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Abstract

We consider the interaction between an elastic body and a compressible inviscid
fluid, which occupies the unbounded exterior domain. The inverse problem of deter-
mining the shape of such an elastic scatterer from the measured far field pattern of
the scattered fluid pressure field is of central importance in detecting and identifying
submerged objects. Following a method proposed by Kirsch and Kress, we approx-
imate the acoustic and elastodynamic wave by potentials over auxiliary surfaces,
and we reformulate the inverse problem as an optimisation problem. The objective
function to be minimised is the sum of three terms. The first is the deviation of the
approximate far field pattern from the measured one, the second is a regularisation
term, and the last a control term for the transmission condition. We prove that the
optimisation problem has a solution and that, for the regularisation parameter tend-
ing to zero, the minimisers tend to a solution of the inverse problem. In contrast to a
numerical method from a previous paper, the presented method does require neither
a direct solution method nor an additional treatment of possible Jones modes.

1 Introduction

In this paper, we consider the interaction between an elastic body and a compressible
inviscid fluid, which occupies the unbounded exterior domain. We suppose that a time-
harmonic acoustic wave is incident upon the elastic target, and in the direct problem we
are required to determine the incited elastic and the scattered acoustic wave. This leads
to a transmission problem coupling the reduced elastodynamic (or Navier) equation inside
the body with the Helmholtz equation in the exterior via the (smooth) interface I'.

The inverse problem of determining the shape I' of the elastic scatterer from a knowledge of
the far field pattern of the scattered fluid pressure field is of central importance in detecting
and identifying submerged objects. The efficient numerical solution of inverse problems of
this type is challenging due to the fact that they are both nonlinear and severely ill-posed.
We refer to |5, 3| for an overview on inverse problems and corresponding reconstruction
methods for the Helmholtz and Maxwell equations. Recently, a first numerical method
was investigated in [6] to solve the above-mentioned inverse fluid-solid interaction problem.
The approach of [6] is based on the variational formulation of a modified forward problem,
the reformulation of the inverse problem as an optimisation problem, and the use of finite
element discretisations to find minimisers of the corresponding cost functional. Besides
a regularisation term, the functional involves the least squares deviation of the measured
data from the exact far field patterns corresponding to the optimal interface, and the
numerical computation of minimisers is based on gradient formulas for the scattered field
and a direct solver for the variational problem.

In this paper, we study an alternative reconstruction method, following an approach first
developed by Kirsch and Kress [11] (see also [5], Chap. 5) for inverse acoustic scattering by



a sound-soft obstacle, and later extended by Zinn [18] to the inverse acoustic transmission
problem; see also Angell, Kleinman and Roach [2] for a closely related scheme. In this
method, which does not require the solution of direct problems, the inverse problem is
again reformulated as an optimisation problem. However, the scattered acoustic field
is approximated by a potential with unknown density defined on an auxiliary surface,
and the unknown interface is determined as a surface where the boundary conditions are

fulfilled.

Our goal is to extend this method to the inverse fluid-solid interaction problem and to
prove a corresponding convergence result. In Sect. 2 we recall basic solvability results
for the direct scattering problem. In Sect. 3 we introduce the reconstruction method and
state the convergence result. As in [11] and [18], the method splits the inverse problem
into a linear ill-posed part to reconstruct the scattered pressure field and a nonlinear
well-posed part to find the interface. The minimisation of the Tikhonov functional for
the linear problem and the defect minimisation of the transmission conditions are then
combined into one cost functional.

In Sect. 4 we discuss the details of the numerical discretisation of the optimisation prob-
lems. Note that, using Dirac d-functionals as trial functions, no quadrature formula is
needed. Furthermore, in contrast to the finite element based method of [6], the recon-
struction method presented here is not affected by the possible occurrence of Jones modes
(nontrivial solutions of the homogeneous forward problem) in the direct scattering prob-
lem, so that a regularisation with respect to the frequency can be avoided in such a
case.

The remaining Sects. 5-7 are devoted to the proof of the convergence result (Theorem 3.2),
which is complicated by the Jones modes. So, compared to the case of inverse boundary
value problems for the Helmholtz equation, our convergence proof requires additional
nontrivial solvability results on the direct interaction problem; see Sections 5 and 6. Note
that the proofs for the 2D case and the 3D case are completely analogous. In order to
simplify the notation we present the proofs in Sects. 5-7 for the 3D case only.

The implementation of the optimisation method and numerical results, including a com-
parison with the procedure of [6], will be reported in a forthcoming paper.

2 Direct scattering problem

Suppose 2 C R? is a bounded domain with smooth boundary (i.e., C1®). Either we
suppose d = 3 and Q C R? is a three-dimensional elastic body, or we suppose that
d =2 and Q C R? is the cross section of a three-dimensional cylindrical body of infinite
extension. This body is surrounded by a homogeneous compressible inviscid fluid filling
the complementary exterior domain, i.e., either d = 3 and the fluid fills Q¢ = R3*\cl(Q2) or
d =2 and Q° = R?\cl() is the cross section of the cylindrical fluid domain.

We denote by I' the boundary of 2 and 2¢. Assuming that the wave motion is time
harmonic and that, for d = 2, the direction of the wave is contained in the cross-section
plane, the direct scattering problem can be formulated in terms of the displacement field
u(z), x € Q, and the pressure function p(z), = € Q°, for the elastic structure and the
fluid, respectively. The corresponding boundary value problem consists of the Navier and



Figure 1: Domains.

Helmholtz equations

pAu + (A + p)grad div u + gw*u =0 in Q,

Ap+k*p=0 in Q°, (2.1)
together with the transmission conditions
tu = —pv onl
u-u:w&,p onl, (2:2)
and the Sommerfeld radiation condition for the scattered field p*¢ := p — p™©
O p*¢ — ikp* = o(r~V/2) asr — 00, (2.3)

Here i and A are the Lamé constants for the elastic material satisfying p > 0, A+ % w>0;
o and gy are the densities of the elastic structure and the fluid; w is the frequency, &
the wave number defined by k* = w?/c* with the sound speed c in the fluid; p™¢ is the
incident plane wave. The traction operator ¢t on I' is defined by

n2(8x1u2 - aa}gul) lf d — 2
tu = 2u0,u + AV -uln+ pu N1 (Ozp 1 — Oy Uz) (2.4)
n x [V x ul if d = 3,

where v is the outward unit normal to I" with respect to €.

There are various ways to reduce the transmission problem (2.1)-(2.3) to an equivalent
nonlocal boundary problem on a bounded domain |13, 7, 6]. Here we follow [6] in spirit, us-
ing the Dirichlet-to-Neumann mapping for the Helmholtz equation on an artificial bound-
ary I'g and a strongly elliptic variational formulation of the problem (2.1)-(2.3) inside I'y.



In the following we assume that the origin lies in €2, and €2 is contained in a ball resp. circle
{x € R?: |z| < R} with boundary [y := {zx € R? : |z| = R} (cf. Figure 1). Then the
Helmholtz equation for p is solved in the annular domain Qp := QN {z € R?: |z| < R}
with boundary I'UT'y. Moreover, the radiation condition (2.3) can be written in the form

Op—Tp=hy onTqy, hg:= (9, —T)p™, (2.5)

where 7' denotes the Dirichlet-to-Neumann mapping u|r, +— 0,u|r, for the Helmholtz
equation in the exterior of I'g; note that d,p* = Tp* on T'y. If p|r, is given as a series in
spherical harmonics, then (cf. [15], Sect. 2.6.3 and [4] for the details) T’p can be explic-
itly computed in terms of spherical harmonics (the eigenfunctions of 7), and the linear
operator

T : HY*(I'y) — H Y*(I) (2.6)
is continuous. Furthermore,
Re (Tp,p)r, <0 for all p e HY*(Ty), (2.7)

where (-, -)p, denotes the usual duality pairing extending the L? scalar product on Ty,
and H*(I'y) stands for the Sobolev space of order s on I'y. Introduce the energy space
H = HY(Q)? x H(Qg) and its dual H' = H1(Q)? x H~1(Qg) with respect to the scalar
product

<(u,p), (UaQ>> = <uav>§2 + <p7 Q>QR (2.8)

in L%(Q)4x L?(Qg). Here, for a domain D C RY, we denote the dual of H*(D) by H=*(D),
which differs from the standard notation used, e.g., in [8|. Integrating by parts and using
(2.5) then leads to the variational formulation of problem (2.1)-(2.3):

Determine (u,p) € H such that, for all (v,q) € H,

A(“an v, q) = CL*Q(U, U) - Qw2<u7 U)Q + <pV7 U)F
+ao,(p,q) — K (p, ), + 0y (u-v,¢)r — (Tp,q)r,  (2.9)
= _<h07Q>FO-

Here ag, and agq,, denote the usual sesquilinear forms for the Lamé operator A* := pA +
(A + p)grad div in € and the Laplace operator A in (g, respectively. By (2.6), the
sesquilinear form A generates a continuous linear operator A : H — H’ via the formula
(A(u,p), (v,q)) = A(u,p;v,q) valid for all (u,p), (v,q) € H. Using Korn’s inequality
and (2.7), one obtains as in [6, Thm. 2.1] the strong ellipticity of the form A so that
A is always a Fredholm operator with index zero. To ensure unique solvability of the
variational equation

A(u,p)=f, (u,p) e H, feH (2.10)
for each right-hand side f, we need condition:

(C):  There is no nontrivial solution of the problem
(A" 4+ 0w )u=0inQ, tu=0andu-v=0onT. (2.11)



Nontrivial solutions of (2.11) are referred to as Jones modes, and the associated frequencies
are called Jones frequencies. Jones modes may exist for balls and other axisymmetric
bodies, but are “rare” in general (cf. [6] and the references therein). In the case that
w = wy is a Jones frequency for the elastic obstacle 2, we may pass to the subspaces

H:=II(H), H :=(H)
with the projection II defined by

(g, h) == (g — 5;(u, u;)qu;, h)

where the sum is taken over the (finitely many) linearly independent normalised Jones
modes u; of A, the operator of (2.10) corresponding to the frequency w = wy. Then we
have the invariance relations

(I-IMAJ =TA,(I -1) =0, Vw e R (2.12)

and obtain the following invertibility results [6, Thms. 2.2 and 2.3].

Theorem 2.1 (i) If condition (C) holds, then the operator A, : H — H' is invertible.

(i) Suppose wy is a Jones frequency. Then, for all w with |w — wo| sufficiently small,
A, H — H' is invertible, and the inverse A" : H — H is an analytic operator
function in w near wy.

In particular, we observe that equation (2.9) has always a solution with unique pressure
component p since its right-hand side is a special functional on H that is orthogonal to
possible Jones mode solutions (u;,0). We further note that the operators A, in (ii) are
even invertible as mappings of H onto H' for w # wy and |w — wy| sufficiently small. The
proof of (ii) is based on the relations (2.12) and a Neumann series argument.

3 Inverse problem and reconstruction method

Let (u,p) be a solution of problem (2.9), the right-hand side of which is defined by the
incident field p™¢ via (2.5). Then the function p,, defined by the asymptotic relation (cp.
with (2.3))

p*e(x) = @1/ exp(ikr){peo(®) + O(r ")}, & =/|z] €S*", asr — o0 (3.1)

is called the far field pattern of the scattered pressure field p*. Our goal in this paper is
to study the inverse problem or the interface reconstruction problem.

(IP): Given the incident plane wave p™¢, determine the interface between the elastic
body € and the fluid from a measured far field pattern pme® e [?(S41).

Since (IP) is severely ill-posed and nonlinear, it is quite natural to apply regularisation
and optimisation techniques. Suppose that we have the a priori information about our
reconstruction problem that the unknown interface I' lies between two closed smooth
surfaces resp. curves I'; C Q and I', C Qg, e.g., spheres resp. circles of centre O and radii



Figure 2: Auxiliary surfaces resp. curves.

i, Te (cf. Figure 2). We will also need the following technical condition on the interior
auxiliary surface resp. curve; see Sect. 5:

(D): k? is not a Dirichlet eigenvalue for the negative Laplacian in the interior of T;.

Note that this condition can be easily fulfilled, e.g., by slightly changing the radius r;.
Moreover, we fix a class of surfaces I' in which a solution of (IP) is sought. We suppose
that I is starlike, i.e., it can be represented as

I=T"={r(@)i:2eS""} (3.2)

with r € H°(S%1) and a fixed order § > (d + 1)/2. Furthermore, we also require that
the interior and exterior auxiliary surfaces resp. curves I'; and I', are starlike and given
by the parameterisations r;, r, € H?(S?1), respectively, and that

ri(2)+e<r(@) <r.(z)—e, r.(z) < R, (3.3)

for all € S% 1 and some small € > 0.

Finally, we choose a class M of admissible parameterisations to be the set of all r €
H°(S%1) such that (3.3) holds and that, for some ¢ > 0,

x| o1y < ¢ (3.4)

is satisfied. Note that then M is weakly compact in H°(S%"!), implying compactness
in the norm of C1#(S41) for sufficiently small 3 > 0 because of § > (d + 1)/2 and the
compact imbedding H°(S?!) ¢ C1#(S?1). In the following, we shall simply write

r, —»r or I,=I"I"=T if r, —rweaklyin H(S* 1), n—o00. (3.5)



Using the acoustic fundamental solution (cf. [5], [8])

4 x —
G(z,y) = G(z,y; k) = v =l

THO(klz—yl)  itd=2,

we define simple and double layer potentials on a closed C? surface resp. curve A by

Vi) = [ )Gl as), @)= [ s o Dast). (30)

A v (y)

For the elastic target, we use the fundamental Green’s tensor (Kupradze matrix; cf. e.g.
|10, 1, 9])

(Gel(xay))zj = % <G(l"y7k8)5 ! 0 (G(‘rvy;ks) - G(xvyvkp)))

it
J k?g axlﬁx]

where the wave numbers k, and kg are defined by ow? = (A + Q,u)k‘g = pk?. Then we
define elastic simple and double layer potentials on A by

(Vi'u) (2) ZZ/AGel(y,l")U(y) ds(y), (K{u) (z) == /A[tyGel(y,w)]TU(y) ds(y), (3.7)

where ¢, means that the traction operator (2.4) is applied at y € A. We try to represent
the elastic field u inside I', respectively the scattered pressure field p*¢ outside I'; as simple
layer potentials

u(@) = (Vi) (2), p™(2) = (Vr,0i) (@) (3-8)
with unknown density functions ¢, € L2(T'.)%, ¢; € L*(T;).
Next, we introduce the far field operator F : L?(I';) — L?(S%1) by

(Fo)(@) = oy / exp(—ik & y)ely) ds(y), # € S0, p e LXT)  (3.9)
I
1
— if d=3
oo 47 !
i = :
_exp(im/4) £ de2

vV 81k

which has an analytic kernel. Note that F¢ is the far field pattern of the potential
Vi, (cf. [5]). In other words, Fy;(2), & € S¥! approximates the far field pattern of
p*¢, whereas (Vi,pi)(2), (Vi¥¢e)(z), = € T represent approximations of the scattered
pressure field p*¢ and the elastic field u on T' = T'", respectively; compare (3.2) and (3.8).
Clearly, we can identify the spaces L?(I'™) with L*(S?!) via

HUHLQ(F‘”) = Hu ¢} IA'HL2(S(171) , U € L2(F‘") ,

where t denotes the diffeomorphism S¥! — T'* defined by ©(2) = r(2)%, & € S¥ L
Obviously, the norm defined above is uniformly equivalent to the standard L? norm when
r varies in an admissible set of parameterisations.



Since the operator (3.9) is compact with exponentially decreasing singular values, the
determination of the density ; from the first kind equation

Foi =p™ (3.10)

is a severely ill-posed problem. We may solve it by Tikhonov regularisation, and subse-
quently we could determine ¢, and the interface I'™ by the transmission conditions (2.2).
However, this is not satisfactory since the density ¢, does not appear in (3.10), but the far
field p2es depends implicitly on the interior elastic field. Therefore, as in [18] it seems to
be the right way to include . into the regularisation procedure. So, for the approximate
solution of our inverse problem (IP), we will formulate a nonlinear optimisation problem

which incorporates these observations.

We define the cost functional F : L*(T;) x L*(T.)¢ x M — R by
Flpi, perr50) = ||Fpi — p|I2agay +04<||<Pz‘||%2(r8) + ||90e||%2(ri)d>

. 2
+01 (tVFeelgoe + (p™ + Vpi%)y> or (3.11)

L2 (Sd—l)d
2

+02

I

L2(Sd-1)

1 - .
(V ’ VeelSOe — W O, (p"™ + VFZ-‘PZ‘)) or

where M is an admissible class of parameterisations, a > 0 is the regularisation param-
eter, and o1, 02 > 0 are coupling parameters which have to be chosen approximately for
the numerical implementation. For theoretical purposes, we may assume 0 = 0 = 1 in
the sequel. The first and second parts of (3.11) represent the Tikhonov regularisation of
(3.10), where an additional regularisation term for ¢, is incorporated. The last two parts
represent the defect minimisation of the transmission conditions on I'".

Our reconstruction method, which was first introduced by Kirsch and Kress [11, 5] in
the case of acoustic scattering by a sound-soft obstacle (see also Zinn [18] who studied
the inverse acoustic transmission problem), consists in solving the following optimisation
problem:

(OP):  Find (¢, .) € L3(T;) x L*(T,)¢ and r € M such that F(g;, e, r; ) = m(a),
m(a) := inf {}_(wi,@/)e,r'; o) : (Ui, 1e) € LX) x LA(T)4, v’ € M} .

The existence of a minimiser is guaranteed by the following result.
Theorem 3.1 For each o > 0, the problem (OP) has a solution.

Since the proof is analogous to that of [5, Thm. 5.20|, we will only present its main steps
in Sect. 7 for the reader’s convenience.

Theorem 3.2 Assume condition (D) is satisfied. Let p2s be the exact far field pattern

of the scattered field p*¢ corresponding to some I'", r € M. Then we have:

(i) lima—om(a) =0, i.e., convergence of the cost functional.

(i) Let () be a null sequence and let (gogn), o, r,) be a corresponding sequence of
minimisers of (3.11) with reqularisation parameter «v,,. Then there exists a convergent
subsequence of (r,,) in the sense of (3.5), and every limit point r, of (r,) represents

a solution I'™ of problem (IP).



The proof of this theorem will also be given in Sect. 7.

Remark 3.3 If we have the a priori information that our inverse problem (I1P) has at
most one solution, then Theorem 3.2 (ii) implies convergence of the whole sequence (r,,)
to r. However, uniqueness in the inverse problem is presently only known for infinitely
many incident waves; see [14].

One can try to achieve uniqueness and more accurate reconstructions by replacing the cost
functional (3.11) by a sum corresponding to several incident waves with different incident
directions, and the preceding theorems carry over to this case.

Moreover, Theorem 3.2 remains valid if, for any a > 0, we replace exact far field patterns

PR by noisy measurement data p, such that ||pe, — pgéeasH%%Sdfl) <ca, o —0.

Remark 3.4 Theorems 3.1 and 3.2 carry over to the case that the second term of the
cost functional (3.11) is replaced, e.q., by

a (HSOin—(d—l)(gdfl) + H@e”fv{—(d—m(gdﬂ)d) (3.12)

An inspection of the corresponding proofs shows that only a somewhat higher smoothness,
r € HOV1(SY) s required in (3.2), (3.4) in order to prove (7.6) for the second resp. first
order derivatives of K, and thus estimate (7.5) in the H="Y norm. The modified cost
functional (3.11), (3.12) then allows the use of linear combinations of Dirac d-functionals
on the auxiliary surfaces resp. curves I'; and I, for the approximation of the densities p;
and . and simplifies the discretisation of the optimisation problem (OP).

Remark 3.5 Of course, the accuracy of the field approximations (3.8) and the resulting
reconstruction of the interface depends on the location of I'. and I';. Choosing the inner
and outer surfaces resp. curves closer to the unknown interface will surely enhance the
convergence of our iterative method. Hence, it is natural to change ', and T'; during the
iterative process and to move them closer to the iterative solution (cf. [17]). However, we
did not try to prove convergence for such a modification.

4 Numerical discretisation of the optimisation problem

In this section we introduce a discretisation of the optimisation problem (OP) and give
some remarks on its numerical solution. Recall that the unknown boundary I' = I'*
is sought in the class of all r € H*?"1(S?1) such that ri(2) + e < r(2) < r.(2) — ¢
(cf. (3.3)) for a fixed small € with 2 < sup;cga1[re(2) — r;(2)]. Hence, it is natural to
seek an approximation ry of r in the form

I'N(lA') — [re(i‘) B g] + [rz(i') +€] + [re(i') — 5] — [I‘Z(Zi‘) +€] arctan(Z aLwL(i')> : (41>

2 T

LElN

where ¢, € HOt?-1(S971) are basis functions and a, € R are unknown coefficients. The
index ¢ runs through an index set Iy which we shall specify below.



Next, for an index k from a second index set K, we introduce the Dirac d point functional
i, at a point z;, € I';, which will be defined below. Similarly, let d.,, £ € Ky denote
the Dirac ¢ point functional d. , at a point z. , € I'.. Then we can approximate the layer
functions ¢; and ¢, by

Pint = Y bulins b €C, err = > Cabe, € € CL (4.2)

KEK pp KEK

In view of (3.8), we obtain the following approximations for the fields p*¢ and wu:

pr(z) = Z beG (2, i), Doonr(Z) = cyy Z b
ek KEK

uy(r) = Z Gel(:ceﬁ,x)cﬁ,
KEK

Using a set of appropriate points {2ga-1,/, & € Ky} on S9! we approximate the L?
norms over S%~! and I'* by

1

H#K

Z |f(.%'gd—17,€/)|2, #KM/ = Z 17

K EeK KEK 1

”f”%%sdfl) ~

1
HforN”%Q(gdfl) ~ Z }f(xr,n/)ﬁa Tew = rN(de_l,n)'

Ko
# M K’EK]M/

Finally, we approximate the norm of the approximate layer ¢; »s by a coarse discretisation

of ||S¢iarllz2, where S is an integral operator, to be chosen, mapping H~(@~Y(T}) into

L*(T;) isomorphically. Similarly, we treat the norm of the approximate layers ¢, s and
get

2 1 2

s li-ca-nryy ™~ PPy > ‘ > ownbal

K’EK}W KEK N

9 1
H‘Pe,MHHf(dfl)(ri)d e Z H Z Ok kCr

K’EK}W KEK N

2
cd’

where 0,/ is the kernel value of the integral operator S taken at the points ;.. and w; ..
Altogether we arrive at the discretised objective functional

FN mm <<Pi,M>90e,M,I“N;Oé> = fN,M,M’((b/@)HEKMa(C/@)HEKMa(aL)LEIN;a) (4.3)

2

o
Crp > b T RS (g )

1
==

M’ K’EK]M/ reEK s
« 2 « 2
+ E E O-/-e’,nbn + E E Ok' kCk 4
K K C
#Ku K'eEKy KEKNM #Hu K'eKy  kEK )

10



1 (&
+#KM/ Do || 2 taw (6 (e o) ] —

IQ/EKIW/ reEK N
2

znc

[ xr/@ E by G xl‘li/7xlli)] V(xl‘,lil)

rEK ) cd
1 Gel
+ K V(xr,n’) ) (fﬂe,m xr,n’) Cr —
# ! IQ/EKIW/ KEK N
2
2 vD l'r K ) :L‘r !y Ui /-e)
orw KEK
M

for the approximation of functional F defined in (3.11).

To define the missing functions, points, indices, and kernel values, we have to distinguish
between the dimensions d = 2 and d = 3 of the problem. We begin with the simpler
case d = 2. In this case, the basis functions v, are simply the trigonometric functions.
More precisely, we set Iy :={t = (n,p): n=1,2,... N, p==+}U{t =0} and define
o(2) := 1 as well as

coS (27mt) itp=+

Dy (€77) = {

sin (27mt) if p=—

The points z.,, and z;,, for the Dirac d-functionals are nothing else than uniform grid

points on T'. In other words, we set Ky :={k =m: m=0,1,... ,M — 1} and
<( 2mm . 27rm>>( 2mm . 27Tm)
i — Lim = I ;S ——— S ——),
T T cos — sl — cos — sl —
v <( 2mm . 27rm))( 2mm | 27Tm)
Tep = Tem = Tol(cos——, sin COS ——, sin —— ).
’ ’ M M M M
Similarly, we introduce Kpy = {x' = m: m = 0,1, ... ,M" — 1} and define zg1 ,, =

Tgt = (cos(2mm/M'),sin(2rm/M’)). The integral operator S : H Y(T') — L*(T) i
chosen as the harmonic single layer operator over the circle, i.e., we set 0., = O 1=
Opmi—m With og = 0 and o, := log sin®(7 n/M) for n # 0.

—
wn

For the case d = 3, the trial functions 1, will be spherical harmonics. Thus we choose
In={t=(mn,m): n=0,1,... ,N, m=—n, ... ,n} and set
" sin (mg itm>0
Y(n,m) (cOs psin 6, sin psin 6, cos ) := , /22 %P‘ ‘(cos 0) (me)
cos (|m|p) else,

Pty = (1 — g2z Pul)

EFTT P,(cosf) := sin"(0).

In order to define the points on the surfaces I';, T'., S?, we inscribe a cube into the
ball, define uniform tensor product grids on the six faces of the cube, and map them
to the sphere by stereographic projection. In other words, we introduce the index set

11



Ky :={x=(my,ma,n): my,my=0,1,... M—1,n=1,2 ...,6} and choose

(m1 + 0.5 my + 0.5)
= Prn 5

Ts2 p = xSQ,(ml,mg,n) M 5 M
m1+05 m2+05 m1+05 m2+05
Tik = Ti(mimamn) — Ti prn< M > ( ’ M )7
. B r<m1—|—05 m2+05> m1+05 mg—l—05)
e,w — e,(m1,ma,n) - pry M ) M ;
( (—1+42s,—142t,—1) =1
V(=1428)2 (= 142t)2+1
(—142s,—142t,1) T
V(=1428)2 (= 142t)2+1
(—1,—142¢,—142s) =3
o VI (—1426)2 1 (— 1+25)2
prn(s,t) T (—1425,—1,—142t) =4
V/(—1426)2 4 14(— 1+2t)2 -
(—142s,1,—1+42¢) =5
V/(—1426)2 4 14(— 1+2t)2
(1,—1+42t,—1+2s) =6
(/1 (—142)2 4 (—1425)2 '

The integral operator S : H~2(I") — L*(T') is chosen as the operator over the sphere with
logarithmic kernel, i.e., we set 0,/ ,, = log(|zs2 v — Ts2,4|/2).

Typically, one defines the objective functional Fy pa in (4.3) with smaller numbers N
and M and larger M’'. Indeed a few basis functions in (4.3) and a few source points in
(4.2) should be sufficient for a good approximation of the continuous functions, whereas
the control terms for the transmission condition and the far field deviation should be
discretised with higher resolutions. The discretisation of the optimisation problem (OP)
takes the form

(DOP):  Find coefficients (b.)wery,s (Co)nery € CFEM | (a,),er, € R#IN such that

fN,M,M/ <(bf€)KZEK]\4’ (CK)KEKJM7 (aL)LEIN; OZ) - mN7M7M/(a) Wlth
mN,M,M'(Oé) = inf {fN,M,M/ <(BE)HEKMa (55)KEKM> (dL)LEIN; Oé) :

(Z;n)neKM S (C#KMa (6n)n€KM € (C#KMa (dL)LEIN € R#IN} .

The objective functional in (DOP) is like that of (OP) a non-linear smooth functional.
Constraints have been avoided by the special representation of ry. A global solution of
(DOP) could be computed by stochastic algorithms like simulated annealing (cf. e.g. [12]).
We recommend to use faster local algorithms providing only local minima. In particular
the Gauf-Newton algorithm or the Levenberg-Marquardt method (cf. e.g. [16]) are good
candidates since the gradient of (4.3) is easy to determine. The regularisation parameter
a is to be adapted by numerical experiments.

12



5 A denseness result

To prove Theorem 3.2, we need the following denseness result which justifies the ansatz
(3.8) and the choice of the cost functional (3.11). Introduce the matrix boundary integral
operator B defined by

tzVFeel 1% Vpi
B = 1 ; 5.1
v - Vpeel — D) 8VVpi ( )

orw

where we used the notation of Sections 2 and 3. Then

B: L*(T,)* x L*(T';) — L*(T)* x L*(T")
is a continuous mapping, and its transpose

B : L*(T)? x L*(T) — L*(T.)* x L*(T})

takes the form (cf. (3.6), (3.7))

o ¢ (W ey P\ Kervew
v i) s @) )\ v ) T\ o) - e B )
Theorem 5.1 Let r € M. If condition (C) holds for T' = T'" and T'; satisfies condition
(D), then the image space im B of the operator (5.1) is dense in L*(T")® x L*(T).

Proof. 1t is sufficient to verify that the relation

B ( ZZ ) =0, pe L*(I)*, v e L*T) (5.3)

implies ¢ = 0, ©» = 0. To do this, for ¢, ¢ being any solution of (5.3), we define the
functions u and p in R*\I" by setting

wi= Ve (—v) = Ko, pi= Kb — 0, Vi(v - ), (5.4)

which satisfy the Navier resp. Helmholtz equation in R*\I'. By well known mapping
properties of acoustic and elastic potentials we have u € H'(QU Qg)3, p € H'(Q U Qg),
and p satisfies the radiation condition (2.3), whereas u satisfies Kupradze’s radiation
condition (see [10]) for the elastic field. Moreover, using the jump relations for these
potentials (see, e.g., [8] for the details), it follows from (5.4) that

[ulr = =, [tulr = v, [plr =¥, [Oplr = o0’V -, (5.5)
where [u]r stands for the jump of u across T':

[ulp(z) = u= (z) —ut(z) := }llli%{u(l‘ + hv(x)) —u(x — hv(z))}, 2 €T.

13



Let €; be the interior of I'; and €2, the exterior of I'.. From the relations (5.2)-(5.4) we
get

u=0onl,, p=0onT;. (5.6)

Therefore, condition (D) implies p = 0 in €;, hence p = 0 in 2. Moreover, by (5.6) and
the uniqueness of the exterior first boundary problem for the Navier equation in . (cf.
[10, 8]), we get w = 0 in €, hence u = 0 in Q°. Thus, (5.5) can be rewritten as

ut =, tut =—wvp, p~ =9, Op =0’ -p, (5.7)

giving tut = —vp~ and v - ut = (g;w?)"'9,p, i.e., the transmission conditions (2.2).
Thus (u,p) is a solution of the homogeneous scattering problem (2.10) (with f = 0), and
Theorem 2.1 (i) implies that «w = 0 in , p = 0 in Q°. Applying the jump relations (5.5)
again, we finally obtain ¢ = 0 and ¢ = 0. U
If condition (C) is not satisfied for I' = I'*, then Theorem 5.1 does not hold. However, it
is enough for our purposes to show that im B is dense in an appropriate subspace defined

by
L:={(p,¥) € L*T) x L*(T) : {p,u;)r =0, j=1,...,1}, (5.8)

where span{u;} is the null space of problem (2.11).

Corollary 5.2 Let r € M and assume that T'; satisfies condition (D). Then the image
space of (5.1) is dense in L.

Proof. Clearly, the inclusion L = span{(u,|r, 0)}* C cl(im B) follows if we prove ker B’ C
L+ = span{(uj|r,0)}. Thus we take xo = (¢, %) € L%(S)? x L(S) and suppose B'xo = 0.
Repeating the proof of Theorem 5.1, we obtain relations (5.5)-(5.7) for the function (u, p)
defined by (5.4). Moreover, from Theorem 2.1 (ii) we see that (u,p) must be a Jones
mode solution, i.e., we have p = 0 and u € span{u;}. From (5.7) we infer ¢» = 0 and

@ € span{u,|r}, ie., xo € L*. O

6 Continuous dependence of direct solutions on the in-
terface

Another crucial auxiliary result in the proof of Theorem 3.2 is the continuous dependence
of the solutions to certain inhomogeneous transmission problems of the form (2.10) on
the interface I' = I'" if the parameterisation r varies in an admissible class M.

Let w be a fixed frequency and assume that I}, := ™ — ' := I'" in the sense of (3.5),
ie., r, =1 in H°(S?). Introduce the operators

A H, S H D A, H—H (6.1)

generated by the variational problems (2.9) for the interfaces I, and I" respectively, where
H,., H! denote the corresponding energy spaces respectively their duals

My = H'(Q,)* x H'(Qpy)  H, = H ' (Q,)? x H Y (Qp)

14



€2, denotes the interior of [}, and Qg ,, 1= QS N{|z| < R}. We consider the inhomogeneous
transmission problems

A (i, pr) = fo €My, Au(u,p) =f €H, (6.2)

where the tilde spaces again denote the corresponding subspaces of elements that are L?
orthogonal to the (possible) Jones modes associated with w and T, T, respectively. By
Theorem 2.1, there exist unique solutions (u,,p,) € H,, (u,p) € H of these equations,
whereas the components u,,, u need not be unique in the energy spaces ‘H,,, H.

In the following we are interested in the special case of right-hand sides in (6.2) that are
defined by L? densities on the interfaces I, I':

fn = (gnépn, hnépn) s f = (gép, h(SF) s with

gn € LA(T,)?, hy € LA(L,): g€ LAD)?, he LX), (6.3)

where or, and Jr denote the J-distributions with support on I, and I', respectively. Note
that the relations f,, € H.,, f € H' are then equivalent to the orthogonality relations

<gn> uj,n>Fn - 07 <ga uj>F = 07 (64)

where u;, respectively u; run through the linearly independent Jones modes associated

with w and I, respectively I'. Of course, if there is no Jones mode for I',, we have 7'~£n =H,
and the condition (6.4) is void.

In the following we shall say that a sequence (h,), h, € L*T,), is L? convergent to
h e L*(T) if

2

ds(2) = 0. (6.5)

n—~oo

Hm [ |ho(r,(2)2) — h(r(2)2)
SQ
Now we can state our continuity result.

Theorem 6.1 Assume that the right-hand sides of the transmission problems (6.2) satisfy
(6.3) and (6.4), and that the sequence (gn, hy,) is L? convergent to (g, h). Then we have

P — Plla2@y) — 0 asn — oo, (6.6)

Remark 6.2 Relation (6.6) also holds in case of the constant right-hand sides f, =
(0, —hoor,), with hy defined in (2.5), where one has homogeneous transmission conditions
on I, respectively I'.  These transmission problems correspond to the direct scattering
problems (2.9) with interfaces T,,, T and the incident wave p™©. So our result is a modi-
fication of Lemma 3.1 in 6] to the case of different right-hand sides, and we will follow
the arguments there in the proof below.

Proof of Theorem 6.1. Following [6, Sect. 7.4], we choose reference domains

Q:={zeR: |z| < R/2}, Qp:={z e R®: R/2 < |z| < R}
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and Lipschitz homeomorphisms
Tn cl(ﬁ U QR) —cl(Q, UQgy), 7 cl(ﬁ U QR) — cl(QUQR)

which map I' := {z € R3 : |2| = R/2} onto T, leave the artificial boundary Ty invari-
ant and have the following properties: For the operators (6.1), define the transformed
operators

A AL HYQ)? x HY Q) — HY(Q)? x HY(QR) (6.7)

via .Zfdn)(u,p) 0T, = .Zfdn)((u,p) o 7,) etc. Then the operators (6.7) are bounded, and we
have convergence in the corresponding operator norm:

A A, as n— oo, uniformly. (6.8)

This can be proved by substituting = — 7,,(x) into the sesquilinear forms of A and then
discussing the transformed forms on the reference domains.

If w is not a Jones frequency for I', then we obtain the result of the theorem in a standard
way since the operators (6.8) are invertible for n sufficiently large, and we also have

w

(Jﬂ"))‘l — (A,)"", n— oo, uniformly. (6.9)

In the case that w is a Jones frequency, we can select another frequency w, such that (6.8)
and (6.9) hold with w replaced by w,, hence

AW, —H  n>ng, Ag i H—H

n

are invertible, too. Furthermore, the first equation of (6.2) is equivalent to
(.AL(UT:) + (Wz - wf)Dn) (unapn) = fna
where D,, denotes the operator generated by the sesquilinear form

dn(u, p;v,q) = —0{u, V), — ¢ (. Qap, + 0r(u- v, @)1, ; (6.10)

compare (2.9) and recall that k? = w?/c?. Setting \g := (w? — w?)~!, we arrive at
(Mof = (AL) D) (s pn) = Ao (AL) ' fo (6.11)

We observe that each solution of the homogeneous equation (6.11) (with f,, = 0) in H,,
is an eigenfunction of the compact operator

GW = (AD)'D, i H, — H, .

We choose a simple closed curve v C C around \g containing no eigenvalues of these
operators for n sufficiently large. Now, we keep n fixed and apply the analyticity result
of Theorem 2.1 (ii) to the operators .Ag?)\) for w(\) in a vicinity of w, with w(\) defined

by (w? —w(A)?) ™t = X (or equivalently, w(A)? = w? — A1) and X close to A\g. Then,
for any A in a vicinity of ), there exists a unique solution (u),p}) € H, given by
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(ud, p)) = (Agz))\))’lfn = AN — iji))*l(Afj?)*lfn, and by the Cauchy integral formula

we have
1 (n) \~1
(. 2°) = 5 / (A =20) " (Apy) fads(N). (6.12)

We observe that the integrand in (6.12) is continuous in A, uniformly bounded in n, and
pointwise convergent on v for r, — r, i.e.,

(ASR) ™ o= (A) ™ (o) = Ay (fom) = Ay for,

as n — oo. Here we have used (6.9) together with the fact that the L? convergence of
(Gns hn) to (g, h) (see (6.5)) implies that

(gn7 hn) O Ty — (g, h) oT In Lz(f)4 .

Therefore, letting n — oo in (6.12) then gives

1

— (720 o —
(Uny o) © T = (u)°,0)°) © 70 — (v, q) 5

/(A A IAZL fords(h),  (6.13)

where the convergence takes place in the norm of H'(Q)? x H'(Qg). Noting that the
diameter of v can be chosen so small that w(\) # w is not a Jones mode for I' = I'" inside
and on 7 and applying Theorem 2.1 (ii) to the operators A,y for w(\) near w, we obtain
analogously to (6.12):

(1.9) = 5 | = 20) ATk Fas(h). (6.14)

where (u,p) € H is the unique solution of the second equation of (6.2). Therefore, from
(6.12)-(6.14) we obtain (v, q) = (u,p) o 7 and finally

pn|F0:pnoTn‘Fo—>poT‘Foa n—oo,

under the norm of H'/2(T). O

7 Proof of Theorems 3.1 and 3.2

Having Theorems 5.1 and 6.1 at hand, we are now in the position to prove the convergence
of our reconstruction method, following the arguments of [5, Thms. 5.21 and 5.22| in the
case of the inverse Dirichlet problem for the Helmholtz equation.

First, we give a sketch of the proof of Theorem 3.1, which is along the lines of [5,
Thm. 5.20].

Proof of Theorem 3.1. Let (cpgn), <p£”>, ») be a minimising sequence of the cost functional

(3.11) in L3(T;) x L*(T.)? x M, i.e.,

lim F(o™, o™ ria) =m(a). (7.1)

Z
n—0o0
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By the compactness of M, we can assume I}, — IT" in the sense of (3.5) where I}, = "™
and [' = I'" for some r € M, and from (7.1) and

1 e s < @7 F @ 0l 10s )

we obtain that the sequence (((pi ), go(en))) is bounded in the L? norm. Therfore, we can

assume that it converges weakly:

(2™, oM = (g5, 0) € LA(Ty) x LA(T,)? (7.2)

To verify that (¢;, pe,r) is a minimiser of F, we have to show that

lim F (", o, 15 0) = Flpi, e, 150) . (7.3)

Z
n—oo

We will prove the convergence in (7.3) for each term of F separately. Moreover, it is
sufficient to prove convergence for the first and the last two terms. Indeed, once we have
done this, from (7.1) we obtain

I* I

al| (2™, e IF = m(a) — Fps, e t5.0) + all(9s 0o |12 < afl (05 e)

where the norm is taken in L*(T;) x L*(T'.)?. Together with the Weak convergence (7.2),
the latter relation then gives the strong convergence of (npgn), e ) hence (7.3).

Since the far field operator F : L*(TI';) — L?*(S?) is compact, we get the convergence in
(7.3) for the first term of the functional (3.11). To study the last two terms, consider the
operators

A A

B, B: L*(T.) x L*(T;) — L*(SY)*, Bux := (Byx) otn, By := (By)ot,  (7.4)

where B is the matrix potential operator introduced in (5.1) and B,, is the corresponding
operator with I" replaced by I},. To prove the convergence in (7.3) for the last two terms
of the functional F, it is then sufficient to show that B, converges to B uniformly, i.e.,
in the operator norm. Indeed, the differences of the corresponding last two terms in
]:(gogn), @én), r,;Q ) and F(;, e, r; ) can be estimated, uniformly in n, by

e {11Ba = Byxallzz@s + 1B = )l | - (7.5)
X = (9o 00) X = (0™, 01V) |

and the operator B is compact.

Now it follows from our assumptions on the admissible class of parameterisations (cf.
(3.2)-(3.4)) that B,, — B are matrices of integral operators with sufficiently smooth kernels,
say K, such that

K, — 0, n—oco,in C*(I; x $?) resp. C*(T, x §?), (7.6)

which implies the desired uniform convergence of the operators (7.4). O

Proof of Theorem 3.2.(1): Let ' =I'", r € M, be an interface, for which p2®* is the exact
far field of p*¢ = p — p'™®, where p is the total pressure field corresponding to a solution
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(u,p) of the forward problem (2.9). Recall that the component p is unique, whereas the
displacement w is only uniquely defined modulo Jones modes.

First, we observe that in analogy to (7.5) the last two terms of the functional (3.11) can
be estimated by

clBx = follizyss X = (pe, i), fo = (—=p™"v, (0pw?) " 0up™) , (7.7)

and that the first component of f; is orthogonal to the Jones modes (restricted to I').
Hence, by Theorem 5.1 or rather Corollary 5.2, given any € > 0 there exist densities

X° = (g5 ¢) € L(T.)? x L*(Iy)
such that
1Bx® = follr2qrys < €. (7.8)

Next, we have to show that the first term in the cost functional F can be made arbitrarily
small by choosing ¢; = ¢ and p. = ¢5. Defining the functions w® and ¢° by

w =V —u in Q, " =p" —p+ Vil in Qp, (7.9)

we see that (w®,¢%) € H is a solution of the inhomogeneous transmission problem (2.10)
with right-hand side f¢ := (¢0r, h°0r), where
g = tVEOE 4+ (P + Vi), (7.10)
h = v Viles = (W) 0,0 + Vi)

Note that the functions (7.9) satisfy the transmission conditions
tw +q¢v=g", w-v—(ow?) ', =h onT, (7.11)

and that ¢°Jr is orthogonal to the Jones modes on 2, i.e., f¢ € H. Using Theorem 2.1
(i), (7.8) and the definition of F, we then obtain the estimate

IVe0f = 03200y = 107 1 Frs20) < @l an)
< [l W5 < e{lg ey + 1R Z2 (7.12)
< ¢||Bx® — fOH%2(I“)4 < ce,

where ¢ does not depend on €. To estimate the far field term of F, we note that 9,¢° = T'q°
on I'y (with the Dirichlet-to-Neumann map 7T'), that the far field ¢Z, of ¢° coincides with

meas

Fp: — pmeas on §?, and that the following far field representation holds (see, e.g., [5]):

e (4 1 o ey g _ikdy A 2
@) -3 [ {rw o S e ses. @)

Thus we have from (7.12) and (7.13) that

1F¢7 = o™ @) < ella ey < ce- (7.14)
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Finally, from (7.7), (7.8), (7.14) and the definition of F,
-,F((Pf, ()027 r; O{) <ce+ O‘”(pra @Z)H%Q(Fi)xLQ(FE)?’ — e, @ — 0

for any € > 0, which completes the proof of assertion (i).

Proof of Theorem 3.2. (ii): Since M is compact, there is a convergent subsequence r, —
r* € M, n — oo, in the sense of (3.5). Let (u*,p*) € H denote a solution of the direct
scattering problem (2.9) with incident wave p™¢ and interface I'* = I'™". We need to show
that T'* is a solution of the inverse problem (IP), i.e., the far field p?_ of p* —p™® coincides
with poeas

o0

Consider the sequence of minimisers (gpﬁ"), o, r,) of problem (OP) for the parameter

ay,, so that by (i)

F (Ao i) = mlaa) =0, n oo, (719

Let (un,pn) be solutions of the forward problem (2.9) for the interfaces I, = I'™, and

define the functions

Wy = Feel(p(;z) —u, in {2, y Qn = pinc —Pn + VFi (pgn) n QRv” )

Then we observe that (w,, g,) is a solution of the inhomogeneous transmission problem
(6.2) with right-hand side f,, = (g,0r, , hn0r, ), where the functions

On = tV;j<pgn>+(pmmrvri@gn))y’

1 )
hy = v VEQM — ——0,(p™ + Vel
4 r.Pe wa2 (p + ;¥ )

indeed fulfill the conditions (6.3) and (6.4). By (7.15), f, is L? convergent to 0 in the
sense of (6.5). Therefore, from Theorem 6.1 we obtain

”qﬂ”?qlm(ro) — 0, n — 0. (7.16)
Moreover, by the same theorem or rather Remark 6.2, we have
||pn - p*Hfm/g(FO) — 0, n — o0,

and together with (7.16) this implies

|

Arguing as at the end of (i), (7.17) leads to

2
ine _ o 4 Vi o™ 0 . 717
p p + Vr,o; /(D) — U, n— o0 ( )

1Fe" = pelliae) — 0, n— oo,
On the other hand, by (7.15) we also have
”F%’n) - pg“”%%w) — 0, n — o0,

and combining the last two relations gives p’ = pii®. 0
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