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1Abstra
t. An optimal 
ontrol problem for the stati
 problem of in�nitesimal elastoplas-ti
ity with linear kinemati
 hardening is 
onsidered. The variational inequality arisingon the lower-level is regularized using a Yosida-type approa
h, and an optimal 
ontrolproblem for the so-
alled vis
oplasti
 model is obtained. Existen
e of a global optimizeris proved for both the regularized and original problems, and strong 
onvergen
e of thesolutions is established.1 Introdu
tionThis paper is 
on
erned with an optimal 
ontrol problem for the stati
 model of in�n-itesimal elastoplasti
ity with linear kinemati
 hardening. Stati
, or in
remental, plasti
ity models arise through dis
retization in time of quasi-stati
 plasti
ity problems. Fora detailed physi
al motivation, we refer to Simo and Hughes [1998℄ and Han and Reddy[1999℄. The forward problem is 
hara
terized by the unique solution ofMinimize 1

2

∫

Ω

σ : C
−1 : σ dx +

1

2

∫

Ω

χ : H
−1 : χ dxs.t. {−divσ = f in Ω

σ ·n = g on ΓN .and (σ(x),χ(x)) ∈ K a.e. in Ω.





(1.1)Hen
e, on the one hand, the optimal 
ontrol of (1.1) leads to a bi-level optimization prob-lem. On the other hand, (1.1) 
an be repla
ed by its ne
essary and su�
ient optimality
onditions, and thus we obtain an optimal 
ontrol problem for a variational inequality.We work under the assumption of in�nitesimal strains. Hen
e, Ω is the domain o

upiedby the body in both the undeformed and deformed states. The volume and boundary loads
f and g serve as 
ontrol variables, and σ(x) ∈ Rd×dsym denotes the stress tensor of the bodyresulting from these loads. The fourth order tensors C and H are the elasti
ity tensor andthe hardening modulus, respe
tively. Conditions motivated by physi
al 
onsiderationsensure that (1.1) is uniquely solvable.The 
losed and 
onvex set K imposes bounds on the generalized stress (σ,χ) the body
an take. The variable χ denotes an internal for
e whi
h arises during hardening. It istermed the ba
k stress in the 
ase of kinemati
 hardening, and it 
auses a translation ofthe initial yield surfa
e, 
ompare (2.2). Plasti
 deformation is 
hara
terized by materialpoints satisfying (σ,χ) ∈ ∂K. When deleting the variable χ, one obtains the stati
problem of perfe
t plasti
ity (Hen
ky model), whi
h provides substantially less regularsolutions, see Temam [1983℄. If, in addition, the 
ondition (σ,χ) ∈ K is negle
ted, (1.1)redu
es to the problem of stati
 linear elasti
ity.We 
onsider the following optimal 
ontrol problem:Minimize 1

2
‖u− ud‖2

L2(Ω;Rd) +
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. the stati
 plasti
ity problem (1.1). 

 (1.2)



2The lower-level problem (1.1) 
an be equivalently repla
ed by the variational formulationof its ne
essary and su�
ient optimality 
onditions
−divσ = f in Ω, σ · n = g on ΓN , (1.3a)

ε(u(x)) : σ(x) − σ(x) : C
−1 : σ(x) − χ(x) : H

−1 : χ(x)

= max
(τ ,µ)∈K

{ε(u(x)) : τ − σ(x) : C
−1 : τ − χ(x) : H

−1 : µ} a.e. in Ω.
(1.3b)where ε(u) = 1

2

(
∇u+ (∇u)⊤

) denotes the strain tensor. Note that (1.3) is equivalent toa mixed variational inequality of the �rst kind, see (2.11) below. The variable u is theLagrange multiplier asso
iated to the equality 
onstraints in (1.1) and it 
an be physi
allyinterpreted as the displa
ement �eld by means of duality te
hniques, see Appendix A. Weemphasize that the o

uren
e of the Lagrange multiplier for the lower-level problem inthe upper-level obje
tive is a parti
ular feature of the problem at hand.In the present paper, we prove the existen
e of a global optimizer of (1.2), and also ofa family of regularized problems. The regularization 
onsists in repla
ing the 
onstraint
(σ,χ) ∈ K by a penalty term based on the Yosida approximation of the indi
ator fun
tion.Remarkably, the Yosida approximation leads to a lower-level problem whi
h allows aphysi
al interpretation in its own right, the so-
alled vis
oplasti
 approximation of (1.1).We also prove that every stri
t lo
al optimum of the original problem (1.2) is the stronglimit of lo
al solutions of the vis
oplasti
 optimal 
ontrol problems, as the regularizationparameter tends to ∞. The paper 
an thus be viewed as a preparatory step for thederivation of �rst-order ne
essary optimality 
onditions for (1.2) in the spirit of Ito andKunis
h [2000℄ and Hintermüller [2008℄, whi
h will be the subje
t of a subsequent paper.Let us put our work into perspe
tive. As was noted above, the weak formulation of (1.3)is equivalent to a mixed variational inequality of the �rst kind. The bi-level optimiza-tion problem (1.2) thus represents an optimal 
ontrol problem governed by an ellipti
variational inequality. This 
lass of problems has been adressed by many authors underdi�erent aspe
ts. We only mention Mignot [1976℄, Barbu [1984℄, Mignot and Puel [1984℄,Bonnans and Tiba [1991℄, Bonnans and Casas [1995℄, Bergounioux [1998℄, Bergouniouxand Zidani [1999℄, Ito and Kunis
h [2000℄, Hintermüller [2008℄, and the referen
es therein.In these 
ontributions, various te
hniques were used to establish �rst-order 
onditions foroptimal 
ontrol of ellipti
 variational inequalities of both, �rst and se
ond kind. To thebest of our knowledge, the optimal 
ontrol of mixed variational problems has not beenaddressed, let alone problems in the 
ontext of elastoplasti
ity. As another distinguishingfeature, we note that the Lagrange multiplier asso
iated to the equality 
onstraint in (1.1)appears in the obje
tive of the upper-level problem (1.2). Thus, the dis
ussion of (1.2)o�ers a genuine 
ontribution to the theory of optimal 
ontrol for variational inequalities.For the analysis, we follow the 
lassi
al approa
h of Barbu [1984℄, who employs a two-foldregularization to the lower-level problem, 
onsisting of a Yosida approximation of the in-di
ator fun
tion of the admissible set and the subsequent 
onvolution with a smoothingkernel. As was already noted, the Yosida approximation leads to a lower-level problemwhi
h allows a physi
al interpretation in its own right, the so-
alled vis
oplasti
 approx-imation of (1.1). This provides another motivation to analyze optimal 
ontrols for thevis
oplasti
 model.



3The paper is organized as follows. Notations, assumptions, and the weak formulationasso
iated to (1.3) are 
olle
ted in Se
tion 2. Se
tion 3 starts with a dis
ussion of the lower-level problem (1.1) by Lagrange te
hniques. We emphasize here that the same results
ould also be obtained using Fen
hel duality, 
f. for instan
e [Temam, 1983, Chapter III℄.The existen
e of solutions to (1.2) then follows from standard arguments. Se
tion 4 isdevoted to the analysis of the vis
oplasti
 approximation of the lower-level and bi-levelproblems (1.1) and (1.2), respe
tively. Using these results, the strong 
onvergen
e ofsolutions as the regularization parameter tends to ∞ is established in Se
tion 5.We remark that the lower-level problem (1.1) is 
alled the dual, or stress-based formu-lation. It is well known that an equivalent primal formulation exists, whi
h justi�es theexisten
e of the Lagrange multiplier u and its interpretation as the displa
ement �eld.The primal form is traditionally derived by means of Fen
hel duality, 
f. for instan
e[Temam, 1983, Chapter III℄. By employing Lagrange te
hniques in Se
tions 3 and 4, weo�er an alternative approa
h. In Appendix A, we also give an alternative form of theprimal problem, using Lagrangian duality. For 
onvenien
e of the reader, some resultson orthogonal proje
tions in Hilbert spa
es that are used in Se
tion 4 are 
olle
ted inAppendix B.2 Notation and Preliminary ResultsOur notation follows Han and Reddy [1999℄. We begin by re
alling some elements oftensor 
al
ulus. By Rd×d we denote the spa
e of real d × d matri
es, and Rd×dsym is thesubspa
e of symmetri
 matri
es. Throughout, all tensors will be 
onsidered with respe
tto the standard Cartesian basis. Therefore, se
ond-order tensors 
an be identi�ed withelements of Rd×d. They will be denoted by bold-fa
e upper-
ase letters, or by bold-fa
elower-
ase Greek letters. The standard s
alar produ
t of two ve
tors a, b ∈ Rd is denotedby a · b. Moreover, the s
alar produ
t of two matri
es A = (Aij) and B = (Bij) in Rd×dis de�ned by
A : B = Aij Bij ,where Einstein's summation 
onvention is used. This s
alar produ
t gives rise to theFrobenius norm on Rd×d, denoted by |A| = (A : A)1/2.Every tensor A 
an be uniquely de
omposed into its spheri
al and deviatori
 parts A =

AS +AD, where
AS =

1

d
(trA) I =

1

d
Akk (δij), AD = A− 1

d
(trA) I = (Aij) −

1

d
Akk (δij).Here δij is the Krone
ker delta, I = (δij) is the unit tensor, and tr(A) = Akk is the tra
eof A.A real tensor of fourth order is identi�ed with an element of R

d×d×d×d and it is denotedby A = (Aijkl). We de�ne the produ
ts A : B = (Aijkl Bklmn) and A : B = (Aijkl Bkl).De�nition 2.1. We say that a fourth-order tensor A is(a) symmetri
 if it has the following symmetry properties:
Aijkl = Ajikl = Aijlk = Ajilk,whi
h imply that A : B is a symmetri
 se
ond-order tensor whenever B is;



4 (b) 
oer
ive if
B : A : B ≥ c |B|2 for all B ∈ R

d×d (2.1)holds for some 
onstant c > 0.Remark 2.2. (a) If A is symmetri
, then it is su�
ient that (2.1) holds for all sym-metri
 matri
es B in order for A to be 
oer
ive.(b) If A is 
oer
ive, then it is invertible in the following sense: there exists a uniquefourth-order tensor A−1 su
h that
A

−1 : A : B = A : A
−1 : B = B for all B ∈ R

d×d.

A−1 is 
oer
ive as well. If, in addition, A is symmetri
, then A−1 is symmetri
,too.Now we turn to the fun
tional analyti
 setting.Assumption 2.3. Let Ω ⊂ Rd be a bounded domain with Lips
hitz boundary Γ in dimen-sion d ∈ {2, 3}. The boundary 
onsists of two disjoint parts ΓN and ΓD, where ΓD is arelatively 
losed set in Γ of positive measure, and no 
onne
ted 
omponent of ΓD 
onsistsof isolated points.Assumption 2.4. (a) The 
omponents of the elasti
ity tensor C in (1.1) are assumedto satisfy Cijkl ∈ L∞(Ω). For almost all x ∈ Ω, we assume that C(x) is 
oer
ive a
-
ording to De�nition 2.1, with a 
onstant c > 0 independent of x. (By Remark 2.2,the so-
alled 
omplian
e tensor C−1 exists almost everywhere with 
omponents in
L∞(Ω), and it satis�es a 
oer
ivity 
ondition with a 
onstant c′ > 0 independentof x.)The same is assumed for the hardening modulus H.(b) In addition, we assume that C(x) is symmetri
 in the sense of De�nition 2.1 (a).(This implies that C−1(x) is symmetri
 as well.)(
) Without loss of generality, we infer from the obje
tive in (1.1) that C−1 satis�es
(C−1)ijkl = (C−1)klij, i.e., σ : C−1 : τ = τ : C−1 : σ holds for all σ, τ ∈ Rd×d.The same is true for H

−1.In homogeneous isotropi
 materials, C is given by
Cijkl = λ δij δkl + µ (δik δjl + δil δjk)where µ and λ are the Lamé 
onstants. When µ > 0 and d λ + 2 µ > 0 hold, then

C satis�es Assumption 2.4. A 
ommon example for the hardening modulus is given by
H = diag(k1) with hardening 
onstant k1 > 0, see [Han and Reddy, 1999, Se
tion 3.4℄.Assumption 2.5 (Set of admissible generalized stresses).(a) The set K ⊂ Rd×dsym × Rd×d is assumed to be nonempty, 
losed and 
onvex with

(0, 0) ∈ K.(b) For all A ∈ Rd×dsym, we assume that
(σ,χ) ∈ K ⇒ (σ +A,χ−A) ∈ K.



5Remark 2.6 (Safe load 
ondition). Kinemati
 hardening is 
hara
terized by a translationof the initial yield surfa
e during plasti
 loading, see [Han and Reddy, 1999, p. 69℄. Inother words, whether or not a generalized stress state (σ,χ) belongs to the admissible set
K depends only on σ+χ. Assumption 2.5 (b) is thus natural for problems with kinemati
hardening. Note that is equivalent to K + (A,−A) = K for all A ∈ Rd×dsym.Moreover, Assumption 2.5 (b) 
an be interpreted as a parti
ular form of the safe load
ondition. In fa
t, Assumption 2.5 implies that an admissible generalized stress exists forarbitrary loads, see Proposition 3.1.Example 2.7. Assumption 2.5 is satis�ed, for instan
e, by the von Mises yield 
onditionin 
ase of linear kinemati
 hardening, i.e.,

K = {(σ,χ) ∈ R
d×d : |σD + χD| ≤

√
2/3σ0}, (2.2)where σ0 is the initial uni-axial yield stress, 
ompare [Han and Reddy, 1999, p.69, p.182℄.De�nition 2.8. We de�ne

V = H1
D(Ω; Rd) = {u ∈ H1(Ω; Rd) : u = 0 on ΓD},

S = L2(Ω; Rd×dsym), M = L2(Ω; Rd×d).as spa
es for the displa
ement u, stress σ, and ba
k stress χ, respe
tively.Now we are in the position to de�ne the following bilinear forms asso
iated to the stati
plasti
ity problem.De�nition 2.9. For Σ = (σ,χ) ∈ S × M and T = (τ ,µ) ∈ S × M , de�ne
a(Σ,T ) =

∫

Ω

σ : C
−1 : τ dx +

∫

Ω

χ : H
−1 : µ dx. (2.3)For σ ∈ S and v ∈ V , let

b(σ,v) = −
∫

Ω

σ : ε(v) dx. (2.4)We re
all that ε(v) = 1
2

(
∇v + (∇v)⊤

) denotes the strain tensor. We also de�ne anoperator B : S → V ′ asso
iated to b, by
〈Bσ,v〉 = b(v,σ).Here and in the following, 〈· , ·〉 denotes the dual pairing between V ′ and V , and V ′ is thedual spa
e of V w.r.t. the topology of L2(Ω; Rd).Note that the obje
tive in (1.1) 
an be expressed as 1

2
a(Σ,Σ). As a 
onsequen
e ofAssumption 2.4, a is 
oer
ive on S × M , i.e., there exists α > 0 su
h that

a(Σ,Σ) ≥ α ‖Σ‖2
S×M (2.5)holds for all Σ ∈ S ×M . Moreover, a is bounded on S ×M , i.e., there exists α > 0 su
hthat

|a(Σ,T )| ≤ α ‖Σ‖S×M‖T ‖S×M (2.6)holds for all Σ,T ∈ S × M . The bilinear form b is bounded on S × V ,
b(σ,v) ≤ β ‖σ‖S‖v‖V (2.7)



6and it satis�es the 
ondition of Babu²ka-Brezzi, i.e., there exists β > 0 su
h that
sup

σ∈S\{0}

b(σ,v)

‖σ‖S

≥ β ‖v‖V for all v ∈ V. (2.8)This follows from Korn's inequality, see e.g., [Temam, 1983, Proposition 1.1 and Re-mark 1.1℄,
‖u‖2

H1(Ω;Rd) ≤ cK

(
‖u‖2

L2(ΓD ;Rd) + ‖ε(u)‖2
L2(Ω;Rd×d)

) (2.9)for all u ∈ H1(Ω; Rd). Note that (2.9) also implies that ‖ε(u)‖L2(Ω;Rd×d) is a norm on
H1

D(Ω; Rd) equivalent to the natural norm.As a 
onsequen
e of (2.8), the following lemma holds, see Brezzi [1974℄:Lemma 2.10. For any given ℓ ∈ V ′, the equation
b(σ,v) = 〈ℓ,v〉 for all v ∈ Vhas a unique solution σ ∈ (ker B)⊥ and the estimate

‖σ‖S ≤ cB ‖ℓ‖V ′. (2.10)holds with a 
onstant cB independent of ℓ.De�nition 2.11 (Weak solution). Let f ∈ L2(Ω; Rd) and g ∈ L2(ΓN ; Rd) be given. Atriple (Σ,u) = (σ,χ,u) ∈ S × M × V is 
alled a weak solution of (1.3) if Σ ∈ K and
a(Σ,T − Σ) + b(τ − σ,u) ≥ 0 for all T = (τ ,µ) ∈ K (2.11a)

b(σ,v) = 〈ℓ,v〉 for all v ∈ V, (2.11b)where
K = {Σ = (σ,χ) ∈ S × M : (σ(x),χ(x)) ∈ K a.e. in Ω} (2.12)is the set of admissible generalized stresses and

〈ℓ, v〉 = −
∫

Ω

f · v dx −
∫

ΓN

g · v ds. (2.13)The reader will verify that the above variational formulation is obtained from (1.3) byformal integration by parts. Similarly, we reformulate the stress problem (1.1) asMinimize 1

2
a(Σ,Σ)s.t. b(σ,v) = 〈ℓ,v〉 for all v ∈ Vand Σ = (σ,χ) ∈ K.





(L)Consequently, we 
onsider from now on the following bi-level optimization problem, whi
his the weak form of (1.2):Minimize F (u,f , g) :=
1

2
‖u− ud‖2

L2(Ω;Rd)

+
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. the plasti
ity problem (L) with ℓ as in (2.13).




(P)



73 Existen
e of SolutionsThe theory of (P) is 
learly based on the existen
e and uniqueness results for (L). Here,we will take the 
onvex optimization point of view and derive ne
essary and su�
ientoptimality 
onditions for (L) by means of a Lagrange multiplier approa
h. As pointedout in the introdu
tion, it is to be noted that these results are not genuine and 
an also beobtained by means of Fen
hel duality (
f. [Temam, 1983, Chapter III℄) or standard argu-ments for variational inequalities (see for instan
e Kinderlehrer and Stampa

hia [1980℄).Nevertheless, it is interesting to see how standard te
hniques in 
onvex optimization yieldthat the displa
ement �eld 
an be viewed as a Lagrange multiplier asso
iated to theequality 
onstraints in (L), 
f. Proposition 3.2.3.1. Analysis of the Lower-Level Problem. In this se
tion we dis
uss the existen
eand uniqueness of solutions for the lower-level problem (L).Proposition 3.1 (Existen
e and uniqueness). For every ℓ ∈ V ′, problem (L) possesses aunique solution (σ,χ) ∈ S × M .Proof. The proof uses standard arguments. The obje
tive in (L) is uniformly 
onvex dueto the 
oer
ivity of a, and radially unbounded. The admissible set
Kℓ = {Σ = (σ,χ) ∈ K : b(σ,v) = 〈ℓ,v〉 for all v ∈ V } (3.1)is 
losed and 
onvex (hen
e weakly 
losed) due to Assumption 2.5. From Lemma 2.10, weobtain σ̃ ∈ (ker B)⊥ ⊂ S su
h that the equality 
onstraint is satis�ed. With Σ̃ = (σ̃,−σ̃),the 
onditions on K in Assumption 2.5 imply Σ̃ ∈ K, and thus K is nonempty. The weaklower semi
ontinuity of the obje
tive therefore yields the existen
e of a solution, whi
h isunique due to the uniform 
onvexity. �Next we address the �rst-order ne
essary and su�
ient optimality 
onditions for problem(L).Proposition 3.2 (Optimality 
onditions, existen
e of the displa
ement �eld). For given

ℓ ∈ V ′ and Σ = (σ,χ) ∈ K, the following are equivalent:
(i) Σ is the unique solution of (L),

(ii) there exists a Lagrange multiplier u ∈ V su
h that (2.11) holds,
(iii) Σ ∈ Kℓ and the variational inequality

a(Σ,T −Σ) ≥ 0 for all T ∈ Kℓ (3.2)holds, with Kℓ as de�ned in (3.1).Proof. (i) ⇔ (ii): We apply the generalized Karush-Kuhn-Tu
ker theory. To this end, weverify the 
onstraint quali�
ation a

ording to Zowe and Kur
yusz. For problem (L), thisamounts to verifying the surje
tivity of B, whi
h follows from Lemma 2.10. We asso
iateto (L) the Lagrangian
L(σ,χ,u) =

1

2
a((σ,χ), (σ,χ)) + b(σ,u) − 〈ℓ,u〉.



8Theorem 4.1 in Zowe and Kur
yusz [1979℄ implies the existen
e of a Lagrange multiplier
u ∈ V , su
h that the optimality system

L(σ,χ)(σ,χ,u)(τ − σ,µ− χ) ≥ 0 for all (τ ,µ) ∈ K
Lu(σ,χ,u) = 0,is satis�ed, whi
h is the same as (2.11). The su�
ien
y of (2.11) for optimality of (σ,χ)is standard for 
onvex problems.

(i) ⇔ (iii): Sin
eKℓ is 
onvex, (3.2) are ne
essary and su�
ient for optimality by standardarguments. �The above theorem does not imply the uniqueness of the Lagrange multiplier u. Theuniqueness follows, however, from the following lemma.Lemma 3.3 (Lips
hitz stability). For any given ℓ1, ℓ2 ∈ V ′, the asso
iated solutions
(σ1,χ1,u1) and (σ2,χ2,u2) satisfy

‖σ1 − σ2‖S + ‖χ1 − χ2‖M + ‖u1 − u2‖V ≤ L ‖ℓ1 − ℓ2‖V ′ , (3.3)where L is independent of ℓ1, ℓ2.Proof. Step 1: Estimate for (σ,χ)The estimate for (σ,χ) is obtained by 
hoosing appropriate test fun
tion T = (τ ,µ)in the variational inequality (3.2). Let σ̃ be the unique solution in (ker B)⊥ ⊂ S of
b(σ̃,v) = 〈ℓ1 − ℓ2,v〉 for all v ∈ V (see Lemma 2.10), and set χ̃ = −σ̃. Then T 1 =
(τ 1,µ1) := (σ2,χ2) + (σ̃, χ̃) ∈ Kℓ1 is an admissible test fun
tion for (3.2), evaluated at
Σ1 = (σ1,χ1) sin
e

b(τ 1,v) = b(σ2,v) + b(σ̃,v) = 〈ℓ2,v〉 + 〈ℓ1 − ℓ2,v〉 = 〈ℓ1,v〉holds for all v ∈ V , and
(σ2,χ2) ∈ K ⇒ T 1 = (σ2 + σ̃,χ2 + χ̃) = (σ2 + σ̃,χ2 − σ̃) ∈ Kby Assumption 2.5. Consequently we obtain from (3.2)

a(Σ1,Σ2 −Σ1) ≥ −a(Σ1, (σ̃, χ̃)).Similarly, one shows that T 2 = (τ 2,µ2) := (σ1,χ1) − (σ̃, χ̃) lies in Kℓ2, i.e., it is anadmissible test fun
tion for (3.2) evaluated at (σ2,χ2). This yields
a(Σ2,Σ1 − Σ2) ≥ a(Σ2, (σ̃, χ̃)).Adding these inequalities gives

a(Σ1 −Σ2,Σ1 −Σ2) ≤ a(Σ1 − Σ2, (σ̃, χ̃))The left hand side 
an be estimated by (2.5). By 
onstru
tion and the a priori estimate(2.10), ‖σ̃‖S ≤ cB ‖ℓ1 − ℓ2‖V ′ holds. Hen
e we 
an estimate
α ‖Σ1 −Σ2‖2

S×M ≤ cB α ‖ℓ1 − ℓ2‖V ′‖Σ1 − Σ2‖S×M .Step 2: Estimate for uThe estimates for the displa
ement are obtained by using
T 1 = (τ 1,µ1) := (σ2 + ε(u1 − u2),χ2 − ε(u1 − u2)),

T 2 = (τ 2,µ2) := (σ1 + ε(u2 − u1),χ1 − ε(u2 − u1))



9as test fun
tions in (2.11a). Note that τ 1 is symmetri
, and (τ 1,µ1) ∈ K holds a.e. in Ωin view of (σ2,χ2) ∈ K and Assumption 2.5, applied with A = −ε(u1 −u2). This showsthat T 1 ∈ K holds, and a similar argument applies when verifying T 2 ∈ K. We obtainfrom (2.11a) the estimates
a(Σ1,T 1 −Σ1) + b(τ 1 − σ1,u1) ≥ 0

a(Σ2,T 2 −Σ2) + b(τ 2 − σ2,u2) ≥ 0or equivalently
a(Σ1,Σ2 −Σ1) −

∫

Ω

ε(u1 − u2) : ε(u1) dx

− b(C−1 : σ1,u1 − u2) + b(H−1 : χ1,u1 − u2) + b(σ2 − σ1,u1) ≥ 0,

a(Σ2,Σ1 −Σ2) −
∫

Ω

ε(u2 − u1) : ε(u2) dx

− b(C−1 : σ2,u2 − u1) + b(H−1 : χ2,u2 − u1) + b(σ1 − σ2,u2) ≥ 0.Adding both inequalities yields
a(Σ1 − Σ2,Σ1 − Σ2) +

∫

Ω

ε(u1 − u2) : ε(u1 − u2) dx

≤ b(H−1 : (χ1 − χ2),u1 − u2)

− b(C−1 : (σ1 − σ2),u1 − u2) − b(σ1 − σ2,u1 − u2).

(3.4)The left hand side 
an be estimated by (2.5) and (2.9). In view of (2.7) and Assump-tion 2.4, the right hand side is bounded by a multiple of ‖Σ1 − Σ2‖‖u1 − u2‖. We thusobtain
a ‖Σ1 − Σ2‖2 + c−1

K ‖u1 − u2‖2
H1(Ω;Rd) ≤ C ‖Σ1 − Σ2‖‖u1 − u2‖.Young's inequality and the estimate for ‖Σ1 −Σ2‖ from Step 1 yield the desired estimate(3.3). �Remark 3.4. We point out that the Lagrange mutiplier u 
an be physi
ally interpreted asdispla
ement �eld. It solves an optimization problem whi
h is known as primal problemof stati
 elastoplasti
ity, see for instan
e [Han and Reddy, 1999, Se
tion 7℄. As shown inAppendix A this optimization problem is equivalent to the dual problem of (L).3.2. Dis
ussion of the Bi-Level Problem (P). Based on the results of Subse
tion3.1, we derive the existen
e of a global optimizer of problem (P). As a 
onsequen
e ofProposition 3.2, we 
an repla
e the lower-level problem (L) by its ne
essary and su�
ientoptimality 
onditions (2.11). We introdu
e the spa
e of admissible 
ontrols

U := L2(Ω; Rd) × L2(ΓN ; Rd).As in (2.13), we asso
iate to given (f , g) ∈ U a fun
tional ℓ = R(f , g) through
〈R(f , g),v〉 := −

∫

Ω

f · v dx −
∫

ΓN

g · v ds, v ∈ V.Lemma 3.5. The operator R : U → V ′ is linear and 
ompa
t.Proof. The embedding V →֒L2(Ω; Rd) and the tra
e operator V → L2(ΓN) are 
ompa
t.The operator R is the (negative) adjoint, and thus it is 
ompa
t as well. �



10The results of the previous se
tion give rise the de�nition of a solution operator for thelower-level problem (L),
S : U ∋ (f , g) 7→ (σ,χ,u) ∈ Y := S × M × V.The individual 
omponents of S will be denoted by Sσ, Sχ and Su. Note that S isnonlinear due to the presen
e of the 
onstraint (σ,χ) ∈ K. By Lemma 3.3 and 3.5, S isLips
hitz 
ontinuous and 
ompa
t.Based on the properties of S, we obtain a global minimizer of (P) as in [Hintermüller,2001, Theorem 2.2℄. Due to the nonlinearity of S, the minimizer 
an not be expe
ted tobe unique.Proposition 3.6. Problem (P) possesses a global optimal solution (f ∗, g∗) ∈ U .Proof. Let j := inf F (Su(f , g),f , g), where the in�mum extends over the spa
e U , andlet {(fn, gn)} be a minimizing sequen
e. Then {(fn, gn)} is bounded in U , and hen
e itpossesses a weakly 
onvergent subsequen
e (fn′, gn′)⇀(f∗, g∗) in U . The 
ompa
tness of

S implies that the 
orresponding solutions (σn′,χn′ ,un′) of the lower-level problem (L)
onverge to (σ∗,χ∗,u∗) in S × M × V . The weak lower semi
ontinuity of the obje
tiveimplies that (f ∗, g∗) is a global optimum of (P). �4 Vis
oplasti
 ApproximationBefore we turn to the vis
oplasti
 approximation of (L), let us state some known resultson orthogonal proje
tions in Hilbert spa
es that will be useful in the following. Theasso
iated proofs are given in Appendix B.Lemma 4.1 (Di�erentiability and Shift-Invarian
e). Let H be a Hilbert spa
e, C ⊂ H bea nonempty 
losed 
onvex set, and denote by PC(x) the orthogonal proje
tion of x onto
C. (a) The fun
tion F (x) = 1

2
‖x − PC x‖2 is 
onvex and Fré
het di�erentiable with de-rivative F ′(x) = x − PC x.(b) The derivative F ′ is a monotone operator, i.e., (F ′(x) − F ′(y), x − y) ≥ 0 holdsfor all x, y ∈ H.(
) (F ′(x), x − y) ≥ 0 for all x ∈ H and all y ∈ C.(d) If a + C = C for some element a ∈ H holds, then PC x = PC(x + a) − a and

F ′(x) = F ′(x + a) for all x ∈ H.Next, we introdu
e the vis
oplasti
 regularization of (L):Minimize 1

2
a(Σ,Σ) +

γ

2
‖Σ − PK(Σ)‖2

S×Ms.t. b(σ,v) = 〈ℓ,v〉 for all v ∈ V,
(Lγ)where γ > 0 is a given real number and PK denotes the orthogonal proje
tion on K. Aspointed out in the introdu
tion, (Lγ) has a physi
al motivation in its own right, see forinstan
e [Simo and Hughes, 1998, Se
tion 2.7℄.



11Remark 4.2. The vis
oplasti
 problem (Lγ) represents a penalized version of (L) in thesense that the inequality 
onstraints in (L) are repla
ed by a quadrati
 penalty term in theobje
tive fun
tional. This is also known as Yosida regularization of the indi
ator fun
tionasso
iated to K. This type of regularization is parti
ularly well-suited for the optimal
ontrol of variational inequalities, as demonstrated for instan
e in the 
lassi
al book Barbu[1984℄, or more re
ently in Ito and Kunis
h [2000℄, Hintermüller [2008℄, where Barbu'sapproa
h is modi�ed by means of a feasibility shift. However, due to the non-smoothness ofthe proje
tion, an additional regularization will be ne
essary to derive �rst-order optimality
onditions, see e.g. Barbu [1984℄ or Mignot and Puel [1984℄. As optimality 
onditions willbe topi
 of a subsequent paper, two-fold smoothing is not 
onsidered in this work.For 
onvenien
e, we de�ne
Jγ(Σ) =

γ

2
‖Σ − PK(Σ)‖2.Sin
e Jγ is 
onvex by Lemma 4.1, we �nd the following analog to Proposition 3.1:Proposition 4.3. For every ℓ ∈ V ′ and every γ > 0, there exists a unique solution

Σγ = (σγ ,χγ) ∈ S × M of problem (Lγ).On the basis of Lemma 2.10 and [Zowe and Kur
yusz, 1979, Theorem 4.1℄, one obtainsne
essary and su�
ient optimality 
onditions for (Lγ), similarly to Theorem 3.2. To thisend, let us de�ne
Ceq

ℓ = {Σ = (σ,χ) ∈ S × M : b(σ,v) = 〈ℓ,v〉 for all v ∈ V }.Proposition 4.4. Let ℓ ∈ V ′ and γ > 0 be given. For Σγ ∈ S × M , the following areequivalent:
(i) Σγ is the unique solution of (Lγ),

(ii) there exists a Lagrange multiplier uγ ∈ V su
h that the following optimality systemis ful�lled:
a(Σγ ,T ) + b(τ ,uγ) + (J ′

γ(Σγ),T ) = 0 for all T = (τ ,µ) ∈ S × M (4.1a)
b(σγ,v) = 〈ℓ,v〉 for all v ∈ V, (4.1b)where J ′

γ(Σ) = γ (Σ − PK(Σ)) ∈ S × M is the derivative of Jγ,
(iii) Σγ ∈ Ceq

ℓ satis�es
a(Σγ,T − Σγ) + (J ′

γ(Σγ),T − Σγ) ≥ 0 for all T ∈ Ceq
ℓ . (4.2)As in 
ase of (L), the uniqueness of uγ follows from the following Lips
hitz property of

ℓ 7→ (Σγ,uγ):Lemma 4.5. Let ℓ1, ℓ2 ∈ V ′ and γ > 0 be given. Let (σγ,1,χγ,1,uγ,1) and (σγ,2,χγ,2,uγ,2)denote the solutions of (Lγ) asso
iated to ℓ1 and ℓ2, respe
tively. Then
‖σγ,1 − σγ,2‖S + ‖χγ,1 − χγ,2‖M

+ ‖uγ,1 − uγ,2‖V ≤ L ‖ℓ1 − ℓ2‖V ′holds with the same 
onstant L as in Lemma 3.3. In parti
ular, this yields the uniquenessof the displa
ement �elds.



12Proof. The proof pro
eeds similarly to the proof of Lemma 3.3 so we 
an fo
us here onthe arguments whi
h di�er.Step 1: Estimate for (σ,χ)Let again σ̃ be the unique solution in (ker B)⊥ ⊂ S of b(σ̃,v) = 〈ℓ1 − ℓ2,v〉 for all v ∈ V ,and set Σ̃ = (σ̃,−σ̃). We set Σγ,i = (σγ,i,χγ,i) for i = 1, 2 and use
T 1 = Σγ,2 + Σ̃, T 2 = Σγ,1 − Σ̃as test fun
tions in (4.2), whi
h yields

a(Σγ,1 − Σγ,2,Σγ,1 − Σγ,2)

≤ (J ′
γ(Σγ,1) − J ′

γ(Σγ,2),Σγ,2 − Σγ,1 + Σ̃) + a(Σγ,1 −Σγ,2, Σ̃).The �rst term on the right hand side was not present in Lemma 3.3. Assumption 2.5implies that K+Σ̃ = K holds. Using the shift invarian
e of J ′
γ from part (d) of Lemma 4.1,we infer that J ′

γ(Σγ,2) = J ′
γ(Σγ,2 + Σ̃) holds. Thus we have

(J ′
γ(Σγ,1) − J ′

γ(Σγ,2),Σγ,2 − Σγ,1 + Σ̃)

= −(J ′
γ(Σγ,1) − J ′

γ(Σγ,2 + Σ̃),Σγ,1 − (Σγ,2 + Σ̃)) ≤ 0,and the inequality follows from the monotoni
ity of the derivative, see part (b) of Lemma 4.1.From here we 
an 
ontinue as in the proof of Lemma 3.3 until the end of step 1.Step 2: Estimate for uIn order to derive the esimates for the displa
ements, we set
T̃ := (ε(uγ,1 − uγ,2), −ε(uγ,1 − uγ,2))and use

T 1 = (τ 1,µ1) := Σγ,2 − Σγ,1 + T̃ , T 2 = (τ 2,µ2) := Σγ,1 − Σγ,2 − T̃as test fun
tions in (4.1a). Adding both equations yields
a(Σγ,1 − Σγ,2,Σγ,1 −Σγ,2) +

∫

Ω

ε(uγ,1 − uγ,2) : ε(uγ,1 − uγ,2) dx

+ (J ′
γ(Σγ,1) − J ′

γ(Σγ,2),Σγ,1 −Σγ,2 − T̃ )

= b(H−1 : (χγ,1 − χγ,2),uγ,1 − uγ,2) − b(C−1 : (σγ,1 − σγ,2),uγ,1 − uγ,2)

− b(σγ,1 − σγ,2,uγ,1 − uγ,2). (4.3)Ex
ept for the term involving J ′
γ , this is the same as (3.4) in the proof of Lemma 3.3.Similarly as in the dis
ussion in Step 1 above, we infer that J ′

γ(Σγ,2) = J ′
γ(Σγ,2 + T̃ ) andhen
e

(J ′
γ(Σγ,1) − J ′

γ(Σγ,2),Σγ,1 − Σγ,2 − T̃ )

= (J ′
γ(Σγ,1) − J ′

γ(Σγ,2 + T̃ ),Σγ,1 − (Σγ,2 + T̃ )) ≥ 0holds. Now (4.3) has exa
tly the same stru
ture as (3.4), and we get the desired estimatewith the same Lips
hitz 
onstant L. �



13It is easy to see that (Σ,u) = 0 solves (4.1) for ℓ = 0. Hen
e Lemma 4.5 yields thefollowing a priori estimate:Corollary 4.6. For every ℓ ∈ V ′, one has
‖σγ‖S + ‖χγ‖M

+ ‖uγ‖V ≤ L ‖ℓ‖V ′.Remark 4.7. We point out that the monotoni
ity and shift-invarian
e of J ′
γ are essentialfor the analysis above. The assertion of Lemma 4.5 would also follow from a boundednessproperty of J ′

γ, whi
h was used in the proof of Theorem 8.12 in Han and Reddy [1999℄.However, the veri�
ation of this property remains in doubt.By 
ombining the analysis of [Han and Reddy, 1999, Se
tion 8℄ and Hintermüller [2001℄,we now prove the strong 
onvergen
e of (Σγ ,uγ) to the solution of (L), denoted as aboveby (Σ,u). A similar result is proved in [Temam, 1983, Theorem III.1.1℄ for the Hen
kymodel.Theorem 4.8. Let ℓ ∈ V ′ be �xed, but arbitrary. Then, the solution and the Lagrangemultiplier of (Lγ) 
onverge strongly to the solution and the Lagrange multiplier of (L) as
γ tends to ∞, i.e.,

(σγ ,χγ,uγ) → (σ,χ,u) in S × M × V, as γ → ∞.Proof. The following analysis relies on a 
ombination of arguments introdu
ed in Hanand Reddy [1999℄ and Hintermüller [2001℄. We start with a given sequen
e of penaltyparameters {γk} tending to∞ as k → ∞. The asso
iated solution and Lagrange multiplierof (Lγk
) is denoted by (Σk,uk) = (σk,χk,uk). As before, we split the proof into twosteps. First we prove the 
onvergen
e of {Σk} by employing (4.2). Se
ondly, the strong
onvergen
e of {uk} is derived by similar arguments as in the proof of Lemma 4.5.Step 1: Convergen
e of {Σk}By Corollary 4.6, the sequen
e {Σk} is bounded in S × M . Hen
e, there is a weakly
onverging subsequen
e, for simpli
ity it is also denoted by {Σk}. The weak limit isdenoted by Σ and we show Σ ∈ Kℓ. As in the proof of Lemma 3.3, Lemma 2.10 gives theexisten
e of a unique σ̃ ∈ (ker B)⊥ su
h that Σ̃ = (σ̃,−σ̃) ∈ Ceq

ℓ . Moreover, Σ̃ ∈ K holdsthanks to Assumption 2.5 and therefore, one has Jγk
(Σ̃) = 0 for all k ∈ N. The 
onvexityof Jγ thus implies

Jγk
(Σk) ≤

(
J ′

γk
(Σk),Σk − Σ̃

)
≤ a(Σk, Σ̃ −Σk).We used (4.2) for the last estimate, whi
h is appli
able here, sin
e Σ̃ ∈ Ceq

ℓ by 
onstru
tion.Hen
e, (2.6), (2.10) and Corollary 4.6 allow us to 
on
lude
Jγk

(Σk) ≤ (α L2 +
√

2 cB L) ‖ℓ‖2
V ′ =: C,whi
h implies the boundedness of Jγk

(Σk). By de�nition of Jγ, we therefore obtain
0 ≤ ‖Σ − PK(Σ)‖2

S×M ≤ lim inf
k→∞

‖Σk − PK(Σk)‖2
S×M

≤ lim sup
k→∞

‖Σk − PK(Σk)‖2
S×M ≤ 2C

γk
→ 0, as k → ∞.



14Here, we used the weak lower semi
ontinuity of ‖ · −PK( · )‖ whi
h follows from Lemma4.1. Hen
e, Σ = PK(Σ) holds, whi
h implies Σ ∈ K. Sin
e Σ ∈ Ceq
ℓ due to the weak
onvergen
e σk ⇀ σ in S, we obtain Σ ∈ Kℓ, i.e., Σ is feasible for (L).The optimality of Σk gives

1

2
a(Σk,Σk) + Jγk

(Σk) ≤
1

2
a(T ,T ) + Jγk

(T ) for all T ∈ Ceq
ℓ .The above inequality holds in parti
ular for all T ∈ Ceq

ℓ ∩ K = Kℓ, and 
onsequently
1

2
a(Σk,Σk) ≤

1

2
a(T ,T ) for all T ∈ Kℓ,where we used the non-negativity of Jγk
(Σk) and Jγk

(T ) = 0 for T ∈ K for all k ∈ N.Sin
e Σ ∈ Kℓ as seen above, the weak lower semi
ontinuity of a( · , · ) thus implies
1

2
a(Σ,Σ) ≤ lim inf

k→∞

1

2
a(Σk,Σk)

≤ lim sup
k→∞

1

2
a(Σk,Σk) ≤

1

2
a(T ,T ) for all T ∈ Kℓ.

(4.4)Therefore, Σ is the unique solution of (L), so as before, we simply denote it by Σ forthe rest of the proof. By standard arguments, the uniqueness of Σ guarantees the weak
onvergen
e of the whole sequen
e.By inserting T = Σ in (4.4), the 
onvergen
e a(Σk,Σk) → a(Σ,Σ) follows. Sin
e a(Σ,Σ)is an equivalent norm on S by (2.5) and (2.6), this implies 
onvergen
e of the norm,i.e., ‖Σk‖S×M → ‖Σ‖S×M . Together with the weak 
onvergen
e, strong 
onvergen
e isobtained.Step 2: Convergen
e of {uk}If we insert T 1 − Σk with T 1 ∈ K as test fun
tion in (4.1a), then part (
) of Lemma 4.1implies
a(Σk,T 1 − Σk) + b(τ 1 − σk,uk) ≥ 0 for all T 1 = (τ 1,µ1) ∈ K. (4.5)Moreover, as Σ is the unique solution of (L), it ful�lls (2.11a), i.e.,

a(Σ,T 2 −Σ) + b(τ 2 − σ,u) ≥ 0 for all T 2 = (τ 2,µ2) ∈ K. (4.6)Here u is the asso
iated Lagrange multiplier, whi
h is unique by Lemma 3.3. Next, wepro
eed similarly to step 2 in the proof of Lemma 3.3. Sin
e Σ ∈ K, Assumption 2.5allows us to insert T 1 = (σ + ε(uk − u),χ− ε(uk − u)) into (4.5). Unfortunately, Σk isnot feasible for (4.6), but we 
an use PK(Σk) instead and insert
T 2 = (P σ

K (σk) + ε(u− uk), P
χ
K (χk) − ε(u− uk)).Here, P σ

K and P χ
K refer to the 
omponents of PK. Adding the arising inequalities give

a(Σ −Σk,Σ − Σk) +

∫

Ω

ε(u− uk) : ε(u− uk) dx

≤ b(H−1 : (χ− χk),u− uk) − b(C−1 : (σ − σk),u− uk) − b(σ − σk,u− uk)

+ a(Σ, PK(Σk) −Σk) + b(P σ
K (σk) − σk,u).



15The terms on the left hand side as well as the �rst three addends on the right hand side
an be estimated as in the proof of Lemma 3.3. Using (2.6) and (2.7) for the remaingterms, we obtain
‖u− uk‖2

V ≤ c
(
‖Σ‖S×M‖PK(Σk) −Σk‖S×M + ‖u‖V ‖σk − P σ

K (σk)‖S

+ ‖Σ − Σk‖S×M‖u− uk‖V

)
.Now, the 
ontinuity of PK implies PK(Σk) → PK(Σ) = Σ su
h that the 
onvergen
e of

{Σk} and an appli
ation of Young's inequality yield the desired 
onvergen
e of {uk}.The above argument is valid for arbitrary sequen
es γk → ∞. The limit (σ,χ,u) is theunique solution and Lagrange multiplier of (L). Therefore, (σγ,χγ,uγ) → (σ,χ,u) holdsas 
laimed. �Remark 4.9. We point out that the arguments for the 
onvergen
e of σ are similar tothose in the proof of Theorem III.1.1 in Temam [1983℄ for the Hen
ky model. However,due to the low regularity of the displa
ement �eld u, 
orresponding 
onvergen
e result for
u 
annot be expe
ted in that 
ase.Next, we turn to the bi-level problem asso
iated to (Lγ) whi
h is given byMinimize F (u,f , g) :=

1

2
‖u− ud‖2

L2(Ω,Rd)

+
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. (Lγ) with ℓ = R(f , g).





(Pγ)Based on the above results, it is straightforward to adapt the proof of Proposition 3.6 toproblem (Pγ) to obtain:Proposition 4.10. For ea
h γ > 0, problem (Pγ) has a global optimal solution (f ∗
γ, g

∗
γ) ∈

U .Remark 4.11. As a 
onsequen
e of Proposition 4.4, we 
an repla
e the lower-level prob-lem (Lγ) by its ne
essary and su�
ient optimality 
onditions (4.1). We point out that(Pγ) then be
omes an optimal 
ontrol problem for a partial di�erential equation in mixedvariational form (4.1).5 Convergen
e for the Upper-Level SolutionsThe results of the previous se
tion give rise the de�nition of a solution operator for thevis
oplasti
 lower-level problem (Lγ),
Sγ : U ∋ (f , g) 7→ (σγ ,χγ,uγ) ∈ Y := S × M × V.Note that Sγ is nonlinear due to the term involving J ′

γ . By Lemma 4.5 and 3.5, Sγ isLips
hitz 
ontinuous and 
ompa
t, both uniformly with respe
t to γ.Theorem 5.1. Let {γk} be a sequen
e tending to ∞ and let (f∗
k, g

∗
k) denote a globalsolution to (Pγ) with γ = γk.(a) There exists an a

umulation point (f∗, g∗) in the strong topology of U .



16 (b) Every weak a

umulation point of {(f ∗
k, g

∗
k)} is a global optimal solution of (P).Proof. We denote by Sk the solution operator asso
iated to γk. The optimality of (f∗

k, g
∗
k),the feasibility of (0, 0) and Sk(0, 0) = (0, 0, 0) for every k (see Corollary 4.6) imply

1

2
‖Su

k (f∗
k, g

∗
k) − ud‖2

L2(Ω;Rd) +
ν1

2
‖f ∗

k‖2
L2(Ω;Rd) +

ν2

2
‖g∗k‖2

L2(ΓN ;Rd)

≤ 1

2
‖Su

k (f , g) − ud‖2
L2(Ω;Rd) +

ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd) (5.1)for all (f , g) ∈ U . Inserting (f , g) = (0, 0) and observing that Sk(0, 0) = 0, we obtain theboundedness of the sequen
e {(f∗
k, g

∗
k)} in U . And thus there exists a weakly 
onvergentsubsequen
e, whi
h we denote by {(f∗

k′, g∗k′)}. The weak limit in U is 
alled (f ∗, g∗).Using Lemma 4.5, we infer
‖Sk′(f ∗

k′, g∗k′) − Sk′(f ∗, g∗)‖Y ≤ L ‖R(f∗
k′, g∗k′) − R(f ∗, g∗)‖V ′ ,whi
h 
onverges to zero as k′ → ∞ due to the 
ompa
tness of R (Lemma 3.5). Moreover,we have Sk′(f ∗, g∗) → S(f ∗, g∗) for k′ → ∞ due to Theorem 4.8. Thus we 
on
lude

‖Sk′(f∗
k′, g∗k′) − S(f∗, g∗)‖Y

≤ ‖Sk′(f ∗
k′, g∗k′) − Sk′(f ∗, g∗)‖Y + ‖Sk′(f ∗, g∗) − S(f∗, g∗)‖Y → 0 as k′ → ∞.Together with the weak lower semi
ontinuity of norms, this implies

F (Su(f∗, g∗),f∗, g∗) ≤ lim inf
k′→∞

F (Su
k′(f∗

k′, g∗k′),f∗
k′, g∗k′)

≤ lim sup
k′→∞

F (Su
k′(f∗

k′, g∗k′),f∗
k′, g∗k′)

≤ lim sup
k′→∞

F (Su
k′(f , g),f , g) by (5.1)

= F (Su(f , g),f , g) by Theorem 4.8for all (f , g) ∈ U . Therefore, (f∗, g∗) is a global optimal solution of (P).Inserting (f , g) = (f∗, g∗) in the inequality above, we infer the 
onvergen
e
F (Su

k′(f∗
k′, g∗k′),f∗

k′, g∗k′) → F (Su(f , g),f , g).Together with the strong 
onvergen
e Sk′(f ∗
k′, g∗k′) → S(f ∗, g∗), this yields 
onvergen
eof norms ‖(f∗

k′, g∗k′)‖ → ‖(f∗, g∗)‖. Using the weak 
onvergen
e shown above, we obtainthe strong 
onvergen
e
(f ∗

k′, g∗k′) → (f ∗, g∗) in U as k′ → ∞.This proves assertion (a). Sin
e the above arguments leading to the optimality of theweak limit hold for every weakly 
onvergent subsequen
e of (f ∗
k, g

∗
k), assertion (b) is alsoproved. �Remark 5.2. The proof of Theorem 5.1 shows that every weak a

umulation point of

{(f ∗
k , g∗

k)} is automati
ally a strong a

umulation point.The ne
essary modi�
ations of the above arguments are obvious in 
ase of additional
ontrol 
onstraints in (P) of the form
(f , g) ∈ Uad



17with a 
losed and 
onvex subset Uad ⊂ U = L2(Ω; Rd)×L2(ΓN ; Rd), as is given for exampleby 
onstraints of the form
Uad = {(f , g) ∈ U : |f(x)|Rd ≤ ρ1 a.e. in Ω and |g(x)|Rd ≤ ρ2 a.e. on ΓN}. (5.2)Sin
e U is re�exive and Uad is weakly 
losed, the weak limit (f ∗, g∗) in the proof ofTheorem 5.1 
learly satis�es the additional 
ontrol 
onstraints. The rest of the theoryabove is not a�e
ted by the 
ontrol 
onstraints, and hen
e we obtain following result:Corollary 5.3. Suppose that (P) 
ontains additional 
ontrol 
onstraints, i.e.,Minimize F (u,f , g) :=

1

2
‖u− ud‖2

L2(Ω,Rd)

+
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. the plasti
ity problem (L) with ℓ as in (2.13)and (f , g) ∈ Uad





(P)with a 
losed and 
onvex subset Uad ⊂ U , and let the regularized problems be de�nedanalogously to (Pγ). Then the assertion of Theorem 5.1 remains true, i.e., if {γk} is asequen
e of numbers tending to ∞ and (f k, gk) are global solutions to (Pγ) with γ = γk,then there exists a weak a

umulation point (f ∗, g∗), whi
h is a strong a

umulation pointand in addition a solution of (P).The following theorem answers the question whi
h optima of (P) 
an be approximated bya sequen
e of solutions of vis
oplasti
 problems. The underlying analysis is standard andfollows a 
lassi
al argument whi
h was, for instan
e, given in Casas and Tröltzs
h [2002℄.Theorem 5.4. Suppose that (f∗, g∗) is a stri
t lo
al optimum of (P) in the topology of
U . Let γk be an arbitrary sequen
e tending to ∞. Then there exists a sequen
e (f∗

k, g
∗
k)of lo
al optimal solutions of (Pγk

) su
h that (f ∗
k, g

∗
k) → (f∗, g∗) strongly in U .Proof. Let ε > 0 be the radius of the neighborhood of stri
t lo
al optimality of (f ∗, g∗).We start by de�ning the following auxiliary problem:Minimize F (u,f , g) :=

1

2
‖u− ud‖2

L2(Ω,Rd)

+
ν1

2
‖f‖2

L2(Ω;Rd) +
ν2

2
‖g‖2

L2(ΓN ;Rd)s.t. the plasti
ity problem (L) with ℓ as in (2.13)and (f , g) ∈ Bδ(f
∗, g∗),






(Pδ)where δ satis�es 0 < δ < ε and Bδ(f
∗, g∗) ⊂ U is the 
losed ball of radius δ 
entered at

(f∗, g∗) in the topology of U . Thus the assumption on (f ∗, g∗) implies
F (Su(f , g),f , g) >F (Su(f ∗, g∗),f∗, g∗)for all (f , g) ∈ Bδ(f

∗, g∗) \ {(f ∗, g∗)}, (5.3)to the e�e
t that (f∗, g∗) is the unique global optimum of (Pδ). Sin
e Bδ(f
∗, g∗) is 
losedand 
onvex, Corollary 5.3 yields the existen
e of a sequen
e (f∗

k, g
∗
k) of solutions to theasso
iated regularized problems (Pδ

γk
), that 
onverges strongly in U to (f∗, g∗). It remainsto show that (f ∗

k, g
∗
k) is a lo
al optimum of (Pδ

γk
) for all su�
iently large k. To this end,



18take an arbitrary (f , g) ∈ U with ‖(f , g) − (f ∗
k, g

∗
k)‖U < δ/2. Then, Corollary 5.3 yieldsthat, for su�
iently large k,

‖(f , g) − (f∗, g∗)‖U ≤ ‖(f , g) − (f ∗
k, g

∗
k)‖U + ‖(f ∗

k, g
∗
k) − (f ∗, g∗)‖U < δ.This in turn implies that (f , g) ∈ Bδ(f

∗, g∗), i.e. (f , g) is feasible for (Pδ
γk

). Sin
e (f , g)was 
hosen arbitrary, the (global) optimality of (f ∗
k, g

∗
k) for (Pδ

γk
) ensures

F (Su(f , g),f , g) ≥ F (Su(f ∗
k, g

∗
k),f

∗
k, g

∗
k) ∀ (f , g) with ‖(f , g) − (f ∗

k, g
∗
k)‖U <

δ

2
,whi
h amounts to lo
al optimality of (f ∗

k, g
∗
k). �Remark 5.5. Similarly to Corollary 5.3, it is straightforward to in
oporate additional
ontrol 
onstraints into Theorem 5.4 as for instan
e 
onstraints of the form (5.2).A Lagrange DualityThe Lagrange multiplier u asso
iated to the equality 
onstraint in (L) 
an be viewed asthe displa
ement �eld indu
ed by the load fun
tional ℓ. This is due to the fa
t that usolves the so-
alled primal optimization problem, whi
h is obtained traditionally by meansof Fen
hel duality, 
f. [Temam, 1983, Theorem III.1.3℄. Here, we 
onsider another notionof primal problem that involves the so-
alled plasti
 strain p and an internal hardeningvariable ξ as optimization variables, in addition to u. This de�nition of the primalproblem 
oin
ides with the one used in [Han and Reddy, 1999, Se
tion 7℄ or Carstensen[1999℄. By means of Lagrange duality, we will see that the primal problem 
an be identi�edwith the dual problem asso
iated to (L). We point out that the same result 
ould also beobtained using Fen
hel duality, similarly to [Temam, 1983, Theorem III.1.3℄.We start by introdu
ing the Lagrange fun
tion L : S × M × V → R asso
iated to (L)

L(Σ,u) =
1

2
a(Σ,Σ) + b(σ,u) − 〈ℓ,u〉. (A.1)Sin
e (L) is a stri
tly 
onvex problem, the solution, together with the Lagrange multiplier,is a saddle point of the Lagrange fun
tion. That is, the solution of (L), denoted as beforeby Σ, and u satisfy

L(Σ,v) ≤ L(Σ,u) ≤ L(T ,u) for all v ∈ V and T ∈ K. (A.2)By standard arguments, (L) is equivalent to
inf
T∈K

sup
v∈V

L(T ,v). (LD)The dual problem asso
iated to (LD) arises by inter
hanging inf and sup:
sup
v∈V

inf
T∈K

L(T ,v). (LP)Due to (A.2), there is no duality gap, whi
h implies that (Σ,u) is the unique solution ofthe dual problem (LP).



19De�nition A.1. For given (u,P ) = (u,p, ξ) ∈ V × S × M and (v,Q) = (v, q,η) ∈
V × S × M , we de�ne

a

(
(u,P ), (v,Q)

)
:=

∫

Ω

[
(ε(u) − p) : C : (ε(v) − q) + ξ : H : η

]
dx.Moreover, let I∗

K denote the support fun
tional of K, i.e.,
I∗
K(P ) = sup

T∈K

∫

Ω

P : T dx.Here and in the following, the expression P : T with P = (p, ξ) and T = (τ ,µ) withgiven tensors p, τ ∈ Rd×dsym and ξ,µ ∈ Rd×d refers to P : T := p : τ + ξ : µ.Next, we introdu
e the following optimization problem
inf

(v,Q)∈V ×S×M

1

2
a

(
(v,Q), (v,Q)

)
+ 〈ℓ , v〉 + I∗

K(Q). (LP
′)The following lemma shows in whi
h sense (LP) and (LP

′) 
oin
ide.Lemma A.2. Problem (LP
′) admits a unique solution, denoted by (u,P ) = (u,p, ξ),whi
h is related to the unique solution (u,σ,χ) of (LP) by

p = ε(u) − C
−1 : σ and ξ = −H

−1 : χ. (A.3)Proof. We start with the inf-problem in (LP), i.e.,
inf
T∈K

L(T ,v)for given v ∈ V . In view of the de�nition of L, the ne
essary and su�
ient optimality
onditions for this problem are given by
T ∈ K and a(T ,Υ − T ) + b(ς − τ ,v) ≥ 0 ∀Υ = (ς,ψ) ∈ K.Hen
e, (LP) is equivalent to(LP) ⇐⇒






sup
v,T

L(T ,v)s.t. v ∈ V, T ∈ Kand a(T ,Υ − T ) + b(ς − τ ,v) ≥ 0 ∀Υ ∈ K.

(A.4)Next, we turn to (LP
′). Sin
e the obje
tive of (LP

′) is stri
tly 
onvex, there is a uniquesolution (u,P ) = (u,p, ξ) of (LP
′). The ne
essary and su�
ient 
onditions are given by

0 ∈ ∂
( 1

2
a

(
(u,P ), (u,P )

)
+ 〈ℓ , u〉 + I∗

K(P )
)

= ∂
( 1

2
a

(
(u,P ), (u,P )

)
+ 〈ℓ , u〉

)
+ ∂I∗

K(P ).

(A.5)Here we used the sum rule of subdi�erential 
al
ulus, whi
h holds sin
e 0 ∈ dom(1/2 a(· , ·)+
〈ℓ , ·〉)∩dom I∗

K and due to the 
ontinuity of a. Clearly, the �rst addend is a singleton set
onsisting of the Fré
het-derivative of a(· , ·) + 〈ℓ , ·〉 and hen
e, (A.5) is equivalent to
I∗
K(Q) ≥ I∗

K(P ) − a

(
(u,P ), (v,Q) − (u,P )

)
− 〈ℓ,v − u〉for all (v,Q) = (v, q,η) ∈ V × S × M.

(A.6)



20Next, we introdu
e a mapping Σ : V × S × M → S × M by
Σ(u,P ) = (σ(u,P ), χ(u,P )) := (C : (ε(u) − p),−H : ξ). (A.7)With this setting, (A.6) implies

∫

Ω

Σ(u,P ) : (Q− P ) dx + sup
Υ∈K

∫

Ω

P : Υ dx − sup
Υ∈K

∫

Ω

Q :Υ dx ≤ 0

∀Q ∈ S × M.

(A.8)If we 
hoose Q = 0 and Q = 2P in (A.8), we obtain
sup
Υ∈K

∫

Ω

P : Υ dx −
∫

Ω

P : Σ(u,P )dx = 0. (A.9)The 
losed and 
onvex set K is equal to the interse
tion of all 
losed half-spa
es 
ontainingit, i.e.,
K =

⋂

Q∈S×M

{
Σ ∈ S × M :

∫

Ω

Q : Σ dx ≤ sup
Υ∈K

∫

Ω

Q : Υ dx
} (A.10)Now, (A.8) and (A.9) imply for all Q ∈ S × M

∫

Ω

Q : Σ(u,P ) dx ≤ sup
Υ∈K

∫

Ω

Q : Υ dx,so that (A.10) gives Σ(u,P ) ∈ K. Moreover, (A.9) implies ∫
Ω
P : Σ(u,P ) dx ≥

∫
Ω
P :

Υ dx for all Υ ∈ K and, in view of (A.7), this is equivalent to
a(Σ(u,P ),Υ − Σ(u,P )) + b(ς − σ(u,P ),u) ≥ 0 ∀Υ = (ς,ψ) ∈ Kthanks to the de�nition of a in (2.9). Hen
e, it su�
es to sear
h the optimum of (LP

′)on the set given by
Pad = {v ∈ V,Q ∈ S × M : Σ(v,Q) ∈ Kand a(Σ(v,Q),Υ − Σ(v,Q)) + b(ς − σ(v,Q),v) ≥ 0 ∀Υ ∈ K}.The de�nitions of a, b, and Σ imply for the obje
tive of (LP

′)
1

2
a

(
(v,Q), (v,Q)

)
+ 〈ℓ , v〉 + I∗

K(Q)

=
1

2

∫

Ω

[
(ε(v) − q) : C : (ε(v) − q) + η : H : η

]
dx + 〈ℓ , v〉 + sup

Υ∈K

∫

Ω

Q : Υ dx

=
1

2
a
(
Σ(v,Q), Σ(v,Q)

)
+ 〈ℓ , v〉 − inf

Υ∈K

[
a
(
Σ(v,Q),Υ

)
+ b(ς,v)

]
.Hen
e, one obtains for all (v,Q) ∈ Pad

1

2
a

(
(v,Q), (v,Q)

)
+ 〈ℓ , v〉 + I∗

K(Q)

= −1

2
a
(
Σ(v,Q), Σ(v,Q)

)
− b(σ(v,Q),v) + 〈ℓ , v〉 = −L(Σ(v,Q),v),



21where L is the Lagrangian de�ned in (A.1). Thus we have shown that (u,P ) solves





sup
v,Q

L(Σ(v,Q),v)s.t. v ∈ V, Σ(v,Q) ∈ Kand a(Σ(v,Q),Υ − Σ(v,Q)) + b(ς − σ(v,Q),v) ≥ 0 ∀Υ ∈ K.Sin
e Σ(v, · ) : S × M → S × M is surje
tive for every v ∈ V in view of Assumption 2.4for C and H, (u, Σ(u,P )) solves (LP) a

ording to (A.4), and hen
e 
oin
ides with itsunique solution (u,Σ). The de�nition of Σ �nally gives (A.3). �As already mentioned above, (LP
′) is a stri
tly 
onvex problem su
h that the variationalinequality of the se
ond kind (A.6) admits the optimum of (LP

′) as its unique solution.For the sake of 
ompleteness, we 
onvert (A.6) into a form whi
h is found elsewherein the literature (
f. for instan
e [Han and Reddy, 1999, Se
tion 7℄ for the quasi-stati

ounterpart of (A.6)). A

ording to [Temam, 1983, Prop. I.2.5℄, there holds
sup
T∈K

∫

Ω

T (x) : P (x) dx =

∫

Ω

sup
T∈K

(T : P (x)) dx.Note that this implies in parti
ular that supT∈K(T : P ( · )) is measureable if I∗
K(P ) < ∞.With this result at hand, we may rewrite (A.6) by

a

(
(u,P ), (v,Q) − (u,P )

)
+j(Q) − j(P ) ≥ 〈−ℓ,v − u〉for all (v,Q) = (v, q,η) ∈ V × S × M,

(A.11)where j : S × M → R ∪ {+∞} is de�ned by
j(P ) :=

∫

Ω

sup
T∈K

(T : P (x)) dx.Remark A.3. It is to be noted that (A.11) represents a variational inequality of the se
ondkind. There are several 
ontributions 
on
erning the theory of optimal 
ontrol problemsgoverned by variational inequalities of the se
ond kind. We only refer to Barbu [1984℄,Bonnans and Tiba [1991℄, Bonnans and Casas [1995℄, and Bergounioux [1998℄. Never-theless, sin
e the stress �eld is a physi
ally important quantity in various appli
ations,we fo
us on the dual problem of in�nitesimal elastoplasti
ity in form of (L) and (2.11),respe
tively, whi
h expli
itly 
ontains the stress �eld instead of the plasti
 strain.B Proof of Lemma 4.1The proje
tion PCx of an element x ∈ H is uniquely 
hara
terized by PC x ∈ C and thevariational inequality
(x − PC x, y − PC x) ≤ 0 for all y ∈ C. (B.1)As a 
onsequen
e, the proje
tion is non-expansive:

‖PC x − PC y‖ ≤ ‖x − y‖ for all x, y ∈ H.



22Now we address the di�erentiability of F (x) = 1
2
‖x − PC x‖2. We observe

‖x + δx − PC(x + δx)‖2

= ‖(x − PCx) + δx + PCx − PC(x + δx)‖2

= ‖x − PCx‖2 + 2 (x − PCx, δx) + 2 (x− PCx, PCx − PC(x + δx))

+ ‖PCx − PC(x + δx)‖2.It follows that
F (x + δx) − F (x) − (x − PCx, δx)

= (x − PCx, PCx − PC(x + δx)) +
1

2
‖PCx − PC(x + δx)‖2 ≥ 0by (B.1) sin
e PC(x + δx) ∈ C. On the other hand, we 
an estimate

F (x + δx) − F (x) − (x − PC x, δx)

= (x − PC(x + δx), PC x − PC(x + δx)) − 1

2
‖PC x − PC(x + δx)‖2

≤ (x + δx − PC(x + δx), PC x − PC(x + δx)) − (δx, PC x − PC(x + δx))

≤ 0 + ‖δx‖‖PC x − PC(x + δx)‖
≤ ‖δx‖2where we used (B.1), the Cau
hy-S
hwarz inequality and the non-expansiveness of theproje
tion. We 
on
lude that

|F (x + δx) − F (x) − (x − PC x, δx)| ≤ ‖δx‖2holds, whi
h 
on�rms Fré
het di�erentiability of F with derivative F ′(x) = x−PC x. Themonotoni
ity of F ′ follows from the estimate
(F ′(x) − F ′(y), x− y) = ‖x − y‖2 − (PC x − PC y, x − y)

≥ ‖x − y‖2 − ‖PC x − PC y‖‖x − y‖ ≥ 0,where the last inequality is due to the non-expansiveness of the proje
tion. As a 
onse-quen
e, F is a 
onvex fun
tion, whi
h 
ompletes the proof of parts (a) and (b). To provepart (
), let x ∈ H and y ∈ C. Then F ′(y) = 0 and the monotoni
ity of F ′ imply
(F ′(x), x − y) = (F ′(x) − F ′(y), x − y) ≥ 0.For part (d), let x ∈ H be arbitrary and suppose that a + C = C holds. Then we have

(x + a − PC(x + a), z − PC(x + a)) ≤ 0 for all z ∈ C by (B.1)
⇒ (x − (PC(x + a) − a), y − (PC(x + a) − a)) ≤ 0for all y ∈ H su
h that y + a = z with some z ∈ C, i.e., for all y ∈ C. This inequalitytogether with the fa
t PC(x+a)−a ∈ C−a = C 
on�rms that PC x = PC(x+a)−a holds.As a 
onsequen
e, we obtain from part (a) that F ′(x) = x−PC x = x− (PC(x+a)−a) =

F ′(x + a) as 
laimed.
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