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Abstract

A random intersection graph Gy, is induced from a random bipartite
graph g;Wyp with vertices classes V', W and the edges incident between
veV and w e W with probability p . Two vertices in V' are considered
to be connected with each other if both of them connect with some common
vertices in W . The clustering properties of the random intersection graph
are investigated completely in this article. Suppose that the vertices number
be N=1|V| and M =|W| and M = N p= N where a>0,3>0,
we derive the exact expressions of the clustering coefficient C, of vertex
v in Gyw,p . The results show that if o < 28 and o # 6, C,
decreases with the increasing of the graph size; if o« =38 or a > 206, the
graph has the constant clustering coefficients, in addition, if « > 28 , the
graph connecChangshui Zhangts almost completely. Therefore, we illustrate
the phase transition for the clustering property in the random intersection
graphs and give the condition that Gy, being high clustering graph.

There are a lots of collaboration networks in the real world, such as scientists
collaboration networks|[10, 11], actor collaboration networks[2, 3, 1], metabolism
networks|7, 6, 5], et al. In these networks, there are two types of vertices sets V|
W and the vertices in V' may link to some of the vertices in W . The vertices
v1, vy € V are considered to be connected with each other if both of these two
vertices connect to some common vertices in W . For describing such intersection
structure mathematically, the random intersection graph was introduced firstly in
[12, 8]. Let Gy, be the random bipartite graph with two vertices classes V

and W . That probability that v € V and w € W be connected with each
other in Gy, is p and the connections between the vertices of V' and W are
independent with each other. The random intersection graph Gy, is a random
graph with vertices set V' and the connections in Gy, are induced from Gy y,

in this way: the vertices wvi,v9 € V are connected with each other if and only if
both of them link to some vertex w € W in Gy, . The subgraph property and
the degree distribution of the random intersection graphs are illustrated in |4 and
|13], respectively. The intersection structure in the networks is considered to be the
reason that many real world collaboration networks have high clustering coefficients,
since all the vertices in V' linking to the same w € W will form a complete sub-
graph and have very high local clustering coefficients. However, if p =0, it is clear
that the Gy, is an empty graph and the clustering coefficient is 0, which means
that there may exist a threshold p. that Gy, is a high clustering graph only
when p > p. .



The clustering coefficient of the vertex v € V' is defined as

2¢, 1
— _ S E 1
Co ky(k, — 1)’ ¢ N = Cos (1)

where k, is the degree of vertex v, ¢, , which is called clustering degree in |14, 15|,
is the number of edges that actually exist between these £k, vertices and N is
the number of vertices in V' . The cluster coefficients of collaboration networks
are studied in [9] under the different definition from Eq.(1). However, there are few
mathematical results for Gy, to characterize the clustering properties in the form
of Eq.(1), which is a more popular definition for clustering coefficients. We studied
the clustering property of Gyw, thoroughly in this article. The exact expression
of C, is presented and as the result a phase transition phenomenon is discovered.

Let N =|V|, M =|W]| be the vertices number and
M=N?® p=¢N~" (2)

where o> 0,0 >0 and ¢ > 0 are the constants. Let W, be the set of vertices
in W which link with v € V' and V, be the set of vertices in V\{v} which
connected with v in Gy, by linking with some common vertices in W with v .
It can be seen that both W, and V, are the random set. Since the connections
between vertices of V' and W are independent, the probability that vy,v, € V' are
connected each other in Gy, is p=1—(1—p)™ , which decides the asymptotical
property of Gy, under the settings in Eq.(2). When N — oo, the speeds that
p— 0 and M — oo will be very different under various o and [, as a result
the asymptotical property of p will be different.

From above description, it can be seen that the random intersection graph Gyw,, is
in fact a random graph with vertices set V' and the connective probability between
any two vertices wvi,ve is p . In this case, will all the results of classical random
graph presented by Erdos and Renyi be extended to Gyw, ? If so, the random
intersection graphs should be a trivial model. However, that is not true. What
makes Gy, different is the independence. In the random intersection graphs, the
independence of the connections disappears, because

P (vy € Viylvg €V, 03 € Vi) # P02 € Vi), (3)

that is to say, the connection between v, and wv3 depends on whether the vertex
v1 being connected with both v, and wv3 . Therefore, the results of Erdos-Renyi
random graphs can not be extended to Gy, directly and we should find the
way out for any properties of the random intersection graphs. We will present the
analysis of the clustering coefficients of Gy, in the following text.

The local clustering property, which describing the correlation between the clustering
degree ¢, (or clustering coefficient C, ) of vertex v € V' and the degree k, , will be
investigated at first. Since the connections between the vertices of V' result from
the links between V' and W | the correlation between ¢, and L, = |W,| should
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be studied at first, where the random set W, is the collection of all the vertices in
W that linked with v , therefore L, is a random variable. With the random set
W, as the condition, the expectation of ¢, is

Ele,W,] = > Ele|W,, V] P(V,[W,)
Vo CV\{v}
N—-1
= > Y Ele|W., V] P(Vo[W,) (4)
i=1 |V, |=i

where FE [c,|W,,V,] is the expectation with the random sets W,,V, as the condi-

tions. It can be seen that E [c,|W,] may be derived if F [c,|W,,V,] and P(V,|W,)
are known.

As V, be the vertices connected with v , and any two of these vertices connect
with each other with probability p , we can obtain that

Vi
Bl = (15)P 0 € Vo e v, )
g

. V. . . . .
since there are at most (' 2“‘) possible connections among the vertices in V, .

With the random sets W,,V, as the conditions, the probability that any two
vertices wvy,v; € V,, being connected with each other can be denoted as

P(Ul € %2,”1,”2 S ‘/;)|Wv>‘/;))

1—(1—p?)ke o Lo INM—Ly
=gy TP A

(6)

The first term of Eq.(6) is the probability, with the random sets W,,V, as the
conditions, that there exist w € W, such that w € W,, and w € W,, . The
second term of Eq.(6) is the probability, with the random sets W,,V, as the
conditions, that vy, vy are connected with no common vertex in W, but connected
with some common vertices in W\ W, .

For the vertex v , if the set of its linked vertices in W is W, , it has the connected
vertices set V,, in Gyw, with probability

Vol V|-
PV, |W,) = [1—(1—p)=]"" (1 - p)le@™=I"I=1) )
Combining with the Eq.(5)(6)(7), we have

E [c,|W,]
_ (N — 1)2<N — 2) 1— (1 —p2)L“ + (1 _p2)LU
(L= @=p) (=@ =M | ®)



Under the various « and (3, the asymptotical property of Eq.(8) will be different
as shown below

4 2
CONTE p<a<p
1 _ _L'up 3
E [cy|[W,] ~ ¢ (762 ) N2, o =203 (9)
N2
L 7, o > 2ﬁ

Eq.(9) gives the description of the mean clustering degree of v under the condition
that W, is known. If only L, = |W,| is known and it is not clear which vertices
are in W, , then P(W,|L,) = 1/(%) since every set W, which has L, elements

M) such W, , therefore,

incidents with the same probability and there are (L

Ele|L) = Y Ele|W,]P(W,|L)

L.) (1)
= Elc,|W,]. (10)

Eq.(9) and (10) tell the following truth: when [ < a < 23, the vertex clustering
degree ¢, increases with L, linearly; when o = 20, ¢, increases with L,

exponentially; when o > 28, ¢, is almost N?/2 . Considering the connective
probability among the vertices of V', p = 1—(1—p*)™ | and Eq.(2), we find that the
greater « means the greater M and the higher connective probability, similarly,
the greater 5 means the smaller p and the smaller connective probability. For the
random intersection graph, higher connective probability means the high clustering
degree. Therefore, if a is great enough relative to [ , the clustering property of
the graph will change. The local clustering property of Gy, under different o,
described by Eq.(9) are illustrated in Fig. 1.

Since

E(kv|Lv) = (N - 1) (1 - (1 _p)L) ) (11)
Combining Eq.(1),(9) and (10), we can derive the conditional expectation of clus-
tering coefficients with the asymptotical analysis under different «, (3 , we have

c¢L,N*77, 0 <a<?2f
E[kv|Lv] ~ N <1 - 6_01575> , a=2f (12)
N, a>20.

Given the condition L, , the conditional distribution of k, is binomial distribution
Bi(N — 1,p) . Therefore, from the probability inequalities

Pl BRI+ < o (g )
(13)
P(kv S E[kv‘Lv] - t) Z €xXp <_m) (14)
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Figure 1: The conditional expectation of the clustering degree of v given L, . The
imbedded graph are the magnification of the case [ < a < 28 . Given the size of
the networks, N—1000, it can be seen that when o« =1.0,4=0.7 (), E(cy|Ly)

increase with L, linearly; when a=1.0,4=0.5 (0O), E(c,|L,) increase with
L, exponentially; when o = 1.0, =03 ( O ), E(cy|L,) ~ N?/2 . The dash
lines are the theoretical results.
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Figure 2: The dependence of the clustering coefficient of v on the number of
the W links of v . Given the size of the networks, it can be seen that when
a=10,3=07($), E(C,L, decrease with L, in hyperbolic way; when
a=10,=05 (0O), E(C,L,) isnear to 1 and almost a constant; when
a=10,6=03( O ), E(C,|L,) =1.. The dash lines are the theoretical results.

we have
cL,N'7", B<a<?2B
ky ~ N(l—e_cNL_g) , a=20 (15)
N, a > 20.

asymptotically almost surely with N — oo , which means that k£, concentrates
highly to its mean value so that the probability that k, apart from E[k,|L,] goes
to zero when N goes to infinity. So the clustering coefficient follows directly from
the Eq.(1) as

1
L_’ 6 S a < 26
E[C,|L,] ~ Yo ely (16)
l—e v, a=243
1, a > 20.

and the simulation results are illustrated in Fig. 2.
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Figure 3: The dependence of the clustering coefficient of v on the vertices number
in Gyw, - It can be seen from the figure that when a=5=1.0( 4 ), E(C,) is
a small constant; when o« =1.0,6=0.7( e ), E(C,) decreases with the growth
of the network size; when o« = 1.0, =0.5 (W), EC, is a constant near to 1;
when a=1.0,6=03(A), EC,=1.

If we consider the property of L, under different «, 3, we can obtain the following
results
Ly ~ cN*™F (17)

2

asymptotically almost surely with N — oo and we notice that E(C,|L,) ~ 1—e™ ¢ |
which is a constant. Since E[C,| =), E[C,|L,JP(L, =1) , we have

d a=0
1
ZN—(e=8)
BC) ~ CN , f<a<?20 (18)
1—e“, a=20
1, a > 20.

and the simulation results are illustrated by Fig. 3.

Eq.(18) describes the whole clustering property of the random intersection graph
Gv.w,p - It can be seen that the clustering properties of Gy, are very different for
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different parameter «, (3 . The decisive facts are not the value of the parameters,
but the relative relation of the two parameters. In fact, increasing ( will reduce
the connective probability and so the clustering coefficient, however, increasing «
will enhance the connective probability and clustering coefficient so as to counteract
the effect from the increase of [ .

The graphs or networks with high clustering coefficients are the research focus now
and the reasons of the high clustering are interesting problems. Some evolutionary
mechanisms have been studied for such problem. However, the random intersection
graphs are easier to be high clustering graphs. All the vertices in V' which link
to the same w € W will be connected with each other. Therefore, Gy, is
constituted from a lots of complete subgraphs. Eq.(18) tells that Gy, will have
high clustering coefficient when « > 23 . In other words, a = 20 is the critical
point for the clustering property in Gy, .

Moreover, considering Eq.(2) and the critical condition expressed by «a, 8, we
can obtain easily the critical probability, p. = c/m , that Gy, will be a
high clustering graph if p > p. . In addition, the local clustering property, which
described by FE[C,|L,] , only varies with L, at critical point, p = p. . When
P> D, Gyw,p is almost a complete graph. This means the connectivity property
of Gyw, varies sharply at the critical point.

As we have given the complete analysis of the clustering property of Gy, , the
condition that Gy, be a high clustering graph and the characteristics of Gy,
at critical point has been revealed. What may be more interesting and important
are the analysis of the clustering properties of scale-free random intersection graphs,
which will be our future work.
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