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Abstract

A viscous Stokes flow over a disc under random fluctuations of the velocity on
the boundary is studied. We give exact Karhunen-Loève (K-L) expansions for the
velocity components, pressure, stress, and vorticity, and the series representations
for the corresponding correlation tensors. Both the white noise fluctuations, and
general homogeneous random excitations of the velocities prescribed on the boundary
are studied. We analyze the decay of correlation functions in angular and radial
directions, both for exterior and interior Stokes problems. Numerical experiments
show the fast convergence of the K-L expansions. The results indicate that ignoring
the boundary condition uncertainty dramatically underestimates the variance of the
velocity and pressure in the interior/exterior of the domain.

1 Introduction

It is well known that boundary value problems for PDEs with irregular coefficients, fluctuating
source terms, or randomly excited boundary conditions are used in many fields of science and
technology to describe uncertainty, probabilistic distribution of irregularities, or large ensembles
of measurements under similar but randomly fluctuating conditions. (e.g., see [2]), [18], [5]).
We mention also the analysis of synoptic meteorological data [14], and statistical theory of fully
developed turbulence [15], where the Karhunen-Loève expansions are used. Stochastic approach
is intensively used in flows in porous media and soils governed by the Darcy equation with a
random hydraulic conductivity coefficient [4], [24], [10], as well as biological tissues [36], and in
geodesy [22], [30]. In electrical impedance tomography [9] important problem is to evaluate a
global response to random boundary excitations, and to estimate local fluctuations of the solution
fields. Similar analysis is made in the inverse problems of elastography [19], [26], recognition
technology [7], acoustic scattering from rough surfaces [35], fluid dynamics [1], and reaction-
diffusion equations with white noise boundary perturbations [32].

Flows over rough surfaces, e.g., over and in tubes with rough surfaces play an important role in
a variety of applications [33]. Often the topology of such surfaces cannot be accurately described
in all details due to either insufficient data or measurement errors or both. In such cases, this
topological uncertainty can be efficiently handled by treating rough boundaries as random fields,
so that an underlying physical phenomenon is described by deterministic or stochastic differential
equations with random velocities near the boundary caused by the roughness. The results of
calculations we present in this paper indicate that ignoring the boundary condition uncertainty
dramatically underestimates the variance of the velocity and pressure in the interior/exterior of
the domain.

Many convenient and efficient methods based on the spectral decomposition can be applied in
the case when the simulated random fields are homogeneous. Among those, we mention both
deterministic and randomized spectral methods (e.g., see [31], [6], [23], [12], [11]). Simulation
of inhomogeneous random fields is less developed (see an overview in [25]). This complicates
much the development of numerical solution of PDEs involving inhomogeneous random fields.
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We deal in this paper with 2D zero mean random fields v(r, θ) in a disc S(0, R) which are
homogeneous with respect to one coordinate, the angular coordinate θ, and inhomogeneous in
the radial direction r. Random fields with this property are called partially homogeneous [23].
The correlation function Bv = 〈v(r1, θ1)v(r2, θ2)〉 is then depending on the difference θ = θ1−θ2.
The partial spectral function is defined as the inverse Fourier transform with respect to θ:

Sv(ξ, r1, r2) = F−1[Bv](ξ, r1, r2) =
1

2π

2π
∫

0

Bv(θ, r1, r2) e
−iθξ dθ .

Assume we have no dependence on the variable r. The spectral representation of the random
field is written in the form

v(θ, ·) =

∫ 2π

0
eiξθG(ξ, ·, ·)Z(dξ) (1)

whereG is defined byG(ξ, ·, ·)G∗(ξ, ·, ·) = S(ξ, ·, ·), the star sign stands for the complex conjugate,
the sign · stands to recall we omit the dependence on the variable r, and Z(dξ) is a white noise
on [0, 2π].

To simulate homogeneous random field one commonly uses the Randomized Spectral methods
(e.g., see [11], [23], [31]) which is based on the randomized calculation of the stochastic integral
(1). Another method is based on the Riemann sums calculation with fixed cells. The integral is
approximated by a finite sum

v(θ, ·) ≈
N

∑

i=1

[

ζi sin(ξi θ) + ηi cos(ξi θ)
]

where ξi are deterministic nodes in the Fourier space, ζi and ηi are Gaussian variables with zero
mean and relevant covariance.

In our case we have however the dependence on the variable r, and the random fields are par-
tially inhomogeneous. In [23] we have extended the Spectral Randomization method to general
partially homogeneous random fields, but the inhomogeneity in y was still a problem assumed
to be solved by other methods. In a sense it was a method which reduced the dimension of the
problem (see for details [23]).

In the case we deal with, the partial spectral function has a special structure, namely, it depends
on r1 and r2 as follows: S(ξ, r1, r2) = G(ξ, r1)G

∗(ξ, r2). This enables to construct a simple
extension of the Randomization method, without solving the inhomogeneity problem in y, see
[25] and [28]. This was first done in [25] by using the Karhunen-Lov̀e expansion.

Assume now, without loss of generality, that a generally inhomogeneous random field u(x) has
a zero mean and a variance E u2(x) that is bounded. The Karhunen-Loève expansion has the

form [37]: u(x) =
∞
∑

k=1

√
λk ζk hk(x) , where λk and hk(x) are the eigen-values and eigen-functions

of the correlation function B(x1, x2) = 〈u(x1)u(x2)〉, and ζk is a family of random variables.

By definition, B(x1, x2) is bounded, symmetric and positive definite. For such kernels, the
Hilbert-Schmidt theory says that the following spectral representation is valid

B(x1, x2) =

∞
∑

k=1

λk hk(x1)hk(x2)

where the eigen-values and eigen-functions are the solutions of the following eigen-value problem
for the correlation operator:

∫

B(x1, x2)hk(x1) dx1 = λk hk(x2) .
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The eigen-functions form a complete orthogonal set
∫

hi(x)hj(x) dx = δij where δij is the Kro-
necker delta-function. The family {ζk} is a set of uncorrelated random variables which are
obviously related to hk by

ζk =
1√
λk

∫

u(x)hk(x) dx , E ζk = 0, Eζi ζj = δij .

It is well known that the Karhunen-Loève expansion presents an optimal (in the mean square
sense) convergence for any distribution of u(x). If u(x) is a zero mean Gaussian random field,
then {ζk} is a family of standard Gaussian random variables. We assume in this study that the
random fields are Gaussian. Some generalizations to non-gaussian random fields are reported in
[20].

In [25], I studied random boundary excitations for the Laplace equation under random Dirichlet
and Neumann boundary conditions, biharmonic equation, and the Lamé equation governing a
2D elastostatics problem for a disc. This study was then extended to the case of an elastic
half-plane [28], [29].

In this paper I deal with the Stokes incompressible flows under random excitations of the velocity
prescribed on the boundary. Note that in the Stokes flow analysis, there is a deep relation to
the case of the Lamé equation studied in [25], but there are also important differences, namely,
(1) the problem is exterior, (2) the velocity field is divergence-free, (3) the pressure in the Stokes
flow is strongly correlated to the velocity fluctuations on the boundary which complicates the
study of the cross-correlations. I consider also the interior problem where an additional boundary
condition should be taken into account. Along the Karhunen-Loève expansions of the velocity and
pressure, exact series representations are given for the vorticity and the stress tensor. Numerical
experiments illustrate the rate of convergence of the K-L expansions, and present the details of
the correlation structure of different flow characteristics.

2 Exterior Stokes problem: formulation and Poisson

formula.

Let us consider a linear Stokes problem in D+
R which is an exterior of DR, a disc of radius

R centered at the origin. On the boundary, which is the circle S(0, R) = ∂DR, the velocity
components g1 , g2 are prescribed, and the velocity vector u(x) = (u1(x), u2(x)) and the pressure
p(x) are to be found from the Stokes problem:

η∆u(x) = ∇p(x), x ∈ D+
R ,

div u(x) = 0 , x ∈ D+
R , (2)

u(x′) = g(x′) , x′ ∈ S(0, R)

where η is the dynamic viscosity.

Assume the prescribed boundary velocities gi, i = 1, 2 are homogeneous random processes defined
on S(0, R) which implies that the correlation tensor
(Bg)ij = 〈gi(θ1)gj(θ2)〉 depends on the angular difference θ = θ1 − θ2, and 〈g(θ)〉 = const.

The solution of the problem (2), the velocity u and the pressure p are random fields, and our
goal is to construct simulation formulae for these random fields, and to find their main statistical
characteristics, e.g., the stress and velocity correlation tensors, and the pressure correlation
function.
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Here we note that from the Poisson formula (3) we present in the next section, it can be easily
found that 〈u〉 = 〈g〉, so without loss of generality we assume that 〈g〉 = 0. For simplicity, we
deal here with Gaussian random fields, so we suppose that gi are Gaussian random processes,
which implies due to (3), that the solution, u(x) and p(x) are also Gaussian random fields. Then,
these zero mean random fields are uniquely defined by their correlation functions. In the next
section we obtain exact series representations for the correlation functions.

2.1 Poisson formula in polar coordinates

It is natural to use polar coordinates, x = reiθ, where r ≥ R is the radial coordinate, and
θ is the angular coordinate, so that ui = ui(r, θ), i = 1, 2. Moreover, we turn also to polar
coordinates for the velocity components, i.e., we introduce new velocities, ur and uθ by the
transform u = urer + uθeθ, where er, eθ are unit vectors in directions r and θ, respectively.
Then the vectors (u1, u2)

T and (ur, uθ)
T are related through a rotation:









u1(r, θ)
u2(r, θ)








=









cos θ − sin θ
sin θ cos θ

















ur(r, θ)
uθ(r, θ)








,

and conversely,








ur(r, θ)
uθ(r, θ)








= RT

θ









u1(r, θ)
u2(r, θ)









where we use the notation for the rotation matrix

R θ =









cos θ − sin θ
sin θ cos θ








,

and RT
θ means the transpose to R θ.

We will use a spherical mean value relation for the velocity vector which is a generalization of
the well known Poisson integral formula









ur(r, θ)
uθ(r, θ)








=

2π
∫

0









G11(r; θ − ϕ) G12(r; θ − ϕ)
G21(r; θ − ϕ) G22(r; θ − ϕ)

















gr(R e
iϕ)

gθ(Re
i ϕ)








dϕ . (3)

The entries Gij (i, j = 1, 2) can be derived explicitly [38]:

G11(r; θ) = cos θK(r, θ) +
r2 −R2

2r2
{

cos θ
(

− r
∂

∂r
K(r, θ)

)

+ sin θ
∂

∂θ
K(r, θ)

}

,

G12(r; θ) = sin θK(r, θ) +
r2 −R2

2r2
{

sin θ
(

− r
∂

∂r
K(r, θ)

)

− cos θ
∂

∂θ
K(r, θ)

}

,

G21(r; θ) = − sin θK(r, θ) +
r2 −R2

2r2
{

sin θ
(

− r
∂

∂r
K(r, θ)

)

− cos θ
∂

∂θ
K(r, θ)

}

,

G22(r; θ) = cos θK(r, θ) − r2 −R2

2r2
{

cos θ
(

− r
∂

∂r
K(r, θ)

)

+ sin θ
∂

∂θ
K(r, θ)

}

(4)

while the pressure p(r, θ) is related to the velocities ur(R, θ) and uθ(R, θ) on the boundary by
analogous Poisson type integral formula:

p(r, θ) =
2η

r

{

2π
∫

0

Pr(r; θ − ϕ)ur(Re
iϕ) dϕ+

2π
∫

0

Pθ(r; θ − ϕ)uθ(Re
iϕ)dϕ

}

(5)
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where

Pr(r; θ) = cos θ
(

− r
∂

∂r
K(r, θ)

)

+ sin θ
∂

∂θ
K(r, θ)

Pθ(r; θ) = sin θ
(

− r
∂

∂r
K(r, θ)

)

− cos θ
∂

∂θ
K(r, θ) .

In (4)-(5), K(r, θ) is the Poisson kernel for the harmonic equation in an exterior circular domain
of radius R:

K(r, θ) =
r2 −R2

2π(R2 + r2 − 2Rr cos θ
, r > R .

In the Karhunen-Loève expansion we will use series expansions of the kernels which can be readily
derived starting from the well known series [3]:

K(r, θ) ≡ 1

2π
· 1 − ρ2

1 − 2ρ cos(θ) + ρ2
=

1

2π
+

1

π

∞
∑

k=1

ρk cos(kθ) , ρ < 1 , (6)

where we introduced the notation ρ = R/r.

To get a series expansions for the kernels, we use (6) and the following easily verified series
representations:

−r ∂

∂r
K(r, θ) =

1

π

∞
∑

k=1

kρk cos(kθ) ,
∂K(r, θ)

∂θ
= − 1

π

∞
∑

k=1

kρk sin(kθ)

Substitution of these series expansions in (3) and (5) leads to the desired expansions:

G11(r; θ) =
ρ

2π
+

1

2π

∞
∑

k=1

[

2ρ+
k(1 − ρ2)

ρ

]

ρk cos(kθ) ,

G12(r; θ) =
1

2π

∞
∑

k=1

(1 − ρ2)

ρ
kρk sin(kθ) ,

G21(r; θ) =
1

2π

∞
∑

k=1

(1 − ρ2)

ρ
(k − 2)ρk sin(kθ) ,

G22(r; θ) =
ρ

2π
+

1

2π

∞
∑

k=1

[2

ρ
− k(1 − ρ2)

ρ

]

ρk cos(kθ) , (7)

and for the kernels Pr and Pθ:

Pr(r; θ) =
1

π

∞
∑

k=1

kρk cos [(k + 1)θ], Pθ(r; θ) =
1

π

∞
∑

k=1

kρk sin[(k + 1)θ] .

Thus we can express the pressure through the boundary velocities g1 and g2 by

p(r, θ) =

2π
∫

0

P1(r; θ − ϕ)gr(Re
iϕ) dϕ+

2π
∫

0

P2(r; θ − ϕ)gθ(Re
iϕ)dϕ (8)

where

P1(r; θ) =
2η

π R

∞
∑

k=1

kρk+1 cos[(k + 1)θ] , P2(r; θ) =
2η

π R

∞
∑

k=1

kρk+1 sin[(k + 1)θ] .
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Let us introduce the notation

λ11(ρ) = ρ+
k(1 − ρ2)

2ρ
, λ12(ρ) =

k(1 − ρ2)

2ρ
,

λ21(ρ) =
(k − 2)(1 − ρ2)

2ρ
, λ22(ρ) =

1

ρ
− k(1 − ρ2)

2ρ
, k = 1, 2 . . . , (9)

so that the series expansions (7) take the form

G11(r; θ) =
ρ

2π
+

1

π

∞
∑

k=1

λ11(ρ) ρ
k cos(kθ) , G12(r; θ) =

1

π

∞
∑

k=1

λ12(ρ) ρ
k sin(kθ) ,

G21(r; θ) =
1

π

∞
∑

k=1

λ21(ρ) ρ
k sin(kθ) , G22(r; θ) =

ρ

2π
+

1

π

∞
∑

k=1

λ22(ρ) ρ
k cos(kθ) . (10)

Let us verify that the velocity series representation is divergence-free:

divu(x) =
1

r

∂(rur)

∂r
+

1

r

uθ

∂θ
= 0 .

From (3) is follows that it is sufficient to show that

1

r

∂

∂r

[

r
(

G11(r; θ) +G12(r; θ)
)]

+
1

r

∂

∂θ

[

r
(

G21(r; θ) +G22(r; θ)
)]

= 0 .

This in turn follows from the explicit series representations:

− ∂

∂r

[

r
(

G11(r; θ)
]

=
∂

∂θ

[

r
(

G21(r; θ)
]

=
1

2π

∞
∑

k=1

k(k − 2)(ρk−1 − ρk+1) cos(kθ)

and

− ∂

∂r

[

r
(

G12(r; θ)
]

=
∂

∂θ

[

r
(

G22(r; θ)
]

=
1

2π

∞
∑

k=1

(

k(k − 2)ρk−1 − k2ρk+1
)

sin(kθ) .

Analogously, we can verify that the series representations for the velocity and pressure satisfy
the Stokes equation (2).

3 K-L expansion of the velocity

3.1 White noise excitations

In this section we will obtain the Karhunen-Loève expansion for the velocity vector over a set of
eigen-functions of the correlation operator. For this purpose we derive now some properties of
the kernel functions Gij .

First we note that from (9) we have the following property

λ11 − λ12 = λ21 + λ22 = ρ . (11)

Let us consider the eigen-value problem for the integral operator with the kernel G:
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2π
∫

0









G11(ρ; θ − ϕ) G12(ρ; θ − ϕ)
G21(ρ; θ − ϕ) G22(ρ; θ − ϕ)

















h1(ϕ)
h2(ϕ)








dϕ = λ









h1(θ)
h2(θ)








. (12)

Theorem 1. The eigen-value problem (12) has the following system of eigen-values and corre-
sponding eigen-functions (k = 1, 2, . . . ) :

λ2k−1 = λ2k = ρk+1,









h1,2k−1

h2,2k−1








=









cos kθ
sin kθ








,









h1,2k

h2,2k








=









sin kθ
− cos kθ








,

and for λ = ρ, the column-vector (1, 1)T is the corresponding eigen-function.

Proof. From the expansions (7) we find that

2π
∫

0

G11(ρ; θ − ϕ)









sin kϕ
cos kϕ








dϕ = λ11(ρ, k)









sin kθ
cos kθ








,

2π
∫

0

G12(ρ; θ − ϕ)









cos kϕ
sin kϕ








dϕ = λ12(ρ, k)









sin kθ
− cos kθ








,

2π
∫

0

G21(ρ; θ − ϕ)









sin kϕ
cos kϕ








dϕ = λ21(ρ, k)









− cos kθ
sin kθ








,

2π
∫

0

G22(ρ; θ − ϕ)









cos kϕ
sin kϕ








dϕ = λ22(ρ, k)









cos kθ
sin kθ








. (13)

Now, by substituting these equalities in the eigen-value problem (12) and using the property (11)
we find the solution of the eigen-value problem for k = 1, 2 . . .. The existence of the eigen-function
(1, 1)T for λ = ρ follows from the properties

2π
∫

0

G11(ρ; θ − ϕ) · 1 dϕ = ρ,

2π
∫

0

G22(ρ; θ − ϕ) · 1 dϕ = ρ ,

2π
∫

0

G12(ρ; θ − ϕ) · 1 dϕ = 0,

2π
∫

0

G21(ρ; θ − ϕ) · 1 dϕ = 0 .

The proof is complete.

We turn now to the derivation of the correlation tensor of the solution,

Bu(ρ1, θ1; ρ2, θ2) =
〈

u(r1, θ1) ⊗ u(r2, θ2)
〉

≡
〈









ur(r1, θ1)
uθ(r1, θ1)








(ur(r2, θ2) , uθ(r2, θ2)

〉

(14)

assuming the boundary random vector-function g has a Gaussian distribution specified by the
zero mean and covariance tensor

Bg(ϕ1, ϕ2) =
〈









gr(ϕ1)
gθ(ϕ1)









(

gr(ϕ2) , gθ(ϕ2)
)

〉

.
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We use here and in what follows the following notation for v⊗u, a tensor product of two vectors:
v ⊗ u = vuT .

Substituting the representation (3) in (14) and changing the relevant product of integral expres-
sions by double integrals, we get

Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

G(ρ1; θ1 − ϕ′)Bg(ϕ
′, ϕ′′)GT (ρ2; θ2 − ϕ′′) dϕ′ dϕ′′ . (15)

The boundary vector-function g is a white noise, hence,

Bg(ϕ1, ϕ2) =









δ(ϕ1 − ϕ2) 0
0 δ(ϕ1 − ϕ2)








. (16)

Note that this property follows from the assumption that in the Cartesian coordinates, g1 and
g2 are independent white noise processes.

Then, from (15) we obtain

Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

G(ρ1; θ1 − ϕ) GT (ρ2; θ2 − ϕ) dϕ . (17)

Theorem 2. The exact Karhunen-Loève expansions for the entries of the correlation tensor
(14), and the random field (ur, uθ)

T which solves the Stokes equation under the boundary white
noise excitations with the covariance tensor (16) are given by

(

Bu(ρ1, θ1; ρ2, θ2)
)

ij
=
ρ1 ρ2

2π
δij +

1

π

∞
∑

k=1

Λij(ρ1, ρ2; k) ρ
k
1ρ

k
2 sin [

π

2
δij + k(θ2 − θ1)],

for i, j = 1, 2, where

Λ11(ρ1, ρ2; k) = λ11(ρ1, k)λ11(ρ2, k) + λ12(ρ1, k)λ12(ρ2, k),

Λ12(ρ1, ρ2; k) = λ11(ρ1, k)λ21(ρ2, k) − λ12(ρ1, k)λ22(ρ2, k),

Λ21(ρ1, ρ2; k) = λ22(ρ1, k)λ12(ρ2, k) − λ21(ρ1, k)λ11(ρ2, k),

Λ22(ρ1, ρ2; k) = λ22(ρ1, k)λ22(ρ2, k) + λ21(ρ1, k)λ21(ρ2, k) , (18)

and

ur(r, θ) =
ξ0 ρ√
2π

+
1√
π

∞
∑

k=1

λ11(ρ, k) ρ
k
[

ξk cos kθ + ηk sin kθ
]

+
1√
π

∞
∑

k=1

λ12(ρ, k) ρ
k
[

− η′k cos kθ + ξ′k sin kθ
]

, (19)

uθ(r, θ) =
ξ′0 ρ√
2π

+
1√
π

∞
∑

k=1

λ21(ρ, k) ρ
k
[

− ηk cos kθ + ξk sin kθ
]

+
1√
π

∞
∑

k=1

λ22(ρ, k) ρ
k
[

ξ′k cos kθ + η′k sin kθ
]

. (20)

8



Here {ξk, ηk} and {ξ′k, η′k}, k = 0, 1, 2, . . . are two independent families of standard independent
gaussian random variables. Thus the random field is homogeneous with respect to the angular
variable, and the respective partial spectra are: Smm(k) = 1

πΛmmρ
k
1ρ

k
2, Smm(0) = ρ1ρ2/2π, and

for n 6= m the spectrum is pure imaginary: Smn(k) = i 1
πΛmnρ

k
1ρ

k
2, m,n = 1, 2.

Proof. The expansion of the correlation tensor is obtained as follows: we substitute the repre-
sentations (10) in (17) and use the eigen-function properties (13). This immediately yields the
exact series representation given in the Theorem.

To construct the explicit simulation formula (19), (20) for our random field, we first split it into
two independent Gaussian random fields:

u(r, θ) = V1(r, θ) + V2(r, θ) .

We will show now that for each of these random fields we can obtain a Karhunen-Loève expansion.

We introduce two pairs of families of single mode vector functions, the first one,

h1k(ρ, θ) =









λ11(ρ, k) cos kθ
λ21(ρ, k) sin kθ








, h̃1k(ρ, θ) =









λ11(ρ, k) sin kθ
−λ21(ρ, k) cos kθ








, (21)

and the second one,

h2k(ρ, θ) =









−λ12(ρ, k) cos kθ
λ22(ρ, k) sin kθ








, h̃2k(ρ, θ) =









λ12(ρ, k) sin kθ
λ22(ρ, k) cos kθ








. (22)

Here the modes are indexed by k = 1, 2 . . ., while the subindexes 1 and 2 stand for the first and
second series of eigen-functions. Each of the four systems of functions (21),(22) is orthogonal,
but all the functions do not form one system of orthogonal functions. We can however construct
from these basis functions two orthogonal systems since these vectors are pairwise orthogonal:

∫ 1

0
dρ

∫ 2π

0
dθ h1k · h̃1j = 0,

∫ 1

0
dρ

∫ 2π

0
dθ h2k · h̃2j = 0 ∀j, k = 1, 2 . . . .

To complete the systems we add two orthogonal vectors h0 =











ρ√
2π

0











, h̃0 =











0
ρ√
2π











.

It is now a matter of technical evaluations to find that the correlation tensor can be represented
in the form:

Bu(ρ1, θ1; ρ2, θ2) = h0(ρ1) · hT
0 (ρ2) (23)

+
1

π

∞
∑

k=1

{h1k(ρ1, θ1)h
T
1k(ρ2, θ2) + h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2)}ρk

1ρ
k
2

+h̃0(ρ1) · h̃T
0 (ρ2) (24)

+
1

π

∞
∑

k=1

{h2k(ρ1, θ1)h
T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2)}ρk

1ρ
k
2 .

This follows from the easily verified representation

h1k(ρ1, θ1)h
T
1k(ρ2, θ2) + h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2) =









λ11(ρ1, θ1)λ11(ρ2, θ2) cos[k(θ2 − θ1)] λ11(ρ1, θ1)λ21(ρ2, θ2) sin[k(θ2 − θ1)]
−λ21(ρ1, θ1)λ11(ρ2, θ2) sin[k(θ2 − θ1)] λ21(ρ1, θ1)λ22(ρ2, θ2) cos[k(θ2 − θ1)]









9



and

h2k(ρ1, θ1)h
T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2) =









λ12(ρ1, θ1)λ12(ρ2, θ2) cos[k(θ2 − θ1)] −λ12(ρ1, θ1)λ22(ρ2, θ2) sin[k(θ2 − θ1)]
λ22(ρ1, θ1)λ12(ρ2, θ2) sin[k(θ2 − θ1)] λ22(ρ1, θ1)λ22(ρ2, θ2) cos[k(θ2 − θ1)]








.

So we can see that the first and the second pairs of lines ((23) and (24), respectively) present
the covariances of the first and second vectors in our splitting, respectively:

Bu = 〈u(r1, θ1) · uT (r2, θ2)〉 = 〈V1(r1, θ1) ·VT

1 (r2, θ2)〉 + 〈V2(r1, θ1)V
T

2 (r2, θ2)〉 ,

thus,

BV1
= h0(ρ1) · hT

0 (ρ2) +
1

π

∞
∑

k=1

{h1k(ρ1, θ1)h
T
1k(ρ2, θ2) + h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2)}ρk

1ρ
k
2 ,

BV2
= h̃0(ρ1) · h̃T

0 (ρ2) +
1

π

∞
∑

k=1

{h2k(ρ1, θ1)h
T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2)}ρk

1ρ
k
2

where BV1
= 〈V1(r1, θ1) · VT

1
(r2, θ2)〉 BV2

= 〈V2(r1, θ1)V
T

2
(r2, θ2)〉 .

Note that each part, i.e., BV1
and BV2

, is represented as an orthogonal-mode expansion. There-
fore, we can construct a K-L-expansion for our random fields V1 and V2.

We have not yet normalized the eigen-functions. We can do it through dividing the angular
modes by

√
π, and the radial modes by ∆1(k) =

∫ 1
0 (λ2

11 + λ2
21) dρ for the first family of eigen-

functions (21), and by ∆2(k) =
∫ 1
0 (λ2

12 + λ2
22) dρ for the second family of eigen-functions (22).

We then collect the orthonormal eigen-modes in two families:

H(1)
2k−1 =

1
√

∆1(k)π
h1k(ρ, θ), H(1)

2k =
1

√

∆1(k)π
h̃1k(ρ, θ), k = 1, 2, . . .

and

H(2)
2k−1 =

1
√

∆2(k)π
h2k(ρ, θ), H(2)

2k =
1

√

∆2(k)π
h̃2k(ρ, θ), k = 1, 2, . . .

Then, the orthonormal functions H(1)
k and H(2)

k are eigen-functions of the covariance tensors BV1

and BV2
, respectively, with the corresponding eigen-values ∆1(k) and ∆2(k):

1
∫

0

2π
∫

0

BVm
· H(m)

k (ρ2, θ2) dρ2 dθ2 = ∆m(k)H(m)
k (ρ1, θ1) , m = 1, 2 .

We thus end up with the K-L-expansion for the random field V1(r, θ) in the form

V1(r, θ) =
∞
∑

k=1

ζkH(1)
k (ρ, θ)

where ζk are gaussian random variables such that

〈ζkζj〉 = ∆1(k) δjk ,

and the same for V2(r, θ).

Putting these expansions together we conclude with the desired representation (19), (20).

Finally note that the spectra given in the theorem are obtained immediately from the expansion
of the correlation function. This completes the proof of Theorem 2.
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3.2 General case of homogeneous excitations.

So far we studied the case where g1 and g2 were two independent white noise processes. We
will show now that the general situation when g1 and g2 are some arbitrary possibly dependent
homogeneous processes, is basically derived from the white noise case.

Assume we are given two homogeneous zero mean processes g1 and g2 with the correlation tensor
Bg(ϕ2 − ϕ2) (with the entries Bg,ij, i, j = 1, 2) defined on the boundary. As shown above, the
correlation tensor Bu is related to Bg by the double integral representation (15). Changing the
integration variable ϕ′′ to a new one, ψ by ϕ′′ − ϕ′ = ψ, for u = (uρ, uθ)

T we obtain from (15)

Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

G(ρ1; θ1 − ϕ′)Bg(ψ)GT (ρ2; θ2 − ψ − ϕ′) dϕ′ dψ . (25)

The inner integral with respect to ϕ′ can be evaluated explicitly using the series expansions for
the kernel G(ρ, θ) given above in (7). It is convenient to rewrite the relation (25) in a different
form. We take now the entries of the correlation tensor Bu, and define a column-vector function
B̂u as follows B̂u = (Bu,11, Bu,12, Bu,21, Bu,22)

T . Analogously, we use the notation B̂g for the

column-vector B̂g = (Bg,11, Bg,12, Bg,21, Bg,22)
T .

Theorem 3. Under the assumptions that the boundary random functions g1 and g2 are statisti-
cally homogeneous, with the given correlation tensor Bg(ϕ), the solution of the Stokes problem is
a random field partially homogeneous with respect to the angular coordinate, and the correlation
functions B̂u and B̂g(ϕ) are related by the convolution

B̂u(ρ1, ρ2; θ) =

2π
∫

0

A(ρ1, ρ2; θ − ψ) B̂g(ψ) dψ (26)

where the matrix A is explicitly given by its entries (29)-(32).

Proof. In the introduced notation, the equality (25) takes the form

B̂u(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

G(ρ1; θ1 − ϕ′) ⊗G(ρ2; θ2 − ψ − ϕ′) B̂g(ψ) dϕ′ dψ . (27)

Here we denote by ⊗ a tensor product of two matrices which is defined as a 4 × 4 matrix,
represented as a 2 × 2-block matrix each block being a 2 × 2 matrix of the form Gij(ρ1; θ1 −
ϕ′)G(ρ2; θ2 − ψ − ϕ′), i, j = 1, 2.

The entries aij , i, j = 1, 2, 3, 4 of the matrix

A =

2π
∫

0

G(ρ1; θ1 − ϕ′) ⊗G(ρ2; θ2 − ψ − ϕ′) dϕ′ (28)

can be found explicitly. Indeed, substituting the series representation of the matrix G given by

11



(7) in (28) we obtain

a11 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ11(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a12 =
1

π

∞
∑

k=1

λ11(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a13 = − 1

π

∞
∑

k=1

λ12(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a14 =
1

π

∞
∑

k=1

λ12(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)] (29)

a21 =
1

π

∞
∑

k=1

λ11(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a22 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ11(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a23 =
1

π

∞
∑

k=1

λ12(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a24 = − 1

π

∞
∑

k=1

λ12(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)] (30)

a31 = − 1

π

∞
∑

k=1

λ21(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a32 =
1

π

∞
∑

k=1

λ21(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a33 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ22(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a34 =
1

π

∞
∑

k=1

λ22(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)] (31)

a41 =
1

π

∞
∑

k=1

λ21(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a42 = − 1

π

∞
∑

k=1

λ21(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a43 =
1

π

∞
∑

k=1

λ22(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a44 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ22(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)] . (32)
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Thus we see from these formulae that the entries of the matrix A depend on the difference
θ = θ2 − θ1, hence the correlation tensor Bu also depends on θ = θ2 − θ1, and from (27), (28) we
arrive at the desired convolution representation (26). The proof of Theorem 3 is complete.

Remark 2. Note that if the boundary correlation tensor Bg is given by its spectral expansion,
we can express the correlation tensor of the solution through the spectra. For instance, assuming
the spectral tensor is real-valued, so that

Bg,ij(ϕ
′′ − ϕ) =

fij(0)

2π
+

1

π

∞
∑

k=1

fij(k) cos k(ϕ′′ − ϕ′) , i, j = 1, 2 ,

we can derive a general formula for the covariance tensor by substituting this expansion in (25).
After routine evaluations we obtain the general formulae

B11 =
f11(0) ρ1 ρ2

2π
+

1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
11 cos[k(θ2 − θ1)] + Λs

11 sin[k(θ2 − θ1)]
)

,

B12 =
1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
12 cos[k(θ2 − θ1)] + Λs

12 sin[k(θ2 − θ1)]
)

,

B21 =
1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
21 cos[k(θ2 − θ1)] + Λs

21 sin[k(θ2 − θ1)]
)

,

B22 =
f22(0) ρ1 ρ2

2π
+

1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
22 cos[k(θ2 − θ1)] + Λs

22 sin[k(θ2 − θ1)]
)

,

where
Λc

11 = f11λ
1
11λ

2
11 + f22λ

1
12λ

2
12 , Λs

11 = f21λ
1
11λ

2
12 − f12λ

1
12λ

2
11 ,

Λc
12 = f21λ

1
12λ

2
21 + f12λ

1
11λ

2
22 , Λs

12 = f11λ
1
11λ

2
21 − f22λ

1
12λ

2
22 ,

Λc
21 = f21λ

1
22λ

2
11 + f12λ

1
21λ

2
12 , Λs

21 = f22λ
1
22λ

2
12 − f11λ

1
21λ

2
11 ,

Λc
22 = f22λ

1
22λ

2
22 + f11λ

1
21λ

2
21 , Λs

22 = f21λ
1
22λ

2
21 − f12λ

1
21λ

2
22 .

Here we use the notations λm
ij = λij(ρm, k), m = 1, 2.

Remark 3. Note that using the relation between the vectors in polar and rectangular coordinates,









u1(r, θ)
u2(r, θ)








= R θ









uρ(r, θ)
uθ(r, θ









we can easily relate the desired statistical characteristics in these two coordinate systems. For
example, the covariance tensors are related as follows

B(u1,u2)(ρ1, ρ2; θ1, θ2) = R θ1
B(ur ,uθ)(ρ1, ρ2; θ1, θ2)RT

θ2
. (33)

The K-L-expansion in the rectangular coordinates is also obtained directly from the K-L-expansion
of the random field in the polar coordinates on the basis that the eigen-functions are related by
hrectangular = R θ hpolar and h̃rectangular = R θ h̃polar.

Let us write down here the relation (33) in details. We denote the entries of the covariance

matrix B(u1,u2) by Brec
ij , and the entries of the covariance matrix B(ur ,uθ) by Bpol

ij . From (33) we
obtain
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Brec
11 =cos θ1 cos θ2B

pol
11 −cos θ1 sin θ2B

pol
12 −sin θ1 cos θ2B

pol
21 +sin θ1 sin θ2B

pol
22 ,

Brec
12 =cos θ1 sin θ2B

pol
11 +cos θ1 cos θ2B

pol
12 −sin θ1 sin θ2B

pol
21 −sin θ1 cos θ2B

pol
22 ,

Brec
21 =sin θ1 cos θ2B

pol
11 −sin θ1 sin θ2B

pol
12 +cos θ1 cos θ2B

pol
21 −cos θ1 sin θ2B

pol
22 ,

Brec
22 =sin θ1 sin θ2B

pol
11 +sin θ1 cos θ2B

pol
12 +sin θ2 cos θ1B

pol
21 +cos θ1 cos θ2B

pol
22 .

4 Correlation function of the pressure

From (8), it is easy to derive an explicit representation for the correlation function of the pressure
p(r, θ). Indeed, let us denote by Bp the correlation function of the pressure: Bp(r1, θ1; r2, θ2) =
〈

p(r1, θ1)p(r2, θ2)
〉

.

Theorem 4. Assume that the functions g1 and g2 prescribed on the boundary are independent
Gaussian white noise random processes defined on the circle S(0, R): Bϕ=
〈

gi(ϕ1) gj(ϕ2)
〉

= δij δ(ϕ2 − ϕ1), i, j = 1, 2. Then Bp(r1, θ1; r2, θ2), the correlation function of
the pressure p(r, θ) has the following series representation

Bp = Bp(r1, θ1; r2, θ2) =
8η2

πR2

∞
∑

k=1

k2ρk+1
1 ρk+1

2 cos[(k + 1)(θ2 − θ1)] . (34)

Thus the correlation function (34) depends on the difference θ = θ2−θ1 and the product ρ = ρ1ρ2:
Bp = Bp(ρ, θ). Moreover, it can be explicitly expressed as

Bp(ρ, θ) =
8η2

πR2

[

ρ cos(θ)
∂2

∂θ2
B∆(ρ, θ) + ρ2 sin(θ)

∂2

∂θ∂ρ
B∆(ρ, θ)

]

(35)

where B∆(ρ, θ) is the correlation function for the Laplace equation under white noise boundary
excitations derived in [25]:

B∆(ρ, θ) =
1

2π

1 − ρ2

1 − 2ρ cos θ + ρ2
.

Proof. Changing the product of integrals by double integrals and using the definition of the
white noise we find

Bp(r1, θ1; r2, θ2) =
〈

p(r1, θ1)p(r2, θ2)
〉

=
[{

2π
∫

0

P1(r1; θ1 − ϕ′)g1(ϕ
′)dϕ′ +

2π
∫

0

P2(r1; θ1 − ϕ′)g2(ϕ
′)dϕ′

}

×
{

2π
∫

0

P1(r2; θ2 − ϕ′′)g1(ϕ
′′)dϕ′′ +

2π
∫

0

P2(r2; θ2 − ϕ′′)g2(ϕ
′′)dϕ′′

}]
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=

2π
∫

0

2π
∫

0

{

P1(r1; θ1 − ϕ′)P1(r2; θ2 − ϕ′′)
〈

g1(ϕ
′)g1(ϕ

′′)
〉

+P1(r1; θ1 − ϕ′)P2(r2; θ2 − ϕ′′)
〈

g1(ϕ
′)g2(ϕ

′′)
〉

+P2(r1; θ1 − ϕ′)P1(r2; θ2 − ϕ′′)
〈

g2(ϕ
′)g1(ϕ

′′)
〉

(36)

+P2(r1; θ1 − ϕ′)P2(r2; θ2 − ϕ′′)
〈

g2(ϕ
′)g2(ϕ

′′)
}

dϕ′dϕ′′

=

2π
∫

0

P1(r1; θ1 − ϕ)P1(r2; θ2 − ϕ)dϕ +

2π
∫

0

P2(r1; θ1 − ϕ)P2(r2; θ2 − ϕ)dϕ .

Now we substitute the expansions for P1 and P2 obtained above in (8). This yields

Bp(r1, θ1; r2, θ2) =
8η2

πR2

∞
∑

k=1

k2ρk+1
1 ρk+1

2 cos[(k + 1)(θ2 − θ1)] .

The exact expression (35) follows from (34) and the series representation for the correlation
function of the solution to the Laplace equation under white noise excitations derived in my
recent paper [26]:

B∆ =
1

2π
+

1

π

∞
∑

k=1

ρk cos[k(θ2 − θ1)] =
1

2π
· 1 − ρ2

1 − 2ρ cos θ + ρ2

where we recall that ρ = ρ1ρ2 and θ = θ2 − θ1.

The proof is complete.

It is interesting to note that we could obtain expressions for the pressure by substituting formally
a generalized representation of the boundary white noises on the circle

g1(ϕ) =
ξ0√
2π

+
1√
π

∞
∑

k=1

[

ξk cos kϕ+ ηk sin kϕ
]

g2(ϕ) =
ξ′0√
2π

+
1√
π

∞
∑

k=1

[

ξ′k cos kϕ+ η′k sin kϕ
]

into the Poisson formula (8) with the kernels P1(r; θ) and P2(r; θ). Indeed, a little algebra results
in the representation for the random pressure:

p(r, θ) =
4η√
2πR

∞
∑

k=1

kρk+1
{

ξk cos[(k + 1)θ] + ηk sin[(k + 1)θ]}

where ξl and ηk are families of independent standard gaussian random variables.

Note that from this representation the series expansion (34) is easily obtained by direct evalua-
tion.

5 Vorticity and stress

The stress tensor for the Stokes flow has the form [13]

σik = −pδik + η
( ∂ui

∂xk
+
∂uk

∂xi

)

, i, k = 1, 2
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where p is the pressure, and δik is the Kronecker symbol.

Recall that in polar coordinates we use,

u1 = ur cos θ − uθ sin θ, u2 = ur sin θ + uθ cos θ,

and
∂

∂x
= cos θ

∂

∂r
− sin θ

∂

r∂θ
,

∂

∂y
= sin θ

∂

∂r
+ cos θ

∂

r∂θ
.

Now choosing the axis x along the vector direction defined by θ we find

∂u1

∂x
=
∂ur

∂r
,

∂u2

∂y
=

1

r

∂uθ

∂θ
+
ur

r
,

∂u2

∂x
+
∂u1

∂y
=
∂uθ

∂r
+

1

r

∂ur

∂θ
− uθ

r
, (37)

hence the entries of the stress tensor become

σrr = −p+ 2η
∂ur

∂r
, σθθ = −p+ 2η

(1

r

∂uθ

∂θ
+
ur

r

)

,

σrθ = η
(1

r

∂ur

∂θ
+
∂uθ

∂r
− uθ

r

)

. (38)

Using the series expansions for the kernels Gij and the pressure obtained above, it is easy to
derive series expansion representations for the correlation tensor for all the strain entries. Let us
do it for the vorticity.

From (37) we get for the vorticity

ωrθ =
∂u2

∂x
− ∂u1

∂y
=

1

r

[ ∂

∂r
(ruθ) −

∂ur

∂θ

]

.

Our goal is to find the correlation tensor of vorticity.

Theorem 5. The correlation function of the pressure, Bp , and the correlation function of the
vorticity, Bωrθ

, are related by

Bωrθ
=

1

2η2
Bp =

4

πR2

∞
∑

k=1

k2ρk+1
1 ρk+1

2 cos[(k + 1)(θ2 − θ1)] . (39)

Proof. We start by substituting the series expansions (10) for the kernels Gij to get the expres-
sions

1

r

∂

∂r
(ruθ) =

1

2πR

2π
∫

0

∞
∑

k=1

[

− (k − 2)2ρk + k(k − 2)ρk+2
]

sin[(k(θ − ϕ)] gr(ϕ) dϕ

+
1

2πR

2π
∫

0

∞
∑

k=1

[

(k − 2)2ρk − k2ρk+2
]

cos[(k(θ − ϕ)] gθ(ϕ) dϕ

and

1

r

∂ur

∂θ
=

1

2πR

2π
∫

0

∞
∑

k=1

[

− k2ρk + k(k − 2)ρk+2
]

sin[(k(θ − ϕ)] gr(ϕ) dϕ

+
1

2πR

2π
∫

0

∞
∑

k=1

[

k2ρk − k2ρk+2
]

cos[(k(θ − ϕ)] gθ(ϕ) dϕ .
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This yields

ωrθ =
2

πR

2π
∫

0

∞
∑

k=1

kρk+1 sin[(k + 1)(θ − ϕ)] gr(ϕ) dϕ

− 2

πR

2π
∫

0

∞
∑

k=1

kρk+1 cos[(k + 1)(θ − ϕ)] gθ(ϕ) dϕ .

From this we readily find the correlation function of the vorticity:

Bωrθ
(r1, θ1; r2, θ2) =

4

πR2

∞
∑

k=1

k2ρk+1
1 ρk+1

2 cos[(k + 1)(θ2 − θ1)]

which by comparing with the expansion (34) gives the desired result (39).

5.1 Radial stress

Analogously, the expansions for the correlations of the stress tensor can be obtained. For instance,
let us consider the radial stress σrr = −p+ 2η ∂ur/∂r given in (38). We have obviously

Bσrr
=

〈

σrr(r1, θ1)σrr(r2, θ2)
〉

= Bp + 4η2
〈∂ur(r1, θ1)

∂r

∂ur(r2, θ2)

∂r

〉

−2η
〈

p(r1, θ1)
∂ur(r2, θ2)

∂r

〉

− 2η
〈∂ur(r1, θ1)

∂r
p(r2, θ2)

〉

(40)

where Bp is the correlation function of the pressure derived in Theorem 4.

Taking the radial derivative we get

∂ur

∂r
(r, θ) =

1

2πR

2π
∫

0

{

−ρ2 +

∞
∑

k=1

[

(k + 1)(k − 2)ρk+2 −k(k − 1)ρk
]

cos[k(θ − ϕ)]
}

gr(ϕ)dϕ

+
1

2π R

2π
∫

0

∞
∑

k=1

[

k(k + 1)ρk+2 − k(k − 1)ρk
]

sin[k(θ − ϕ)] gθ(ϕ)dϕ . (41)

For the pressure we have

p(r, θ) =
2η

π R

2π
∫

0

{

∞
∑

k=1

kρk+1 cos[(k + 1)(θ − ϕ)] gr(Re
iϕ)

∞
∑

k=1

kρk+1 sin[(k + 1)(θ − ϕ)] gθ(Re
iϕ)

}

dϕ . (42)

From (41) we find:

4η2
〈∂ur(r1, θ1)

∂r

∂ur(r2, θ2)

∂r

〉

=
2η2ρ2

1ρ
2
2

πR2
+

4η2ρ2
1ρ

2
2

πR2
cos(θ2 − θ1)

+
η2

πR2

∞
∑

k=1

ρk+1
1 ρk+1

2 Λk+1(ρ1, ρ2) cos[(k + 1)(θ2 − θ1)] . (43)
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Here
Λk(ρ1, ρ2) = λ1(k, ρ1)λ1(k, ρ2) + λ2(k, ρ1)λ2(k, ρ2)

where

λ1(k, ρ) = (k + 1)(k − 2)ρ2 − k(k − 1), λ2(k, ρ) = k(k + 1)ρ2 − k(k − 1) .

Finally, from (41) and (42) we find that the sum of two last terms in (40) has the form

−2η
〈

p(r1, θ1)
∂ur(r2, θ2)

∂r

〉

− 2η
〈∂ur(r1, θ1)

∂r
p(r2, θ2)

〉

= − 2η2

πR2

∞
∑

k=1

k ρk+1
1 ρk+1

2 Λ̂k+1(ρ1, ρ2) cos[(k + 1)(θ2 − θ1) (44)

where
Λ̂k(ρ1, ρ2) = λ1(k, ρ1) + λ2(k, ρ1) + λ1(k, ρ2) + λ2(k, ρ2) .

From the series representations (34), (43), and (44) we finally obtain

Bσrr
=

2η2

πR2

{

ρ2
1ρ

2
2 + 2ρ3

1ρ
3
2 cos(θ2 − θ1)

}

+
η2

πR2

∞
∑

k=1

[

k2 + Λk+1(ρ1, ρ2) − 2kΛ̂k+1(ρ1, ρ2)
]

ρk+1
1 ρk+1

2 cos[(k + 1)(θ2 − θ1)] .

5.2 Homogeneous random boundary excitations

We extend the result of the Theorem 4 to the case of general homogeneous random boundary
excitations. So we suppose that the velocity g(ψ) prescribed on the circle S(0, R) is a real-valued
vector zero mean homogeneous random process. Let us denote the correlation tensor of g by

B(g)(ψ) with the entries B
(g)
ij (ψ) =

〈

gi(ψ1)gj(ψ1 + ψ))
〉

, i, j = 1, 2.

Our goal is now to relate the correlation function of the pressure and the input correlation tensor
B(g).

Theorem 6. The correlation function of the pressure is represented through the correlation
tensor of the homogeneous boundary excitations by the following convolution formula

Bp(r1, θ1; r2, θ2) = Bp(ρ1ρ2, θ1 − θ2) (45)

=
4η2

π R2

[ 2π
∫

0

∞
∑

k=1

k2ρk+1
1 ρk+1

2 cos[(k + 1)(θ1 − θ2 − ψ)]
{

B
(g)
11 (ψ) +B

(g)
22 (ψ)

}

dψ

+

2π
∫

0

∞
∑

k=1

k2ρk+1
1 ρk+1

2 sin[(k + 1)(θ1 − θ2 − ψ)]
{

B
(g)
21 (ψ) −B

(g)
12 (ψ)

}

dψ

]

,

hence the pressure is a random field homogeneous with respect to the angular variable.

Proof. The proof follows the same way presented above by starting with the expression (36
), and making the change of variable ψ = ϕ′ − ϕ′′, where ϕ′ is fixed (i.e., ψ is fixed), and the
inner integrals are taken explicitly with respect to the variable ϕ′′. Using the orthogonality of
the functions sin kϕ′′ and cos kϕ′′ we arrive at (45).
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6 Interior Stokes problem

Let us now consider the interior Stokes problem in the disc D−
R of radius R centered at the

origin. On the boundary, which is the circle S(0, R) = ∂DR, the velocity components g1 , g2 are
prescribed, and the velocity vector u(x) = (u1(x), u2(x)) and the pressure p(x) are to be found
from the Stokes problem:

η∆u(x) = ∇p(x), x ∈ D−
R ,

div u(x) = 0 , x ∈ D−
R , (46)

u(x′) = g(x′) , x′ ∈ S(0, R)

where η is the dynamic viscosity, and the velocity components g1 and g2 are supposed to be zero
mean random processes on the circle S(0, R).

6.1 Poisson formula

We use again polar coordinates, r ≤ R is the radial coordinate, and θ is the angular coordinate.
The Poisson integral formula for the interior problem has the form analogous to (3) (e.g., see
[38])









ur(r, θ)
uθ(r, θ)








=

2π
∫

0









G11(r; θ − ϕ) G12(r; θ − ϕ)
G21(r; θ − ϕ) G22(r; θ − ϕ)

















gr(Re
i ϕ)

gθ(Re
i ϕ)








dϕ

where the entries Gij (i, j = 1, 2) have the form

G11(r; θ) = cos θ K(r, θ) +
R2 − r2

2r2

{

cos θ
(

r
∂

∂r
K(r, θ)

)

− sin θ
∂

∂θ
K(r, θ)

}

−R
2 − r2

2πRr
,

G12(r; θ) = sin θ K(r, θ) +
R2 − r2

2r2

{

sin θ
(

r
∂

∂r
K(r, θ)

)

+ cos θ
∂

∂θ
K(r, θ)

}

,

G21(r; θ) = − sin θ K(r, θ) +
R2 − r2

2r2

{

sin θ
(

r
∂

∂r
K(r, θ)

)

+ cos θ
∂

∂θ
K(r, θ)

}

,

G22(r; θ) = cos θ K(r, θ) − R2 − r2

2r2

{

cos θ
(

r
∂

∂r
K(r, θ)

)

− sin θ
∂

∂θ
K(r, θ)

}

+
R2 − r2

2πRr
.

The pressure p(r, θ) is related to the velocities ur(R, θ) and uθ(R, θ) on the boundary by analogous
Poisson type integral formula:

p(r, θ) = −2η

r

{

2π
∫

0

Pr(r; θ − ϕ)ur(Re
iϕ) dϕ+

2π
∫

0

Pθ(r; θ − ϕ)uθ(Re
iϕ)dϕ

}

+
1

2π

2π
∫

0

p(R,ϕ) dϕ (47)
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where

Pr(r; θ) = cos θ
(

r
∂

∂r
K(r, θ)

)

− sin θ
∂

∂θ
K(r, θ) ,

Pθ(r; θ) = sin θ
(

r
∂

∂r
K(r, θ)

)

+ cos θ
∂

∂θ
K(r, θ) .

The function K(r, θ) is the Poisson kernel for the harmonic equation in the circular domain of
radius R:

K(r, θ) =
R2 − r2

2π(R2 + r2 − 2Rr cos θ
, 0 ≤ r ≤ R .

We define here ρ = r/R, so that ρ < 1, and in the notation

λ11 =
1

ρ
+
k(1 − ρ2)

2ρ
, λ12 = −k(1 − ρ2)

2ρ
,

λ21 = −(k + 2)(1 − ρ2)

2ρ
, λ22 = ρ− k(1 − ρ2)

2ρ
, k = 1, 2 . . . , (48)

we obtain the series expansions in the form

G11(r; θ) =
ρ

2π
+

1

π

∞
∑

k=1

λ11(ρ)ρ
k cos(kθ) , G12(r; θ) =

1

π

∞
∑

k=1

λ12(ρ) ρ
k sin(kθ) ,

G21(r; θ) =
1

π

∞
∑

k=1

λ21(ρ) ρ
k sin(kθ) , G22(r; θ) =

ρ

2π
+

1

π

∞
∑

k=1

λ22(ρ) ρ
k cos(kθ) .

Now we note that all the statements presented for the exterior problem hold true for the interior
problem, up to the section 4, we just have to replace the coefficients λij in the functions Gij by
the expressions (48). The pressure however should be analyzed separately.

Indeed, the Poisson formula (47) for the interior problem has a structure different from that of
the exterior problem, compare with (5).

After substituting the series expansions for the kernels we find that

p(r, θ) = − η

πR

{ 2π
∫

0

[

1 +

∞
∑

k=1

(k + 1)ρk cos [(k(θ − ϕ)]
]

ur(ϕ)dϕ

+

2π
∫

0

[

∞
∑

k=1

(k + 1)ρk sin [(k(θ − ϕ)]
]

uθ(ϕ)dϕ

}

+
1

2π

2π
∫

0

p(R,ϕ)dϕ. (49)

Integrating both parts of this equality from θ = 0 to 2π we conclude that

2π
∫

0

ur(R, θ)dθ = 0 (50)

which is just the consistency condition for the interior Dirichlet problem of the Stokes equation
∫

S(0,R)

u · n ds = 0
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which does not appear in the case of the exterior Dirichlet problem.

From this we see that the random process on the boundary p(R, θ) is homogeneous with respect
to the angular coordinate, with a constant mean p0 = p̄(R, ·), and moreover, by (49), p̄(r, θ) = p0

inside the disc.

From the representation (49) we can find the correlation function of the pressure. The last term

P̄ = 1
2π

2π
∫

0

p(R,ϕ)dϕ in this expression is just a random variable which is normally distributed,

so it does not affect the angular behaviour of the correlation function. Note also that due to the
property (50) we can assume without loss of generality that the mean of the pressure is zero.
Thus it is sufficient to find the correlation function

Bp = 〈(p(r1, θ1) − P̄ )(p(r2, θ2) − P̄ )〉 .
Direct evaluation yields by (49)

Bp =
2η2

πR2

∞
∑

k=1

(k + 1)2ρk
1ρ

k
2 cos[k(θ2 − θ1)] .

7 Numerical results

We present in this section the results of numerical experiments for the Stokes problem. The
angular and radial behaviour of the correlations for the velocity, pressure, stress and vorticity is
analyzed. We also compare these functions for interior and exterior problems.

Let us start with the velocity correlation tensor for the exterior Stokes problem. In Figure 1 we
present the angular behaviour of the correlation functions B11 (left panel) and B22 (right panel),
for different values of ρ1 and ρ2. An interesting feature of the correlation function B22 is that
unlike B11, there is a peak around the angle θ = 15◦ for a certain range of the radial values of ρ1

and ρ2. In Figure 2, we present these correlations versus the angle θ, for fixed and equal values
of ρ1 and ρ2. It is clearly seen that as the distance to the boundary increases (ρ decreases),
the fluctuation intensity decreases while the correlation length increases. In Figure 3 the cross-
correlations B12 and B21 are shown. Here we check the property Bij(θ, ρ1, ρ2) = Bji(θ, ρ2, ρ1)
(left panel). In the right panel of Figure 3 we show the function B21 for different values of ρ1,
ρ2.

Let us turn to the pressure correlation function. To illustrate the rate of convergence of the K-L
expansion, we compare in Figure 4 the pressure correlation Bp(ρ1, ρ2; θ) for different values of
the retained terms n in the K-L series representation, with the exact result. It is seen that a
few number of terms is sufficient for a good approximation even near the boundary where the
decrease of correlations is very fast (see the right panel). We can compare this fast behavour
from the results presented in the left and right panels of Figure 5. Here it is also seen that the
larger the distance from the boundary, the smaller the intensity fluctuations and the larger the
correlation length.

The rate of convergence of the K-L expansion is closely related to the smoothness of the correla-
tion kernel and L, the correlation length of the process. For example, in [16] is reported that for
the particular case B(x1, x2) = σ e−|x2−x1|/L, an upper bound for the relative error in variance
ε of the process represented by its K-L expansion is given by ε ≤ 4

π2

1
n

1
L where n is the number

of retained terms.

The correlation function of the radial stress, Bσrr
, is presented in Figure 6, for different values

of ρ1 and ρ2: we fix the value ρ1 = 0.99, and vary the value of ρ2 from ρ2 = 0.1 (small values
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Figure 1: Angular correlation function for B11 (left panel) and B22 (right panel), for different

values of ρ1 and ρ2.
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Figure 2: Angular correlation function for B11 (left panel) and B22 (right panel), for equal

values of ρ1 and ρ2.
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Figure 3: Angular correlation functions B12 and B21, for different values of ρ1 and ρ2 (left

panel), and B21, for equal values of ρ1 and ρ2 (right panel).
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Figure 5: Angular correlation function of the pressure Bp(ρ1, ρ2; θ), for different values of ρ1

and ρ2.
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, for different

values of ρ1 and ρ2 with ρ1 fixed near the boundary, and varying second point: far from the

boundary (small values of ρ2, left panel), and closer to the boundary (larger values of ρ2, right

panel).
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Figure 7: The velocity correlation functions B11 (left panel), and B22 (right panel), for equal

values of ρ1 and ρ2. Interior Stokes problem.
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Figure 8: The velocity correlation functions B11 (left panel), and B22 (right panel), for different

values of ρ1 and ρ2. Interior Stokes problem.
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Figure 9: The velocity cross-correlation functions B12 and B21, for equal values of ρ1 and ρ2

(left panel), and different values of ρ1 and ρ2 (right panel). Interior Stokes problem.
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in the left panel), to ρ2 = 0.7 (large values in the right panel). Here we can see how strong the
correlation function is changed when varying the radial coordinate.

Let us consider the interior Stokes problem. The correlation function of the velocity is presented
in figures 7 and 8. In Figure 7 we present the velocity correlation functions B11 (left panel) and
B22 (right panel), for equal values of the radial coordinate, where ρ = ρ1 = ρ2 is varied from 0.4
to 0.85. The same curves are shown in Figure 8, but for different values of the radial coordinates:
we fix ρ2 = 0.99, and vary ρ1 from 0.1 to 0.7. Comparing the results for these two cases, we
note that there is no qualitative difference between the correlations B11 in Figure 7 and 8, while
the functions B22 do differ dramatically. This illustrates how complex might be the behaviour
of inhomogeneous random fields.

This is also illustrated by the results presented in Figure 9 where we show the cross-correlations
B12 and B21 of equal (left panel) and different (right panel) values of ρ1, ρ2.

It is also interesting to compare the correlation functions for the interior and exterior problems,
which can be done by a comparative analysis of results presented in Figures 1 - 6 and that
shown in Figures 7-9. We present here only the pressure correlation functions, see Figure 10, for
different values of ρ1, ρ2.
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