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1Abstrat. An optimal ontrol problem for the stati problem of in�nitesimal elastoplas-tiity with linear kinemati hardening is onsidered. The variational inequality arisingon the lower-level is regularized using a Yosida-type approah, and an optimal ontrolproblem for the so-alled visoplasti model is obtained. Existene of a global optimizeris proved for both the regularized and original problems, and strong onvergene of thesolutions is established.1 IntrodutionThis paper is onerned with an optimal ontrol problem for the stati model of in�n-itesimal elastoplastiity with linear kinemati hardening. Stati, or inremental, plastiity models arise through disretization in time of quasi-stati plastiity problems. Fora detailed physial motivation, we refer to Simo and Hughes [1998℄ and Han and Reddy[1999℄. The forward problem is haraterized by the unique solution ofMinimize 1

2

∫

Ω

σ : C
−1 : σ dx +

1

2

∫

Ω

χ : H
−1 : χ dxs.t. {−divσ = f in Ω

σ ·n = g on ΓN .and (σ(x),χ(x)) ∈ K a.e. in Ω.





(1.1)Hene, on the one hand, the optimal ontrol of (1.1) leads to a bi-level optimization prob-lem. On the other hand, (1.1) an be replaed by its neessary and su�ient optimalityonditions, and thus we obtain an optimal ontrol problem for a variational inequality.We work under the assumption of in�nitesimal strains. Hene, Ω is the domain oupiedby the body in both the undeformed and deformed states. The volume and boundary loads
f and g serve as ontrol variables, and σ(x) ∈ Rd×dsym denotes the stress tensor of the bodyresulting from these loads. The fourth order tensors C and H are the elastiity tensor andthe hardening modulus, respetively. Conditions motivated by physial onsiderationsensure that (1.1) is uniquely solvable.The losed and onvex set K imposes bounds on the generalized stress (σ,χ) the bodyan take. The variable χ denotes an internal fore whih arises during hardening. It istermed the bak stress in the ase of kinemati hardening, and it auses a translation ofthe initial yield surfae, ompare (2.2). Plasti deformation is haraterized by materialpoints satisfying (σ,χ) ∈ ∂K. When deleting the variable χ, one obtains the statiproblem of perfet plastiity (Henky model), whih provides substantially less regularsolutions, see Temam [1983℄. If, in addition, the ondition (σ,χ) ∈ K is negleted, (1.1)redues to the problem of stati linear elastiity.We onsider the following optimal ontrol problem:Minimize 1

2
‖u− ud‖2

L2(Ω;Rd) +
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. the stati plastiity problem (1.1). 

 (1.2)



2The lower-level problem (1.1) an be equivalently replaed by the variational formulationof its neessary and su�ient optimality onditions
−divσ = f in Ω, σ · n = g on ΓN , (1.3a)

ε(u(x)) : σ(x) − σ(x) : C
−1 : σ(x) − χ(x) : H

−1 : χ(x)

= max
(τ ,µ)∈K

{ε(u(x)) : τ − σ(x) : C
−1 : τ − χ(x) : H

−1 : µ} a.e. in Ω.
(1.3b)where ε(u) = 1

2

(
∇u+ (∇u)⊤

) denotes the strain tensor. Note that (1.3) is equivalent toa mixed variational inequality of the �rst kind, see (2.11) below. The variable u is theLagrange multiplier assoiated to the equality onstraints in (1.1) and it an be physiallyinterpreted as the displaement �eld by means of duality tehniques, see Appendix A. Weemphasize that the ourene of the Lagrange multiplier for the lower-level problem inthe upper-level objetive is a partiular feature of the problem at hand.In the present paper, we prove the existene of a global optimizer of (1.2), and also ofa family of regularized problems. The regularization onsists in replaing the onstraint
(σ,χ) ∈ K by a penalty term based on the Yosida approximation of the indiator funtion.Remarkably, the Yosida approximation leads to a lower-level problem whih allows aphysial interpretation in its own right, the so-alled visoplasti approximation of (1.1).We also prove that every strit loal optimum of the original problem (1.2) is the stronglimit of loal solutions of the visoplasti optimal ontrol problems, as the regularizationparameter tends to ∞. The paper an thus be viewed as a preparatory step for thederivation of �rst-order neessary optimality onditions for (1.2) in the spirit of Ito andKunish [2000℄ and Hintermüller [2008℄, whih will be the subjet of a subsequent paper.Let us put our work into perspetive. As was noted above, the weak formulation of (1.3)is equivalent to a mixed variational inequality of the �rst kind. The bi-level optimiza-tion problem (1.2) thus represents an optimal ontrol problem governed by an elliptivariational inequality. This lass of problems has been adressed by many authors underdi�erent aspets. We only mention Mignot [1976℄, Barbu [1984℄, Mignot and Puel [1984℄,Bonnans and Tiba [1991℄, Bonnans and Casas [1995℄, Bergounioux [1998℄, Bergouniouxand Zidani [1999℄, Ito and Kunish [2000℄, Hintermüller [2008℄, and the referenes therein.In these ontributions, various tehniques were used to establish �rst-order onditions foroptimal ontrol of ellipti variational inequalities of both, �rst and seond kind. To thebest of our knowledge, the optimal ontrol of mixed variational problems has not beenaddressed, let alone problems in the ontext of elastoplastiity. As another distinguishingfeature, we note that the Lagrange multiplier assoiated to the equality onstraint in (1.1)appears in the objetive of the upper-level problem (1.2). Thus, the disussion of (1.2)o�ers a genuine ontribution to the theory of optimal ontrol for variational inequalities.For the analysis, we follow the lassial approah of Barbu [1984℄, who employs a two-foldregularization to the lower-level problem, onsisting of a Yosida approximation of the in-diator funtion of the admissible set and the subsequent onvolution with a smoothingkernel. As was already noted, the Yosida approximation leads to a lower-level problemwhih allows a physial interpretation in its own right, the so-alled visoplasti approx-imation of (1.1). This provides another motivation to analyze optimal ontrols for thevisoplasti model.



3The paper is organized as follows. Notations, assumptions, and the weak formulationassoiated to (1.3) are olleted in Setion 2. Setion 3 starts with a disussion of the lower-level problem (1.1) by Lagrange tehniques. We emphasize here that the same resultsould also be obtained using Fenhel duality, f. for instane [Temam, 1983, Chapter III℄.The existene of solutions to (1.2) then follows from standard arguments. Setion 4 isdevoted to the analysis of the visoplasti approximation of the lower-level and bi-levelproblems (1.1) and (1.2), respetively. Using these results, the strong onvergene ofsolutions as the regularization parameter tends to ∞ is established in Setion 5.We remark that the lower-level problem (1.1) is alled the dual, or stress-based formu-lation. It is well known that an equivalent primal formulation exists, whih justi�es theexistene of the Lagrange multiplier u and its interpretation as the displaement �eld.The primal form is traditionally derived by means of Fenhel duality, f. for instane[Temam, 1983, Chapter III℄. By employing Lagrange tehniques in Setions 3 and 4, weo�er an alternative approah. In Appendix A, we also give an alternative form of theprimal problem, using Lagrangian duality. For onveniene of the reader, some resultson orthogonal projetions in Hilbert spaes that are used in Setion 4 are olleted inAppendix B.2 Notation and Preliminary ResultsOur notation follows Han and Reddy [1999℄. We begin by realling some elements oftensor alulus. By Rd×d we denote the spae of real d × d matries, and Rd×dsym is thesubspae of symmetri matries. Throughout, all tensors will be onsidered with respetto the standard Cartesian basis. Therefore, seond-order tensors an be identi�ed withelements of Rd×d. They will be denoted by bold-fae upper-ase letters, or by bold-faelower-ase Greek letters. The standard salar produt of two vetors a, b ∈ Rd is denotedby a · b. Moreover, the salar produt of two matries A = (Aij) and B = (Bij) in Rd×dis de�ned by
A : B = Aij Bij ,where Einstein's summation onvention is used. This salar produt gives rise to theFrobenius norm on Rd×d, denoted by |A| = (A : A)1/2.Every tensor A an be uniquely deomposed into its spherial and deviatori parts A =

AS +AD, where
AS =

1

d
(trA) I =

1

d
Akk (δij), AD = A− 1

d
(trA) I = (Aij) −

1

d
Akk (δij).Here δij is the Kroneker delta, I = (δij) is the unit tensor, and tr(A) = Akk is the traeof A.A real tensor of fourth order is identi�ed with an element of R

d×d×d×d and it is denotedby A = (Aijkl). We de�ne the produts A : B = (Aijkl Bklmn) and A : B = (Aijkl Bkl).De�nition 2.1. We say that a fourth-order tensor A is(a) symmetri if it has the following symmetry properties:
Aijkl = Ajikl = Aijlk = Ajilk,whih imply that A : B is a symmetri seond-order tensor whenever B is;



4 (b) oerive if
B : A : B ≥ c |B|2 for all B ∈ R

d×d (2.1)holds for some onstant c > 0.Remark 2.2. (a) If A is symmetri, then it is su�ient that (2.1) holds for all sym-metri matries B in order for A to be oerive.(b) If A is oerive, then it is invertible in the following sense: there exists a uniquefourth-order tensor A−1 suh that
A

−1 : A : B = A : A
−1 : B = B for all B ∈ R

d×d.

A−1 is oerive as well. If, in addition, A is symmetri, then A−1 is symmetri,too.Now we turn to the funtional analyti setting.Assumption 2.3. Let Ω ⊂ Rd be a bounded domain with Lipshitz boundary Γ in dimen-sion d ∈ {2, 3}. The boundary onsists of two disjoint parts ΓN and ΓD, where ΓD is arelatively losed set in Γ of positive measure, and no onneted omponent of ΓD onsistsof isolated points.Assumption 2.4. (a) The omponents of the elastiity tensor C in (1.1) are assumedto satisfy Cijkl ∈ L∞(Ω). For almost all x ∈ Ω, we assume that C(x) is oerive a-ording to De�nition 2.1, with a onstant c > 0 independent of x. (By Remark 2.2,the so-alled ompliane tensor C−1 exists almost everywhere with omponents in
L∞(Ω), and it satis�es a oerivity ondition with a onstant c′ > 0 independentof x.)The same is assumed for the hardening modulus H.(b) In addition, we assume that C(x) is symmetri in the sense of De�nition 2.1 (a).(This implies that C−1(x) is symmetri as well.)() Without loss of generality, we infer from the objetive in (1.1) that C−1 satis�es
(C−1)ijkl = (C−1)klij, i.e., σ : C−1 : τ = τ : C−1 : σ holds for all σ, τ ∈ Rd×d.The same is true for H

−1.In homogeneous isotropi materials, C is given by
Cijkl = λ δij δkl + µ (δik δjl + δil δjk)where µ and λ are the Lamé onstants. When µ > 0 and d λ + 2 µ > 0 hold, then

C satis�es Assumption 2.4. A ommon example for the hardening modulus is given by
H = diag(k1) with hardening onstant k1 > 0, see [Han and Reddy, 1999, Setion 3.4℄.Assumption 2.5 (Set of admissible generalized stresses).(a) The set K ⊂ Rd×dsym × Rd×d is assumed to be nonempty, losed and onvex with

(0, 0) ∈ K.(b) For all A ∈ Rd×dsym, we assume that
(σ,χ) ∈ K ⇒ (σ +A,χ−A) ∈ K.



5Remark 2.6 (Safe load ondition). Kinemati hardening is haraterized by a translationof the initial yield surfae during plasti loading, see [Han and Reddy, 1999, p. 69℄. Inother words, whether or not a generalized stress state (σ,χ) belongs to the admissible set
K depends only on σ+χ. Assumption 2.5 (b) is thus natural for problems with kinematihardening. Note that is equivalent to K + (A,−A) = K for all A ∈ Rd×dsym.Moreover, Assumption 2.5 (b) an be interpreted as a partiular form of the safe loadondition. In fat, Assumption 2.5 implies that an admissible generalized stress exists forarbitrary loads, see Proposition 3.1.Example 2.7. Assumption 2.5 is satis�ed, for instane, by the von Mises yield onditionin ase of linear kinemati hardening, i.e.,

K = {(σ,χ) ∈ R
d×d : |σD + χD| ≤

√
2/3σ0}, (2.2)where σ0 is the initial uni-axial yield stress, ompare [Han and Reddy, 1999, p.69, p.182℄.De�nition 2.8. We de�ne

V = H1
D(Ω; Rd) = {u ∈ H1(Ω; Rd) : u = 0 on ΓD},

S = L2(Ω; Rd×dsym), M = L2(Ω; Rd×d).as spaes for the displaement u, stress σ, and bak stress χ, respetively.Now we are in the position to de�ne the following bilinear forms assoiated to the statiplastiity problem.De�nition 2.9. For Σ = (σ,χ) ∈ S × M and T = (τ ,µ) ∈ S × M , de�ne
a(Σ,T ) =

∫

Ω

σ : C
−1 : τ dx +

∫

Ω

χ : H
−1 : µ dx. (2.3)For σ ∈ S and v ∈ V , let

b(σ,v) = −
∫

Ω

σ : ε(v) dx. (2.4)We reall that ε(v) = 1
2

(
∇v + (∇v)⊤

) denotes the strain tensor. We also de�ne anoperator B : S → V ′ assoiated to b, by
〈Bσ,v〉 = b(v,σ).Here and in the following, 〈· , ·〉 denotes the dual pairing between V ′ and V , and V ′ is thedual spae of V w.r.t. the topology of L2(Ω; Rd).Note that the objetive in (1.1) an be expressed as 1

2
a(Σ,Σ). As a onsequene ofAssumption 2.4, a is oerive on S × M , i.e., there exists α > 0 suh that

a(Σ,Σ) ≥ α ‖Σ‖2
S×M (2.5)holds for all Σ ∈ S ×M . Moreover, a is bounded on S ×M , i.e., there exists α > 0 suhthat

|a(Σ,T )| ≤ α ‖Σ‖S×M‖T ‖S×M (2.6)holds for all Σ,T ∈ S × M . The bilinear form b is bounded on S × V ,
b(σ,v) ≤ β ‖σ‖S‖v‖V (2.7)



6and it satis�es the ondition of Babu²ka-Brezzi, i.e., there exists β > 0 suh that
sup

σ∈S\{0}

b(σ,v)

‖σ‖S

≥ β ‖v‖V for all v ∈ V. (2.8)This follows from Korn's inequality, see e.g., [Temam, 1983, Proposition 1.1 and Re-mark 1.1℄,
‖u‖2

H1(Ω;Rd) ≤ cK

(
‖u‖2

L2(ΓD ;Rd) + ‖ε(u)‖2
L2(Ω;Rd×d)

) (2.9)for all u ∈ H1(Ω; Rd). Note that (2.9) also implies that ‖ε(u)‖L2(Ω;Rd×d) is a norm on
H1

D(Ω; Rd) equivalent to the natural norm.As a onsequene of (2.8), the following lemma holds, see Brezzi [1974℄:Lemma 2.10. For any given ℓ ∈ V ′, the equation
b(σ,v) = 〈ℓ,v〉 for all v ∈ Vhas a unique solution σ ∈ (ker B)⊥ and the estimate

‖σ‖S ≤ cB ‖ℓ‖V ′. (2.10)holds with a onstant cB independent of ℓ.De�nition 2.11 (Weak solution). Let f ∈ L2(Ω; Rd) and g ∈ L2(ΓN ; Rd) be given. Atriple (Σ,u) = (σ,χ,u) ∈ S × M × V is alled a weak solution of (1.3) if Σ ∈ K and
a(Σ,T − Σ) + b(τ − σ,u) ≥ 0 for all T = (τ ,µ) ∈ K (2.11a)

b(σ,v) = 〈ℓ,v〉 for all v ∈ V, (2.11b)where
K = {Σ = (σ,χ) ∈ S × M : (σ(x),χ(x)) ∈ K a.e. in Ω} (2.12)is the set of admissible generalized stresses and

〈ℓ, v〉 = −
∫

Ω

f · v dx −
∫

ΓN

g · v ds. (2.13)The reader will verify that the above variational formulation is obtained from (1.3) byformal integration by parts. Similarly, we reformulate the stress problem (1.1) asMinimize 1

2
a(Σ,Σ)s.t. b(σ,v) = 〈ℓ,v〉 for all v ∈ Vand Σ = (σ,χ) ∈ K.





(L)Consequently, we onsider from now on the following bi-level optimization problem, whihis the weak form of (1.2):Minimize F (u,f , g) :=
1

2
‖u− ud‖2

L2(Ω;Rd)

+
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. the plastiity problem (L) with ℓ as in (2.13).




(P)



73 Existene of SolutionsThe theory of (P) is learly based on the existene and uniqueness results for (L). Here,we will take the onvex optimization point of view and derive neessary and su�ientoptimality onditions for (L) by means of a Lagrange multiplier approah. As pointedout in the introdution, it is to be noted that these results are not genuine and an also beobtained by means of Fenhel duality (f. [Temam, 1983, Chapter III℄) or standard argu-ments for variational inequalities (see for instane Kinderlehrer and Stampahia [1980℄).Nevertheless, it is interesting to see how standard tehniques in onvex optimization yieldthat the displaement �eld an be viewed as a Lagrange multiplier assoiated to theequality onstraints in (L), f. Proposition 3.2.3.1. Analysis of the Lower-Level Problem. In this setion we disuss the existeneand uniqueness of solutions for the lower-level problem (L).Proposition 3.1 (Existene and uniqueness). For every ℓ ∈ V ′, problem (L) possesses aunique solution (σ,χ) ∈ S × M .Proof. The proof uses standard arguments. The objetive in (L) is uniformly onvex dueto the oerivity of a, and radially unbounded. The admissible set
Kℓ = {Σ = (σ,χ) ∈ K : b(σ,v) = 〈ℓ,v〉 for all v ∈ V } (3.1)is losed and onvex (hene weakly losed) due to Assumption 2.5. From Lemma 2.10, weobtain σ̃ ∈ (ker B)⊥ ⊂ S suh that the equality onstraint is satis�ed. With Σ̃ = (σ̃,−σ̃),the onditions on K in Assumption 2.5 imply Σ̃ ∈ K, and thus K is nonempty. The weaklower semiontinuity of the objetive therefore yields the existene of a solution, whih isunique due to the uniform onvexity. �Next we address the �rst-order neessary and su�ient optimality onditions for problem(L).Proposition 3.2 (Optimality onditions, existene of the displaement �eld). For given

ℓ ∈ V ′ and Σ = (σ,χ) ∈ K, the following are equivalent:
(i) Σ is the unique solution of (L),

(ii) there exists a Lagrange multiplier u ∈ V suh that (2.11) holds,
(iii) Σ ∈ Kℓ and the variational inequality

a(Σ,T −Σ) ≥ 0 for all T ∈ Kℓ (3.2)holds, with Kℓ as de�ned in (3.1).Proof. (i) ⇔ (ii): We apply the generalized Karush-Kuhn-Tuker theory. To this end, weverify the onstraint quali�ation aording to Zowe and Kuryusz. For problem (L), thisamounts to verifying the surjetivity of B, whih follows from Lemma 2.10. We assoiateto (L) the Lagrangian
L(σ,χ,u) =

1

2
a((σ,χ), (σ,χ)) + b(σ,u) − 〈ℓ,u〉.



8Theorem 4.1 in Zowe and Kuryusz [1979℄ implies the existene of a Lagrange multiplier
u ∈ V , suh that the optimality system

L(σ,χ)(σ,χ,u)(τ − σ,µ− χ) ≥ 0 for all (τ ,µ) ∈ K
Lu(σ,χ,u) = 0,is satis�ed, whih is the same as (2.11). The su�ieny of (2.11) for optimality of (σ,χ)is standard for onvex problems.

(i) ⇔ (iii): SineKℓ is onvex, (3.2) are neessary and su�ient for optimality by standardarguments. �The above theorem does not imply the uniqueness of the Lagrange multiplier u. Theuniqueness follows, however, from the following lemma.Lemma 3.3 (Lipshitz stability). For any given ℓ1, ℓ2 ∈ V ′, the assoiated solutions
(σ1,χ1,u1) and (σ2,χ2,u2) satisfy

‖σ1 − σ2‖S + ‖χ1 − χ2‖M + ‖u1 − u2‖V ≤ L ‖ℓ1 − ℓ2‖V ′ , (3.3)where L is independent of ℓ1, ℓ2.Proof. Step 1: Estimate for (σ,χ)The estimate for (σ,χ) is obtained by hoosing appropriate test funtion T = (τ ,µ)in the variational inequality (3.2). Let σ̃ be the unique solution in (ker B)⊥ ⊂ S of
b(σ̃,v) = 〈ℓ1 − ℓ2,v〉 for all v ∈ V (see Lemma 2.10), and set χ̃ = −σ̃. Then T 1 =
(τ 1,µ1) := (σ2,χ2) + (σ̃, χ̃) ∈ Kℓ1 is an admissible test funtion for (3.2), evaluated at
Σ1 = (σ1,χ1) sine

b(τ 1,v) = b(σ2,v) + b(σ̃,v) = 〈ℓ2,v〉 + 〈ℓ1 − ℓ2,v〉 = 〈ℓ1,v〉holds for all v ∈ V , and
(σ2,χ2) ∈ K ⇒ T 1 = (σ2 + σ̃,χ2 + χ̃) = (σ2 + σ̃,χ2 − σ̃) ∈ Kby Assumption 2.5. Consequently we obtain from (3.2)

a(Σ1,Σ2 −Σ1) ≥ −a(Σ1, (σ̃, χ̃)).Similarly, one shows that T 2 = (τ 2,µ2) := (σ1,χ1) − (σ̃, χ̃) lies in Kℓ2, i.e., it is anadmissible test funtion for (3.2) evaluated at (σ2,χ2). This yields
a(Σ2,Σ1 − Σ2) ≥ a(Σ2, (σ̃, χ̃)).Adding these inequalities gives

a(Σ1 −Σ2,Σ1 −Σ2) ≤ a(Σ1 − Σ2, (σ̃, χ̃))The left hand side an be estimated by (2.5). By onstrution and the a priori estimate(2.10), ‖σ̃‖S ≤ cB ‖ℓ1 − ℓ2‖V ′ holds. Hene we an estimate
α ‖Σ1 −Σ2‖2

S×M ≤ cB α ‖ℓ1 − ℓ2‖V ′‖Σ1 − Σ2‖S×M .Step 2: Estimate for uThe estimates for the displaement are obtained by using
T 1 = (τ 1,µ1) := (σ2 + ε(u1 − u2),χ2 − ε(u1 − u2)),

T 2 = (τ 2,µ2) := (σ1 + ε(u2 − u1),χ1 − ε(u2 − u1))



9as test funtions in (2.11a). Note that τ 1 is symmetri, and (τ 1,µ1) ∈ K holds a.e. in Ωin view of (σ2,χ2) ∈ K and Assumption 2.5, applied with A = −ε(u1 −u2). This showsthat T 1 ∈ K holds, and a similar argument applies when verifying T 2 ∈ K. We obtainfrom (2.11a) the estimates
a(Σ1,T 1 −Σ1) + b(τ 1 − σ1,u1) ≥ 0

a(Σ2,T 2 −Σ2) + b(τ 2 − σ2,u2) ≥ 0or equivalently
a(Σ1,Σ2 −Σ1) −

∫

Ω

ε(u1 − u2) : ε(u1) dx

− b(C−1 : σ1,u1 − u2) + b(H−1 : χ1,u1 − u2) + b(σ2 − σ1,u1) ≥ 0,

a(Σ2,Σ1 −Σ2) −
∫

Ω

ε(u2 − u1) : ε(u2) dx

− b(C−1 : σ2,u2 − u1) + b(H−1 : χ2,u2 − u1) + b(σ1 − σ2,u2) ≥ 0.Adding both inequalities yields
a(Σ1 − Σ2,Σ1 − Σ2) +

∫

Ω

ε(u1 − u2) : ε(u1 − u2) dx

≤ b(H−1 : (χ1 − χ2),u1 − u2)

− b(C−1 : (σ1 − σ2),u1 − u2) − b(σ1 − σ2,u1 − u2).

(3.4)The left hand side an be estimated by (2.5) and (2.9). In view of (2.7) and Assump-tion 2.4, the right hand side is bounded by a multiple of ‖Σ1 − Σ2‖‖u1 − u2‖. We thusobtain
a ‖Σ1 − Σ2‖2 + c−1

K ‖u1 − u2‖2
H1(Ω;Rd) ≤ C ‖Σ1 − Σ2‖‖u1 − u2‖.Young's inequality and the estimate for ‖Σ1 −Σ2‖ from Step 1 yield the desired estimate(3.3). �Remark 3.4. We point out that the Lagrange mutiplier u an be physially interpreted asdisplaement �eld. It solves an optimization problem whih is known as primal problemof stati elastoplastiity, see for instane [Han and Reddy, 1999, Setion 7℄. As shown inAppendix A this optimization problem is equivalent to the dual problem of (L).3.2. Disussion of the Bi-Level Problem (P). Based on the results of Subsetion3.1, we derive the existene of a global optimizer of problem (P). As a onsequene ofProposition 3.2, we an replae the lower-level problem (L) by its neessary and su�ientoptimality onditions (2.11). We introdue the spae of admissible ontrols

U := L2(Ω; Rd) × L2(ΓN ; Rd).As in (2.13), we assoiate to given (f , g) ∈ U a funtional ℓ = R(f , g) through
〈R(f , g),v〉 := −

∫

Ω

f · v dx −
∫

ΓN

g · v ds, v ∈ V.Lemma 3.5. The operator R : U → V ′ is linear and ompat.Proof. The embedding V →֒L2(Ω; Rd) and the trae operator V → L2(ΓN) are ompat.The operator R is the (negative) adjoint, and thus it is ompat as well. �



10The results of the previous setion give rise the de�nition of a solution operator for thelower-level problem (L),
S : U ∋ (f , g) 7→ (σ,χ,u) ∈ Y := S × M × V.The individual omponents of S will be denoted by Sσ, Sχ and Su. Note that S isnonlinear due to the presene of the onstraint (σ,χ) ∈ K. By Lemma 3.3 and 3.5, S isLipshitz ontinuous and ompat.Based on the properties of S, we obtain a global minimizer of (P) as in [Hintermüller,2001, Theorem 2.2℄. Due to the nonlinearity of S, the minimizer an not be expeted tobe unique.Proposition 3.6. Problem (P) possesses a global optimal solution (f ∗, g∗) ∈ U .Proof. Let j := inf F (Su(f , g),f , g), where the in�mum extends over the spae U , andlet {(fn, gn)} be a minimizing sequene. Then {(fn, gn)} is bounded in U , and hene itpossesses a weakly onvergent subsequene (fn′, gn′)⇀(f∗, g∗) in U . The ompatness of

S implies that the orresponding solutions (σn′,χn′ ,un′) of the lower-level problem (L)onverge to (σ∗,χ∗,u∗) in S × M × V . The weak lower semiontinuity of the objetiveimplies that (f ∗, g∗) is a global optimum of (P). �4 Visoplasti ApproximationBefore we turn to the visoplasti approximation of (L), let us state some known resultson orthogonal projetions in Hilbert spaes that will be useful in the following. Theassoiated proofs are given in Appendix B.Lemma 4.1 (Di�erentiability and Shift-Invariane). Let H be a Hilbert spae, C ⊂ H bea nonempty losed onvex set, and denote by PC(x) the orthogonal projetion of x onto
C. (a) The funtion F (x) = 1

2
‖x − PC x‖2 is onvex and Fréhet di�erentiable with de-rivative F ′(x) = x − PC x.(b) The derivative F ′ is a monotone operator, i.e., (F ′(x) − F ′(y), x − y) ≥ 0 holdsfor all x, y ∈ H.() (F ′(x), x − y) ≥ 0 for all x ∈ H and all y ∈ C.(d) If a + C = C for some element a ∈ H holds, then PC x = PC(x + a) − a and

F ′(x) = F ′(x + a) for all x ∈ H.Next, we introdue the visoplasti regularization of (L):Minimize 1

2
a(Σ,Σ) +

γ

2
‖Σ − PK(Σ)‖2

S×Ms.t. b(σ,v) = 〈ℓ,v〉 for all v ∈ V,
(Lγ)where γ > 0 is a given real number and PK denotes the orthogonal projetion on K. Aspointed out in the introdution, (Lγ) has a physial motivation in its own right, see forinstane [Simo and Hughes, 1998, Setion 2.7℄.



11Remark 4.2. The visoplasti problem (Lγ) represents a penalized version of (L) in thesense that the inequality onstraints in (L) are replaed by a quadrati penalty term in theobjetive funtional. This is also known as Yosida regularization of the indiator funtionassoiated to K. This type of regularization is partiularly well-suited for the optimalontrol of variational inequalities, as demonstrated for instane in the lassial book Barbu[1984℄, or more reently in Ito and Kunish [2000℄, Hintermüller [2008℄, where Barbu'sapproah is modi�ed by means of a feasibility shift. However, due to the non-smoothness ofthe projetion, an additional regularization will be neessary to derive �rst-order optimalityonditions, see e.g. Barbu [1984℄ or Mignot and Puel [1984℄. As optimality onditions willbe topi of a subsequent paper, two-fold smoothing is not onsidered in this work.For onveniene, we de�ne
Jγ(Σ) =

γ

2
‖Σ − PK(Σ)‖2.Sine Jγ is onvex by Lemma 4.1, we �nd the following analog to Proposition 3.1:Proposition 4.3. For every ℓ ∈ V ′ and every γ > 0, there exists a unique solution

Σγ = (σγ ,χγ) ∈ S × M of problem (Lγ).On the basis of Lemma 2.10 and [Zowe and Kuryusz, 1979, Theorem 4.1℄, one obtainsneessary and su�ient optimality onditions for (Lγ), similarly to Theorem 3.2. To thisend, let us de�ne
Ceq

ℓ = {Σ = (σ,χ) ∈ S × M : b(σ,v) = 〈ℓ,v〉 for all v ∈ V }.Proposition 4.4. Let ℓ ∈ V ′ and γ > 0 be given. For Σγ ∈ S × M , the following areequivalent:
(i) Σγ is the unique solution of (Lγ),

(ii) there exists a Lagrange multiplier uγ ∈ V suh that the following optimality systemis ful�lled:
a(Σγ ,T ) + b(τ ,uγ) + (J ′

γ(Σγ),T ) = 0 for all T = (τ ,µ) ∈ S × M (4.1a)
b(σγ,v) = 〈ℓ,v〉 for all v ∈ V, (4.1b)where J ′

γ(Σ) = γ (Σ − PK(Σ)) ∈ S × M is the derivative of Jγ,
(iii) Σγ ∈ Ceq

ℓ satis�es
a(Σγ,T − Σγ) + (J ′

γ(Σγ),T − Σγ) ≥ 0 for all T ∈ Ceq
ℓ . (4.2)As in ase of (L), the uniqueness of uγ follows from the following Lipshitz property of

ℓ 7→ (Σγ,uγ):Lemma 4.5. Let ℓ1, ℓ2 ∈ V ′ and γ > 0 be given. Let (σγ,1,χγ,1,uγ,1) and (σγ,2,χγ,2,uγ,2)denote the solutions of (Lγ) assoiated to ℓ1 and ℓ2, respetively. Then
‖σγ,1 − σγ,2‖S + ‖χγ,1 − χγ,2‖M

+ ‖uγ,1 − uγ,2‖V ≤ L ‖ℓ1 − ℓ2‖V ′holds with the same onstant L as in Lemma 3.3. In partiular, this yields the uniquenessof the displaement �elds.



12Proof. The proof proeeds similarly to the proof of Lemma 3.3 so we an fous here onthe arguments whih di�er.Step 1: Estimate for (σ,χ)Let again σ̃ be the unique solution in (ker B)⊥ ⊂ S of b(σ̃,v) = 〈ℓ1 − ℓ2,v〉 for all v ∈ V ,and set Σ̃ = (σ̃,−σ̃). We set Σγ,i = (σγ,i,χγ,i) for i = 1, 2 and use
T 1 = Σγ,2 + Σ̃, T 2 = Σγ,1 − Σ̃as test funtions in (4.2), whih yields

a(Σγ,1 − Σγ,2,Σγ,1 − Σγ,2)

≤ (J ′
γ(Σγ,1) − J ′

γ(Σγ,2),Σγ,2 − Σγ,1 + Σ̃) + a(Σγ,1 −Σγ,2, Σ̃).The �rst term on the right hand side was not present in Lemma 3.3. Assumption 2.5implies that K+Σ̃ = K holds. Using the shift invariane of J ′
γ from part (d) of Lemma 4.1,we infer that J ′

γ(Σγ,2) = J ′
γ(Σγ,2 + Σ̃) holds. Thus we have

(J ′
γ(Σγ,1) − J ′

γ(Σγ,2),Σγ,2 − Σγ,1 + Σ̃)

= −(J ′
γ(Σγ,1) − J ′

γ(Σγ,2 + Σ̃),Σγ,1 − (Σγ,2 + Σ̃)) ≤ 0,and the inequality follows from the monotoniity of the derivative, see part (b) of Lemma 4.1.From here we an ontinue as in the proof of Lemma 3.3 until the end of step 1.Step 2: Estimate for uIn order to derive the esimates for the displaements, we set
T̃ := (ε(uγ,1 − uγ,2), −ε(uγ,1 − uγ,2))and use

T 1 = (τ 1,µ1) := Σγ,2 − Σγ,1 + T̃ , T 2 = (τ 2,µ2) := Σγ,1 − Σγ,2 − T̃as test funtions in (4.1a). Adding both equations yields
a(Σγ,1 − Σγ,2,Σγ,1 −Σγ,2) +

∫

Ω

ε(uγ,1 − uγ,2) : ε(uγ,1 − uγ,2) dx

+ (J ′
γ(Σγ,1) − J ′

γ(Σγ,2),Σγ,1 −Σγ,2 − T̃ )

= b(H−1 : (χγ,1 − χγ,2),uγ,1 − uγ,2) − b(C−1 : (σγ,1 − σγ,2),uγ,1 − uγ,2)

− b(σγ,1 − σγ,2,uγ,1 − uγ,2). (4.3)Exept for the term involving J ′
γ , this is the same as (3.4) in the proof of Lemma 3.3.Similarly as in the disussion in Step 1 above, we infer that J ′

γ(Σγ,2) = J ′
γ(Σγ,2 + T̃ ) andhene

(J ′
γ(Σγ,1) − J ′

γ(Σγ,2),Σγ,1 − Σγ,2 − T̃ )

= (J ′
γ(Σγ,1) − J ′

γ(Σγ,2 + T̃ ),Σγ,1 − (Σγ,2 + T̃ )) ≥ 0holds. Now (4.3) has exatly the same struture as (3.4), and we get the desired estimatewith the same Lipshitz onstant L. �



13It is easy to see that (Σ,u) = 0 solves (4.1) for ℓ = 0. Hene Lemma 4.5 yields thefollowing a priori estimate:Corollary 4.6. For every ℓ ∈ V ′, one has
‖σγ‖S + ‖χγ‖M

+ ‖uγ‖V ≤ L ‖ℓ‖V ′.Remark 4.7. We point out that the monotoniity and shift-invariane of J ′
γ are essentialfor the analysis above. The assertion of Lemma 4.5 would also follow from a boundednessproperty of J ′

γ, whih was used in the proof of Theorem 8.12 in Han and Reddy [1999℄.However, the veri�ation of this property remains in doubt.By ombining the analysis of [Han and Reddy, 1999, Setion 8℄ and Hintermüller [2001℄,we now prove the strong onvergene of (Σγ ,uγ) to the solution of (L), denoted as aboveby (Σ,u). A similar result is proved in [Temam, 1983, Theorem III.1.1℄ for the Henkymodel.Theorem 4.8. Let ℓ ∈ V ′ be �xed, but arbitrary. Then, the solution and the Lagrangemultiplier of (Lγ) onverge strongly to the solution and the Lagrange multiplier of (L) as
γ tends to ∞, i.e.,

(σγ ,χγ,uγ) → (σ,χ,u) in S × M × V, as γ → ∞.Proof. The following analysis relies on a ombination of arguments introdued in Hanand Reddy [1999℄ and Hintermüller [2001℄. We start with a given sequene of penaltyparameters {γk} tending to∞ as k → ∞. The assoiated solution and Lagrange multiplierof (Lγk
) is denoted by (Σk,uk) = (σk,χk,uk). As before, we split the proof into twosteps. First we prove the onvergene of {Σk} by employing (4.2). Seondly, the strongonvergene of {uk} is derived by similar arguments as in the proof of Lemma 4.5.Step 1: Convergene of {Σk}By Corollary 4.6, the sequene {Σk} is bounded in S × M . Hene, there is a weaklyonverging subsequene, for simpliity it is also denoted by {Σk}. The weak limit isdenoted by Σ and we show Σ ∈ Kℓ. As in the proof of Lemma 3.3, Lemma 2.10 gives theexistene of a unique σ̃ ∈ (ker B)⊥ suh that Σ̃ = (σ̃,−σ̃) ∈ Ceq

ℓ . Moreover, Σ̃ ∈ K holdsthanks to Assumption 2.5 and therefore, one has Jγk
(Σ̃) = 0 for all k ∈ N. The onvexityof Jγ thus implies

Jγk
(Σk) ≤

(
J ′

γk
(Σk),Σk − Σ̃

)
≤ a(Σk, Σ̃ −Σk).We used (4.2) for the last estimate, whih is appliable here, sine Σ̃ ∈ Ceq

ℓ by onstrution.Hene, (2.6), (2.10) and Corollary 4.6 allow us to onlude
Jγk

(Σk) ≤ (α L2 +
√

2 cB L) ‖ℓ‖2
V ′ =: C,whih implies the boundedness of Jγk

(Σk). By de�nition of Jγ, we therefore obtain
0 ≤ ‖Σ − PK(Σ)‖2

S×M ≤ lim inf
k→∞

‖Σk − PK(Σk)‖2
S×M

≤ lim sup
k→∞

‖Σk − PK(Σk)‖2
S×M ≤ 2C

γk
→ 0, as k → ∞.



14Here, we used the weak lower semiontinuity of ‖ · −PK( · )‖ whih follows from Lemma4.1. Hene, Σ = PK(Σ) holds, whih implies Σ ∈ K. Sine Σ ∈ Ceq
ℓ due to the weakonvergene σk ⇀ σ in S, we obtain Σ ∈ Kℓ, i.e., Σ is feasible for (L).The optimality of Σk gives

1

2
a(Σk,Σk) + Jγk

(Σk) ≤
1

2
a(T ,T ) + Jγk

(T ) for all T ∈ Ceq
ℓ .The above inequality holds in partiular for all T ∈ Ceq

ℓ ∩ K = Kℓ, and onsequently
1

2
a(Σk,Σk) ≤

1

2
a(T ,T ) for all T ∈ Kℓ,where we used the non-negativity of Jγk
(Σk) and Jγk

(T ) = 0 for T ∈ K for all k ∈ N.Sine Σ ∈ Kℓ as seen above, the weak lower semiontinuity of a( · , · ) thus implies
1

2
a(Σ,Σ) ≤ lim inf

k→∞

1

2
a(Σk,Σk)

≤ lim sup
k→∞

1

2
a(Σk,Σk) ≤

1

2
a(T ,T ) for all T ∈ Kℓ.

(4.4)Therefore, Σ is the unique solution of (L), so as before, we simply denote it by Σ forthe rest of the proof. By standard arguments, the uniqueness of Σ guarantees the weakonvergene of the whole sequene.By inserting T = Σ in (4.4), the onvergene a(Σk,Σk) → a(Σ,Σ) follows. Sine a(Σ,Σ)is an equivalent norm on S by (2.5) and (2.6), this implies onvergene of the norm,i.e., ‖Σk‖S×M → ‖Σ‖S×M . Together with the weak onvergene, strong onvergene isobtained.Step 2: Convergene of {uk}If we insert T 1 − Σk with T 1 ∈ K as test funtion in (4.1a), then part () of Lemma 4.1implies
a(Σk,T 1 − Σk) + b(τ 1 − σk,uk) ≥ 0 for all T 1 = (τ 1,µ1) ∈ K. (4.5)Moreover, as Σ is the unique solution of (L), it ful�lls (2.11a), i.e.,

a(Σ,T 2 −Σ) + b(τ 2 − σ,u) ≥ 0 for all T 2 = (τ 2,µ2) ∈ K. (4.6)Here u is the assoiated Lagrange multiplier, whih is unique by Lemma 3.3. Next, weproeed similarly to step 2 in the proof of Lemma 3.3. Sine Σ ∈ K, Assumption 2.5allows us to insert T 1 = (σ + ε(uk − u),χ− ε(uk − u)) into (4.5). Unfortunately, Σk isnot feasible for (4.6), but we an use PK(Σk) instead and insert
T 2 = (P σ

K (σk) + ε(u− uk), P
χ
K (χk) − ε(u− uk)).Here, P σ

K and P χ
K refer to the omponents of PK. Adding the arising inequalities give

a(Σ −Σk,Σ − Σk) +

∫

Ω

ε(u− uk) : ε(u− uk) dx

≤ b(H−1 : (χ− χk),u− uk) − b(C−1 : (σ − σk),u− uk) − b(σ − σk,u− uk)

+ a(Σ, PK(Σk) −Σk) + b(P σ
K (σk) − σk,u).



15The terms on the left hand side as well as the �rst three addends on the right hand sidean be estimated as in the proof of Lemma 3.3. Using (2.6) and (2.7) for the remaingterms, we obtain
‖u− uk‖2

V ≤ c
(
‖Σ‖S×M‖PK(Σk) −Σk‖S×M + ‖u‖V ‖σk − P σ

K (σk)‖S

+ ‖Σ − Σk‖S×M‖u− uk‖V

)
.Now, the ontinuity of PK implies PK(Σk) → PK(Σ) = Σ suh that the onvergene of

{Σk} and an appliation of Young's inequality yield the desired onvergene of {uk}.The above argument is valid for arbitrary sequenes γk → ∞. The limit (σ,χ,u) is theunique solution and Lagrange multiplier of (L). Therefore, (σγ,χγ,uγ) → (σ,χ,u) holdsas laimed. �Remark 4.9. We point out that the arguments for the onvergene of σ are similar tothose in the proof of Theorem III.1.1 in Temam [1983℄ for the Henky model. However,due to the low regularity of the displaement �eld u, orresponding onvergene result for
u annot be expeted in that ase.Next, we turn to the bi-level problem assoiated to (Lγ) whih is given byMinimize F (u,f , g) :=

1

2
‖u− ud‖2

L2(Ω,Rd)

+
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. (Lγ) with ℓ = R(f , g).





(Pγ)Based on the above results, it is straightforward to adapt the proof of Proposition 3.6 toproblem (Pγ) to obtain:Proposition 4.10. For eah γ > 0, problem (Pγ) has a global optimal solution (f ∗
γ, g

∗
γ) ∈

U .Remark 4.11. As a onsequene of Proposition 4.4, we an replae the lower-level prob-lem (Lγ) by its neessary and su�ient optimality onditions (4.1). We point out that(Pγ) then beomes an optimal ontrol problem for a partial di�erential equation in mixedvariational form (4.1).5 Convergene for the Upper-Level SolutionsThe results of the previous setion give rise the de�nition of a solution operator for thevisoplasti lower-level problem (Lγ),
Sγ : U ∋ (f , g) 7→ (σγ ,χγ,uγ) ∈ Y := S × M × V.Note that Sγ is nonlinear due to the term involving J ′

γ . By Lemma 4.5 and 3.5, Sγ isLipshitz ontinuous and ompat, both uniformly with respet to γ.Theorem 5.1. Let {γk} be a sequene tending to ∞ and let (f∗
k, g

∗
k) denote a globalsolution to (Pγ) with γ = γk.(a) There exists an aumulation point (f∗, g∗) in the strong topology of U .



16 (b) Every weak aumulation point of {(f ∗
k, g

∗
k)} is a global optimal solution of (P).Proof. We denote by Sk the solution operator assoiated to γk. The optimality of (f∗

k, g
∗
k),the feasibility of (0, 0) and Sk(0, 0) = (0, 0, 0) for every k (see Corollary 4.6) imply

1

2
‖Su

k (f∗
k, g

∗
k) − ud‖2

L2(Ω;Rd) +
ν1

2
‖f ∗

k‖2
L2(Ω;Rd) +

ν2

2
‖g∗k‖2

L2(ΓN ;Rd)

≤ 1

2
‖Su

k (f , g) − ud‖2
L2(Ω;Rd) +

ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd) (5.1)for all (f , g) ∈ U . Inserting (f , g) = (0, 0) and observing that Sk(0, 0) = 0, we obtain theboundedness of the sequene {(f∗
k, g

∗
k)} in U . And thus there exists a weakly onvergentsubsequene, whih we denote by {(f∗

k′, g∗k′)}. The weak limit in U is alled (f ∗, g∗).Using Lemma 4.5, we infer
‖Sk′(f ∗

k′, g∗k′) − Sk′(f ∗, g∗)‖Y ≤ L ‖R(f∗
k′, g∗k′) − R(f ∗, g∗)‖V ′ ,whih onverges to zero as k′ → ∞ due to the ompatness of R (Lemma 3.5). Moreover,we have Sk′(f ∗, g∗) → S(f ∗, g∗) for k′ → ∞ due to Theorem 4.8. Thus we onlude

‖Sk′(f∗
k′, g∗k′) − S(f∗, g∗)‖Y

≤ ‖Sk′(f ∗
k′, g∗k′) − Sk′(f ∗, g∗)‖Y + ‖Sk′(f ∗, g∗) − S(f∗, g∗)‖Y → 0 as k′ → ∞.Together with the weak lower semiontinuity of norms, this implies

F (Su(f∗, g∗),f∗, g∗) ≤ lim inf
k′→∞

F (Su
k′(f∗

k′, g∗k′),f∗
k′, g∗k′)

≤ lim sup
k′→∞

F (Su
k′(f∗

k′, g∗k′),f∗
k′, g∗k′)

≤ lim sup
k′→∞

F (Su
k′(f , g),f , g) by (5.1)

= F (Su(f , g),f , g) by Theorem 4.8for all (f , g) ∈ U . Therefore, (f∗, g∗) is a global optimal solution of (P).Inserting (f , g) = (f∗, g∗) in the inequality above, we infer the onvergene
F (Su

k′(f∗
k′, g∗k′),f∗

k′, g∗k′) → F (Su(f , g),f , g).Together with the strong onvergene Sk′(f ∗
k′, g∗k′) → S(f ∗, g∗), this yields onvergeneof norms ‖(f∗

k′, g∗k′)‖ → ‖(f∗, g∗)‖. Using the weak onvergene shown above, we obtainthe strong onvergene
(f ∗

k′, g∗k′) → (f ∗, g∗) in U as k′ → ∞.This proves assertion (a). Sine the above arguments leading to the optimality of theweak limit hold for every weakly onvergent subsequene of (f ∗
k, g

∗
k), assertion (b) is alsoproved. �Remark 5.2. The proof of Theorem 5.1 shows that every weak aumulation point of

{(f ∗
k , g∗

k)} is automatially a strong aumulation point.The neessary modi�ations of the above arguments are obvious in ase of additionalontrol onstraints in (P) of the form
(f , g) ∈ Uad



17with a losed and onvex subset Uad ⊂ U = L2(Ω; Rd)×L2(ΓN ; Rd), as is given for exampleby onstraints of the form
Uad = {(f , g) ∈ U : |f(x)|Rd ≤ ρ1 a.e. in Ω and |g(x)|Rd ≤ ρ2 a.e. on ΓN}. (5.2)Sine U is re�exive and Uad is weakly losed, the weak limit (f ∗, g∗) in the proof ofTheorem 5.1 learly satis�es the additional ontrol onstraints. The rest of the theoryabove is not a�eted by the ontrol onstraints, and hene we obtain following result:Corollary 5.3. Suppose that (P) ontains additional ontrol onstraints, i.e.,Minimize F (u,f , g) :=

1

2
‖u− ud‖2

L2(Ω,Rd)

+
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. the plastiity problem (L) with ℓ as in (2.13)and (f , g) ∈ Uad





(P)with a losed and onvex subset Uad ⊂ U , and let the regularized problems be de�nedanalogously to (Pγ). Then the assertion of Theorem 5.1 remains true, i.e., if {γk} is asequene of numbers tending to ∞ and (f k, gk) are global solutions to (Pγ) with γ = γk,then there exists a weak aumulation point (f ∗, g∗), whih is a strong aumulation pointand in addition a solution of (P).The following theorem answers the question whih optima of (P) an be approximated bya sequene of solutions of visoplasti problems. The underlying analysis is standard andfollows a lassial argument whih was, for instane, given in Casas and Tröltzsh [2002℄.Theorem 5.4. Suppose that (f∗, g∗) is a strit loal optimum of (P) in the topology of
U . Let γk be an arbitrary sequene tending to ∞. Then there exists a sequene (f∗

k, g
∗
k)of loal optimal solutions of (Pγk

) suh that (f ∗
k, g

∗
k) → (f∗, g∗) strongly in U .Proof. Let ε > 0 be the radius of the neighborhood of strit loal optimality of (f ∗, g∗).We start by de�ning the following auxiliary problem:Minimize F (u,f , g) :=

1

2
‖u− ud‖2

L2(Ω,Rd)

+
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. the plastiity problem (L) with ℓ as in (2.13)and (f , g) ∈ Bδ(f
∗, g∗),






(Pδ)where δ satis�es 0 < δ < ε and Bδ(f
∗, g∗) ⊂ U is the losed ball of radius δ entered at

(f∗, g∗) in the topology of U . Thus the assumption on (f ∗, g∗) implies
F (Su(f , g),f , g) >F (Su(f ∗, g∗),f∗, g∗)for all (f , g) ∈ Bδ(f

∗, g∗) \ {(f ∗, g∗)}, (5.3)to the e�et that (f∗, g∗) is the unique global optimum of (Pδ). Sine Bδ(f
∗, g∗) is losedand onvex, Corollary 5.3 yields the existene of a sequene (f∗

k, g
∗
k) of solutions to theassoiated regularized problems (Pδ

γk
), that onverges strongly in U to (f∗, g∗). It remainsto show that (f ∗

k, g
∗
k) is a loal optimum of (Pδ

γk
) for all su�iently large k. To this end,



18take an arbitrary (f , g) ∈ U with ‖(f , g) − (f ∗
k, g

∗
k)‖U < δ/2. Then, Corollary 5.3 yieldsthat, for su�iently large k,

‖(f , g) − (f∗, g∗)‖U ≤ ‖(f , g) − (f ∗
k, g

∗
k)‖U + ‖(f ∗

k, g
∗
k) − (f ∗, g∗)‖U < δ.This in turn implies that (f , g) ∈ Bδ(f

∗, g∗), i.e. (f , g) is feasible for (Pδ
γk

). Sine (f , g)was hosen arbitrary, the (global) optimality of (f ∗
k, g

∗
k) for (Pδ

γk
) ensures

F (Su(f , g),f , g) ≥ F (Su(f ∗
k, g

∗
k),f

∗
k, g

∗
k) ∀ (f , g) with ‖(f , g) − (f ∗

k, g
∗
k)‖U <

δ

2
,whih amounts to loal optimality of (f ∗

k, g
∗
k). �Remark 5.5. Similarly to Corollary 5.3, it is straightforward to inoporate additionalontrol onstraints into Theorem 5.4 as for instane onstraints of the form (5.2).A Lagrange DualityThe Lagrange multiplier u assoiated to the equality onstraint in (L) an be viewed asthe displaement �eld indued by the load funtional ℓ. This is due to the fat that usolves the so-alled primal optimization problem, whih is obtained traditionally by meansof Fenhel duality, f. [Temam, 1983, Theorem III.1.3℄. Here, we onsider another notionof primal problem that involves the so-alled plasti strain p and an internal hardeningvariable ξ as optimization variables, in addition to u. This de�nition of the primalproblem oinides with the one used in [Han and Reddy, 1999, Setion 7℄ or Carstensen[1999℄. By means of Lagrange duality, we will see that the primal problem an be identi�edwith the dual problem assoiated to (L). We point out that the same result ould also beobtained using Fenhel duality, similarly to [Temam, 1983, Theorem III.1.3℄.We start by introduing the Lagrange funtion L : S × M × V → R assoiated to (L)

L(Σ,u) =
1

2
a(Σ,Σ) + b(σ,u) − 〈ℓ,u〉. (A.1)Sine (L) is a stritly onvex problem, the solution, together with the Lagrange multiplier,is a saddle point of the Lagrange funtion. That is, the solution of (L), denoted as beforeby Σ, and u satisfy

L(Σ,v) ≤ L(Σ,u) ≤ L(T ,u) for all v ∈ V and T ∈ K. (A.2)By standard arguments, (L) is equivalent to
inf
T∈K

sup
v∈V

L(T ,v). (LD)The dual problem assoiated to (LD) arises by interhanging inf and sup:
sup
v∈V

inf
T∈K

L(T ,v). (LP)Due to (A.2), there is no duality gap, whih implies that (Σ,u) is the unique solution ofthe dual problem (LP).



19De�nition A.1. For given (u,P ) = (u,p, ξ) ∈ V × S × M and (v,Q) = (v, q,η) ∈
V × S × M , we de�ne

a

(
(u,P ), (v,Q)

)
:=

∫

Ω

[
(ε(u) − p) : C : (ε(v) − q) + ξ : H : η

]
dx.Moreover, let I∗

K denote the support funtional of K, i.e.,
I∗
K(P ) = sup

T∈K

∫

Ω

P : T dx.Here and in the following, the expression P : T with P = (p, ξ) and T = (τ ,µ) withgiven tensors p, τ ∈ Rd×dsym and ξ,µ ∈ Rd×d refers to P : T := p : τ + ξ : µ.Next, we introdue the following optimization problem
inf

(v,Q)∈V ×S×M

1

2
a

(
(v,Q), (v,Q)

)
+ 〈ℓ , v〉 + I∗

K(Q). (LP
′)The following lemma shows in whih sense (LP) and (LP

′) oinide.Lemma A.2. Problem (LP
′) admits a unique solution, denoted by (u,P ) = (u,p, ξ),whih is related to the unique solution (u,σ,χ) of (LP) by

p = ε(u) − C
−1 : σ and ξ = −H

−1 : χ. (A.3)Proof. We start with the inf-problem in (LP), i.e.,
inf
T∈K

L(T ,v)for given v ∈ V . In view of the de�nition of L, the neessary and su�ient optimalityonditions for this problem are given by
T ∈ K and a(T ,Υ − T ) + b(ς − τ ,v) ≥ 0 ∀Υ = (ς,ψ) ∈ K.Hene, (LP) is equivalent to(LP) ⇐⇒






sup
v,T

L(T ,v)s.t. v ∈ V, T ∈ Kand a(T ,Υ − T ) + b(ς − τ ,v) ≥ 0 ∀Υ ∈ K.

(A.4)Next, we turn to (LP
′). Sine the objetive of (LP

′) is stritly onvex, there is a uniquesolution (u,P ) = (u,p, ξ) of (LP
′). The neessary and su�ient onditions are given by

0 ∈ ∂
( 1

2
a

(
(u,P ), (u,P )

)
+ 〈ℓ , u〉 + I∗

K(P )
)

= ∂
( 1

2
a

(
(u,P ), (u,P )

)
+ 〈ℓ , u〉

)
+ ∂I∗

K(P ).

(A.5)Here we used the sum rule of subdi�erential alulus, whih holds sine 0 ∈ dom(1/2 a(· , ·)+
〈ℓ , ·〉)∩dom I∗

K and due to the ontinuity of a. Clearly, the �rst addend is a singleton setonsisting of the Fréhet-derivative of a(· , ·) + 〈ℓ , ·〉 and hene, (A.5) is equivalent to
I∗
K(Q) ≥ I∗

K(P ) − a

(
(u,P ), (v,Q) − (u,P )

)
− 〈ℓ,v − u〉for all (v,Q) = (v, q,η) ∈ V × S × M.

(A.6)



20Next, we introdue a mapping Σ : V × S × M → S × M by
Σ(u,P ) = (σ(u,P ), χ(u,P )) := (C : (ε(u) − p),−H : ξ). (A.7)With this setting, (A.6) implies

∫

Ω

Σ(u,P ) : (Q− P ) dx + sup
Υ∈K

∫

Ω

P : Υ dx − sup
Υ∈K

∫

Ω

Q :Υ dx ≤ 0

∀Q ∈ S × M.

(A.8)If we hoose Q = 0 and Q = 2P in (A.8), we obtain
sup
Υ∈K

∫

Ω

P : Υ dx −
∫

Ω

P : Σ(u,P )dx = 0. (A.9)The losed and onvex set K is equal to the intersetion of all losed half-spaes ontainingit, i.e.,
K =

⋂

Q∈S×M

{
Σ ∈ S × M :

∫

Ω

Q : Σ dx ≤ sup
Υ∈K

∫

Ω

Q : Υ dx
} (A.10)Now, (A.8) and (A.9) imply for all Q ∈ S × M

∫

Ω

Q : Σ(u,P ) dx ≤ sup
Υ∈K

∫

Ω

Q : Υ dx,so that (A.10) gives Σ(u,P ) ∈ K. Moreover, (A.9) implies ∫
Ω
P : Σ(u,P ) dx ≥

∫
Ω
P :

Υ dx for all Υ ∈ K and, in view of (A.7), this is equivalent to
a(Σ(u,P ),Υ − Σ(u,P )) + b(ς − σ(u,P ),u) ≥ 0 ∀Υ = (ς,ψ) ∈ Kthanks to the de�nition of a in (2.9). Hene, it su�es to searh the optimum of (LP

′)on the set given by
Pad = {v ∈ V,Q ∈ S × M : Σ(v,Q) ∈ Kand a(Σ(v,Q),Υ − Σ(v,Q)) + b(ς − σ(v,Q),v) ≥ 0 ∀Υ ∈ K}.The de�nitions of a, b, and Σ imply for the objetive of (LP

′)
1

2
a

(
(v,Q), (v,Q)

)
+ 〈ℓ , v〉 + I∗

K(Q)

=
1

2

∫

Ω

[
(ε(v) − q) : C : (ε(v) − q) + η : H : η

]
dx + 〈ℓ , v〉 + sup

Υ∈K

∫

Ω

Q : Υ dx

=
1

2
a
(
Σ(v,Q), Σ(v,Q)

)
+ 〈ℓ , v〉 − inf

Υ∈K

[
a
(
Σ(v,Q),Υ

)
+ b(ς,v)

]
.Hene, one obtains for all (v,Q) ∈ Pad

1

2
a

(
(v,Q), (v,Q)

)
+ 〈ℓ , v〉 + I∗

K(Q)

= −1

2
a
(
Σ(v,Q), Σ(v,Q)

)
− b(σ(v,Q),v) + 〈ℓ , v〉 = −L(Σ(v,Q),v),



21where L is the Lagrangian de�ned in (A.1). Thus we have shown that (u,P ) solves





sup
v,Q

L(Σ(v,Q),v)s.t. v ∈ V, Σ(v,Q) ∈ Kand a(Σ(v,Q),Υ − Σ(v,Q)) + b(ς − σ(v,Q),v) ≥ 0 ∀Υ ∈ K.Sine Σ(v, · ) : S × M → S × M is surjetive for every v ∈ V in view of Assumption 2.4for C and H, (u, Σ(u,P )) solves (LP) aording to (A.4), and hene oinides with itsunique solution (u,Σ). The de�nition of Σ �nally gives (A.3). �As already mentioned above, (LP
′) is a stritly onvex problem suh that the variationalinequality of the seond kind (A.6) admits the optimum of (LP

′) as its unique solution.For the sake of ompleteness, we onvert (A.6) into a form whih is found elsewherein the literature (f. for instane [Han and Reddy, 1999, Setion 7℄ for the quasi-statiounterpart of (A.6)). Aording to [Temam, 1983, Prop. I.2.5℄, there holds
sup
T∈K

∫

Ω

T (x) : P (x) dx =

∫

Ω

sup
T∈K

(T : P (x)) dx.Note that this implies in partiular that supT∈K(T : P ( · )) is measureable if I∗
K(P ) < ∞.With this result at hand, we may rewrite (A.6) by

a

(
(u,P ), (v,Q) − (u,P )

)
+j(Q) − j(P ) ≥ 〈−ℓ,v − u〉for all (v,Q) = (v, q,η) ∈ V × S × M,

(A.11)where j : S × M → R ∪ {+∞} is de�ned by
j(P ) :=

∫

Ω

sup
T∈K

(T : P (x)) dx.Remark A.3. It is to be noted that (A.11) represents a variational inequality of the seondkind. There are several ontributions onerning the theory of optimal ontrol problemsgoverned by variational inequalities of the seond kind. We only refer to Barbu [1984℄,Bonnans and Tiba [1991℄, Bonnans and Casas [1995℄, and Bergounioux [1998℄. Never-theless, sine the stress �eld is a physially important quantity in various appliations,we fous on the dual problem of in�nitesimal elastoplastiity in form of (L) and (2.11),respetively, whih expliitly ontains the stress �eld instead of the plasti strain.B Proof of Lemma 4.1The projetion PCx of an element x ∈ H is uniquely haraterized by PC x ∈ C and thevariational inequality
(x − PC x, y − PC x) ≤ 0 for all y ∈ C. (B.1)As a onsequene, the projetion is non-expansive:

‖PC x − PC y‖ ≤ ‖x − y‖ for all x, y ∈ H.



22Now we address the di�erentiability of F (x) = 1
2
‖x − PC x‖2. We observe

‖x + δx − PC(x + δx)‖2

= ‖(x − PCx) + δx + PCx − PC(x + δx)‖2

= ‖x − PCx‖2 + 2 (x − PCx, δx) + 2 (x− PCx, PCx − PC(x + δx))

+ ‖PCx − PC(x + δx)‖2.It follows that
F (x + δx) − F (x) − (x − PCx, δx)

= (x − PCx, PCx − PC(x + δx)) +
1

2
‖PCx − PC(x + δx)‖2 ≥ 0by (B.1) sine PC(x + δx) ∈ C. On the other hand, we an estimate

F (x + δx) − F (x) − (x − PC x, δx)

= (x − PC(x + δx), PC x − PC(x + δx)) − 1

2
‖PC x − PC(x + δx)‖2

≤ (x + δx − PC(x + δx), PC x − PC(x + δx)) − (δx, PC x − PC(x + δx))

≤ 0 + ‖δx‖‖PC x − PC(x + δx)‖
≤ ‖δx‖2where we used (B.1), the Cauhy-Shwarz inequality and the non-expansiveness of theprojetion. We onlude that

|F (x + δx) − F (x) − (x − PC x, δx)| ≤ ‖δx‖2holds, whih on�rms Fréhet di�erentiability of F with derivative F ′(x) = x−PC x. Themonotoniity of F ′ follows from the estimate
(F ′(x) − F ′(y), x− y) = ‖x − y‖2 − (PC x − PC y, x − y)

≥ ‖x − y‖2 − ‖PC x − PC y‖‖x − y‖ ≥ 0,where the last inequality is due to the non-expansiveness of the projetion. As a onse-quene, F is a onvex funtion, whih ompletes the proof of parts (a) and (b). To provepart (), let x ∈ H and y ∈ C. Then F ′(y) = 0 and the monotoniity of F ′ imply
(F ′(x), x − y) = (F ′(x) − F ′(y), x − y) ≥ 0.For part (d), let x ∈ H be arbitrary and suppose that a + C = C holds. Then we have

(x + a − PC(x + a), z − PC(x + a)) ≤ 0 for all z ∈ C by (B.1)
⇒ (x − (PC(x + a) − a), y − (PC(x + a) − a)) ≤ 0for all y ∈ H suh that y + a = z with some z ∈ C, i.e., for all y ∈ C. This inequalitytogether with the fat PC(x+a)−a ∈ C−a = C on�rms that PC x = PC(x+a)−a holds.As a onsequene, we obtain from part (a) that F ′(x) = x−PC x = x− (PC(x+a)−a) =

F ′(x + a) as laimed.
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