only of theoretical interest. Practical approaches using conforming Delaunay tri-
angulations [41, 15] and constrained Delaunay triangulations [48, 55] are proposed,
see Fig. 2 (c) and (d). Constrained Delaunay triangulations need less Steiner points
than conforming Delaunay triangulations.

Let P be a three-dimensional polyhedron. The set of vertices of P is denoted as
V (P ). Let S be a finite set of points in R3 and V (P ) ⊆ S. Two points x,y ∈ R3
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(a) The input polyhedron (b) Convex decomposition
20 nodes, 12 facets 138 nodes, 280 tets

(c) Conforming Delaunay (d) Constrained Delaunay
51 nodes, 103 tets 20 nodes, 29 tets

Figure 2: A comparison of meshing polyhedra by different approaches

are invisible to each other if the line segments [x,y] intersects a face F of P in a
single point other than x and y. A simplex σ whose vertices are in S is constrained
Delaunay if either it is Delaunay in S, or it has a circumscribed sphere that does
not contain any other vertex of S which is visible from the interior of σ.

A constrained Delaunay tetrahedralization (abbreviated as CDT) of P is defined as
a partition T of P such that T is a simplicial complex and every simplex of T is
constrained Delaunay. By this definition, a CDT of P may contain Steiner points,
i.e., those points in S \ V (P ). In general, there are infinitely many CDTs of P (by
different choices of Steiner points). Our goal is to find a CDT of P which contains
a small number of Steiner points.

Problem 1.1 Given a three-dimensional polyhedron P , generate a constrained De-
launay tetrahedralization T of P such that the number of Steiner points in T is as
small as possible.

A key question to the above problem is to determine under which condition Steiner
points are not needed. Call an edge σ of P strongly Delaunay if there is a circum-
scribed sphere Σ of σ such that all other vertices lie strictly outside and not on Σ.
Shewchuk [45] showed that if all edges of P are strongly Delaunay, then P has a
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Flange - Sliver

,
On Refinement of Constrained Delaunay Tetrahedralization 15th IMR 26 (28)

Flange - Sliver

,
On Refinement of Constrained Delaunay Tetrahedralization 15th IMR 25 (27)Figure 3: Locally distorted numerical solution due to slivers (very flat tetrahedra)

contained in the mesh. Left: A numerical solution of the Laplace equation with non-
negative Dirichlet boundary conditions. The annotated place has negative value.
Right: The used tetrahedral mesh. On the annotated place exists a sliver (enlarged
at top-right).

CDT with no Steiner points. This condition is useful in practice. It suggests that
Steiner points are only needed on some of the input edges. In [48, 55], practical
algorithms for recovering Delaunay edges are proposed. Steiner points are inserted
in such a way that no unnecessarily short edges will be introduced.

Another key question: Assume it is known that P has a CDT without Steiner points.
How to efficiently construct such a CDT? So far, Shewchuk proposed several algo-
rithms for this purpose [47, 48, 50]. Among them, the flip-based facet insertion
algorithm [50] has good performance. Si and Gärtner [55] proposed another incre-
mental facet recovery algorithm which is practically efficient and easy to implement.

A complete algorithm for Problem 1.1 is discussed in Section 4.

1.2 Mesh Refinement

The purpose of finite element mesh generation is to generate a ”suitable” mesh for
obtaining numerical solutions with high accuracy at a low computational cost. Here
the main issues are mesh quality and mesh size which will affect the accuracy and
convergence of numerical methods.

Numerical analysis shows that elements having small or large angles are bad [1, 49].
A notable problem is that tetrahedral meshes may contain one type of badly-shaped
tetrahedra, so-called slivers [7], which are tetrahedra whose volumes are close to zero.
Slivers can have both very large (near 180◦) and very small (close to 0◦) dihedral
angles which may cause big numerical errors, see Fig. 3 for an example. Many
algorithms for generating quality Delaunay meshes may not avoid slivers [46, 42, 11].

In general the nature of the exact solution of a given problem is not known before-
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 4.3       H igher O rder E lements 

Higher order elements have the ability to dramatically reduce the degrees of freedom required to 

obtain a solution of given accuracy
24

. The difference in solution resources required between a 

second order accurate scheme with 100 million nodes and a third order accurate scheme with 

perhaps 3 million nodes would be enormous. In theory, viscous flow fields are smooth, so that 

the use of higher order elements should be very efficient. However, a grid around a transport 

aircraft would have to be prohibitively fine to treat certain flow features (e.g., shocks) as smooth. 

Even relatively smooth flow features can appear as discontinuities on coarse grids. To take 

advantage of higher order methods some mechanism is required to prevent non-physical 

oscillations, especially when the underlying fluxes are not defined for certain states. In order to 

simplify the code structure and not waste degrees of freedom, we favor an approach that 

gradually switches from p refinement to h refinement. If necessary, in certain parts of the flow 

field one can limit back to robust constant elements and rely on h refinement. Such a procedure 

should be automatic using limiters. We note that many current limiters are not particularly robust 

Figure 4: Adaptive numerical simulation of the lift versus angle-of-attack for a multi-
element airfoil (GGNS [56]). Left: Mach distribution at 90◦ angle-of-attack. Right:
An intermediate adapted mesh.

hand. Then it is not clear how to generate a mesh with a small number of degrees
of freedom and resolve the detailed features of the solution, such as the edge or
corner singularities and shock fronts. Adaptive numerical methods seek the best
approximate solution at a low computational cost through a sequence of computed
solutions on successively changed meshes, see e.g., [3, 32, 57, 2, 5]. Fig. 4 shows
such an example.

Let u be the exact solution, and δ be a given tolerance. Each adaptive loop i
mainly includes five subsequent phases: (1) the computation of an approximated
solution ui by FEM (or FVM), (2) the estimation of the error, e.g., ei = u − ui,
by an a posteriori error estimator, (3) the generation of a mesh sizing function Hi

from ei, (4) the generation of an adapted mesh Ti+1 conforming to Hi, and (5) the
interpolation of the solution ui on Ti+1. The whole adaptive process can then be
viewed as a non-linear optimization problem [32]. The goal is to find a mesh Tk with
as few degrees of freedom as possible, and satisfies the termination criterion, e.g.,
‖u − uk‖L2 ≤ δ. The convergence of adaptive finite element methods for elliptic
problems has been theoretically proved [18].

Mesh adaptation, i.e., the phase (4) in the above process, is one of the key steps in
adaptive numerical methods. Let Ω be a three-dimensional simulation domain, and
let the appropriate mesh sizing function H be defined over Ω and indicate the desired
size of mesh elements, note that H may be anisotropic. One of the approaches to
obtain a good quality tetrahedral mesh of Ω with the mesh size conforming to H,
takes mainly three steps:
(1) construct an initial tetrahedral mesh T of Ω,
(2) add new points into T to conform H, and
(3) optimize T to improve the mesh quality.

Each of these steps can be extended into a more complex process and is a topic of
interest in mesh generation. For a comprehensive survey of these technologies, we
refer to [27] and [38]. In this work, we focus on how to efficiently perform the step
(2) in the above process.
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Problem 1.2 Given an initial tetrahedral mesh T of a three-dimensional domain
Ω and an isotropic mesh sizing function H defined on Ω, insert new points into T to
form a good quality tetrahedral mesh T ′ of Ω such that the mesh size of T ′ conforms
to H.

A central question in the above problem is how to place the new points such that
the requirements are simultaneously satisfied. Various approaches have been devel-
oped for this purpose, such as advancing-front methods [36, 37], Octree-based meth-
ods [60, 40], Delaunay-based methods [39, 14], and the combinations of them [58, 28].
Among these methods, the Delaunay-based methods which utilize the Delaunay cri-
terion and the Delaunay triangulation [16] are the most robust and efficient. In
Section 5 we present a point insertion algorithm based on the Delaunay refinement
technique.

1.3 Outline

The rest of this article is organized as follows. Section 2 introduces a object called
piecewise linear system which is used as an approximation of a mesh domain. The
definition of constrained Delaunay tetrahedralization (CDT) is formalized in Sec-
tion 3, some basic properties of CDTs are outlined. In Section 4, a CDT algorithm
is presented and discussed in detail. In Section 5, an algorithm for refining a CDT
into a good quality tetrahedral mesh is presented. We end this article by a list of
open questions in Section 6.

2 Piecewise Linear Systems

A physical domain Ω in R3 used for numerical simulation is the volume enclosed by
the boundary ∂Ω of Ω. Usually, ∂Ω may consist of arbitrarily shaped (e.g., curved)
edges and surfaces. It is necessary that ∂Ω includes internal boundaries which may
separate Ω into sub-domains so that the discontinuity between different materials
can be modeled. Hence ∂Ω is in general not a topological manifold.

A mesh domain is an object such that it preserves the topology of Ω and it ap-
proximates Ω geometrically. Miller et al. [39] introduced a geometric object which
uses convex polytopes as the main components. In the following, we define a gen-
eralization of this object to represent mesh domains with piecewise linear boundaries.

Convex polyhedra are well-defined as either the convex hull of a set of vertices or
the intersection of a set of halfspaces [61]. We define a general and therefore not
necessarily convex polyhedron P as the union of a finite set P of convex polyhedra,
i.e., P =

⋃
U∈P U , and the space of P is connected. The dimension dim(P ) is the

largest dimension of a convex polyhedron in P . Note that P may contain holes in
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Figure 5: Polyhedra and faces. Left: A three-dimensional polyhedron (a torus)
formed by the union of four convex polytopes. It consists of 16 vertices (zero-
faces), 24 edges (1-faces), 10 two-faces (the faces at top and bottom are not simply
connected), and 1 three-face (which is the object). Right: Two three-dimensional
polyhedra. Each one has 12 vertices, 18 edges, 8 two-faces, and 1 three-face. The
shaded area highlights two 2-faces whose points have the same face figures.

its interior. Whatever, we require that the space of P must be connected. See Fig. 5
for examples.

We follow the definition of faces of a polyhedron by Edelsbrunner [22] with a minor
modification in the connectedness of the faces.

For a point x in a polyhedron P we consider a sufficiently small neighborhood
Nε(x) = (x + B(0, ε)) ∩ P . The face figure of x is the enlarged version of this
neighborhood within P , i.e., x +

⋃
λ>0 λ(Nε(x) − x). A face F of a polyhedron P

is the closure of a maximal connected set of points with identical face figures. See
Fig. 5 for examples.

A face F of P is again a polyhedron. Particularly, ∅ is a face of P . If all convex
polyhedra in P have the same dimension, then P itself is a face of P . All other
faces of P are proper faces of P . The faces of dimension 0, 1, dim(P ) − 2, and
dim(P )− 1 are called vertices, edges, ridges, and facets, respectively. The set of all
vertices of P , the vertex set, will be denoted by vert(P ). The union of all proper faces
of P is called the boundary of P , denoted as bd(P ). The interior int(P ) is P−bd(P ).

We define a piecewise linear system (abbreviated as PLS) to be a finite collection X
of polyhedra with the following properties

(i) P ∈ X =⇒ all faces of P are in X ,

(ii) P, Q ∈ X =⇒ ∃K ∈ X , s.t. P ∩Q = ∪K∈XK, and

(iii) dim(P ∩Q) = dim(P ), P 6= Q =⇒ P ⊆ Q and dim(P ) < dim(Q).

This definition generalizes the one introduced by Miller et al. [39] by allowing non-
convex polyhedra. PLSs are flexible for representing non-manifold objects. The
properties (i) and (ii) are essential, they ensures that a PLS is closed by both
taking boundaries and taking intersections. The property (ii) is relaxed from that
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(a) A 3D PLS (b) Non-PLSs

Figure 6: (a) A three-dimensional PLS X . The pink area highlights a facet in
X , which is a non-convex polygon with a hole in its interior. Moreover, this face
contains two floated segments in X (shown in blue) in its interior. The light blue
area shows an internal facet in X . (b) Two non-PLC objects. They are not closed
under intersections.

(a) A 2D PLS X (b) A triangulation of X (c) A mesh of X

Figure 7: Triangulation and mesh.

of a complex. Since two non-convex polyhedra P and Q may intersect at more than
one faces of them, P ∩Q is a subset of X . (iii) is an extra property for a PLS which
makes it more flexible. For example, it allows that a cube encloses an edge in its
interior with no need to further decompose it. Furthermore, it excludes the case
that two polyhedra having the same dimension overlap each other. See Fig. 6 for
examples.

The dimension of a PLS X , denoted as dim(X ), is the largest dimension of its
polyhedra. A subsystem of X is a subset of X which is again a PLS. A particular
subsystem is the i-skeleton, X (i), of X which consists of all polyhedra of X whose
dimensions ≤ i. For example, X (0) is the vertex set, denoted as vert(X ), of X .
The boundary system, denoted as ∂X , of X is the (dim(X ) − 1)-skeleton of X .
The underlying space of X is |X | =

⋃
P∈X P . Note that |X | ⊆ Rd is a topological

subspace of Rd. The collection X gives a special topology on |X |, refer to [54].

Given a physical domain Ω, we use a PLS X to represent it such that Ω and |X |
are homeomorphic (i.e., they are topologically equivalent) and the shape of Ω is
“approximated by |X | geometrically”.

A triangulation of a PLS X is a simplicial complex T such that the underlying space
of T equals to the convex hull of the vertices of X and every polyhedron of X is
represented by a subcomplex of T . More formally,

8



v

d

p
u

q

a

b

c
F

p

d

q

a

b

c
F

Figure 8: Visibility and constrained Delaunay criterion. The shaded region is a
facet F of a PLS X in R3, a,b, c,p ∈ F . ab is a segment of X . Left: d and q are
invisible to each other since dq ∩ F = v. c and p are invisible to each other since
cp ∩ ab = u. u sees both c and p. Right: A circumball of the tetrahedron abcd
contains q. abcd is constrained Delaunay since q is not visible from its interior.
The triangle abc ⊂ F is constrained Delaunay since p is outside its diametric ball.

(i) |T | = conv(vert(X )), and

(ii) ∀P ∈ X =⇒ ∃K ⊆ T such that |K| = P .

Note that T may contain Steiner points. We define a mesh of X to be a subcomplex
K of T such that |K| = |X |. According to our definitions, a triangulation of a set
S of vertices triangulates the convex hull of S, while a mesh of S is just a partition
of S itself. See Fig. 7 for examples. Our output object is either a triangulation or a
mesh of the input PLS.

3 Constrained Delaunay Tetrahedralizations

Constrained Delaunay triangulations are first studied by Lee and Lin [34] and
Chew [13] for generating two-dimensional Delaunay-like triangulations from planar
straight line graphs (a 1-dimensional PLS). The same concept can be generalized
into three and higher dimensions. However it is necessary to take Steiner points into
account.

A crucial concept is the visibility of points in R3. The basic idea is: every polyhedron
P ∈ X may block the visibility of points which are not in P , while P does not block
the visibility for its own points. Two points x,y ∈ R3 are invisible to each other if
the interior of the line segment xy intersects a polyhedron P ∈ X at a single point.
Otherwise x and y are visible to each other. See Fig. 8 left for examples.

The next definition, referred to as the constrained Delaunay criterion, relaxes the
Delaunay criterion. Let S be a finite set of points and X be a PLS in R3 with
vert(X ) ⊆ S. A simplex σ whose vertices are in S is constrained Delaunay if it is in
one of the two cases:

9



(i) There is a circumball Bσ of σ contains no vertices of S in its interior.

(ii) There exists F ∈ X , such that int(σ) ⊆ int(F ). Let K = S ∩ aff(F ), then no
vertex of K contained in the interior of Bσ is visible from any point in int(σ).

Case (i) means that every Delaunay simplex is also constrained Delaunay. In (ii),
F is the lowest-dimensional polyhedron of X that contains σ, K is the subset of S
in the affine hull generated by F . The fact that a simplex σ ⊂ F is constrained
Delaunay or not only depends on the vertices of K. See Fig. 8 right for examples.

A constrained Delaunay tetrahedralization (abbreviated as CDT) of X is defined as
a tetrahedralization T of X such that every simplex of T is constrained Delaunay.

By this definition, a CDT of X may contain Steiner points, i.e., points in S\vert(X ).
It is called a pure CDT if it does not contain Steiner points. A 2-dimensional pure
CDT is the same as the one defined by Lee and Lin [34] and Chew [12]. Shewchuk’s
definition of a CDT [51] is also a pure CDT. It is well known that a pure CDT of a
3-dimensional PLS may not exist while there are infinitely many CDTs of X with
Steiner points.

In the following, we introduce some basic properties of the CDTs we have just
defined. These properties show that a CDT of a PLS X is very close to a conforming
Delaunay triangulation of X . The proofs are omitted, they are found in [54].

Delaunay triangulations can be checked locally. This is true for CDTs as well. Let
T be any tetrahedralization of a three-dimensional PLS X . A 2-simplex σ of T is
called locally Delaunay if either (i) σ is on the boundary of the convex hull, or (ii)
σ ⊂ |∂X|, or (iii) the opposite vertex of τ is not in int(Bν) of ν, where τ, ν ∈ T are
the unique simplices such that σ = τ ∩ ν. Note that (ii) implies that one can ignore
the 2-simplices contained in the boundary of |X |.

Theorem 3.1 (Constrained Delaunay Lemma [54]) If every (d−1)-simplex of
T is locally Delaunay, then T is a CDT of X .

If a point set S in R3 is in general position, i.e., no 5 points of S share a common
2-sphere, then the Delaunay tetrahedralization of S is unique. This property holds
in CDT as well.

Corollary 3.2 Let T be a CDT of X . If vert(T ) is in general position, then T is
the unique CDT of X with the set of vertices of T .

The i-skeleton X (i) of X is an i-dimensional PLS, where 0 ≤ i ≤ 2. It is useful
to know the properties of a CDT of X (i). We call a triangulation of X conforming
Delaunay triangulation if every simplex of T is Delaunay.

Theorem 3.3 ([54]) Let X be a d-dimensional PLS.
(i) A CDT of X (2) is a CDT of X .
(ii) A CDT of X (i) is a conforming Delaunay triangulation of X (i), where i = 0, 1.

10



4 The CDT Algorithm

Let X be a three-dimensional PLS, i.e., X is a set of polyhedra of dimensions from
0 to 3. We call 1- and 2-polyhedra of X segments and facets. The algorithm to
construct a constrained Delaunay tetrahedralization T of X works in the following
steps:

1. Initialize a CDT D0 of X (0).

2. Let D1 = D0. Recover segments of X in D1 such that D1 is a CDT of X (1),
such that every segment is a union of edges in D1.

3. Let D2 = D1. Recover facets of X in D2 such that D2 is a CDT of X (2), such
that every facet is a union of faces in D2.

This algorithm proceeds in the increasing order of the dimensions of the skeletons.
It initializes a CDT of X (0) (which is a Delaunay tetrahedralization of vert(X )). The
next two steps incrementally construct a CDT Di of X (i) from a CDT Di−1, where
i = 1, 2. By Theorem 3.3, D2 is a CDT of X . A constrained Delaunay mesh of X
can be obtained by removing the simplices of D2 not contained to |X |.

4.1 Segment Recovery

The Delaunay tetrahedralization D0 of vert(X ) may not contain all segments of X .
This section presents a segment recovery algorithm for recovering missing segments
of X . The inputs are X (1) and D0. The output of this algorithm is a CDT D1 of
X (1). Hence every segment of X is a union of edges of D1. For the mesh quality
requirement, it is desired that no unnecessarily short edge is introduced in D1.

We need some definitions. A vertex of X is acute if at least two segments of X
incident at it form an angle less than 60◦. We distinguish two types of segments in
X : a segment is type-0 if its both endpoints are not acute, it is type-1 if exactly one
of its endpoints is acute. If both endpoints of a segment are acute, it is treated as
a type-0 segment at the beginning and it is transformed into two type-1 segments
immediately after a Steiner point is inserted to it.

Let eiej be a segment of X with endpoints ei and ej. eiej is split by adding a
Steiner point in the interior of it. The two resulting edges are called subsegments of
eiej. Subsegments inherit types from the original segments. For example, if eiej is a
subsegment of e1e2 which is a type-1 segment, eiej is also type-1 exen if none of its
endpoints is acute. For any vertex v inserted on a type-1 segment (or subsegment),
let R(v) denote its original acute vertex. If v is an input vertex, then R(v) = v.
A tacit rule is used throughout this section, if eiej is a type-1 segment, it implies
that either ei or R(ei) is acute. In the following, unless it is explicitly mentioned,
the term ”segment” means either a segment or a subsegment.
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The diametric circumball of a segment is by definition the smallest circumscribed
ball of it. A vertex is said to encroach upon a segment if it lies inside the diametric
circumball of that segment. We have the following fact.

Fact 4.1 If a segment of X is missing in D0 and vert(D0) is in general position,
then it must be encroached by at least one vertex of D0.

Let eiej be a missing segment. Let P be the set of all encroaching points of eiej.
A reference point p of eiej, which is used for a splitting point in eiej, is defined as
follows

(i) p ∈ P , and

(ii) the angle between pei and pej is maximized for all p ∈ P .

Notice that p may not be unique (because several points can share the same sphere).
In this case randomly choose one to be p.

Let p be the reference point of a missing segment eiej. The choice of a splitting
point v is governed by three rules given below. Let Σ(c, r) be a sphere with center
c and radius r, and let ‖ · ‖ be the Euclidean distance function.

1. eiej is type-0 (Fig. 9 left), then v = eiej ∩ Σ(c, r), where
if ‖ei − p‖ < 1

2
‖ei − ej‖ then

c = ei, r = ‖ei − p‖;
else if ‖ej − p‖ < 1

2
‖ei − ej‖ then

c = ej, r = ‖ej − p‖;
else

c = ei, r = 1
2
‖ei − ej‖;

end.

2. eiej is type-1 (Fig. 9 middle), let ek = R(ei), then v = ekej ∩ Σ(c, r), where
c = ek and r = ‖ek − p‖. However, if ‖v− ej‖ < ‖v− p‖, then reject v and
use Rule 3; end.

3. (Continued from Rule 2) Let v′ be the vertex rejected by Rule 2 (Fig. 9 right),
then v = ekej ∩ Σ(c, r), where c = ek, and
if ‖p− v′‖ < 1

2
‖ei − v′‖ then

r = ‖ek − ei‖+ ‖ei − v′‖ − ‖p− v′‖;
else

r = ‖ek − ei‖+ 1
2
‖ei − v′‖;

end.

The idea of these segment splitting rules is to avoid short edges, and the choice of
the locations should not cause an endless loop. All the three rules guarantee that
the newly inserted vertex is not too close to the existing vertices. Note that Rule 1
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Figure 9: Segment splitting rules.
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Figure 10: The protecting ball of an acute vertex ei. v1, v2, v3, and v4 are points
inserted on segments (by rule 2) sharing ei. They automatically create a protecting
ball of ei.

and 2 never create an edge shorter than the distance ‖R(ei)−v‖. Rule 3 may create
an edge which has a length of at most one third of the length of ‖R(ei)− ej‖. Our
analysis showed that the total number of application of Rule 3 is bounded.

For several segments sharing an acute vertex, by repeatedly using Rule 2 or 3, a
protecting ball is automatically created which ensures: no other vertex can be in-
serted inside the ball. The effect is shown in Figure 10. Notice, the protecting ball
is not necessarily completely created, only the missing segments will be split and
protected. Existing segments remain untouched. This reduces the number of Steiner
points.

The SegmentRecovery algorithm is described in Fig. 11. The inputs are a three-
dimensional PLS X and a Delaunay tetrahedralization D0 of vert(X ). Some seg-
ments of X may be missing in D0. The algorithm first initializes a queue Q of all
segments of X . Then the algorithm runs into a loop until Q is empty.

For each segment (or subsegment) eiej ∈ Q. If it is missing in D1, a Steiner point
v inside eiej is generated by one of the three rules described in previous section
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SegmentRecovery (X , D0)
// X is a three-dimensional PLS; D0 is the DT of vert(X ).
1. D1 = D0;
2. Initialize a queue Q of all segments of X ;
3. while Q 6= ∅ do
4. get a segment eiej ∈ Q; Q = Q \ {eiej};
5. if eiej is missing in D1, then
6. find a Steiner point v ∈ int(eiej) by Rule i, i ∈ {1, 2, 3};
7. Q = Q ∪ {eiv, ejv};
8. Q = Q ∪ {σ ∈ X (1), σ ∈ D1 |v ∈ int(Bσ)};
9. update D1 to be the DT of vert(D1) ∪ {v};
10. endif
11. endwhile
12. return D1;

Figure 11: The segment recovery algorithm. The Bσ (in line 8) means the diametric
circumball of the segment σ.

(Fig. 11, line 6). The new point v will split eiej into two subsegments eiv and
ejv, they are queued in Q (line 7). Moreover, the insertion of v may cause other
existing segments (subsegments) of X missing in D1, they are queued in Q and will
be recovered later (line 8). Then D1 is updated to a Delaunay tetrahedralization of
the vertex set including v (line 9).

The termination of this algorithm can be proved by showing that the length of every
subsegment is bounded by some positive value depending only on the input. Please
refer to [54] for the details.

4.2 Facet Recovery

Each facet F ∈ X together with the Steiner points inserted on F is first triangulated
into a two-dimensional CDT TF . Hence ∂X is triangulated into a triangulation F .
We call triangles of F subfaces to distinguish other faces of D2. Some subfaces
may be missing in D2. The facet recovery algorithm incrementally recovers missing
subfaces of F .

At initialization, let D2 = D1; add all missing subfaces of F into a set S. The
algorithm iteratively recovers the subfaces in S and updates D2, it stops when S is
empty.

At each iteration i, several missing subfaces are recovered together. We define a
missing region Ω to be a set of subfaces of F such that

(i) all subfaces in Ω are coplanar,
(ii) the edges on ∂Ω are edges of D2, and
(iii) the edges in int(Ω) are missing in D2.

Hence Ω is a connected set of missing subfaces. It may not be simply connected,
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Figure 12: Left: The shaded area highlights a missing region Ω. Right: One of the
cavities resulting from a missing region is illustrated.

Figure 13: The FacetRecovery algorithm (illustrated in 2D). From left to right,
the two initial cavities C1 and C2 separated by a segment, the initial Delaunay
triangulations DC1 and DC2 , triangles of DC1 and DC1 are classified as ”inside” or
”outside”, and the new partitions of C1 and C2.

i.e., Ω can contain a hole inside. Each missing subface belongs to a missing region.
A facet can have more than one missing regions.

When a missing region Ω is found, one can derive a cavity in |D2| by removing all its
tetrahedra whose interiors intersect with Ω. This cavity can be further subdivided
into two cavities by inserting the subfaces of Ω in it, see Fig. 12 right. Each cavity
is a three-dimensional polyhedron C whose facets are triangles, some of them are
subfaces of F .

The next step is to tetrahedralize each cavity C without using Steiner points. The
TetrahedralizeCavity subroutine first constructs the Delaunay tetrahedraliza-
tion DC of vert(C) (line 1). Next it removes those tetrahedra of DC which are not
in the interior of C from DC (lines 2 − 6). On finish, the remaining tetrahedra in
DC form a partition of C.

Subroutine TetrahedralizeCavity (C)
// C is a cavity (a polyhedron with triangular facets).
1. form the Delaunay tetrahedralization DC of vert(C);
2. for each tetrahedron τ ∈ DC , do
3. if τ * int(C), then
4. DC = DC \ {τ};
5. endif
6. endfor
7. return DC ;

The FacetRecovery algorithm first initializes a set S of all subfaces of X . Then it
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Algorithm FacetRecovery (X , D1)
// X is a three-dimensional PLS; D1 is the CDT of X (1).
1. D2 = D1;
2. Initialize a set S of all subfaces of X ;
3. while S 6= ∅ do
4. get a subface σ ∈ S; S = S \ {σ};
5. if σ is missing in D2, then
6. form a missing region Ω containing σ;
7. D′

2 = D2 \ {τ ∈ D2 | int(τ) ∩ Ω 6= ∅};
8. form two cavities C1, C2 (in |D2|), where C1 ∩ C2 = Ω;
9. DC1 = TetrahedralizeCavity(C1);
10. DC2 = TetrahedralizeCavity(C2);
11. D2 = D′

2 ∪ DC1 ∪ DC2 ;
12. endif
13. endwhile
14. return D2;

runs into a loop until S is empty. Once a subface σ is found missing in D2, a missing
region Ω containing σ is formed (line 6). All tetrahedra crossing Ω are removed from
D2 (line 7) resulting in a temporary object D′

2. Two cavities C1 and C2 separated by
Ω are formed in the interior of |D2| (line 8). Then C1 and C2 are partitioned into two
sets (DC1 and DC2) of tetrahedra by the subroutine TetrahedralizeCavity (lines
9 and 10), respectively. D2 is then updated to conform Ω with the new partitions of
C1 and C2 (lines 11). Fig. 13 illustrates the idea of this algorithm in two dimensions.

4.3 Correctness

In this algorithm, Steiner points are only introduced in the step 2 (segment re-
covery). In order to show the correctness of this algorithm, we will first need the
following assumption.

Assumption 4.2 Assume the vertex set vert(D1) is in general position, i.e., no five
vertices of vert(D1) share a common sphere.

Although this assumption is very strong, it is easy to be satisfied by applying the
techniques of symbolic perturbations [25, 48, 17] in both steps 1 and 2. Hence,
(theoretically) there is no need to actually perturb the vertices.

The following theorem proved by Shewchuk [45] ensures the correctness of the algo-
rithm. Let S be a finite set of vertices. A simplex σ whose vertices are in S is called
strongly Delaunay if there exists a circumscribed ball Bσ of σ, such that Bσ ∩S = ∅.

Theorem 4.3 ([45]) If every segment of a PLS Y is strongly Delaunay in vert(Y),
then Y has a CDT with no Steiner points.
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(a) A PLS X (b) A PLS Y

Figure 14: Shewchuk’s CDT Theorem [45]. (a): The PLS X . Several segments of
X are not Delaunay. (b): A refined PLS Y which is topologically and geometrically
equivalent to X . All segments of Y are Delaunay.

After step 2 of the algorithm, each segment of X is a union of edges in D1. Moreover,
D1 is the Delaunay tetrahedralization of vert(D1). Hence, each subsegment of X is
strongly Delaunay (by the Assumption 4.2) in D1. Let Y be a PLS which is the
refinement of X , that is, each segment of X is a union of segments in Y , and the
segments of Y are all edges in D1. Then Y has a CDT with no Steiner points. See
Fig. 14 for an example.

This condition is also useful in practice since it suggests that the Steiner points can
be inserted on segments only.

Once the existence of a CDT with no Steiner points is known, we still need to show
that the step 3, i.e., facet recovery, can be done without using Steiner points. In [54],
we have proved the following guarantees for the facet recovery algorithm.

Lemma 4.4 ([54]) Assume the old tetrahedralization D2 is a CDT and it satisfies
the assumption 4.2. Then the two calls of TetrahedralizeCavity subroutines
(in lines 9 and 10) succeed.

Lemma 4.5 ([54]) The new tetrahedralization D2 (in line 11) is a CDT.

Now we can prove the termination of the FacetRecovery algorithm by combining
Lemma 4.4 and Lemma 4.5.

Theorem 4.6 ([54]) The FacetRecovery algorithm terminates and results in a
CDT of X .

4.4 Complexity

In this section we show the worst case behavior of the FacetRecovery algorithm
with respect to the number of vertices and facets of the input PLS.
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(a) L100,5 (5 layers) (b) The DT (c) The CDT

Figure 15: Examples (Layers). The PLS L100,5 shown in (a) has 5 parallel facets, 100
vertices lie above the top facet, one vertex below the center of the bottom facet. (b)
and (c) respectively show the Delaunay tetrahedralization and the CDT of L100,5.

Theorem 4.7 ([54]) Let X be a three-dimensional PLS which has v vertices and
f facets. The FacetRecovery algorithm runs in time O(fv2 log v).

The prove that the complexity estimate is sharp we have to construct is completed
by construct a PLS which needs such running time, then showing that it is indeed
the worst case. Such an example is shown in Fig. 15. In this example L100,5, all
facets will be missing from the Delaunay tetrahedralization of its points. We get the
upper bound of the running time by recovering missing facets from bottom to top.
The cavity formed from each facet has size O(v). The Delaunay tetrahedralization
has the worst case running time O(v2).

It is still an open problem to show a polynomial upper bound for the total number
of Steiner points of the segment recovery algorithm.

4.5 Examples

The CDT algorithm has been implemented in the program TetGen [52]. In this
section, we provide two examples to illustrate the practical behavior and the effec-
tiveness of the CDT algorithm.

Fig. 16 illustrates an example of one run of the CDT algorithm on a mechanical part
(Cami1a with the intermediate status of the different steps. The input PLS shown
in (a) has 460 vertices, 706 segments, and 328 facets. The surface mesh shown
in (b), which is the input of the local degeneracy removal algorithm, contains 954
subfaces. (c) is the initial Delaunay tetrahedralization of the vertex set. The status
after the SegmentRecovery algorithms is shown in (d). The number of break
points and protect points are 213 and 269, respectively. (e) shows the initial status
of the FacetRecovery algorithm, there are in total 6446 subfaces in which 22 are
missing (highlighted in yellow). The resulting CDT is shown in (f). A vertical cut
is made for visualizing the interior constrained Delaunay tetrahedra.

The geometry of the next example shown in Fig. 17 is the wing of an airplane placed
inside a large bounding box, see (a). The surface of the wing and the bounding box
were triangulated by 22905 nodes and 45806 triangles. A detailed section of the
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(a) A 3D PLS (b) The surface mesh (c) The DT

(d) Segment recovery (e) Facet recovery (f) A CDT

Figure 16: Example: Cami1a. The input PLS and the constructed CDT are shown
in (a) and (f), respectively. Pictures from (b) to (e) show the intermediate states of
the CDT algorithm.

surface triangulation of the wing is shown in (b). To generate the CDT from the
surface mesh, TetGen added in total 19, 455 Steiner points in which 2, 542 are break
points and 16, 913 are protect points. A view of the inside of the CDT near the
wing is shown in (c). In (d), the modified surface mesh of the CDT is shown.

5 Constrained Delaunay Refinement

In this section, the algorithm for refining a tetrahedral mesh is presented. It behaves
like the Delaunay refinement algorithm of Shewchuk [46], i.e. it finds the badly-
shaped tetrahedra and eliminates them by inserting their circumcenters. However,
the insertion of circumcenters is restricted by the local mesh sizing information
specified on input. We refer to this algorithm as constrained Delaunay refinement.

5.1 Element Shape and Mesh Size

A tetrahedron shape measure is a continuous function which evaluates the quality of
a tetrahedron by a real number. The most general shape measure for a simplex is
the aspect ratio. The aspect ratio η(τ) of a tetrahedron τ is the ratio between the
longest edge length and the shortest height. Aspect ratio measures the ”roundness”
of a tetrahedron in terms of a value between

√
2/
√

3 and +∞. Low aspect ratio
implies better shape.

Delaunay refinement algorithms use a weaker tetrahedron shape measure. The
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(a) A view of the input PLS (b) A view of the input surface mesh
22905 nodes 45806 triangles

(c) A view of the output CDT (d) A view of the output surface mesh
43044 nodes 2542 break points

134700 tetrahedra 17597 protect points

Figure 17: Example: Wing-Iso. Global and local views of the input PLS are shown
in (a) and (b), respectively. Two detailed views of the output CDT are shown in
(c) and (d).
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radius-edge ratio ρ(τ) of a tetrahedron τ is the ratio between the radius r of its
circumscribed ball and the length l of its shortest edge, i.e., ρ(τ) = r/l. ρ(τ) is at
least

√
6/4 ≈ 0.612, achieved by the regular tetrahedron. Most of the badly shaped

tetrahedra will have a big radius-edge ratio except the sliver, which can have a
minimal value

√
2/2 ≈ 0.707.

Each of the six edges of a tetrahedron τ is surrounded by two faces. At a given edge,
a dihedral angle between two faces is the angle between the intersection of these
faces and a plane perpendicular to the edge. A dihedral angle in τ is between 0◦

and 180◦. The minimum dihedral angle φmin(τ) of τ is a tetrahedron shape measure.

Let X be a three-dimensional PLS. We define a mesh sizing function H : |X | → R,
such that for each point p ∈ |X |, H(p) specifies the desired length of edges to the
vertex inserted at the location p. For example, the local feature size lfs(p) at a point
p ∈ |X | is defined as the radius of the smallest ball centered at p that intersects
two non-incident components of X . lfs() defines a default distance function on |X |
based on its boundary information. It is 1-Lipschitz, i.e., lfs(p) ≤ lfs(q) + |p + q|,
for any p,q ∈ |X |.
The function H is isotropic if the edge length does not vary with respect to the
directions at p, otherwise, it is anisotropic. Generally, H can be represented by a
3× 3 metric tensor M which defines a field of symmetric positive definite matrices.
In isotropic case, for any p ∈ |X |, M(p) = 1

H2(p)
I3, where I3 is the identity matrix

in R3×3. In the scope of this work, we assume that H is isotropic. An ideal sizing
function is C∞, ∀p ∈ |X |. However, in most cases, H is approximated by a discrete
function specified at some points in |X |. The size on other points is obtained by
means of interpolation. A background mesh can be used for this purpose.

One of our goals is to create a tetrahedral mesh T of X such that the mesh size of T
conforms to H. We use the following criterion to measure the mesh size conformity.
Let p be a vertex in T . Let S(p) and L(p) denote the shortest and longest edge
lengths at p, respectively. We say that the size of T conforms to H if there exist
two constants CS and CL, where 0 < CS ≤ CL < ∞, such that for every vertex
p ∈ T , the following relation holds

CS ≤
S(p)

H(p)
≤ L(p)

H(p)
≤ CL.

The best conformity would be the case CS = CL = 1. It is generally not possible to
obtain the best conformity. One goal is to bound the ratio CL

CS
.

5.2 The Algorithm

Starting with an initial Delaunay tetrahedralization, Shewchuk’s Delaunay refine-
ment scheme [46] uses three rules to add new points. One adds a point v at the
circumcenter of a badly-shaped tetrahedron τ . τ will be removed after reconnect-
ing the local mesh edges to v using the Delaunay criterion. The other two rules

21



Figure 18: For each point p ∈ T , assume there are two virtual balls, one protect
ball (shown in red), and one sparse ball (shown in green).

are used for boundary protection, i.e., split a segment or a subface by adding its
circumcenter. Boundary protection has higher priority than removing badly-shaped
tetrahedra.

The proposed algorithm makes use of these rules to find new points. But two variants
are made: (1) Attempt to insert a new point at the location where the local mesh
is either badly shaped or sparse, the sparseness is indicated by the sizing function
at mesh vertices, and (2) the new point can be inserted only if it is not ”close”
to any existing vertex. Intuitively, one can assume that each vertex p of the mesh
is surrounded by two virtual balls, one sparse ball with radius α1H(p), and one
protecting ball with radius α2H(p) (see Fig. 18). The space outside the sparse ball
of p is sparse from the viewpoint of p, while any point inside the protecting ball of
p is close to p.

The two parameters α1 and α2 are used to scale the size of the balls. In particular,
we get the basic Delaunay refinement algorithm by setting α1 = ∞ (no sparse ball),
and α2 = 0 (no protect ball).

Point Generating Rules A candidate v for insertion is found by the following
three point-generating rules. We say a segment (or a subface) is encroached if its
diametric ball contains at least one vertex in its interior. Any tetrahedron τ be
considered to be of bad quality if ρ(τ) > ρ0.

R1 If a subsegment σ is encroached, then v is the midpoint of σ.

R2 If a subface σ is encroached, then v is the circumcenter of σ. However, if v
encroaches upon some subsegments, then reject v. Instead, use R1 to return
a v on one of the subsegments.

R3 If a tetrahedron τ satisfies one of the following two cases, R3.1 or R3.2:

R3.1 τ has a radius-edge ratio greater than ρ0.
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v
v

Figure 19: Left: v is a point found by R2. Middle: the vertices of the shaded region
form the set P of points collected by the point accepting rule. Right: if v is inserted,
the shaded region is re-triangulated according to the Delaunay criterion.

R3.2 there is a corner p of τ , such that α1H(p) < r, where r is the radius of
the circumscribed ball of τ ,

then v is inserted at the circumcenter of τ . However, if v encroaches upon
any subsegment or subface, then reject v. Instead, use R1 or R2 to return a
v on one of the subfaces or subsegment.

R3.1 tests if τ has bad quality, and R3.2 checks the H-conformity of the corners of τ .
R3.1 has a priority higher than R3.2. Hence R3.2 is triggered only if all tetrahedra
have radius-edge ratio greater than ρ0.

Point Accepting Rules Once a candidate v is found, v is not inserted immedi-
ately. Instead, the point-accepting rule will be called. It decides whether or not v
can be inserted into the mesh. Let P be a set of vertices collected as follows:

• If v is found by R1, then P contains the two endpoints of the segment that v
will split.

• If v is found by R2, then P contains the vertices of the subfaces whose dia-
metrical circumspheres are encroached by v (see Fig. 19).

• If v is found by R3, then P contains the vertices of the tetrahedra whose
circumspheres contain v.

Then v can be inserted if α2H(p) < ‖v − p‖ for all p ∈ P . Otherwise, v is not
inserted.

If v passes the point-accepting rule, then it is inserted into the current mesh, and
the local mesh of v is rearranged according to the Delaunay criterion.

In the point-accepting rule, if v is found by R1 or R2, only the endpoints of the
subsegment or subfaces of the same facet on which v lies have the right to accept or
reject v. v may be very close to some existing vertices, i.e., there may exist points
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AdaptiveDelaunayRefinement (T , ρ0, H, α1, α2)
// T is a tetrahedral mesh of a PLS X ; ρ0 is a radius-edge ratio bound;
// H : |X | → R+ is a sizing function; α1, α2 are two parameters.

1. initialize a queue Q of all tetrahedra of T ;
2. while Q 6= ∅, do
3. pop a tetrahedron τ from Q;
4. if (ρ(τ) > ρ0) or (∃p < τ, ‖cτ − p‖ > α1H(p)), then
5. create a vertex v by R3 (or R1 or R2);
6. if v ∈ |T |, then
7. collect vertices in P by the point accepting rule;
8. if ∀p ∈ P , ‖v − p‖ > α2H(p), then
9. update T to be the mesh of T ∪ {v};
10. if v 6= cτ , then; Q = Q ∪ {τ}; endif
11. Q = Q ∪ {ν ∈ T |v < ν};
12. endif
13. endif
14. endif
15. endwhile
16. return T ;

Figure 20: The Adaptive Delaunay refinement algorithm.

bfq 6∈ P such that α2H(q) > ‖v − q‖. However, the distance ‖v − q‖ is always
bounded by a constant times the radius of a protecting ball.

The AdaptiveDelaunayRefinement algorithm is described in Fig. 20. It first
initializes a queue Q of all tetrahedra of T . Then it runs into a loop until Q is
empty. At each step, a tetrahedron τ is removed from Q (line 3). Let cτ be its
circumcenter. If τ is badly-shaped or the space at cτ is sparse (line 4), then a new
point v is generated (line 5). Since T may not be a boundary conforming Delaunay
mesh, v may lie outside |T |, v can be considered for insertion if v ∈ |T | (lines
6− 14). Finally, v can be inserted if it passes the point insertion rule (lines 8− 12).
The new mesh of T ∪ {v} is created by the Delaunay criterion (line 9). If v was
generated by R1 or R2, i.e., v 6= cτ , the insertion of v may not delete τ , τ is queued
in Q for later process (line 10). All the newly generated tetrahedra are added to Q
as well (line 11).

5.3 Analysis

The termination of this algorithm can be proved by showing that for any newly
inserted vertex, the distance to its nearest mesh vertex is bounded by some positive
value. Then the algorithm will stop since no arbitrarily short edge can be introduced.

Theorem 5.1 ([53]) The algorithm terminates as long as α2 > 0.
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We say a segment S is sharp if either: (1) it is incident with another segment S ′, such
that the angle between S and S ′ is smaller than 60◦, or (2) it is the intersection of
two facets F1 and F2, such that the dihedral angle between F1 and F2 is smaller than
69.3◦. The following theorem shows that the algorithm in Fig. 20 is able to create
a mesh with most of the tetrahedra having their radius-edge ratio bounded from
above, while only a few poor-quality tetrahedra remain in well defined locations.

Theorem 5.2 ([53]) Suppose H is the local feature size, ρ0 > 2. There exists an
α2 > 0, such that either output tetrahedron t has a radius-edge ratio smaller than
ρ0, or the circumcenter ct of t satisfies:

‖ct − p‖ ≤
√

2α2H(p).

where p ∈ S is a mesh vertex, and S is a sharp segment.

Next, we consider the mesh conformity by analyzing a special case where H = lfs and
θm = 90◦. The mesh quality is guaranteed with a sufficiently small α2. Theorem 5.3
establishes bounds for these quantities for output vertices.

Theorem 5.3 ([53]) Let H = lfs, θm = 90◦, ρ0 > 2, and let α2 be small enough
such that all output tetrahedra have a radius-edge ratio smaller than ρ0. Then

(i) Sv ≥ min{α2, Cα2
H(p(v))

H(v)
};

(ii) Lv ≤ 2α1.

Where C = sin θm/
√

2.

5.4 Sliver Removal by Delaunay Refinement

One remaining theoretical problem of our algorithm is that the resulting meshes may
contain slivers which may have arbitrarily large aspect ratio but bounded radius-
edge ratio. Fig. 21 highlights the remaining slivers in two bounded radius-edge ratio
meshes.

Many algorithms have been proposed that take as input a good radius-edge ratio
tetrahedral mesh, and refine it into a sliver-free, good aspect ratio mesh [14, 10,
24, 35]. Only the Sliver Exudation algorithm of Cheng et al [10] is implemented
and experimental results are reported. Besides the theoretical work, Shewchuk [46]
showed experiments that Delaunay refinement indeed is effective in removing slivers.
The purpose of this section is to give more quantitative evidences, that Delaunay
refinement scheme is able to generate good aspect ratio meshes if the input angle
condition is satisfied.

The minimum dihedral angle, φmin, is used to identify slivers. As suggested in [23],
we fix a threshold and call a tetrahedron τ a sliver if its φmin(τ) < 5◦. Assume a
bounded radius-edge ratio Delaunay mesh containing slivers to be given. Starting
from that mesh, each sliver is removed by inserting a point at its circumcenter. If
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Figure 21: The remaining slivers in bounded radius edge ratio meshes are high-
lighted. Left: Pmdc, and Right: Hose.

a circumcenter encroaches upon any subsegment or subface, it is rejected, and the
circumcenters of the encroached boundaries are inserted. A new inserted point may
create new large radius-edge ratio (> ρ0) tetrahedra and new slivers, they are pro-
cessed by the same way. The tetrahedra with large radius-edge ratios have priority
over slivers. The process repeats until neither slivers nor bad quality tetrahedra
exist. This method is essentially the same as that of Li and Teng [35]. However,
we omit using picking regions and allow the creation of small slivers. Hence the
termination is theoretically not guaranteed.

Table 1 shows the experiments on PLS models (available from [52]). For testing
purposes, these models contains no input dihedral angle smaller than 90◦. Hence
the basic Delaunay refinement scheme always terminates. In [35], Li and Teng claim
that their algorithm needs at most O(n) Steiner points to generate a sliver-free
Delaunay mesh, where n is the number of input nodes of the initial bounded radius-
edge ratio mesh [35]. From our experiments, we observe that the number of initial
slivers and the number of Steiner points are in the same order, the latter is slightly
larger and depends on the PLS models. Our tests suggest that the number of initial
slivers is crucial. To find the relation between the numbers of initial slivers and
Steiner points will be meaningful.

However, Delaunay refinement generally will not work for PLSs having input dihe-
dral angle smaller than 69.3◦, i.e., termination is not guaranteed. Hence, techniques
like mesh smoothing and mesh optimization need to be used.

5.5 Examples

The algorithm has been integrated into the software TetGen [52]. The input can
be either a PLS or a constrained tetrahedral mesh. A sizing function H can be
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DEMO03 Pmdc Thepart Hose
In Nodes 2960 12050 7954 19941
In Tets 12150 43219 35076 73720

In Min φ 0.007◦ 0.001◦ 0.002◦ 0.324◦

In Max φ 179.98◦ 179.99◦ 179.99◦ 179.09◦

In Max η 9435.9 71128 37316.0 194.1
PLS Facets 744 502 1995 12000

Slivers 110 629 363 324
Steiner Points 349 1607 1075 691

Out Min φ 5.01◦ 5.01◦ 5.02◦ 5.03◦

Out Max φ 172.01◦ 175.60◦ 171.91◦ 171.94◦

Out Max η 22.2 25.5 28.1 21.9

Table 1: Sliver removal experiments on meshes from PLS models (publicly available
from [52]). The initial and final meshes have a bounded radius-edge ratio below 2.
The number of slivers and the inserted Steiner points are highlighted. Initial and
final mesh quality are reported by the min-max dihedral angle (φ) and the maximum
aspect ratio (η).

optionally specified through a background mesh. Parameters ρ0, α1, and α2 are all
adjustable at runtime.

The first mesh example is used in the finite element modeling of the forward problem
of EEG/MEG source localization [19]. Here the mesh domain is a human head
modeled by four layers, namely, the skin, the outer and inner skull, and the cortex.
The PLS model of the brain contains 20301 nodes, 40638 triangles, see Fig. 22 (a).
It has four sub-domains (shown in different colors) separated by the three internal
layers, see Fig. 22 (b). The smallest input face angle and input dihedral angle are
10.7◦ and 3.8◦, respectively.

The mesh refinement parameters were chosen as follows: ρ0 =
√

2, α1 = ∞, α2 = 1.0.
The sizing function H was automatic generated from the initial mesh. The refined
mesh contains 28, 543 nodes (6, 618 Steiner points) and 165, 607 tetrahedra. Fig. 22
(c) shows an internal view of the resulting mesh. In (d), the remaining bad quality
tetrahedra (whose maximal dihedral angle are larger than 175◦) are highlighted.
These tetrahedra were removed after applying a mesh optimization algorithm on
the mesh.

The second example is a Boeing 747 model. The input is the surface mesh of the
plane (2, 874 nodes, 5, 738 triangles) plus a bounding box. The tetrahedral mesh
is constructed to compute a potential flow around the Boeing 747. The sizing
function is explicitly given by a smoothed function of the Euclidian distance from
the surface mesh (Fig. 23 (b)). The resulting tetrahedral mesh (Fig. 23 (c) and
(d) 490, 692 nodes, 2, 709, 770 tetrahedra) was generated with parameters: ρ0 =
2.0, α1 = 0.5, α2 = 0.25.

Remaining bad quality tetrahedra are all close to the sharp segments of the plane’s
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(a) The input PLC (a human brain) (b) The interior boundaries

(c) Mesh detail (d) Remaining bad tetrahedra

Figure 22: Tetrahedral mesh of a human brain. (Courtesy Carsten Wolters, IBB,
University of Münster.)
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(a) The surface mesh, (b) Tetrahedra size information is
2, 874 nodes and shown on a cut through the box,
5, 738 triangles. blue - small size tetrahedra,

red - large size tetrahedra.

(c) Mesh detail (490, 692 nodes (d) Mesh detail, refine time 59 s
and 2, 709, 770 tetrahedra) (44.5k tet/sec), 3.60GHz Intel PC.

Figure 23: Adaptive tetrahedral mesh of the Boeing 747 model.
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Figure 24: Mesh quality plot of the Boeing 747 model. Left: The remaining bad
quality tetrahedra (shown in blue) are located close to the surface and sharp input
segments. Right: The radius-edge ratio histogram.

surface (Fig. 24 left). The histogram of radius-edge ratios of the tetrahedral mesh is
shown in Fig. 24 right. The mesh contains high-quality tetrahedra in the bulk of the
meshed domain. For example, over 94% of the tetrahedra of the Boeing 747 mesh
have radius-edge ratios between 0.612 and 1.1. Only about 0.4% of the tetrahedra
are of bad-quality.

6 Open Issues

The only obstacle for obtaining an isotropic good quality Delaunay mesh is the
limitation (e.g., ≥ 69.3◦) on facet angles of the input PLS [54]. It seems that the
only possible way to circumvent it, is to create points at the neighborhoods of small
facet angles by special constructions. Such algorithms are proposed by Cheng et
al. [11] and Pav et al. [42]. However, both approaches are complicated and may
introduce arbitrarily many new points. A remaining problem is how to reduce the
complexity for such a special construction, so that it is efficient.

Experiments show that Delaunay refinement can remove slivers by adding the same
amount of Steiner points. However, it is not proved yet. It is an open problem to
determine a non-trivial lower bound (or an expected bound) on the dihedral angles
of the output tetrahedra.

Another open problem is to find an upper bound on the number of Steiner points
for recovering all segments of a PLS X in a Delaunay triangulation. So far, only
Edelsbrunner et al. [26] provided an upper bound for the problem in two-dimensional
cases. It is necessary to analyze our segment recovery algorithm further or to develop
a new algorithm which has asserted bounds on the resulting size of the CDT.

A challenging problem is to remove or suppress Steiner points from the boundary
(segments and facets) of a CDT. Although it is theoretically guaranteed that any
Steiner point can be removed from the boundary [29], the robustness and efficiency
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are the main difficulties in practice.
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