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Abstract. Singular singularly perturbed systems of ordinary differential equations .mod-
elling the dynamics of fast bimolecular reactions are considered. 
The asymptotic behavior of the solution of the initial value problem on a finite time 
interval is studied under conditions (change of stability) which are not treated in the 
usual standard theory. The application of the obtained results to the model under con-
sideration yields conditions under which the reaction rate jumps. This behavior has to 
be taken into account for identification problems in chemical process modelling. 

Key words. Singular perturbation, asymptotic methods, upper and lower solution, 
jump behavior of reaction rates 
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1. Introduction 

In modelling reaction kinetics a systematic approach consists in the decomposition of 
the stoichiometric overall reaction into a system of subreactions [6]. This approach leads 
to very large systems of stiff differential equations of the form 
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dx1 
ri(x1, x2, t), dt -

dx2 r2(x1,x2,t) e- -dt 
(1.1) 

where X1 E Rn1 , X2 E Rn2 , 0 < e ~ 1. Here x1 is the vector of the concentrations 
of the slowly reacting species involved in the reaction system, x2 is the corresponding 
vector of the fast reacting species, r1 is the vector of the slow subreactions taking place 
in the system, and r2 is the vector of the fast subreactions. Generally we have n1 ~ n2. 
The reaction equations (1.1) can be solved numerically by means of suitable solvers. 
If the fast reactions are much faster than the slow reactions then chemically the fast 
reactions can be assumed to be in a quasi-stationary state. That means system ( 1.1) 
will be replaced by the diffential algebraic system 

ri(x1,x2,t), 

r2(x1, x2, t). 
(1.2) 

This procedure is well established as the QSSA method in chemical engineering and 
can be justified by singular perturbation theory. There are, however, reactive systems 
containing fast and .slow reactions which do not satisfy the assumptions of the QSSA 
method. Then the reduction of the differential system to an differential-algebraic system 
fails and the fast reactions have to be considered explicitly. 

This problem is of practical relevance as the fast reactions normally contribute to the 
observable reaction kinetics only by determining the form of the invariant manifold of 
( 1.1). Their dynamic response on external disturbances is too rapid to be relevant for 
the dynamical response of the observable reaction system. Therefore, the observable 
dynamical response of the system is dominated by the time scale of the slow reactions 
only. Moreover, the reduction of a large reaction system to a small one by elimination 
of fast reactions is of great importance for the qualitative and quantitative treatment 
of reaction systems [10] and can be performed numerically [10] provided the QSSA -
conditions are satisfied. 

The simplest example for a reactive system not satisfying the QSSA - assumptions is a 
bimolecular system. Therefore, in this paper a bimolecular reaction system of the form 

(r1 ( x) ), 
(r2(y)), 

(r(x,y)) 
(1.3) 

will be studied. r1 , r2 and r are the fast reaction rates depending on the concentrations 
x and y of the species A and B respectively. To express this fact we represent these 
reaction rates in the form r1 = r1/c:, r2 = r2/c:, r = r/e where c: is a small positive 
parameter. The time evolution of the concentrations are governed by the differential 
equation system 
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dx 
c dt c (I a ( t) - 91 ( x)) - ( r1 ( x) + r ( x, y)) 

c ~~ - c (h(t) - 92(Y)) - (ri(y) + r(x, y)). 
(1.4) 

Ia(t) and Ib(t) are the input flows of the species A and B respectively, 91 and 92 are 
reaction rates of the slow reactions which usually exist. 

We assume the following hypothesis to be satisfied. 

(I). The scalar functions Ia, h, g1, g2, ri, r 2 , r are sufficiently smooth, nonnegative and 
satisfy 

Ia(t) > 0, Ib(t) > 0 fort ~ 0, 

ri(z) > 0, 9i(z) > 0 for z > 0, ri(O) = 9i(O) = 0 for i = 1, 2, 

r(x,y)>O for x>O, y>O, r(O,y)=r(x,0)=0 forx~O, y~O, 

c; is a small positive parameter. 

Hypothesis (I) implies that any solution of (1.4) starting in the positive quadrant remains 
positive for t ~ 0. From a chemical point of view the invariance of the positive orthant 
under the time-increasing flow of (1.4) is a necessary condition for (1.4) to be a chemically 
relevant model. 

System (1.4) is in general nonautonomous as the "slowly" varying input flows Ia and h 
depend on time. This fact is not oniy relevant for chemical processes with variable input 
feed rates but it reflects also the possibility that the reactions (1.3) can be subreactions 
of a more complex reaction system. Then the input rates of the species A and B are the 
overall reaction rates of all reactions producing A and B, respectively. As these reaction 
rates vary with time, the analysis of (1.4) is valid for reactions of this type embedded in 
complex autonomous reaction systems. 
If the- species A and B are chemically reactive then the fast unimolecular reactions 
expressed by the reaction rates r1(x) and r2(y) do not vanish and the QSSA can be 
applied. A different situation, however, occurs if the unimolecular reaction rates ri, f2 
vanish. This can be the case if the species .are not reactive by themselves and if the 
bimolecular reaction r is only fast by the catalysis with a highly specific catalyst. Thus, 
the concentrations of the species A and B are not necessarily small and there may 
occur an enrichment of one species. Then the invariant manifold containing the slow 
reactions can change its stability which can leads to a jump in the production rate 
of the product species C. This phenomenon is very important for the analysis of such 
reaction kinetic systems, as the overall reaction kinetics of such reaction systems may 
change qualitatively near the jump points. Moreover, since fast bimolecular reactions 
of nonreactive species catalysed by highly specific catalysts are typical for biochemical 
reactions, such jumps in the reaction rates may trigger biological systems. 
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In this paper the change of stability of the invariant manifold in reaction systems of the 
type (1.4) will be analyzed in detail. It will be shown that the critical times, when the 
change of stability occurs can be calculated using the slow reactions only. 

In what follows we study for system (1.4) the initial value problem 

x(O,c:) = x0
, y(O,c:) = y0 • (1.5) 

The theory for initial value problems of singularly perturbed systems of ordinary dif-
ferential equations is primarily due to Tikhonov [21, 22] and Levinson [13], for further 
developments see also [7, 9, 16, 17, 20, 23, 24]. Following this approach we have to con-
sider first the corresponding degenerate system (also called the reduced system) which 
we obtain by setting c; = 0. In case of (1.4) we get 

r1(x) + r(x, y) - 0, 
r2(y)+r(x,y) 0. 

(1.6) 

Under hypothesis (J) the origin x = y = 0 is a solution of (1.6). If we assume that the 
origin is the unique solution of (1.6) satisfying some stability hypotheses (see Theorem A 
and Theorem Bin the Appendix for details) then we can apply asymptotic methods to 
treat (1.4). The analysis gets more complicated if we assume that either r 1 or r2 or 
both are identically zero. This situation arises when we study (1.4) in the cases of a fast 
pure bimolecular reaction or a fast unimolecular reaction. Here, the.solution of (1.6) is 
not unique, and even not isolated. System (1.1) is called critical or singular singularly 
perturbed if the degenerate system has a family of solutions. Under some additional 
stability assumptions this case was studied in [8, 12, 24]. 

We get a further complication of our problem if we admit a change of stability of the 
equilibria of the associated system (for definition see the Appendix). In that case, the 
theory developed in [8, 12, 24] cannot be applied. 

In section 2 we present a treatment of singular singularly perturbed systems with change 
of stability which benefits from ideas in [3, 4, 12] and [5]. Our approach consists of two 
steps: firstly we reduce the singular singularly perturbed system to a regular singularly 
perturbed system, then we derive a result about the asymptotic behavior of the solution 
of the corresponding initial value problem by applying either Theorem B (in case of no 
change of stability) or Theorem C (in case of change of stability). 

In sections 3 - 5 we apply the obtained results to the initial value problem (1.4), (1.5). 
The main results are conditions under which a transition layer (jumping behavior) can 
be observed in the time behavior of the reaction rate f. 

For convenience of the reader we have added an appendix containing fundamental re-
sults about the asymptotic treatment of initial value problems for singularly perturbed 
systems. 
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2. Mathematical Preliminaries 

We consider the singularly perturbed differential system 

(2.1) 

with z1 E Rn, z2 E Rm. System (2.1) is said to be a singular singularly perturbed system 
if the corresponding degenerate system (for definition see the Appendix) 

ryi(z1,z2) 0, 
ry2(zi,z2) - 0 

(2.2) 

has a continuum of zeros, or equivalently, if the corresponding Jacobi matrix vanishes 
identically on some subset of Rn x Rm. 

Our first aim is to ask for conditions such that (2.1) can be reduced to a (regular) 
singularly perturbed system. To this end we assume 

(A1). The functions r.p1, r.p2, ry1, ry2 are sufficiently smooth in all variables in the domain 
· of interest. 

(A2 ). The associated system 

dz1 
dT 
dz2 
dT 

has a first integral of the form 

Hypothesis (A2 ) implies 

Thus, under assumption (A2 ) the degenerate system (2.2) reads 

ryi(z1,z2) 0, 
<l>' ( Z1 )ry1 ( Zi, Z2) = 0 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

and has in general no isolated solution. Consequently, under the assumption (A2 ) system 
(2.1) is a singular singularly perturbed system. The following lemma plays an important 
role in our investigations. 
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Lemma 1. Assume hypothesis (A2) to be valid. Then there is a coordinate transforma-
tion 

(2.7) 

reducing the singular singularly perturbed system (2.1) to the (regular) singularly per-
turbed system 

dz1 c-·,= 
dt 
der (2.8) 
dt 

Proof. From (2.7) and (2.1) we get 

der dz2 '( ) dz1 ( '( ) ) , cdt=c dt -<I> z1 c dt =c: <p2-<I> z1<p1 +112-<I>(z1)7l1· 

Taking into account (2.5) we obtain the second equation in (2.8). The first equation 
follows immedeately by substituting (2.7) into (2.1). 

Remark 2.1 The transformation (2. 7) is not unique. The transformation er= ¢(z1)-z2 
yields also a (regular) singularly perturbed system. 

Now we study for system (2.1) the initial value problem for system 

z1(0) = z~, z2(0) = zg (2.9) 

on the interval 0 < t < T. The initial value problem (2.1), (2.9) is equivalent to the 
initial value problem 

(2.10) 

for (2.8). We are interested in the asymptotic behavior of the solution of (2.1), (2.9) with 
respect to the small parameter c under the hypotheses (Ai) and (A2 ). It is clear that 
this behavior depends on the solutions of the equation 171(zi, er+ <I>(z1)) = 0. Therefore, 
we additionally assume: 

(A3). The equation 

(2.11) 

has a solution z1 = zi( er), and the initial value problem 

cp2(z;( er), er+ <I>( z;( er)), t, 0)) - <I>' ( z;( er) )cp1(z;( er), er+ <I>( z;( er)), t, 0), 

er0 := zg - <I>(z~) (2.12) 

has a unique solution a( t, er0 ) defined on {O, T}. 
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(A4). The solution z1( T, zr) of the initial value problem 

dz1 0 ( ) o dr = TJ1(z1, a + <f?(z1)), z1 0 = z1 

exists for T 2:: 0 and tends to z; ( a0 ) as r -+ oo . 

(As). All eigenvalues Ai(t) of the Jacobian 

~T/i ( z;( a( t, a0
) ), a( t, a 0)) + ~T/i ( z;( a( t, a0

) ), a( t, a0
) )<I?' ( z;( a( t, a 0

))) 
uz1 uz2 

satisfy 
Re.Ai(t) < 0 on 0 ::; t ::; T. 

By means of Theorem B in the Appendix we get the following result 

Theorem 2.1. We assume the hypotheses (A1)- (As) to be valid. Let (Z~(t, c:), ~n(t, c:)) 
be the truncated asymptotic expansion of the solution to the initial value problem (2.8), 
(2.10) obtained by the method of boundary layer functions (see [23] for details). Then there 
is a sufficiently small co and a constant c = c( co) such that for 0 < c < co the initial 
value problem (2.1), (2.9) has a unique solution (z1(t,c),z2(t,c)) on [O,T] satisfying 

I Z1 ( t' c) - z~ ( t' €)I ::; c cn+l' 

lz2(t, c) - ~n(t, c) + <f?( Z~(t, c)) I ::; C €n+l. 
In particular, for n = 0 we have 

z1 (t,c) = z;(a(t, a 0
)) + Iloz1(r) + O(c), 

z2(t, c:) = a(t, a0
) + <f?(z;(a(t, a0

))) + O(c:). 

Theorem 2.1 is related to the situation when the solution z;( a) of (2.11) does not change 
its stability (see assumption (As)). Now we study the case when (2.11) has two solutions 
which intersect in such a way that the corresponding angular solution changes its stability 
(for a definition see the Appendix). The following approach requires n = 1, that is, z1 
is a scalar variable. Instead of the assumptions ( A3 ), (As) we now assume 

(A;). The equation (2.11) has two solutions zi(a) and zi(a) with the same smoothness 
as g*. The initial value problem 

da 
- 'P2(zi(a), a+ <f?(z{(a)), t, 0)) - <I?'(z{(a))'P1(z{(a), a+ <f?(z{(a)), t, 0), dt 

a(O) -
has a unique solution cr1 ( t, a0 ) defined on [O, T]. 

da 
dt 

a( to) 

has a unique solution cr2 ( t, a 1) defined on [O, T]. 
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(A4) The curves z1 = 'l/;1(t) := zi(cr1(t,a0)) and z1 = 'l/;2(t) := zi(cr2(t,a1)) intersect for 
t = to E (0, T) with different slopes where 'l/;1(t) is stable for [O, t 0 ) and 'lj;2(t) is 
stable for ( t0 , T]. Thus, 

~771 ('l/;1 (t),0:1(t, o-0
)) + ~771 ('l/;1(t),0:1(t, a 0))<P'('l/;1(t)) < 0 fort E [O, to) 

uz1 uz2 

and 

According to the definition in the Appendix we call (Z1(t), 0-(t)) defined by 

,.. (t) ·= { 'l/J1(t) 0 ~ t ~to "(t) ·= { 0-1(t,a0
) 0 ~ t ~ t0 

zi · ,,/, (t) t < t < T 'a · 0- (t o-1) t < t < T o/2 0 - - 2 ' 0 - -

the angular solution to the degenerate system of (2.8) belonging to the solutions zi( a) 
and zi(a) of (2.11). Furthermore, we assume 

(A~). The solution z1 ( r, z~) of the initial value problem 

dz1 0 o 
dr = 111(z1, a + <P(z1)), z1(0) = z1 

exists for 7 2:: 0 and tends to zt ( o-0 ) as 7 -+ oo . 

Let Iv :=to - V ~ t ~to+ V. 

(A7) For i = 1, ... n, 0 < e < c;* and t E Ivft(zi, 0-1, ... , O"i-1, 0-i(t), O"i+1, ... , O"n, t, c) 
is nondecreasing in (zi, ai, ... , O"i-1' O"i+i, ... , an) and g*(z1(t), 0-1, ... , O"n, t, c) is 
nondecreasing in (0-1, ... , an) in the region de.fined by O"k E [0-k(t), 0-k(t) + sc;], z1 E 
[z1(t) , z1(t) + sc;] where s is a sufficiently large constant independent of c and z1 
is a scalar variable 

(A;) Fort E (0, t0 + v ), where v is any given small positive number, we have 

At t = t 0 the inequalities must be fulfilled for the corresponding left and right 
derivatives. 
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By means of Theorem C in the Appendix we get the result 

Theorem 2.2. We assume the hypotheses (A1), (A2 ), (A;), (A:)- (A;) to be valid. Then 
there is a sufficiently small co = co( v) such that for 0 < c < co( v) the initial value 
problem (2.8),(2.10) with z~ 2: ¢ 1 (0) (and consequently also (2.1),(2.9)) has a unique 
solution (z1(t,c),a(t,c:)), satisfying 

Moreover, we have 

lim Z1 ( t, c) 
e-+O 

lima(t,c) 
e-+0 

z1(t) for 0 < t::; T, 

&(t) for O:s;t:s;T. 

a(t, c:) = &(t) + O(c:), for · 0 ~ t ~ T 
for 0 ::; t ::; to - v, 

{ 

~1 ( t) + IIoz; ( T) + 0 ( c:) 
z1(t, c:) = z1(t) + O(c:2) for t 0 - v ::; t ::; to + v, 

for t0 + v ::; t ::; T i1(t) + O(c:) 

where II0z1 ( T) is the zeroth order boundary layer function. 

Remark 2.1.1. For the case zr < ¢1 (0) we can apply to (2.8) Theorem C*. 

3. The purely bimolecular .reaction 

In what follows we shall apply the results of section 2 to special cases of system (1.4). 
First we consider the case gi = 0 = ri, i = 1, 2. That means system (1.4) describes a 
purely bimolecular reaction and reads 

dx 
c dt - c Ia(t) - r(x, y), 

dy 
c: dt c: I b ( t) - r ( x, y). 

(3.1) 

We suppose hypothesis (I) in the introdu.ction to be valid. If we consider (3.1) as a 
special case of (2.1) then the validity of hypothesis (I) implies that assumption (A1) 

holds. Since the Jacobian of the degenerate system to (3.1) has two identical rows its 
determinant vanishes identically for all x, y. Thus, according to the notation introduced· 
in section 2, system (3.1) is a singular ·singularly perturbed system. 
The associated system to (3.1) reads 

dx 
dT - -r(x, y), 
dy 
dT - -r(x,y). 

It has the first integral y - x = c and thus hypothesis (A2 ) in section 2 is fulfilled. By 
means of the coordinate transformation 

x = x, y = x +a (3.2) 
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we can reduce the singular singularly perturbed system (3.1) to the regular singularly 
perturbated system 

dx 
€-

dt 
da 
dt 

€ Ia(t) - r(x, x +a), 

- h(t) - Ia(t). 

Now we study to (3.1) the initial value problem 

x(O, c) = x0
, y(O, c) = y0 

on the interval 0 < t :::; T. By introducing 

t 

I(t)= j(Ib(s)-1.(s))ds 
0 

we get from (3.2), (3.4) and the second equation in (3.3) 

0-(t, a0
) = a0 + I(t) 

where 

ao :=yo_ xo. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Hence, the initial value problem (3.1 ), (3.4) is equivalent to the initial value problem 

dx 
€ dt =cla(t) r(x,x+a0 +I(t)), 

x(O,c) - x0
• 

(3.8) 

The degenerate equation to (3.8) reads 

r(x, x + a 0 + I(t)) = 0, (3.9) 

the associated system is 
dx 
dr = -r(x,x+a0 +I(t)). (3.10) 

From assumption (I) it follows that (3.9) has two solutions 

x1(t) = 0 and x2(t) = -a0 
- I(t). (3.11) 

First we consider the case where these roots do not intersect for t E [O, T]. 

(B1 ). I(t) # x0 - y0 Vt E [O, T]. 
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This case is within the scope of Theorem 2.1 if we assume, for definiteness, that the root 
x1(t) is stable. The stability of the root x1(t) is expressed by 

(B2). rx(O, O"o + l(t)) + ry(O, O"o + l(t)) > 0 for all t E [O, T]. 

In addition, also B3 has to hold 

(B3 ). The point x 0 is in the domain of attraction of x 1(t). 

Hypotheses (B2) and (B3) imply the validity of the assumptions (A3)- (A5 ) of Theorem 
2.1. 

Since we are looking for an asymptotic expansion of the solution x( t, c;) of (3.8) near 
x1(t) we represent x(t,s) in the form 

x(t,s) = x(t,s) + IIx(r,s) (3.12) 

where x( t, s) is the regular part of the asymptotics, that is 

00 

x(t, s) = L sixi(t), 
i=O 

and Ilx( r, c) is the boundary layer correction near t = 0, 

00 

IIx(r,s) = LsiIIix(r) 
i=O 

where r is the stretched variable r = t/e,. According to the formulae given in the 
Appendix we get for the zeroth order approximation of (3.12) x0 (t) = x1(t) = 0, while 
II0x is determined by 

dII0 x 
dr 

- -r(IIox, IIox + <7°), Ilox(O) = x0
• 

By assumptions (B2), (B3) II0 x is exponentially decaying. According to Theorem 2.1 
we get the following result: 

Theorem 3.1 Suppose that the hypotheses (!), (B1) - (B3 ) hold. Then for sufficiently 
small c the inital value problem {3.8) has a unique solution x( t, c;) satisfying 

x ( t, s) = II0 x ( r) + 0 ( c;) 

on 0 ::; t ::; T. 

Remark 3.1.1. Under the assumptions of Theorem 3.1 the initial value problem {3.1), 
{3.4) has a unique solution (x(t,s),y(t,s)) where 

y(t, s) = x(t, s) + y0 
- x 0 + l(t). 
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Remark 3.1.2. Obviously, a similar result holds for the case when x2 (t) = -o-0 - I(t) 
is the stable root. 

Corollary 3.1. Under the assumptions of Theorem 3.1 there exists for any given small 
van co= co(v) such that for 0 < c <co J t ~ v the reaction rate r(x(t,c),y(t,c))/c 
satisfies 

r(x(t, c), y(t, c)) == Ia(t) + O(c) 
c 

that is, the reaction rate does not jump fort ~ v. 

Next we treat the case when x1(t) and x2(t) intersect for t == t0 E (0, T). In order to 
be able to apply Theorem 2.2 we check the validity of its hypotheses. Assumption (I) 
implies the hypotheses (Ai) and ( A3) of Theorem 2.2 are valid. We note that the corre-
sponding initial value problems can be solved explicitely. Assumption (A2 ) is obviously 
fulfilled for system (3.1). To satisfy (A;) we suppose 

(Ci). There is a t0 E (0, T) such that x 2(t) has exactly one zero in [O, T] at t == t0 where 
dx 2 / dt( to) == lb( to) - la( to) > 0. 

rx(-o-0 
- l(t), 0) + ry{-o-0 

- l(t), 0) > 0 for all t E [O, to) 

and 

rx(O, o-0 + I(t)) + ry(O, o-0 + I(t)) > 0 for all t E (to, T] 

Hypotheses (C1 ) and (C2) mean that x 2 (t) changes its sign at t0 (from positive to negative 
values) and is stable on 0::; t < t0 , while x1(t) is stable on t0 < t::; T. 

Now we define the corresponding angular solution by 

X(t) = { 
-o-0 -I(t), 0::; t::; t0 , 

0, to ::; t ::; T 

To fulfill hypotheses (A~) and (A~) we assume 

(C3 ). The point x0 is in the domain of attraction of x2(t). 

( C4). rxx(O, 0) + 2rxy(O, 0) + ryy{O, 0) > 0. 

(3.13) 

Assumption (A~) is trivially fulfilled since the right hand side of (3.8) does not depend 
on O". 

Concerning system (3.1) assumption (A8) on the fast component reads as follows 

dx 
c dt ::; c Ia(t) - r(x, x + o-0 + I(t))) (3.14) 
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for all t E [O, T] except t = t0 • Substituting (3.13) into (3.14) and taking (3.5) into 
account we get 

c (Ia(t) - h(t)) :::; c la(t) for 0:::; t <to, 
0 :::; c Ia(t) for to < t :::; T. 

That means if we assume Ia(t) ~ 0, h(t) ~ 0 fort E [O, T] then assumption (A~) is valid. 
But this assumption is already contained in hypothesis (I). Consequently, we get from 
Theorem 2.2 the following result 

Theorem 3.2 Suppose that assumptions (I), (C1 ) - (C4 ) hold. Then for sufficiently 
small c the solution x(t,s) of the initial value problem (3.8) satisfies 

{ 

x(t) + Ilox(r) + O(s) for O:::; t:::; to - v, 
x ( t, c) = x ( t) + 0 ( d) for t0 - v :::; t :::; t0 + v, 

x(t)+O(s) for t0 +v::;t:s;T 

where x(t) is given by (3.13) and Ilox is determined by 

dilox 0 -- = -r(-a + Ilox,Ilox), IT0 x(O) = x0 + a0 = y0
• dr 

Remark 3.2.1. Under the assumptions of Theorem 3.2 the initial value problem (3.1), 
(3.4) has a unique solution (x(t,s),y(t,s)) where 

y(t, s) = x(t, s) + a0 + I(t). 

Remark 3.2.2. It is obvious that a similar result holds when the angular solution has 
the form 

X(t) = { 0, 
-a0 - I(t), 

0 :::; t :::; to, 
to :::; t :::; T (3.15) 

Corollary 3.2 Under the assumptions of Theorem 3.2 the reaction rate has a "jump" 
near t0 (transition layer), this means that to any given small v > 0 we have 

r(x(t, s), y(t, s))/s = Ia(t) + O(s), t E [v, t0 - v] 

and 
r(x(t, s), y(t, s))/s = h(t) + O(s), t E [to+ v, T] 

Proof. The proof of this result follows from Corollary Cl from the Appendix, Theorem 
3.2 and system (3.1 ). 

We illustrate our results by considering two examples. 
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Example 3.1. We investigate system (3.1) in the case 

r(x, y) = xy, Ia(t) = 0, h(t) = 1. 

The corresponding system reads 

dx 
c-dt 

dy c-dt 

-xy, 

c - xy. 

We consider in the positive orthant the initial value problem 

x(O, c) = x0 
, y(O, c) = y0 

to (3.16) on the interval 0 < t :::; T under the additional conditions 

x 0 
- y0 = 1 , T > 1. 

This problem can be solved exactly. From (3.16) - (3.18) we get 

y(t, c) = x(t, c) + t 

such that the initial value problem (3.16) - (3.18) is equivalent to 

dx 
c dt -x[x - (1 - t)] 

x(O,c). - x 0
• 

We note that this problem can be solved explicitely 

{ 1 }-1 
x(t, E) = XO e[(l-t)'-1]/2< + ~XO J e[(l-t)'-•']/2< ds 

' 1-t 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

It requires some effort (asymptotic expansion in c) to see that x( t, c) has an initial layer 
near t = 0 and satisfies 

lim x ( t, c) = 1 - t for 0 < t :::; 1 
e-+-0 

limx(t, c) = 0 for 1 :::; t:::; T. 
e-+-o 

Now we show that we get the same results in a simpler way by applying Theorem 2.2. 
The degenerate equation to (3.20) reads 

x[x - (1 - t)] = 0. 

14 



This equation has the solutions x 1(t) = 0 and x 2(t) = 1 - t. The root x 2(t) = 1 - t 
is stable for t E · [O, 1), the root x 1(t) = 0 is stable for t E (1, T]. Then, by applying 
Theorem 2.2 we get the same result as above. 
Since we are interested in the asymptotic expansion of x( t, €) = x( t, £)+II( t, £) we have 
to distinguish between 0 < t < 1 and 1 < t ::; T. For 0 < t < 1, we get according to the 
procedure described in the Appendix 

hence we have 

1 xo(t) = 1 - t, x1(t) = -, x2(t) = 
l-t 

2 
(1 - t)3 ' 

-( ) 1 2 2 x t € = 1 - t + €-- - € + .... 
' l-t (1-t)3 

Concerning the zeroth order boundary layer correction we have to solve the initial value 
problem 

dIIo 
dr = -IIo(IIo + 1) 

Ilo(O) = x0 - xo(O) = y0. 
(3.21) 

This· problem can be solved explicitely, we get 

Ilo ( T) = ( k e T - 1 r l 
where k is defined by 

k = (1 + yo)/yo. 

Therefore, we have for 0 < t < 1 

( 
1 0 )-1 

x(t,e) = 1 - t + ; 0Y etfe - 1 + O(e) 

For t > 1 we get that the regular part of asymptotic expansion is identically zero. 
To determine what happens near t = 1 we use the know:n procedure of matching (for 
example see [1 7]). 

To do so we set x(t, s) =: dw(e, s) where e = (t-1)/d. From (3.20) we get that w has 
to obey the differential equation 

dw - = -w(w+e) de 
moreover, dw(e, s) must match the outer solution 

l. 1 2 
x(t,s) = c;2(-e -z + e3 + .. ·) 
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as e --+ -oo, and w must tend to 0 as e --+ oo. Taking into account this conditions we 
obtain from (3.22) 

The function w(e) describes a transition layer between the reduced solutions x0 (t) = l-t 
and x0 = 0 and it can be used for describing the nonuniform convergence of dx / dt from 
-1 to 0 as t passes through 1. 

Remark. In this case it is easy to prove the correctness of our matching procedure since 
we have an exact solution. In general, it can be very complicated. As mentioned in {17} 
there is a lot of possibilties for matching procedures but it is a hard problem to choose 
the correct one. 

Example 3.2 Now we study system (3.1) in the case 

r(x,y) = xy, Ia(t) = 1, h(t) = 1 +cost, 

that means, we consider the initial value problem 

on the interval 0 < t :=; T. 

dx 
c-dt 

dy 
c-dt 

x(O,c) 

c -xy, 

c ( 1 + cos t) - x y' 

x 0
, y(O, c) = y0

, 

(3.23) 

(3.24) 

Problem (3.24) is equivalent to the initial value problem for the singularly perturbed 
scalar Riccati equation 

dx 
c-

dt 
x(O,c) 

c - x[x + a 0 +sin t], t E [O, T], 

where a0 = y0 - x0 • The degenerate equation to (3.25) reads 

x [ x + a0 + sin t)] = 0 

and it has two roots 
x 1(t) = 0 , x 2(t) = -a0 

- sin t. 

(3.25) 

(3.26) 

(3.27) 

For -a0 > 1 x 1(t) and x 2(t) have no common point. If we consider t as a parameter 
then we get that x1(t) and x 2(t) are equilibria of the associated system to (3.25) 

~; = -x[ x + a0 + sin t] (3.28) 
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It is easy to show that x2 ( t) is an asymptotically stable equilibrium point of (3.28) for 
all t and xi(t) is an unstable one. The basin of attraction of x 2 (t) is the whole positive 
line. Therefore, all assumptions of Theorem 3.1 are fulfilled and we obtain the following 
result: 
For -a0 > 1 the solution (x(t, c), y(t, c)) of (3.24) satisfies for 0 < t::; T 

limx(t,c) = x 2(t) = -a0 
- sint, 

e:-+O 

limy(t, c) = 0. 
e-+O 

Thus, as a consequence we get that the reaction rate x(t, c=)y(t, c)/c has no internal layer 
on any interval [v, T] where v is any fixed small positive number. 

With respect to the asymptotic expansion of the solution x(t, c) we get for the first 
coefficients of the regular part 

xo(t) = -a0 
- sin t, - ( ) cost+ 1 

Xi t = . . -a0 - sm t 
Concerning the boundary layer correction we determine the main term II0 x. For this 
term we get the initial value problem 

dIIox 
dr 

IIox(O) 

-IIox(IIox - a0
), 

XO - io(O) =XO+ (J"o =yo. 

This problem has the exact solution 

where k is defined by 
-XO 

k=oo· y (J" 

It follows that II0x( r) is the exponentially decaying function. 

Now we consider the case 0 < -a0 < 1. The equation -a0 .- sin t = 0 has the zeros 
0 < ti < t2 < .... In these points the equilibria x2(t) = -a0 - sin t and xi(t) = 0 
of (*) changes their stability. In the interval 0 < t < ti x 2(t) is stable while xi(t) 
is unstable. In the next interval ti < t < t2 xi(t) is stable while x2 (t) is unstable, 
and so on. All assumptions of the Theorem 3.2 can be easily verified. Therefore, for 
0 < -a0 < 1, ti < T < t 2, the solution x( t, c) of the problem (3.25) satisfies pointwise 
fort> 0 

where x ( t) defined by 

X(t) = { 

limx(t,c) = x(t), 
e-+O 

-a0 - sin t ' 0, 
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From Corollary 3.2 we get that the reaction rate x(t,s)y(t,e)/c has "jumps" (transition 
layer behavior) near the points t 1 , t 2 ••• , for example we have 

x ( t, s) y ( t, s) / s = 1 + cos t + o ( s), v < t < t 1 - v 

and 
x(t, s)y(t, s)/s = 1 - O(s), t1 + v < t < t2 - v 

where v is any small positive number and t1 = arcsin (-o-0 ), t2 = 7r - arcsin (-o-0 ). 

4. Fast bimolecular reaction with unimolecular slow· 
reaction 

In this section we shall apply the results of section 2 to system (1.4) for the case that 
r1 = r2 = 0. This means that system (1.4) describes a fast bimolecular reaction including 
slow unimolecular reactions and is given by 

dx 
c dt 

dy 
c dt 

c (I a ( t) - 91 ( X)) - r ( X, y), 

c (h(t)- 92(y)) - r(x,y). 
( 4.1) 

We suppose hypothesis (I) to be valid. The degenerate and the associated system to 
(4.1) are the same as for system (3.1). Thus, (4.1) is a singular singularly perturbed 
system which can be reduced by means of the coordinate transformation x = x, y = x-o-
to the (regular) singularly perturbed. system 

dx 
c dt 

do-
dt 

c (Ia(t) - 91(x)) - r(x, x - o-), 

Ia(t) - h(t) + 92(x - o-) - 91(x). 

Now we study to ( 4.2) the initial value problem 

x(O, c) = x0
, o-(0, c) = o-0 := x0 

- y0 

on the interval 0 < t:::; T. The degenerate equation to (4.2) reads 

r(x,x-o-)=0. 

By assumption (I) equation ( 4.4) has the solutions 

x(1)(o-) = 0, x(2)(o-) = o-. 

(4.2) 

(4.3) 

(4.4) 

In order to be able to apply Theorem 2.1 we have to fulfil the hypotheses ( A3) - (As). 
First we consider the solution x(1)( o-) = 0. Concerning this solution the assumptions 
( A3) - (As) read as follows: 
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(A3 ). The initial value problem 

da 
dt 

a(O) 

la(t) - h(t) + g2(-a), 

has a unique solution a-( t, a 0 ) on [O, T]. 

( A4 ). The initial value problem 

(As). 

dx 0 o - = -r(x,x - a), x(O) = x dr 

has a unique solution for r 2:: 0 which tends to zero as T -+ oo. 

8r _ 0 8r _ 0 ax(O,-a(t,a )) + ay(O,-a(t,a )) > 0 for 0::::; t::::; T. 

Applying Theorem 2.1 we get the result 

Theorem 4.1. Suppose the hypotheses (I), (A3)- (A5 )hold. Then there is a sufficiently 
small co> 0 such that for 0 < c <co the initial value problem (4.1), (4.3) has a unique 
solution (x(t,c),y(t,c)) on [O,T] satisfying 

x(t,c) 
y(t,c) 

II0 x(r) + O(c), 
= II0x(r)-a-(t,a0)+0(c) 

where the boundary layer function II0x( T) is defined by 

dIIox o -- = -r(IIox, IIox - a ) , II0x(O) = x0
• dr 

Corollary 4.1.1. Under the assumptions of Theorem 4.1 there is to any given small pos-
itive v an co= c0 (v) such that for 0 < c <co, t;;::: v the reaction rate r(x(t, c), y(t, c))/c 
satisfies 

r(x(t,c),y(t,c)) = Ia(t) + O(c) 
c 

that is, the reaction rate has no jump for t ;;::: v. 

Remark 4.1.1 A similar result holds with respect to the root x2( a) = a. 

Now we consider the case when the solutions x1(a) and x2(a) intersect and change their 
stability. In order to be able to apply Theorem 2.2 we reformulate some hypotheses of 
this theorem. 
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( A3 *). The initial value problems 

da 
dt 
da 

Ia(t) - h(t) + 92(-a), a(O) = a0
, 

dt 

have a unique solution 0-1 ( t, a0 ) and 0-2 ( t, a 1 ) respectively defined on [O, T]. 

(As*). There is a to E (O,T) such that 0-2(t,a 1 ) has a unique zero t = t0 in {O,T) and 
such that 

for t E [O, to), 

for t E (to), T]. 

By means of the functions 'l/;1 ( t) = 0 and 'l/;2 ( t) = 0-2 ( t, a 1 ) we define the angular solution 
(x(t), 0-(t)) of (4.2) associated to the solutions x1(a) = 0 and x2(a) =a of (4.4). 

0 0:::; t ~to 
'0-(t) = 

Moreover, we assume (compare to (A6),(A7)) 

(A~). rxx(O;O) + 2rxy(O, 0) + ryy(O, 0) > 0. 

{ 

0-1 (t,a0
) O~t~t, 

iJ2(t, a 1) to :::; t :::; T 

(A7). The function -r(x(t), x(t) - a) is a quasi-monotone function of a (for definition 
see the Appendix} in [0-(t), 0-(t) +de], and the function g2(x - 0-(t)) - g1 (x) is a 
quasi-monotone function of x in [x(t), x(t) + de:] where d is a sufficiently large 
constant independent of c:. 

The validity of assumption (A;) follows from hypotheses (J) and (A;). Thus, by means 
of Theorem 2.2 the following result holds. 

Theorem 4.2 Assume the hypotheses (I), (A3), (A4), (As*) - (A/) hold. Then there is 
a sufficiently small co > 0 such that for 0 < c <co the initial value problem (4.1), (4.3) 
has a unique solution (x(t,c:),y(t,c)) satisfying 

lim x(t,c) e-o x(t) for 0 < t :::; T, 

lim y(t,c:) 
e-o 

- x(t) - 0-(t) for 0 :::; t :::; T. 
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Moreover, we have 

for 0 :::; t :::; T. 

x( t, c;) 
y(t,c:) 

x(t) + I10 x(r) + O(c:), 
= x(t) - 0-(t) + IT0x(r) + O(c:) 

Corollary 4.2.1. Under the assumptions of Theorem 4.2 the reaction rate has a jump 
near t0 (transition layer), this means, for any small v > 0 we have 

r(x(t, c:), y(t, c:))/c: = Ia(t) + O(c:), t E [v, to - v] 

and 
r(x(t,c:),y(t,c:))/c: = h(t) + O(c:), t E [to+ v,T]. 

We illustrate our results by considering the following example. 

Example 4.1. We study system ( 4.1) in the case 

91(x) = x, 92(Y) = y, r(x,y) = xy. 

By means of the coordinate transformation x = x, y = x-0' we get the regular singularly 
perturbed system 

dx c;-
dt 
dO' 
dt 

x(O) 

From the last equation we obtain 

c (Ia(t) - x) - x (x - O'), 

Ia(t) - h(t) + O'(t), 

xo, 0'(0) = O'o. 

a-( t0 , o-0 ) =et ( o-0 + l e-•(I.(s) - h(s ))ds). 

( 4.5) 

( 4.6) 

Consequently, if 0-(t, 0'0 ) does not change its sign in [O,T] then Theorem 4.1 can be 
applied. It is easily checked that x1(t) = 0 is stable if 0-(t, 0'0 ) < 0 for t E [O, T] and 
x2(t) = -0' is stable if a-(t, 0'0 ) > 0 for t E [O, T]. From Corollary 4.1.l we obtain that 
the reaction rate does not jump for t E [O, T]. 
If a-( t, 0'0 ) changes its sign on 0 < t < T, say, at the point t 0 then we have an angular 
solution and the reaction rate jumps by Corollary 4.2.1. To illustrate this we consider 
the special case that 

Ia(t) = 1 , Ib(t) = 1 +cost. 
In this ·situation we get from ( 4.6) for a-( t, a0 ) 

( 
0 1) t cos t - sin t a-( t' O'o) = O' - 2 e + 2 . (4.7) 
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For 0 < O"o < ! and T = ~7r the equation 

( 
0 1 ) t cos t - sin t 

O" -- e - =0 
2 2 (4.8) 

has a unique solution t = to in [O, !7r]. It can be easily shown that x2(t) = -a(t, O"o) 
is stable for [O, t0 ) and x1(t) is stable for (t 0 , ~7r]. Consequently, there is the angular 
solution 

x( t) = 2 51!" 2 ' - - o, 
A { (1 - (J'O) et+ sint-cost 0 < t < t 

0 , t0 :::; t :::; 4. 

It follows from Corollary 4.2.1 that the reaction rates jumps near the point t = t0 • 

The asymptotic behavior of the reaction rate on the interval [v, t0 - v] is given by 

x(t,c:)y(t,c:) = 1 + O(c:), 
c 

on the interval [to + v, T] it behaves like 

x(t,c:)y(t,c:) 1 O( ) ---- = +cost+ c:. 
c 

5. The Case of Fast Bimolecular and One Fast Uni-
molecular Reaction 

For 91 = 92 = 0, r 1 = 0, system (1.4) describes a fast bimolecular reaction coupled with 
a fast unimolecular reaction. We consider the initial value problem 

dx 
c dt - c:Ia(t) - r(x, y), 

e ~~ - elb(t) - r2(Y) - r(x, y ), (5.1) 

x(O,c:) x0
, y(O,c:)=y0

, O<t::;T. 

Under hypothesis (I) it is easy to verify that system ( 5.1) is a singular singularly per-
turbed system and that any solution of (5.1) which starts in the positive orthant remains 
there for all future times. In order to be able to reduce (5.1) to a (regular) singularly 
perturbed system we have to assume that the corresponding associated system 

dx - -r(x,y), dr 
~~ - -r2(Y) - r(x, y) 
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has a first integral. In contrast to the cases studied in sections 3 and 4, the structure of 
system (5.2) by itself does not imply the existence of a first integral. Therefore, we will 
study system (5.1) in the positive orthant for the special case 

(5.3) 

which is important for applications. In that case, ( 5.1) reads 

(5.4) 

and the corresponding associated system has for x > 0 , y > 0 the first integral 

y - k ln x - x = c, 

where k = k2 / k1 > 0. Thus, hypothesis (A2 ) in Section 2 is fulfilled. By means of the 
coordinate transformation 

x = x , y = a + x + k ln x 

we can reduce the singular singularly perturbed system ( 5.4) to the regular singularly 
perturbed system 

dx 
c dt - c I a ( t) - ki x (a + x + k ln x), (5.5) 

da 
dt ;b(t) - ( 1+;) I.(t), 

x(O,c:) x 0
, a(O,c)=a0

, O<t::;T. 

The degenerate equation to ( 5.5) 

x (a + x + k ln x) = 0 (5.6) 

has for x > 0 the unique solution x = x*( a) which is implicitely defined by 

a + x + k ln x = 0. 

In order to be able to apply Theorem 2.1 we shall verify that its assumptions are fulfilled 
for (5.4) with respect to x*(a). First we note that the positivity of x*(a) and k and 
assumption (I) imply that the initial value problem 

da 
dt 

a(O) 

- Ib(t)- (1 + x*~a)) I.(t), 

a0 = y0 
- x0 

- k ln x0
• 
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has a unique solution a-(t, 0'0) defined for t E [O, T]. That means assumption (A3 ) 

holds. The positivity of x = x*( O') also implies that the stability assumption ( A5 ) and 
assumption ( A4 ) are valid. 

According to the Appendix we get for the zeroth order approximation X 0 ( t, s) = x0 ( t) + 
IT0 x(r) of the solution x(t,s) of (5.5) x0 (t) = x*(a-(t,0'0 )), and II0 x(r) is determined by 

dITox 
dr 

Ilox(O) 

-(x*(0'0 ) + IIox) (0'0 + x*(0'0 ) + IIox + kln(x*(0'0 ) + IIox)), 
(5.8) 

xo - x*( O'o). 

It follows that II0 x = 0 is the only stable equilibrium point of ( 5.8) and that II0 x( r) is 
exponentially decaying. 

According to Theorem 2.1 we get the following result: 

Theorem 5.1 For sufficiently small c the initial value problem (5.1) has in the case 
(5.3) a unique solution (x(t,s),y(t,s)) satisfying 

x(t,s) x*(a-(t,0'0
)) + IIox(r) + O(s), 

y(t,s) = a-(t,0'0 ) + x*(a-(t,0'0
)) + IT0x(r) + kln(x*(a-(t,0'0

)) + IT0 x(r)) + O(s) 

on 0 :::; t :::; T. 

By using Theorem 5.1 artd Corollary B2 we get immediately from (5 .. 4) 
Corollary 5.1.1. Under the assumptions of Theorem 5.1 there is to any given small v an 
s0 (v) such thatforO < c:::; c0 (v) J t ~ v the bimolecular reaction rate r(x(t,c),y(t,c))/c 
satisfies 

r(x(t, c), y(.t, c)) = Ib(t) x*(a-(t, 0'0 )) + O(s) 
c 1 + x*( 0-( t, O'O)) 

and the unimolecular reaction rate r2(Y( t, c)) / c satisfies 

that is, the reaction rates have no jump for t ~ v. 

Remark. From (5.9) we get fort~ v 

Ib(t) 2 
y(t,c)= (-( O))c+O(c ). 1 + x* O' t, O' 

From Theorem 5.1 we only obtain y(t,s) = O(c). 

6. Appendix 

We consider the singularly perturbed system 
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da 
dt 
dz 

c-dt 

f(a, z, t, c), 

g(a,z,t,c) 
(6.1) 

where a E Rn, z E Rm, and c is a small parameter belonging to the interval J := { c E 
R : 0 :::; c :::; c* ~ 1}. Concerning the regularity of the right hand side of ( 6.1) we 
assume 

(Vt). f: Rn X Rm X RX J -7 Rn and g: Rn X Rm X RX J -7 Rm are continuous and 
continuously differentiable with respect to the first three variables. 

If we set c = 0 in (6.1) then the corresponding system 

is called degenerate. 

da 
dt 

0 

- f (a, z, t, 0), 

g( a, z, t, 0) 

For (6.1) we shall study the initial value problem 

a(O, c) = a 0
, z(O, c) = z0 

on the interval 0 < t :::; T under the following assumptions. 

(112). For 0 :::; t :::; T the equation 
g(a,z,t,O) = 0 

has a solution z = c.p( a, t), and the corresponding initial value problem 

da dt = f (a, c.p( a, t), t, 0), a(O) = a 0 

has a unique solution a(t, a 0 ) on {O, Tj. 

(6.2) 

(6.3) 

(6.4) 

Beside the degenerate system (6.2) we consider the associated system to the second 
equation of (6.1) 

dz 
dr = g( a, z, t, 0) (6.5) 

where a and tare considered as parameters. By the assumption (112), z = c.p(a,t) is an 
equilibrium point of (6.5). With respect to its stability we assume 

(f3). z = c.p( a, t) is an asymptotically stable equilibrium point of the associated system 
{6.5} uniformly for all a and t in the domain of interest. 
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Finally we assume 

(V4). The initial value problem 

dz 
dr = g(a-0 ,z,0,0), z(O) = z0 

has a unique solution z( r, z0 ) which exists for T 2:: 0 and tends to cp( a-0 , 0) as 
T--+ 00. 

The following theorem is essentially due to A.N. Tikhonov [22]. 

Theorem A. Suppose the hypotheses {Vi), (V2), {03), (V,i) hold. Then there exists a suf-
ficiently small €o ~€*such that for 0 < c ~co the initial value problem {6.1), {6.3) has 
a unique solution (o-(t,c),z(t,€)) satisfying 

limo-(t,€) - O-(t,o-0
) for O~t~T, 

e:-+-0 

limz(t,€) cp(O-(t,a-0 ),t) for O<t~T. 
e:-+-0 

Remark. Theorem A can be applied also to systems of the form (6.1) which are inde-
pendent of the o--variable, that means to systems of the form 

dz 
c dt = g ( z' t' c). (6.6) 

In order to formulate the next theorem, which is due to A.B. Vasiljeva [23], we introduce 
the concept of an asymptotic expansion of the solution (a-(t,€),z(t,€)) of (6.1), (6.3). 

An asymptotic expansion of the solution of (6.1),- (6.3) is a representation of a-(t, c) and 
z( t, c) in the form 

Xa(t, €) = x(t, €) + IIx( T, €) (6.7) 
where x is a placeholder for a- and z respectively, x(t, t:) is the regular part of the 
asymptotics, that is, 

00 

(6.8) 
i=O 

and Ilx( r, €) is the boundary layer correction near t = 0, 

00 

IIx( r, €) := L €iIIix( T) (6.9) 
i=O 

where T is the stretched variable T = t / €. We denote by Xk( t, €) the truncated part of 
(6.7) 

k 

Xk(t,€) = L ci(xi(t) + Ilix(r)). 
i=O 
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By means of the representation (6.7) we may rewrite F(xa, t, c) in the form 

F(xa(t,c), t,c) = F(x(t,c), t,c) + F(xa(rc,c),rc,c)-F(x(rc,c),rc,c) =: P + IIF 
(6.10) 

where 

P := F(x(t,c),t,c), IIF := F(xa(rc,c),rc,c)-F(x(rc,c),rc,c). (6.11) 

In order to compute the coefficients Xi(t) and IIix(r) we substitute (6.7) - (6.9) into 
(6.1), (6.3) and use the representation (6.10), (6.11). By equating expressions with the 
same power of c (separately for t and r) we obtain equations which let us determine the 
unknown coefficients of the asymptotic expansion. In particular, if our conditions are 
satisfied then a0 (t) and z0 (t) are uniquely determined by the degenerate system (6.2) 
and the initial value a0 • Note that Ifo0 ( r) and Ilz0 ( r) are determined by the initial 
value problems (see [23]) 

dIIoz 
dr 

dIIoa 
dr 

IIog(ao(O) + II0a(r), z0(0) + IIoz(r), 0, 0), IT0 z(O) = z0 
- zo(O), 

0, Iloa(O) = 0. 

Finally, we strengthen the assumptions (t'i) and (iJ) as follows. 

(6.12) 

(Vi). The functions f and g are (k + 2)-times ·continuously differentiable with respect to 
all variables in the domain of interest. 

(V3). All eigenvalues Ai(t) of the Jacobian gz(a(t, a 0), <.p(O'(t, a 0), t), t, 0) satisfy 

Re Ai(t) < 0 for 0:::; t:::; T, 1 :::; i :::; m. 

Theorem B. We assume the hypotheses (Vi) - (V4) to hold. Let (~k(t, c), Zk(t, c)) be 
the truncated parts of the asymptotic expansion of the solution of problem (6.1 ), (6.3) 
obtained by the method of boundary layer functions (see [23], [25] for details). Then there 
exists a sufficiently small co and a constant c = c(co) such that for 0 < c :::; co the initial 
value problem (6.1), (6.3) has a unique solution (a(t,c),z(t,c)) forO:::; t:::; T satisfying 

la(t,c)-~k(t,c)I < 
lz(t,c) - Zk(t,c)I < 

In particular, we have for n = 0 : 

z(t,c) = zo(t) + IT0z(r) + O(c), a(t,c) = 0'0 (t) + O(c) 

where II0z is defined by (6.12). 
Corollary B.1. Let v be any small positive number. Then under the assumptions of 
Theorem B there is an co = co( v) such that for 0 < c < co( v), v :::; t :::; T 

z ( t, c) = zo ( t) + 0 ( c). (6.13) 

27 



Concerning the time derivative we have the result: 

Corollary B.2. Under the assumptions of Theorem B the following estimates hold for 
v ::::; t ::::; T, where v is any small positive number 

(6.14) 

( 6.15) 

Here Zk(t, c) and tk(t, c) are the truncated regular parts of the asymptotic expansion of 
z(t,c) andO"(t,c), that is, 

k k 

Zk(t,c) = Lcizi(t), tk(t, c) = L ciO-i(t). 
i=O i=O 

Proof. Let O"(t,c) = Ek+i(t,c) + 17(t,c), z(t,c) = Zk+i(t,c) + ((t,c). We have 

d77 
dt 

dEk+i (t, c) 
f(Lik+l + 17, zk+I + (, t, c) - dt = 
f (Li k+I + 17' z k+ 1 + (' t' c) - f (Li k+ i, z k+ 1 ' t' c) 

dEk+i(t,c) + f(Ek+i, Zk+i, t, c) - dt . 

From assumption (Vi) and Theorem B we get 

(6.16) 

f(Lik+i + 17, Zk+1 + (>, c) - f(EkH, Zk+i, t, c) = 0( ck+2
). (6.17) 

By [23] we have 

(6.18) 

Hence, from (6.16) - (6.18) it follows 

~~ = ! ( o-(t, e) - Ew(t, e)) = O(ek+2
) fort E [O, T]. (6.19) 

From this relation we get (6.15). 

Concerning ((t, c) we have 

In the same way as above we get 

d( d ( )) ( kH) dt = dt z ( t, c) - Z kH ( t, c = 0 C: • 
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Using the relation 

where Ih+i z( T) is a boundary layer function to t = 0 which exponentially decays and 
zk(t) is continuously differentiable on (0, T) we obtain from (6.20) the estimate (6.14). 

In what follows we study the case when (6.4) has more than one solution which intersect 
at some points. To this end we consider the initial value problem (6.1), (6.3) under 
the condition m = 1, that means, the fast equation is scalar. We assume the following 
hypotheses: 

(D1). Let g be a scalar function and the equation g(O", z, t, 0) = 0 have exactly two solu-
tions z1 = cp1 ( O", t) and z2 = cp2( O", t) with the same smoothness as g in the domain 
of interest. 

(D2). The initial value problem 

dO" 
dt j(O", cp1(0", t), t, 0), 

O"(O) - O"o 

has a unique solution 0-1 ( t, 0"0 ) defined on [O, T]. 
The initial value problem 

dO" 
dt 

O"(to) 

= J( O", 'P2( O", t), t, 0), 
a-l(to, O"o) = 0"1 

has a unique solution 0-2 ( t, 0"1 ) defined on [O, T]. 

(D3 ). The curves z = 1/;1(t) := cp1(a1(t, 0'0 ), t) and z = 1/;2(t) := cp2(a2(t, 0"1), t) intersect 
fort= t0 E (0, T) such that 

d1/J1 ( J d1/J2 ( ) - to <-to dt dt 

where 1/J1(t) is stable for [O,t0 ) and 'lj;2(t) is stable for (t0 ,T]. The stability is· 
expressed by 

gz(0-1(t, 0"
0

), 1/J1(t), t, 0) < 0 fort E [O, to) 

and 

Definition. Under the assumptions (D1 ) - (D3 ) the function (0-(t), z(t)) defined by 

"(t) - { a-1(t, 0"
0

) 0 ::; t::; to "(t) - { 1/J1(t) 0 ::; t ::; to 17 - a2(t,0"1) t0 :=;t:=;T ,z - 1/J2(t) to:=;t:=;T 
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is referred to as the angular solution of {6.2} with respect to 'ljJ1(t),1fJ2(t). 

For any fixed small positive v let Iv be the interval [to - v, t0 + v]. By I; and It" we 
denote the intervals [to - v, to] and [to, to+ v], respectively. For c E J and t E Iv we 
define the functions ((3(j ( t, c), (3z ( t, c)) by 

( 6.21) 

where the positive constants ,\ and / will be chosen later such that these functions form 
an upper solution for some initial value problem of ( 6.1) on Iv. 

(1%i). The initial value problem 

dz 
dr = g(a0 ,z,O,O), z(O) = z0 

has a unique solution z( r, z0 ) which exists for T 2:: 0 and tends to cp1 ( a0 , 0) as 
T-+ 00. 

(Vs). gzz(a(to), z(to), to, 0) < 0. 

(V6). Fori = i, ... n,c E J andt E Iv thefunctionfi(ai, ... ,O"i-i,0-i(t),ai+I, ... ,an,z,t,c) 
is non-decreasing in ( 0"1, ... , O"i-1, O"i+1, •.. , O"n, z) and the scalar function 
·g(ai, ... ,an,z(t),t,c) is non-decreasing in (a1 , .•• ,an) in the region defined by 
ak E [ak(t), (3f (t, c)], k = 1, ... , n, z E [z(t) , (3z(t, c)]. 

Remark. Assumption (V6) implies that system {6.1} is quasi-monotone in the domain 
of interest {14}. 

(117 ). Fort E (0, t0 + v ), where v is any given small positive number) we have 

da 
dt < f(a(t),z(t),t,c), 
dz 

c dt < g(a(t),z(t),t,c) 

where at t = t0 the corresponding left and right derivatives have to be used. 

Theorem C. Assume the hypotheses (Vi), (V4), (Vs) - (117) to hold. Then there exists a 
sufficiently small co= co(v) such that for 0 < c ~ co(v) the initial value problem {6.1)) 
(6.3) with z0 2:: 'lj;1(0) has a unique solution (a(t,c), z(t,c)) fort E [O, T] satisfying 

lima(t,c) 0-(t) fort E [O, T], 
e-+O 

limz(t, c) - z(t) fort E (0, T]. 
e-+0 

Moreover) we have 
a(t,c)=a(t)+O(c) for tE[O,T], 
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{ 

z(t)+Iloz(r)+O(c) for 
z(t, c) = z(t) + O(d) for 

z(t)+O(c) for 

where IT0z( r) is the zeroth order boundary layer function. 

0 St S to - v, 
t E Iv, 
to+ v St ST 

Proof. For simplicity we consider the case that a is also a scalar. The proof proceeds in 
three steps. In the first step we consider (6.1), (6.3) on the interval [O, t0 - v] and apply 
Theorem B. Thereby we prove the existence of the solution (a(t, c), z(t,c)) of (6.1), (6.3) 
on the interval [O, t 0 - v] with asymptotic behavior as described above. Let 

a-; := a( to - v, c ), z-; := z( to - v, c ). (6.22) 

Next we consider the initial value problem (6.1 ), (6.22) on the interval Iv. We prove 
the existence of a unique solution to this problem by applying the method of lower 
and upper solutions. Following [5], [14], [1] we call the functions (a(J(t,c), az(t,s)) and 
(/30" ( t, c ), /3z( t, c)) the lower and upper solutions of the problem (6.1 ), (6.22), respectively, 
provided they satisfy the following inequalities 

O'.O" ( t, £) S {Y ( t, £) , az ( t, £) S /3z ( t, c), (6.23) 

(6.24) 

daz d/3z 
c dt-g(a,az,t,s) S 0 Sc dt-g(a,f3Z,t,s) ( 6.25) 

for 0 < £ S £*, O' E [a(J(t, s), /3(J(t, c)], z E [az(t, c), /3z(t, s)], t E Iv, and 

a(J(to - v, c) Sa-;; S /3(J(to - v, c), az(to -· v, c) S z-;; S /3z(to - v, c). (6.26) 

The existence of a lower and an upper solution implies the existence of a solution 
(a(t,s),z(t,s)) of (6.1), (6.22) satisfying 

a(J(t,c) S a(t,s) S /3(J(t,c), az(t,s) S z(t,s) S /3z(t,c) fort E Iv. 

If we assume that (Vs) is valid then the differential inequalities (6.24), (6.25) are fulfilled 
if the following differential inequalities are satisfied 

da(J d/30" 
Jt-f(aO",az(t,s),t,c) S 0 S dt-f(/30",/3z(t,s),t,s), (6.27) 

daz df3z 
£ dt - g(a(J,az(t,s),t,s) S 0 S £ dt-g(/30",/3z(t,c),t,s). (6.28) 

F~om assumption (V7) it follows immediately that ( 0-( t), z( t)) is a lower solution of the 
problem (6.1), (6.22) on Iv. Now we prove that /3(J(t, c) and f3z(t, s) defined in (6.21) are 
an upper solution of (6.1), (6.22) on Iv. By assumption (Vs) we have 
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t: d!z - g(j3"(t, t:), j3z(t, t:), t, t:) ~ t: ~: - g(O-(t), Z(t) +id, t, t:) = 
1 12 (6.29) 

= -gz(a(t), z(t), t, 0) I c;2 - gzz(a(t), z(t), t, 0)2c; + ge(a(t), z(t), t, O)c: + o(c:). 

From the stability assumption (D3 ) it follows that the first term in (6.29) can be esti-
mated below by 0. Since lge(O-(t), z(t), t, O)I is bounded on Iv, by assumption (Vs) there 
is some positive constant lo such that for 0 < c; < c;0 and I > lo the right hand side 
of (6.29) can be estimated below by 0. In order to check that (f3u, f3z) defined in (6.21) 
satisfies condition ( 6.27) we substitute ( 6.21) into ( 6.27). We get 

d/3(7 dO- ~ dt - f(f3u(t, c:), /3z(t, c:), t, c:) 2:: dt + Ac:e>-t - f(o-(t) + c:e>-t, z(t), t, c:) 

= Ac:e>-t - fu(O-(t), z(t), t, O)ce>.t - fe(O-(t), z(t), t, O)c + o(c) (6.30) 
= ce>.t(A - fu(O-(t), z(t), t, 0) - fe(O-(t), z(t), t, O)e->.t + o(l)). 

Thus, there is a constant Ao > 0 such that for A > Ao and 0 < c < co the right hand 
side of (6.30) can be estimated below by 0. Consequently, we have proved the existence 
of a lower and an upper solution of (6.1), (6.22) on Iv which implies the existence of a 
unique solution of (6.1), (6.22) on Iv satisfying the estimate of Theorem C. Let 

o-~12 := o-( to + v /2, c ), z~12 == z( t0 + v /2, c; ). (6.31) 

Finally we apply Theorem B to (6.1), (6.31) on the interval [t0 +v/2, T], where we assume 
that co( v) is so small that o-;12 is in the domain of attraction of the stable root <.p2 and 
the corresponding boundary layer is contained in ( t0 + v /2, t0 + v) for 0 < c :::; co( v). 
This completes the proof of Theorem C. 

Corollary Cl. Under the assumptions of Theorem C the following estimates on the 
derivative of the solution of {6.1), {6.3) hold fort E [v, T]\I; where v is any small 
positive number 

~ (z(t,c:) - Z(t,c:)) O(c:), 

~ (O'(t,c:)- 0-(t,c:)) = O(c:). (6.32) 

The proof of Corollary C 1 follows from Corollary B2 and an application of Theorem B 
fort E [v, T]\I; (compare the proof of the Theorem C). 

Now we consider the case z0 < 'l/11 (0). To this end we assume 

(Vt) . Fort E Iv, where v is any given small positive number we have 
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d0'2 
dt < f ( 0'

2 
( t)' 1/;2 ( t)' t' c) ' 

f/'f / < g ( 0-
2 

( t)' 'f 2 ( t)' t' £) . 

Theorem C*. Assume the hypotheses (Vi), (f4), (V5 ), (\;6), (Vn to be valid. Then there 
exists a sufficiently small co = c( v) such that for 0 < c :::; co ( v) the initial value problem 
(6.1), (6.3) with z0 <1/;1(0) has a unique solution (a(t,c),z(t,c)) fort E [O,T] satisfying 

lima(t, c) 0-(t) fort E [O, T]\I~, e-o 
lim z( t, c) - z( t) for t E (0, T]\I~. e-o 

Moreover, we have 

a(t, c) = a(t) + O(c), for E [O, T]\I~, 

z(t, c:) = z(t) + O(d) for t 0 :::; t,:::; t0 + v, { 

z(t)+Iloz(r)+O(c:) for o:::;t:::;to-v, 

z(t)+O(c) for t 0 +v:::;t:::;T, 

where II0z( r) is the· zeroth order boundary layer function. 

The proof of Theorem C* is essentially the same as of Theorem C, ·when ( 0'2 ( t, a 1), 1/;2 ( t)) 
in used as a lower solution of (6.1), (6.22) on I;. 

References 

[1] B.N. Babkin (1954), Approximate integration of systems of ordinary differential 
equations of first order by S.A. Chaplygin's method. Izv. AN SSSR. ser. math. 18, 
477-484 (in russian). 

[2] M.Z. Bodenstein (1913), Eine Theorie der photochemischen Reaktionsgeschwindig-
keiten. Phys. Chem. 85, 329-397. 

[3] Yu.P. Boglaev (1970), A two-point boundary value problem for a class of ordinary 
differential equations with a small parameter at the derivative. USSR Comp. Math. 
and Math. Phys. 10, ( 4) 191-204. 

[4] K.W. Chang and F.A. Howes (1984), Nonlinear Singular Perturbation Phenomena: 
Theory and Application. Springer-Verlag, New York. 

[5] S.A. Chaplygin (1950), New method for integration of differential equations (in 
russian). GITL, Moscow-Leningrad. 

[6] P. Erdi, J. Toth (1989), Mathematical Models of Chemical Reactions. Manchester 
University Press. 

33 



[7] N. Fenichel (1979), Geometric singular perturbation theory for ordinary differential 
equations. J. Diff. Equs. 31, 53-98. 

[8] J.E. Flaherty and R.E. O'Malley, Jr. (1980), Analytical and numerical methods for 
nonlinear singular singularly perturbed initial value problems. SIAM J. Appl. Math. 
38, 225-248. 

[9] F. Hoppensteadt (1971), Properties of solutions of ordinary differential equations 
with small parameters. Comm. Pure Appl. Math. 24, 807-840. 

[10] U. Maas, S. Pope (1992), Implementation of simplified chemical kinetics based on 
intrinsic low-dimensional manifolds. Universitat Heidelberg, IWR Preprint 92-06. 

[11] Ju.A. Mitropol'skij and O.B. Lykova (1964), On an· integral manifold of nonlinear 
differential equations containing slow and fast variables. (in russian) Ukr. Mat. Zh. 
16, 157-163. 

[12] Z.-M. Gu, N.N. Nefedov, and R.E. O'Malley, Jr. (1989), On singular singularly 
perturbed initial value problems. SIAM J. Appl. Math. 49, 1-25. 

[13] M. Levinson (1951 ), Perturbations of discontinuous solutions of nonlinear systems 
of differential equations. Acta Math. 82, 71-106. 

[14] M. Muller (1926), Uber das Fundamentaltheorem in der Theorie der gewohnlichen 
Diffe-
rentialgleichungen. Math. Z. 26, 619-645. 

[15] Noyes, R.M. (1978), Generalized kinetics of chemical change: some conditions for 
the validity of the steady state approximation. Supplement of the Progress of The-
oretical Physics, 64, 295-305. 

[16] R.E. O'Malley, Jr. (1988), On nonlinear singularly perturbed initial value problems. 
SIAM Rev. 30, 193-212. 

[17] R.E. O'Malley, Jr. (1991), Singular Perturbation Methods for Ordinary Differential 
Equations. Springer-Verlag, New York. 

[18] R. Schuster, St. Schuster (1991), Relationship between modal analysis and rapid 
equilibrium approximation in the modelling of biochemical networks. Systems Anal. 
Modelling Simulation 8, 623-633. 

[19] D.R. Smith (1985), Singular Perturbation Theory. Cambridge University Press, 
Cambridge. 

[20] V.V. Strygin and V.A. Sobolev (1988), Separation of motion by means of integral 
manifolds. (in russian) Moscow. Nauka. 1988. 

[21] A. N. Tikhonov (1948), On the dependence of solutions of differential equations on 
a small parameter. (in russian) Mat. Sb. 22 (64), 193-204. 

34 



[22] A.N. Tikhonov ( 1952) Systems of differential equations containing small parameters 
(in russian), Mat. Sb. 73, 575-586. 

[23] A.B. Vasil'eva and V.F. Butuzov (1973), Asymptotic Expansions of Solutions of 
Singularly Perturbed Equations (in russian). Nauka, Moscow. 

[24] A.B. VasiPeva and V.F. Butuzov (1978), Singularly Perturbed Equations in the 
Critical Case (in russian). Moscow State University, Moscow. 

{25] A.B. Vasil'eva and V.F. Butuzov (1990), Asymptotic Nlethods in the Theory of 
Singular Perturbation (in russian). Vyshaja Shkola, Moscow. 

[26] W. Wasow (1965), Asymptotic Expansions for Ordinary Differential Equations. 
John Wiley, New York. 

[27] K.V. Zadiraka (1957), On an integral manifold of differential equations containing 
a small parameter (in russian). Dokl. Akad. Nauk SSSR 115, 646-64 7. 

35 





Recent publications of the 
Weierstrafi-lnstitut fiir Angewandte Analysis und Stochastik 

Preprints 1994 

108. Henri Schurz: Asymptotical mean square stability of an equilibrium point of 
some linear numerical solutions with multiplicative noise. 

109. Gottfried Bruckner: On the stabilization of trigonometric collocation methods 
for a class of ill-posed first kind equations. 

110. Wolfdietrich Muller: Asymptotische Input-Output-Linearisierung und Stor-
grofienkompensation in nichtlinearen Reaktionssystemen. 

111. Vladimir Maz'ya, Gunther Schmidt: On approximate approximations using 
Gaussian kernels. 

112. Henri Schurz: A note on pathwise approximation of stationary Ornstein-
Uhlenbeck processes with diagonalizable drift. 

113. Peter Mathe: On the existence of unbiased Monte Carlo estimators. 

114. Kathrin Biihring: A quadrature method for the hypersingular integral equa-
tion on an interval. 

115. Gerhard Hackl, Klaus R. Schneider: Controllability near Takens-Bogdanov 
points. 

116. Tatjana A. Averina, Sergey S. Artemiev, Henri Schurz: Simulation of stochas-
tic auto-oscillating systems through variable stepsize algorithms with small 
noise. 

117. Joachim Forste: Zurn Einflufi der Warmeleitung und der Ladungstragerdif-
fusion auf das Verhalten eines Halbleiterlasers. 

118. Herbert Gajewski, Konrad Greger: Reaction-diffusion processes of electri-
cally charged species. 

119. Johannes Elschner, Siegfried Prossdorf, Ian H. Sloan: The qualocation meth-
od for Symm's integral equation on a polygon. 

120. Sergej Rjasanow, Wolfgang Wagner: A stochastic weighted particle method 
for the Boltzmann equation. 

121. Ion G. Grama: On moderate deviations for martingales. 



122. Klaus Fleischmann, Andreas Greven: Time-space analysis of the cluster-
formation in interacting diffusions. 

123. Grigori N. Milstein, Michael V. Tret'yakov: Weak approximation for stochas-
tic differential equations with small noises. 

124. Gunter Albinus: Nonlinear Galerkin methods for evolution equations with 
Lipschitz continuous strongly monotone operators. 

125. Andreas Rathsfeld: Error estimates and extrapolation for the numerical so-
lution of Mellin convolution equations. 

126. Mikhail S. Ermakov: On lower bounds of the moderate and Cramer type large 
deviation probabilities in statistical inference. 

127. Pierluigi Colli, Jurgen Sprekels: Stefan problems and the Penrose-Fife phase 
field model. 

128. Mikhail S. Ermakov: On asymptotic minimaxity of Kolmogorov and omega-
square tests. 

129. Gunther Schmidt, Boris N. Khoromskij: Boundary integral equations for the 
biharmonic Dirichlet problem on nonsmooth domains. 

130. Hans Babovsky: An inverse model problem in kinetic theory. 

131. Dietmar Hornberg: Irreversible phase transitions in steel. 

132. Hans Gunter Bothe: How 1-dimensional hyperbolic attractors determine their 
basins. 

133. Ingo Bremer: Waveform iteration and one-sided Lipschitz conditions. 

134. Herbert Gajewski, Klaus Zacharias: A mathematical model of emulsion poly-
merization. 

135. J. Theodore Cox, Klaus Fleischmann, Andreas Greven: Comparison of inter-
acting diffusions and an application to their ergodic theory. 

136. Andreas Juhl: Secondary Euler characteristics of locally symmetric spaces. 
Results and Conjectures. 




