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ABSTRACT. An optimal control problem for the static problem of infinitesimal elastoplas-
ticity with linear kinematic hardening is considered. The variational inequality arising
on the lower-level is regularized using a Yosida-type approach, and an optimal control
problem for the so-called viscoplastic model is obtained. Existence of a global optimizer
is proved for both the regularized and original problems, and strong convergence of the
solutions is established.

1 Introduction

This paper is concerned with an optimal control problem for the static model of infin-
itesimal elastoplasticity with linear kinematic hardening. Static, or incremental, plast
icity models arise through discretization in time of quasi-static plasticity problems. For
a detailed physical motivation, we refer to Simo and Hughes [1998] and Han and Reddy
[1999]. The forward problem is characterized by the unique solution of

)

1 1
Minimize —/U:C_lzadx—l——/sz_lzxdx
2 Ja 2 Ja
{—diva:f in Q (1.1)

S.t.
o-n=g only.

and (o(z),x(r)) € K ae.in Q.

/

Hence, on the one hand, the optimal control of (1.1) leads to a bi-level optimization prob-
lem. On the other hand, (1.1) can be replaced by its necessary and sufficient optimality
conditions, and thus we obtain an optimal control problem for a variational inequality.

We work under the assumption of infinitesimal strains. Hence, €2 is the domain occupied
by the body in both the undeformed and deformed states. The volume and boundary loads
f and g serve as control variables, and o (x) € ]ngxrff denotes the stress tensor of the body
resulting from these loads. The fourth order tensors C and H are the elasticity tensor and
the hardening modulus, respectively. Conditions motivated by physical considerations

ensure that (1.1) is uniquely solvable.

The closed and convex set K imposes bounds on the generalized stress (o, x) the body
can take. The variable x denotes an internal force which arises during hardening. It is
termed the back stress in the case of kinematic hardening, and it causes a translation of
the initial yield surface, compare (2.2). Plastic deformation is characterized by material
points satisfying (o, x) € 0K. When deleting the variable x, one obtains the static
problem of perfect plasticity (Hencky model), which provides substantially less regular
solutions, see Temam [1983]. If, in addition, the condition (o, x) € K is neglected, (1.1)
reduces to the problem of static linear elasticity.

We consider the following optimal control problem:

. 1 2 2 Vo 2
Minimize 5”“ - udHL?(Q;Rd) + §||f||L2(Q;Rd) + §||g||L2(FN;Rd)

s.t. the static plasticity problem (1.1).
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The lower-level problem (1.1) can be equivalently replaced by the variational formulation
of its necessary and sufficient optimality conditions
—dive =f in Q, oc-n=g only, (1.3a)
e(u(r)):o(z) —a(@):C ' o(x) - x(z) : H': x(2)

= (TIELz)LécK{s(u(x)) T —o(x):Clir—x(x):H':pu} ae in .

(1.3b)

where e(u) = 3(Vu + (Vu)") denotes the strain tensor. Note that (1.3) is equivalent to
a mixed variational inequality of the first kind, see (2.11) below. The variable wu is the
Lagrange multiplier associated to the equality constraints in (1.1) and it can be physically
interpreted as the displacement field by means of duality techniques, see Appendix A. We
emphasize that the occurence of the Lagrange multiplier for the lower-level problem in
the upper-level objective is a particular feature of the problem at hand.

In the present paper, we prove the existence of a global optimizer of (1.2), and also of
a family of regularized problems. The regularization consists in replacing the constraint
(o, x) € K by a penalty term based on the Yosida approximation of the indicator function.
Remarkably, the Yosida approximation leads to a lower-level problem which allows a
physical interpretation in its own right, the so-called viscoplastic approximation of (1.1).
We also prove that every strict local optimum of the original problem (1.2) is the strong
limit of local solutions of the viscoplastic optimal control problems, as the regularization
parameter tends to oo. The paper can thus be viewed as a preparatory step for the
derivation of first-order necessary optimality conditions for (1.2) in the spirit of Ito and
Kunisch [2000] and Hintermiiller [2008|, which will be the subject of a subsequent paper.

Let us put our work into perspective. As was noted above, the weak formulation of (1.3)
is equivalent to a mixed variational inequality of the first kind. The bi-level optimiza-
tion problem (1.2) thus represents an optimal control problem governed by an elliptic
variational inequality. This class of problems has been adressed by many authors under
different aspects. We only mention Mignot [1976], Barbu [1984], Mignot and Puel [1984],
Bonnans and Tiba [1991], Bonnans and Casas [1995]|, Bergounioux [1998|, Bergounioux
and Zidani [1999], Ito and Kunisch |2000|, Hintermiiller |2008|, and the references therein.
In these contributions, various techniques were used to establish first-order conditions for
optimal control of elliptic variational inequalities of both, first and second kind. To the
best of our knowledge, the optimal control of mixed variational problems has not been
addressed, let alone problems in the context of elastoplasticity. As another distinguishing
feature, we note that the Lagrange multiplier associated to the equality constraint in (1.1)
appears in the objective of the upper-level problem (1.2). Thus, the discussion of (1.2)
offers a genuine contribution to the theory of optimal control for variational inequalities.

For the analysis, we follow the classical approach of Barbu [1984], who employs a two-fold
regularization to the lower-level problem, consisting of a Yosida approximation of the in-
dicator function of the admissible set and the subsequent convolution with a smoothing
kernel. As was already noted, the Yosida approximation leads to a lower-level problem
which allows a physical interpretation in its own right, the so-called viscoplastic approx-
imation of (1.1). This provides another motivation to analyze optimal controls for the
viscoplastic model.
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The paper is organized as follows. Notations, assumptions, and the weak formulation
associated to (1.3) are collected in Section 2. Section 3 starts with a discussion of the lower-
level problem (1.1) by Lagrange techniques. We emphasize here that the same results
could also be obtained using Fenchel duality, cf. for instance [Temam, 1983, Chapter I11].
The existence of solutions to (1.2) then follows from standard arguments. Section 4 is
devoted to the analysis of the viscoplastic approximation of the lower-level and bi-level
problems (1.1) and (1.2), respectively. Using these results, the strong convergence of
solutions as the regularization parameter tends to oo is established in Section 5.

We remark that the lower-level problem (1.1) is called the dual, or stress-based formu-
lation. It is well known that an equivalent primal formulation exists, which justifies the
existence of the Lagrange multiplier w and its interpretation as the displacement field.
The primal form is traditionally derived by means of Fenchel duality, cf. for instance
[Temam, 1983, Chapter I1I|. By employing Lagrange techniques in Sections 3 and 4, we
offer an alternative approach. In Appendix A, we also give an alternative form of the
primal problem, using Lagrangian duality. For convenience of the reader, some results
on orthogonal projections in Hilbert spaces that are used in Section 4 are collected in
Appendix B.

2 Notation and Preliminary Results

Our notation follows Han and Reddy [1999]. We begin by recalling some elements of
tensor calculus. By R%*? we denote the space of real d x d matrices, and ngxn‘f is the
subspace of symmetric matrices. Throughout, all tensors will be considered with respect
to the standard Cartesian basis. Therefore, second-order tensors can be identified with
elements of R**?. They will be denoted by bold-face upper-case letters, or by bold-face
lower-case Greek letters. The standard scalar product of two vectors a, b € R? is denoted
by a - b. Moreover, the scalar product of two matrices A = (4;;) and B = (B;;) in R%*¢
is defined by
A:B= Aij Bz’ja

where Einstein’s summation convention is used. This scalar product gives rise to the
Frobenius norm on R¥? denoted by |A| = (A : A)Y/2.

Every tensor A can be uniquely decomposed into its spherical and deviatoric parts A =
A% + AP where

1 1 1 1
A = y (trA) I = EAkk (6i5), AP = A — y (trA) I = (4;;) — EAkk (6i)-

Here 0;; is the Kronecker delta, I = (§;;) is the unit tensor, and tr(A) = Ay is the trace
of A.

A real tensor of fourth order is identified with an element of R4*@*dxd and it is denoted
by A= (Azykl) We define the pI‘OdllCtS A:B= (Aijkl Bklmn) and A: B = (Aijkl Bkl)

Definition 2.1. We say that a fourth-order tensor A is

(a) symmetric if it has the following symmetry properties:
Aiir = Ajirt = Aijie = Aju,

which imply that A : B is a symmetric second-order tensor whenever B is;



(b) coercive if
B:A:B?>c¢|B|? foral BeR> (2.1)

holds for some constant ¢ > 0.

Remark 2.2. (a) If A is symmetric, then it is sufficient that (2.1) holds for all sym-
metric matrices B in order for A to be coercive.
(b) If A is coercive, then it is invertible in the following sense: there exists a unique
fourth-order tensor A= such that

AT':A:B=A:A"':B=B foralB e R

A1 is coercive as well. If, in addition, A is symmetric, then A™' is symmetric,
too.

Now we turn to the functional analytic setting.

Assumption 2.3. Let Q C R be a bounded domain with Lipschitz boundary T in dimen-
sion d € {2,3}. The boundary consists of two disjoint parts 'y and I'p, where I'p is a
relatively closed set in I' of positive measure, and no connected component of I'p consists
of isolated points.

Assumption 2.4. (a) The components of the elasticity tensor C in (1.1) are assumed
to satisfy Cijiy € L®(2). For almost all x € €, we assume that C(x) is coercive ac-
cording to Definition 2.1, with a constant ¢ > 0 independent of x. (By Remark 2.2,
the so-called compliance tensor C™' exists almost everywhere with components in
L>(Q), and it satisfies a coercivity condition with a constant ¢ > 0 independent
of x.)

The same is assumed for the hardening modulus H.

(b) In addition, we assume that C(x) is symmetric in the sense of Definition 2.1 (a).
(This implies that C™'(x) is symmetric as well.)

(¢c) Without loss of generality, we infer from the objective in (1.1) that C™! satisfies
(CVijrr = (C " Ypijy e, d : CHor =7 :C' o holds for all o, 7 € R
The same is true for H™.

In homogeneous isotropic materials, C is given by
Cijrt = XN0ij Oy + 1 (8ir 650 + 0at Ojc)

where 1 and \ are the Lamé constants. When g > 0 and d A + 2 > 0 hold, then
C satisfies Assumption 2.4. A common example for the hardening modulus is given by
H = diag(k;) with hardening constant k; > 0, see [Han and Reddy, 1999, Section 3.4].

Assumption 2.5 (Set of admissible generalized stresses).

(a) The set K C R¥4 x R4 s assumed to be nonempty, closed and convexr with

sym
(0,0) € K.
(b) For all A € REX, we assume that

(o,x) e K = (c+Ax—A)€eK.
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Remark 2.6 (Safe load condition). Kinematic hardening is characterized by a translation
of the initial yield surface during plastic loading, see [Han and Reddy, 1999, p. 69/. In
other words, whether or not a generalized stress state (o,x) belongs to the admissible set
K depends only on o+ x. Assumption 2.5 (b) is thus natural for problems with kinematic
hardening. Note that is equivalent to K + (A, —A) = K for all A € R4

sym -

Moreover, Assumption 2.5 (b) can be interpreted as a particular form of the safe load
condition. In fact, Assumption 2.5 implies that an admissible generalized stress exists for
arbitrary loads, see Proposition 3.1.

Example 2.7. Assumption 2.5 is satisfied, for instance, by the von Mises yield condition
in case of linear kinematic hardening, i.e.,

K ={(o,x) e R™": |o” + x"| < /2/3 00}, (2.2)
where oq is the initial uni-azial yield stress, compare [Han and Reddy, 1999, p.69, p.182].
Definition 2.8. We define
V=HHQGERY) = {uc H(QRY) :u=0 onTp},
S = L* (R, M = L*(Q;R™%),

as spaces for the displacement w, stress o, and back stress x, respectively.

Now we are in the position to define the following bilinear forms associated to the static
plasticity problem.

Definition 2.9. For ¥ = (o,x) € SX M and T = (t,pn) € S x M, define

a(E,T):/a:C_l:de+/sz_1:/J,dx. (2.3)
Q Q
Foroe S andv eV, let

b(o,v) = —/ o:e(v)dx. (2.4)

Q
We recall that e(v) = 1(Vov + (Vv)") denotes the strain tensor. We also define an
operator B : S — V' associated to b, by
(Bo,v) =b(v, o).

Here and in the following, (-, -) denotes the dual pairing between V' and V', and V' is the
dual space of V w.r.t. the topology of L*(Q;RY).

Note that the objective in (1.1) can be expressed as 1a(X,X). As a consequence of
Assumption 2.4, a is coercive on S X M, i.e., there exists a > 0 such that

(2, %) > allB[5,. (2.5)

holds for all X € S x M. Moreover, a is bounded on S x M, i.e., there exists @ > 0 such
that

(2, T)| < @15 g5 pr I Tl 501 (2.6)
holds for all 3,T € S x M. The bilinear form b is bounded on S x V/,

b(o,v) < Bllollslvlly, (2.7)
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and it satisfies the condition of BabuSka-Brezzi, i.e., there exists § > 0 such that

b(o,v)
sup
oes\{o} HUHS

> Bllv|l,, forallveV. (2.8)

This follows from Korn’s inequality, see e.g., |Temam, 1983, Proposition 1.1 and Re-
mark 1.1],

2 2 2

||u||H1(Q;]Rd) < Ck (||U||L2(FD;R«1) + ||€(u)||L2(Q;Rdxd)) (2.9)
for all u € H'(;R?). Note that (2.9) also implies that le(w)l| p2(o.paxa) is a norm on
HE(Q;RY) equivalent to the natural norm.

As a consequence of (2.8), the following lemma holds, see Brezzi [1974]:
Lemma 2.10. For any given £ € V', the equation
blo,v) = {l,v) foralveV
has a unique solution o € (ker B)* and the estimate
lolls < csllelly.- (2.10)
holds with a constant cg independent of {.

Definition 2.11 (Weak solution). Let f € L*(Q;R?) and g € L*(Tn;RY) be given. A
triple (X,u) = (o, x,u) € S x M x V is called a weak solution of (1.3) if 3 € K and

a2, T —X)+b(t—0o,u) >0 foralT=(T,p) X (2.11a)
b(o,v) = ({,v) forallv eV, (2.11Db)

where
K={¥=(o,x) € SxM:(o(x),x(x)) € K a.e inQ} (2.12)

1s the set of admissible generalized stresses and

(E,v):—/f-'vda:—/ g-vds. (2.13)
Q Ty
The reader will verify that the above variational formulation is obtained from (1.3) by

formal integration by parts. Similarly, we reformulate the stress problem (1.1) as

Minimize %a(E, 3)
st. blo,v)=({,v) forallveV (L)
and ¥ = (o,x) € K.

Consequently, we consider from now on the following bi-level optimization problem, which
is the weak form of (1.2):

L 1
Minimize F(u, f,g) := 3 |lu — udHiZ(Q;Rd)

" 2 V2 2
+ EHfHL?(Q;Rd) + EHQHL%FN;Rd)
s.t. the plasticity problem (L) with ¢ as in (2.13).



3 Existence of Solutions

The theory of (P) is clearly based on the existence and uniqueness results for (L). Here,
we will take the convex optimization point of view and derive necessary and sufficient
optimality conditions for (L) by means of a Lagrange multiplier approach. As pointed
out in the introduction, it is to be noted that these results are not genuine and can also be
obtained by means of Fenchel duality (cf. [Temam, 1983, Chapter III]) or standard argu-
ments for variational inequalities (see for instance Kinderlehrer and Stampacchia [1980]).
Nevertheless, it is interesting to see how standard techniques in convex optimization yield
that the displacement field can be viewed as a Lagrange multiplier associated to the
equality constraints in (L), c¢f. Proposition 3.2.

3.1. Analysis of the Lower-Level Problem. In this section we discuss the existence
and uniqueness of solutions for the lower-level problem (L).

Proposition 3.1 (Existence and uniqueness). For every ¢ € V', problem (L) possesses a
unique solution (o, x) € S x M.

Proof. The proof uses standard arguments. The objective in (L) is uniformly convex due
to the coercivity of a, and radially unbounded. The admissible set

Ki={¥=(o,x) e K:blo,v)=(l,v) forallveV} (3.1)
is closed and convex (hence weakly closed) due to Assumption 2.5. From Lemma 2.10, we

obtain & € (ker B)* C S such that the equality constraint is satisfied. With & = (&, —&),

the conditions on K in Assumption 2.5 imply Y€ KC, and thus K is nonempty. The weak
lower semicontinuity of the objective therefore yields the existence of a solution, which is
unique due to the uniform convexity. U

Next we address the first-order necessary and sufficient optimality conditions for problem
(L).
Proposition 3.2 (Optimality conditions, existence of the displacement field). For given

eV and X = (o, x) € K, the following are equivalent:

(1) X is the unique solution of (L),
(77) there exists a Lagrange multiplier w € V' such that (2.11) holds,
(i13) X € Ky and the variational inequality

a2, T—-X)>0 foralT ek, (3.2)

holds, with Ky as defined in (3.1).
Proof. (i) < (ii): We apply the generalized Karush-Kuhn-Tucker theory. To this end, we
verify the constraint qualification according to Zowe and Kurcyusz. For problem (L), this

amounts to verifying the surjectivity of B, which follows from Lemma 2.10. We associate
to (L) the Lagrangian

Lo xw) = 5a((e.20). (0,X)) + blor,u) — (L),
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Theorem 4.1 in Zowe and Kurcyusz [1979] implies the existence of a Lagrange multiplier
u €V, such that the optimality system

Lo (o, x;u)(T—0o,p—x)>0 forall (,u) € K

Ly(o,x,u) =0,

is satisfied, which is the same as (2.11). The sufficiency of (2.11) for optimality of (o, x)
is standard for convex problems.

(1) < (4i1): Since ICy is convex, (3.2) are necessary and sufficient for optimality by standard
arguments. 0

The above theorem does not imply the uniqueness of the Lagrange multiplier w. The
uniqueness follows, however, from the following lemma.

Lemma 3.3 (Lipschitz stability). For any given (1,0, € V', the associated solutions
(o1, X1, u1) and (02, X, Ua) satisfy

lor — oallg + [1x0 = Xallar + lur — wally, < L6y = La]ly, (3.3)
where L is independent of 01, (s.

Proof. Step 1: Estimate for (o,Xx)

The estimate for (o, x) is obtained by choosing appropriate test function T' = (7, p)
in the variational inequality (3.2). Let & be the unique solution in (ker B)* C S of
b(o,v) = ({1 — ly,v) for all v € V (see Lemma 2.10), and set x = —o. Then Ty =
(11, 11) := (02, X3) + (6,X) € Ky, is an admissible test function for (3.2), evaluated at
3 = (o1, x;) since

b(T1,v) = b(og,v) + b(a,v) = (lo,v) + ({1 — la,v) = ({1, V)
holds for all v € V, and
(02.x2) €K = Ti=(o2+0,x,+X)=(02+0,x,—0) €L
by Assumption 2.5. Consequently we obtain from (3.2)
a(X1,3y — %) > —a(Xq, (0, X))

Similarly, one shows that Ty = (79, uy) = (01, X;) — (0, X) lies in ICp,, i.e., it is an
admissible test function for (3.2) evaluated at (o2, Xx5). This yields

CL(EQ, 21 - 22) Z a(227 (a-v 5&))
Adding these inequalities gives
a(El — 22, 21 - 22) < CL(El - 227 (&7 5&))

The left hand side can be estimated by (2.5). By construction and the a priori estimate
(2.10), |lo|lg < cp |61 — Ls]|, holds. Hence we can estimate

2 _
al|XB = s|lgun S e[l — Lol ][50 — Ballgyar

Step 2: Estimate for u
The estimates for the displacement are obtained by using

Ty = (71, p41) = (02 + €(ur — uz), X — €(u1 — u2)),
Ty = (T2, 1y) = (01 + €(ug —u1), x; — (U2 — U1))
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as test functions in (2.11a). Note that 7, is symmetric, and (71, ) € K holds a.e. in Q
in view of (o2, x5) € K and Assumption 2.5, applied with A = —e(wu; — us). This shows
that Ty € K holds, and a similar argument applies when verifying Ty € K. We obtain
from (2.11a) the estimates
a(El,Tl — 21) -+ b(Tl — 01, ul)
CL(EQ,TQ — 22) -+ b(T2 — 029, UQ)

or equivalently

CL(El, 22 — 21) — /QE('LLl — ’U,Q) . E('ul) dx

— b((C_1 Do, U — Ug) + b H':xg,u — ug) + b(oy — o1, u1) >0,

CL(EQ, 21 — 22) — /(;E('U,g — ul) . E(UQ) dx

- b(C_l 109, Uy — ’Ll,l) +b H_l P X9, Ug — ’U,l) + b(O’l - 0'2,’11,2) > 0.
Adding both inequalities yields

CL(El — 22, 21 — 22) + / E(u1 — ’LLQ) . s(ul — ’U,Q) dx
Q

< BHT: (X — Xa), w1 — ug)
—b(C_l : (0’1 —0'2),’U,1 —’U,g) —b(O’l — 09, U1 —’U,g).
The left hand side can be estimated by (2.5) and (2.9). In view of (2.7) and Assump-

tion 2.4, the right hand side is bounded by a multiple of ||X; — Xs||||u; — us||. We thus
obtain

(3.4)

al|r = Zof* + ¢ [wn — w31 g0 < C 1|1 — ol ur — ws]|.
Young’s inequality and the estimate for ||X; — 35| from Step 1 yield the desired estimate
(3.3). O

Remark 3.4. We point out that the Lagrange mutiplier w can be physically interpreted as
displacement field. It solves an optimization problem which is known as primal problem
of static elastoplasticity, see for instance [Han and Reddy, 1999, Section 7. As shown in
Appendiz A this optimization problem is equivalent to the dual problem of (L).

3.2. Discussion of the Bi-Level Problem (P). Based on the results of Subsection
3.1, we derive the existence of a global optimizer of problem (P). As a consequence of
Proposition 3.2, we can replace the lower-level problem (L) by its necessary and sufficient
optimality conditions (2.11). We introduce the space of admissible controls

U= L*(QRY) x L*(Ty; RY).
As in (2.13), we associate to given (f,g) € U a functional £ = R(f,g) through

((f.9)0) =~ [ frode— [ grods wev,
Q I'n
Lemma 3.5. The operator R : U — V' is linear and compact.

Proof. The embedding V< L?(Q; R?) and the trace operator V — L*(I'y) are compact.
The operator R is the (negative) adjoint, and thus it is compact as well. O
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The results of the previous section give rise the definition of a solution operator for the
lower-level problem (L),

S:Us(f,g)— (o,x,u) €Y =5 x MxV.

The individual components of S will be denoted by S?, SX and S*. Note that S is
nonlinear due to the presence of the constraint (o, x) € K. By Lemma 3.3 and 3.5, S is
Lipschitz continuous and compact.

Based on the properties of S, we obtain a global minimizer of (P) as in [Hintermiiller,
2001, Theorem 2.2]. Due to the nonlinearity of S, the minimizer can not be expected to
be unique.

Proposition 3.6. Problem (P) possesses a global optimal solution (f*,g*) € U.

Proof. Let j := inf F/(S“(f,g), f,g), where the infimum extends over the space U, and
let {(f,,9g,)} be a minimizing sequence. Then {(f,,g,)} is bounded in U, and hence it
possesses a weakly convergent subsequence (f,,,g,,)—(f",g*) in U. The compactness of
S implies that the corresponding solutions (6,/, X,,, w,/) of the lower-level problem (L)
converge to (o, x*,u*) in S x M x V. The weak lower semicontinuity of the objective
implies that (f*, g*) is a global optimum of (P). O

4 Viscoplastic Approximation

Before we turn to the viscoplastic approximation of (L), let us state some known results
on orthogonal projections in Hilbert spaces that will be useful in the following. The
associated proofs are given in Appendix B.

Lemma 4.1 (Differentiability and Shift-Invariance). Let H be a Hilbert space, C' C H be
a nonempty closed convex set, and denote by Po(x) the orthogonal projection of x onto

C.

(a) The function F(z) = 3|z — Pc z||* is conver and Fréchet differentiable with de-
rivative F'(x) = x — Po x.

(b) The derivative F' is a monotone operator, i.e., (F'(x) — F'(y),z —y) > 0 holds
for all x,y € H.

(¢) (F'(x),x —y) >0 forallz € H and all y € C.

(d) If a+ C = C for some element a € H holds, then Pocx = Po(x + a) — a and

F'(x)=F'(x+a) forallx € H.
Next, we introduce the viscoplastic regularization of (L):

1
Minimize Za(E, ) + %Hz — Pe(D)|20s
st. blo,v)=({,v) forallvelV,

(L)

where v > 0 is a given real number and P denotes the orthogonal projection on IC. As
pointed out in the introduction, (L,) has a physical motivation in its own right, see for
instance [Simo and Hughes, 1998, Section 2.7].
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Remark 4.2. The viscoplastic problem (L.,) represents a penalized version of (L) in the
sense that the inequality constraints in (L) are replaced by a quadratic penalty term in the
objective functional. This is also known as Yosida reqularization of the indicator function
associated to IC. This type of reqularization is particularly well-suited for the optimal
control of variational inequalities, as demonstrated for instance in the classical book Barbu
[1984], or more recently in Ito and Kunisch [2000], Hintermiller [2008], where Barbu’s
approach is modified by means of a feasibility shift. However, due to the non-smoothness of
the projection, an additional reqularization will be necessary to derive first-order optimality
conditions, see e.g. Barbu [1984] or Mignot and Puel [1984]. As optimality conditions will
be topic of a subsequent paper, two-fold smoothing is not considered in this work.

For convenience, we define
Y
() = 21 - Pe(B)

Since J, is convex by Lemma 4.1, we find the following analog to Proposition 3.1:

Proposition 4.3. For every ¢ € V' and every v > 0, there exists a unique solution
¥, =(04,x,) €S x M of problem (L,).

On the basis of Lemma 2.10 and [Zowe and Kurcyusz, 1979, Theorem 4.1|, one obtains
necessary and sufficient optimality conditions for (L, ), similarly to Theorem 3.2. To this
end, let us define

Cl={E¥=(o,x) €S XM :blo,v)=(l,v) forallveV}.

Proposition 4.4. Let { € V' and v > 0 be given. For X, € S x M, the following are
equivalent:

(1) X is the unique solution of (L),
(1) there exists a Lagrange multiplier u, € V' such that the following optimality system
15 fulfilled:

a(X,,T) +b(t,uy) + (J(2,), T) =0 forallT=(T,p) €S xM (4.1a)
bloy,v) = ({,v) forallveV, (4.1b)

where J\(X) = v (X — Px(X)) € S x M is the derivative of J,,
(iit) X, € C;* satisfies

a(%,, T -3%,) + (J;(EV), T-3%,)>0 foralTeC. (4.2)
As in case of (L), the uniqueness of u., follows from the following Lipschitz property of
L= (5, uy):

Lemma 4.5. Let (1,0 € V' andy > 0 be given. Let (041, X1, Uq,1) and (042, X 2, Uy,2)
denote the solutions of (L) associated to {1 and ls, respectively. Then

||0'%1 - 0'%2||5 + HX'y,l - X«,,zHM + Hu%1 - u%2HV < Lt~ €2||V'

holds with the same constant L as in Lemma 3.5. In particular, this yields the uniqueness
of the displacement fields.
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Proof. The proof proceeds similarly to the proof of Lemma 3.3 so we can focus here on
the arguments which differ.

Step 1: Estimate for (o, x)
Let again & be the unique solution in (ker B)* C S of b(o,v) = (¢; — {5, v) for allv € V,

and set 3 = (&, —&). We set 3, =(0,Xx,,) fori=1,2and use
T1 - 2%2 + i, T2 = 2%1 - i

as test functions in (4.2), which yields

a(By,1 = By, By — By 0)

The first term on the right hand side was not present in Lemma 3.3. Assumption 2.5
implies that +3 = K holds. Using the shift invariance of .JJ from part (d) of Lemma 4.1,

we infer that J/ (3, ,) = J/ (32,2 + %) holds. Thus we have

(J(Z1) = J(B02), B — 1 + )
= —(J(By1) = J(Z 2+ 2), 2,1 — (8,2 + X)) <0,

and the inequality follows from the monotonicity of the derivative, see part (b) of Lemma 4.1.
From here we can continue as in the proof of Lemma 3.3 until the end of step 1.

Step 2: FEstimate for u
In order to derive the esimates for the displacements, we set

T .= (e(uy1 —uy2), —€(uy1 —uy2))

and use

Ty =(ti,p) =22 —Z0 + T, Ty=(T2,py) =31 =8, —T
as test functions in (4.1a). Adding both equations yields

Q(Efy,l — 2%2, 2%1 — 2%2) -+ / E(’U/%l — ’U,%Q) : E('U,%l — ’U,%Q) dx
Q

+ (S (B1) = J(5y2), By — B = T)
=b(H": (X1 — Xr2)) Una = Uq2) — D(C™: (00,1 = 02), Uyt — Uy 2)
—b(0y1 — Oy, Uy — Uy2). (4.3)
Except for the term involving J!, this is the same as (3.4) in the proof of Lemma 3.3.

Similarly as in the discussion in Step 1 above, we infer that J! (3, 5) = J/ (3,2 + T) and
hence

(J(ZBy) = J(Br2), By — B0 = T)
= (J;(Eml) - J;(E'M + T), 2%1 - (2%2 + T)) >0

holds. Now (4.3) has exactly the same structure as (3.4), and we get the desired estimate
with the same Lipschitz constant L. O
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It is easy to see that (X,u) = 0 solves (4.1) for £ = 0. Hence Lemma 4.5 yields the
following a priori estimate:

Corollary 4.6. For every { € V', one has
lolls + Ml =+ llusylly < Ll

Remark 4.7. We point out that the monotonicity and shift-invariance of ny are essential
for the analysis above. The assertion of Lemma 4.5 would also follow from a boundedness
property of J,’Y, which was used in the proof of Theorem 8.12 in Han and Reddy [1999].
However, the verification of this property remains in doubt.

By combining the analysis of [Han and Reddy, 1999, Section 8] and Hintermiiller [2001],
we now prove the strong convergence of (X, u,) to the solution of (L), denoted as above
by (3, u). A similar result is proved in [Temam, 1983, Theorem III.1.1] for the Hencky
model.

Theorem 4.8. Let ¢ € V' be fized, but arbitrary. Then, the solution and the Lagrange
multiplier of (L.,) converge strongly to the solution and the Lagrange multiplier of (L) as
v tends to oo, i.e.,

(04, Xy uy) — (0, x,u)  in Sx MxV, asy — oo.

Proof. The following analysis relies on a combination of arguments introduced in Han
and Reddy [1999] and Hintermiiller [2001]. We start with a given sequence of penalty
parameters {~;} tending to oo as k — oo. The associated solution and Lagrange multiplier
of (L,,) is denoted by (3j,u;) = (0%, Xy, ur). As before, we split the proof into two
steps. First we prove the convergence of {¥;} by employing (4.2). Secondly, the strong
convergence of {uy} is derived by similar arguments as in the proof of Lemma 4.5.

Step 1: Convergence of {2}

By Corollary 4.6, the sequence {¥;} is bounded in S x M. Hence, there is a weakly
converging subsequence, for simplicity it is also denoted by {3;}. The weak limit is
denoted by 3 and we show X € K;. As in the proof of Lemma 3.3, Lemma 2.10 gives the
existence of a unique & € (ker B)* such that ¥ = (&, —a) € C;. Moreover, 3 € K holds

thanks to Assumption 2.5 and therefore, one has .J,, (3) = 0 for all £k € N. The convexity
of J, thus implies

T (Z0) < (1, (Z0), 25 - B) < a(Z, T~ ).

We used (4.2) for the last estimate, which is applicable here, since Y€ C,* by construction.
Hence, (2.6), (2.10) and Corollary 4.6 allow us to conclude

Ty (B) < (@L° + V2ep L) |[Ulf5, =: C,
which implies the boundedness of .J,, (X;). By definition of .J,, we therefore obtain
= =\ (12 o
0< IS~ Pe(E) [y < limin 5 — Be(S0) [,

2C
< limsup ||y, — Pe(Sp)l[g < = — 0, as k — oo
.

k—o0 k
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Here, we used the weak lower semicontinuity of || - —Pi(-)|| which follows from Lemma
4.1. Hence, ¥ = Px(X) holds, which implies ¥ € K. Since ¥ € C;* due to the weak
convergence o — @ in S, we obtain X € Ky, i.e., X is feasible for (L).

The optimality of 3 gives

1 1
3 a(Xg, Xx) + J,, (Bg) < 5 a(T,T)+ J,(T) forall T e C*

The above inequality holds in particular for all T' € ;" N K = K, and consequently
1 1
5 (ST < Sa(T.T) forall T € Ky,

where we used the non-negativity of J,, (2;) and J, (T) = 0 for T € K for all £ € N.
Since 3 € Ky as seen above, the weak lower semicontinuity of a(-, -) thus implies

1l = <= 1
—a(X,Y) < liminf - a(Xy, 3y)
2 k—oo 2

1 1 (4.4)
< limsup 5 a(Xy, 3y) < 5 a(T,T) for all T € ;.

k—o0

Therefore, X is the unique solution of (L), so as before, we simply denote it by X for
the rest of the proof. By standard arguments, the uniqueness of 3 guarantees the weak

convergence of the whole sequence.

By inserting T' = X in (4.4), the convergence a(Xy, Xx) — a(X, X) follows. Since a(3, )
is an equivalent norm on S by (2.5) and (2.6), this implies convergence of the norm,
e, |IZkllguns — IIZllgeas- Together with the weak convergence, strong convergence is
obtained.

Step 2: Convergence of {uy}
If we insert Ty — Xy with Ty € K as test function in (4.1a), then part (c¢) of Lemma 4.1
implies

a(Xy, T — ) + b(11 — ok, u) >0 forall Ty = (79, u,) € K. (4.5)
Moreover, as X is the unique solution of (L), it fulfills (2.11a), i.e.,
a(X, Ty —X)+b(12 —o,u) >0 forall Ty = (19, ) € K. (4.6)

Here w is the associated Lagrange multiplier, which is unique by Lemma 3.3. Next, we
proceed similarly to step 2 in the proof of Lemma 3.3. Since X € K, Assumption 2.5
allows us to insert Ty = (o + e(ur — u), x — €(ur — u)) into (4.5). Unfortunately, Xy is
not feasible for (4.6), but we can use Pg(Xy) instead and insert

Ty = (PZ(ok) +e(u —ug), BE(x;) — e(u — uy)).
Here, PZ and P refer to the components of Pc. Adding the arising inequalities give

a(X =3, 2 —3%) +/Qs(u—uk) ce(u — uyg)de

< BHH (X —xi),u —ug) —b(C (0 —op),u —ug) — b(o — ok, u— uy)
+ CL(E, PK(Ek) — Ek) + b(P,g(O’k) — ak,u).
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The terms on the left hand side as well as the first three addends on the right hand side
can be estimated as in the proof of Lemma 3.3. Using (2.6) and (2.7) for the remaing
terms, we obtain

= el < ¢ (18 gearl Pe(E8) = Zllgeas + Nl low = PE (o)l

1% = Sl garllee = welly )

Now, the continuity of P implies Pc(X;) — Pc(X) = X such that the convergence of
{%} and an application of Young’s inequality yield the desired convergence of {u;}.

The above argument is valid for arbitrary sequences v, — 0o. The limit (o, x, u) is the
unique solution and Lagrange multiplier of (L). Therefore, (o, x.,, uy) — (o, x, ) holds
as claimed. U

Remark 4.9. We point out that the arquments for the convergence of o are similar to
those in the proof of Theorem II1.1.1 in Temam [1983] for the Hencky model. However,
due to the low reqularity of the displacement field w, corresponding convergence result for
u cannot be expected in that case.

Next, we turn to the bi-level problem associated to (L,) which is given by
L 1
Minimize F(u, f,g) = 3 |lu — UdHiZ(Q’Rd)

%1 9]
+ 25 e + 28 e )
s.t. (L) with £ = R(f,g).

Based on the above results, it is straightforward to adapt the proof of Proposition 3.6 to
problem (P,) to obtain:

Proposition 4.10. For each y > 0, problem (P.) has a global optimal solution (f7,g’) €
U.

Remark 4.11. As a consequence of Proposition 4.4, we can replace the lower-level prob-
lem (L,) by its necessary and sufficient optimality conditions (4.1). We point out that
(P.,) then becomes an optimal control problem for a partial differential equation in mized
variational form (4.1).

5 Convergence for the Upper-Level Solutions

The results of the previous section give rise the definition of a solution operator for the
viscoplastic lower-level problem (L),

S,:U(f,9) = (04,x,,u,) €Y =5 x MxV.

Note that S, is nonlinear due to the term involving J;. By Lemma 4.5 and 3.5, S, is
Lipschitz continuous and compact, both uniformly with respect to ~.

solution to (P.) with v = ;.
(a) There exists an accumulation point (f*,g*) in the strong topology of U.
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(b) Every weak accumulation point of {(f,g%)} is a global optimal solution of (P).

Proof. We denote by S}, the solution operator associated to ;. The optimality of (£}, g}),
the feasibility of (0,0) and Si(0,0) = (0,0, 0) for every k (see Corollary 4.6) imply

1 u * * 2 14 * (12 1P) * (12
§||Sk (frr9%) — udHLZ(Q;Rd) + EkaHLZ(Q;Rd) + EHngL?(FN;Rd)

L 2 V1 2 V2 2
< SISE(f.9) — wall o ouraey + §||f“L2(Q;Rd) + 5H9HL2(FN;R‘1) (5.1)

for all (f,g) € U. Inserting (f,g) = (0,0) and observing that S;(0,0) = 0, we obtain the
boundedness of the sequence {(f7,g5)} in U. And thus there exists a weakly convergent
subsequence, which we denote by {(f},g}/)}. The weak limit in U is called (f*, g*).
Using Lemma 4.5, we infer

15k (f1s g) = Sk (F7, 9y < LIIR(fir gi) = BUF" 97) Iy
which converges to zero as k' — oo due to the compactness of R (Lemma 3.5). Moreover,
we have S (f*,g*) — S(f*, g*) for k' — oo due to Theorem 4.8. Thus we conclude

1Sk (Fr, g1) = S(F 97y
< 1Sk (Fr gi) = Sw (£, 9y + 196 (7, 97) = S(F7. ")y = 0 as k' — occ.

Together with the weak lower semicontinuity of norms, this implies
F(Su(f*vg*)u f*vg*) S hkl’llllolgf F(Sl’g’(f]:’vg;)? fZ’vg]:’>

<limsup F(Sg(fr,9%): Fr i)

k!—o0
< limsup F(Su(f.9),F.9) by (5.1)
=F(S“(f,9).f.9) by Theorem 4.8

for all (f,g) € U. Therefore, (f*,g") is a global optimal solution of (P).

Inserting (f,g) = (f*,g*) in the inequality above, we infer the convergence
F(Slzl"(fZ’?g]:’% f;;’vgz/) - F(Su(fug>7 f?g)

Together with the strong convergence Si/(f}/,g5) — S(f*,g*), this yields convergence
of norms [[(fr, i)l — |I(f*,g*)|l. Using the weak convergence shown above, we obtain
the strong convergence

(frngi) — (59 inU ask' — oo.
This proves assertion (a). Since the above arguments leading to the optimality of the

weak limit hold for every weakly convergent subsequence of (f;, g5), assertion (b) is also
proved. [

Remark 5.2. The proof of Theorem 5.1 shows that every weak accumulation point of
{(fE,g5)} is automatically a strong accumulation point.

The necessary modifications of the above arguments are obvious in case of additional
control constraints in (P) of the form

(fvg) S Z/{ad
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with a closed and convex subset U, C U = L*(£;R?) x L*(T'; R?), as is given for example
by constraints of the form

Ug ={(f,9) €U :|f(2)|ge < p1 ace. in Q and |g(z)|ga < pg a.e. on 'y} (5.2)

Since U is reflexive and U,y is weakly closed, the weak limit (f*,g*) in the proof of
Theorem 5.1 clearly satisfies the additional control constraints. The rest of the theory
above is not affected by the control constraints, and hence we obtain following result:

Corollary 5.3. Suppose that (P) contains additional control constraints, i.e.,

. . . 1 \
Minimize F(u, f,g) := 3 |u — ud“i%Q,Rd)

Yy 2 V3 2
+ §’|f“L2(Q;Rd) + §||9||L2(1“N;Rd)
s.t.  the plasticity problem (L) with ¢ as in (2.13)
wmd  (f.9) € Uy J

with a closed and convexr subset U,q C U, and let the reqularized problems be defined
analogously to (P,). Then the assertion of Theorem 5.1 remains true, i.e., if {y} is a
sequence of numbers tending to oo and (f, g,) are global solutions to (P.) with v = v,
then there exists a weak accumulation point (f*,g*), which is a strong accumulation point
and in addition a solution of (P).

-~

(P)

The following theorem answers the question which optima of (P) can be approximated by
a sequence of solutions of viscoplastic problems. The underlying analysis is standard and
follows a classical argument which was, for instance, given in Casas and Troltzsch [2002].

Theorem 5.4. Suppose that (f*,g*) is a strict local optimum of (P) in the topology of
U. Let v be an arbitrary sequence tending to co. Then there exists a sequence (fr, gr)
of local optimal solutions of (P, ) such that (fy,gr) — (f*,g") strongly in U.

Proof. Let € > 0 be the radius of the neighborhood of strict local optimality of (f*, g*).
We start by defining the following auxiliary problem:

. . . 1 \
Minimize F(u, f,g) := 3 |w — Ud||2L2(Q,Rd)
121 2 Vo 2
+ EHfHL?(Q;Rd) + jngan(Fw;Rd) (P?)
s.t. the plasticity problem (L) with ¢ as in (2.13)
and (f,g) € Bs(f*,9"), J

where § satisfies 0 < § < € and Bs(f*,g*) C U is the closed ball of radius ¢ centered at
(f*,g"*) in the topology of U. Thus the assumption on (f*, g*) implies

F(S“(f.9), f.g9) >F(S*“(f",9"), f",9")
for all (f,g) € B5s(f*.g")\{(f".9")}.

to the effect that (f*, g*) is the unique global optimum of (P?). Since Bs(f*, g*) is closed
and convex, Corollary 5.3 yields the existence of a sequence (f;,gs) of solutions to the
associated regularized problems (Pf/k), that converges strongly in U to (f*, g*). It remains

to show that (f,g;) is a local optimum of (P2, ) for all sufficiently large k. To this end,

(5.3)
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take an arbitrary (f,g) € U with ||(f,g) — (f%, g:)|lv < §/2. Then, Corollary 5.3 yields
that, for sufficiently large k,

I(f;9) = (£ 90)lo < (£, 9) = (£, g0)llv + 1(Fr g5) — (F7,97)lo < 0.

This in turn implies that (f,g) € Bs(f*,g*), i.e. (f,g) is feasible for (PJ ). Since (f,g)
was chosen arbitrary, the (global) optimality of (f}, g;) for (P2 ) ensures

J

F(S*(f.9), f.9) =2 F(S*(fi 9i), fr.9x) V(F,9) with [(f,9) = (fi, g)llv < 5,

which amounts to local optimality of (fy, g;)- O

Remark 5.5. Similarly to Corollary 5.3, it is straightforward to incoporate additional
control constraints into Theorem 5.4 as for instance constraints of the form (5.2).

A Lagrange Duality

The Lagrange multiplier u associated to the equality constraint in (L) can be viewed as
the displacement field induced by the load functional ¢. This is due to the fact that w
solves the so-called primal optimization problem, which is obtained traditionally by means
of Fenchel duality, cf. [Temam, 1983, Theorem II1.1.3|. Here, we consider another notion
of primal problem that involves the so-called plastic strain p and an internal hardening
variable &€ as optimization variables, in addition to w. This definition of the primal
problem coincides with the one used in [Han and Reddy, 1999, Section 7| or Carstensen
[1999]. By means of Lagrange duality, we will see that the primal problem can be identified
with the dual problem associated to (L). We point out that the same result could also be
obtained using Fenchel duality, similarly to [Temam, 1983, Theorem I11.1.3].

We start by introducing the Lagrange function £ : .S x M x V — R associated to (L)
1
£(8u) = 5a(8,5) + bo,u) — (£, ) (A1)

Since (L) is a strictly convex problem, the solution, together with the Lagrange multiplier,
is a saddle point of the Lagrange function. That is, the solution of (L), denoted as before
by X, and u satisfy

L(E,v)<L(E,u)<L(T,u) forallveVand T € K. (A.2)
By standard arguments, (L) is equivalent to

%Ielflc 18)161‘12 L(T,v). (LD)

The dual problem associated to (LD) arises by interchanging inf and sup:
sup inf L(T,v). (LP)

veV TEK

Due to (A.2), there is no duality gap, which implies that (3, u) is the unique solution of
the dual problem (LP).
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Definition A.1. For given (u,P) = (u,p,§) € VxS x M and (v,Q) = (v,q,n) €
V x 8 x M, we define

o((u, P), (v,Q)) = /Q [(e(w) - p) : C: (e(v) — @) + & : H: n]d.

Moreover, let I denote the support functional of IC, i.e.,

IZ(P) = ;EE/QP : T dx.

Here and in the following, the expression P : T with P = (p,&) and T = (T, u) with
given tensors p, 7 € R4 and &, u € R refersto P T :=p: 7+ & : .

sym

Next, we introduce the following optimization problem

Sa((0.Q). (0.Q)) + (¢, v) + Q) (LP)

inf
(v,Q)eV XSxM
The following lemma shows in which sense (LP) and (LP’) coincide.

Lemma A.2. Problem (LP’) admits a unique solution, denoted by (u, P) = (u,p,§),
which is related to the unique solution (u, o, x) of (LP) by

p=c(u)—-C'l:io and &=-H"':x. (A.3)
Proof. We start with the inf-problem in (LP), i.e.,
inf L(T,v)
Tek

for given v € V. In view of the definition of £, the necessary and sufficient optimality
conditions for this problem are given by

TeK and o(T, Y -T)+bc—7,v) >0 VY = (5,¢) € K.
Hence, (LP) is equivalent to

sup L(T,v)
v, T
(LP) < st. veV, Tek (A.4)

and (T, Y -T)+bc—7,v) >0 VY K.

Next, we turn to (LP’). Since the objective of (LP') is strictly convex, there is a unique
solution (u, P) = (u, p, £) of (LP’). The necessary and sufficient conditions are given by

0 € 0( 5a((w P),(w,P)) + {0, u) + I(P)) -
= o % a((u, P), (u, P)) + (0, w)) + OI(P).

Here we used the sum rule of subdifferential calculus, which holds since 0 € dom(1/2a(-, )+
(¢, -))Ndom I} and due to the continuity of a. Clearly, the first addend is a singleton set
consisting of the Fréchet-derivative of a(-, -) + (¢, -) and hence, (A.5) is equivalent to

Ix(Q) = Ig(P) — a((u, P), (v,Q) — (u, P)) — ({,v — u)

A6
for all (v.Q) = (v.q.m) €V x §x M. D)
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Next, we introduce a mapping ¥ : V x S x M — S x M by
X(u, P) = (o(u, P), x(u, P)) := (C: (¢(u) —p), —H: §). (A7)

With this setting, (A.6) implies

/Z(’u,,P) (Q—P) dx—l—sup/P sz—sup/Q:deSO
Q

Yek Yek Jao (A.8)
VQ e S x M.
If we choose @ = 0 and @ = 2 P in (A.8), we obtain
sup / P :Ydr— / P :¥(u, P)dz = 0. (A.9)
Tek Jo Q

The closed and convex set K is equal to the intersection of all closed half-spaces containing
it, i.e.,

K= ) {zeSxM Q Eda:<sup/Q:de} (A.10)
QeSxM Tek
Now, (A.8) and (A.9) imply for all @ € S x M
/Q:Z(U,P x<sup/Q Y dz,
)

ek

so that (A.10) gives X(u, P) € K. Moreover, (A.9) implies [, P : ¥(u, P)dz > [, P
Y dx for all ¥ € K and, in view of (A.7), this is equivalent to

a(X(u, P), Y —3(u,P)) +b(s —o(u,P),u) >0 VY =(s,9) €KX

thanks to the definition of @ in (2.9). Hence, it suffices to search the optimum of (LP’)
on the set given by
Pu={veV,QeSxM:3vQ) ek
and a(S(v, @), T — S(v, Q) + bls — o(v,Q),v) >0 VY € K}.

The definitions of a, b, and X imply for the objective of (LP’)

Sa((0.Q), (v.@)) + (L, v) + [{(Q
:1/5;[(8(’0)—q)ZCZ(E(’U)—Q)-I—?’] n]dx + (¢, 'v+sup/Q Y dx

2 Yek

1 .
= ia(Z(v,Q),Z('v,Q)) + (0, v) — %rgc [a(E(v,Q),Y) 4+ b(s,v)].

Hence, one obtains for all (v, Q) € Puq

50(2.Q). (0.Q)) + (¢, ) + (@)

1

= —50(2(v,Q),%(v,Q)) = b(0(v,Q),v) + (¢, v) = —L(Z(v, Q),v),
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where £ is the Lagrangian defined in (A.1). Thus we have shown that (u, P) solves
sug L(X(v,Q),v)
s’.t. veV, X(v,Q)e K
and a(X(v,Q), YT —X(v,Q)) +b(s —0o(v,Q),v) >0 VY K.

Since X(v, - ) : S x M — S x M is surjective for every v € V in view of Assumption 2.4
for C and H, (u,X(u, P)) solves (LP) according to (A.4), and hence coincides with its
unique solution (w, ). The definition of ¥ finally gives (A.3). O

As already mentioned above, (LP’) is a strictly convex problem such that the variational
inequality of the second kind (A.6) admits the optimum of (LP’) as its unique solution.
For the sake of completeness, we convert (A.6) into a form which is found elsewhere
in the literature (cf. for instance |Han and Reddy, 1999, Section 7| for the quasi-static
counterpart of (A.6)). According to [Temam, 1983, Prop. 1.2.5|, there holds

;EEAT(x) : P(x)dr = A;gg(T : P(x)) dx.

Note that this implies in particular that suppc g (T @ P(-)) is measureable if I (P) < oo.
With this result at hand, we may rewrite (A.6) by

a((u,P), (U7Q> - (u7 P)>+](Q) _](P> Z <—€,’U - u>
for all (v,Q) = (v,q,m) €V xS x M,

where j : S x M — R U {400} is defined by

Jj(P) = /Q sup (T : P(x))dx.

TeK

(A.11)

Remark A.3. It is to be noted that (A.11) represents a variational inequality of the second
kind. There are several contributions concerning the theory of optimal control problems
governed by variational inequalities of the second kind. We only refer to Barbu [1984],
Bonnans and Tiba [1991], Bonnans and Casas [1995], and Bergouniouz [1998]. Never-
theless, since the stress field is a physically tmportant quantity in various applications,
we focus on the dual problem of infinitesimal elastoplasticity in form of (L) and (2.11),
respectively, which explicitly contains the stress field instead of the plastic strain.

B Proof of Lemma 4.1

The projection Pox of an element z € H is uniquely characterized by Pox € C' and the
variational inequality

(x — Pox,y— Pox) <0 forallyecC. (B.1)
As a consequence, the projection is non-expansive:

|Pcx— Poyl < ||z —y| forallz,ye H.
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Now we address the differentiability of F(z) = 1|z — Pe z||*. We observe

|z + 6z — Pe(x + 6x)|?
= ||(z — Pox) + 6z + Pox — Po(x + 0)|)?
= ||z — Pex||® + 2 (¢ — Poz,6z) + 2 (x — Pox, Pox — Po(x + 6x))
+ || Pox — Po(z + 6z) )%,

It follows that
F(x +o0x) — F(z) — (x — Pox, )
= (&~ Pea, Pox — Pela+ 62) + 3| Pox — Pola + 62)|* > 0
by (B.1) since Po(x + dz) € C. On the other hand, we can estimate
F(x+déx) — F(x) — (zr — Pox,0x)
— (2= Pola+62), Pow — Pole + 62)) — %Hch — Po(e +62)|
< (x4 dx — Po(x + o0x), Po v — Po(x + 6x)) — (6x, Pox — Po(z + dx))
<0+ ||6z|||| P & — Po(zx + 0z)||
< [|6z|”

where we used (B.1), the Cauchy-Schwarz inequality and the non-expansiveness of the
projection. We conclude that

|F(z + 6x) — F(z) — (x — Pox,07)| < |6z
holds, which confirms Fréchet differentiability of F with derivative F'(z) = x — Pox. The
monotonicity of F’ follows from the estimate
(F'(x) = F'(y),x —y) = |z —y|* = (Pew = Poy,z —y)
> ||z —y||* = [Pox = Poylllz —yll >0,

where the last inequality is due to the non-expansiveness of the projection. As a conse-
quence, F'is a convex function, which completes the proof of parts (a) and (b). To prove
part (¢), let z € H and y € C. Then F'(y) = 0 and the monotonicity of F’ imply

(F'(z),x —y) = (F'(z) = F'(y),z —y) = 0.
For part (d), let z € H be arbitrary and suppose that a + C' = C holds. Then we have
(x+a—Po(r+a),z—Po(r+a) <0 foralzeC by (B.1)
= (v— (Pe(z+a)—a),y— (Fe(r+a)—a)) <0

for all y € H such that y + a = 2z with some z € C, i.e., for all y € C. This inequality
together with the fact Po(z+a)—a € C—a = C confirms that Po v = Po(x+a)—a holds.
As a consequence, we obtain from part (a) that F'(z) =2 —Pcx =x— (Po(r+a)—a) =
F'(x + a) as claimed.
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