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SECONDARY EULER CHARACTERISTICS OF LOCALLY SYMMETRIC SPACES. 

RESULTS AND CONJECTURES 

ANDREAS JUHL 

0. The present paper deals with conjectural generalizations to the higher rank 
case of some index formulas previously found in (4] as an intrinsic part of the 
cohomological theory of the dynamical zeta function 

ZR(s) = Il(l - exp(-slcl)t1 

c 

of the geodesic flow q,t of compact locally symmetric spaces X of rank 1. 
Here the product runs over the prime directed closed geodesics c in X and lcl 
denotes length. ZR will be called the Ruelle zeta function of q,t· The functional 
equation of ZR relates ZR( s) to ZR( -s) and if the dimension of X is even then 
there are always two types of formulas for the multiplicities of the zeros and 
poles of ZR( s) · ZR( -s ). In fact, the multiplicity of each singularity of the 
product ZR( s) · ZR( -s) can be calculated by a formula of analytical nature 
(analytical index) as well as by a formula only involving characteristic classes. 
For s = 0 the equality of both integers can be regarded as an index. formula 
for a secondary type Euler characteristic of the space of directed geodesics in 
X being defined by using the hyperbolic structure of the geodesic flow q,t· 
Here we are concerned with the problem of generalizing the index formula 
(theorem 1) to the space of all directed fiats (See (7]) in a compact locally 
symmetric space X of arbitrary rank. ' 
If the rank of X exceeds 1 then no relation of the index formulas to the theory 
of zeta functions is known. 

1. Let Y = G / K be a Riemannian symmetric space of the non-compact type, 
r c Ga uniform lattice without torsion and X = I'\Y the compact 0 00 locally 
symmetric quotient space. Let P C G be a minimal parabolic subgroup (in 
standard position) with Langlands decomposition P = MAN+. Here M is 
a compact subgroup of K, A = exp(no) is a vector group with Lie algebra 
ao C Po (Po being the ( -1 )-eigenspace of the infinitesimal Cartan involution 
0) of dimension rk(G/K) and N+ is a nilpotent Lie group with Lie algebra 
nci. Recall that the choice of P (and hence that of N+) corresponds to the 
choice of an open Weyl chamber at in no. In fact, at determines a positive 
system !:!:,. +(go, no) of roots of the adjoint action of a0 on g0 and we have 

nci = EJ1 (go)a· 
ae.6+(£10,ao) 

Let N- = eN+ with Lie algebra no = 0aj" given by 

2. Let p : r --+ U(H) be a finite-dimensional unitary representation. Let 
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L2(I'\G,p) be the Hilbert space of sections of the vector bundle G XrH ~ r\G 
being square-integrable (with respect to an invariant measure on I'\ G). The 
right regular representation Rr,p of G on L2(I'\G, p) splits as a direct sum 

(1) (Rr,p, L2(r\G, p)) = EB Nr,p(7r) (7r, V?r) 
?rEG 

of irreducible unitary representations ( 7r, V?r) of G each occuring with finite 
multiplicity Nr,p( 7r ). 

3. Let g = (go)c, n± = (n6=)c and denote by H*(n±, V) the n±-cohomology of 
the g-module V. If Vis the Harish-Chandra module ((g, K)-module) of K-
finite vectors of a (global) representation ( 7r, V?r) of G then we write V = V?r,o· 
V?r,O consists of smooth vectors. The cohomology groups H*( n±, V?r,o) are finite 
dimensional MA-modules ([2]). 

4. Now we define the secondary Euler characteristic of (r, p) as the integer 

(2) 

ch(I', p) def L(-l)P+q (L Nr,p{7r) dimc(HP(n-, V?r,o) ® /\q(n+)*)MA) . 
p,q 71"EG 

Here the exterior powers /\ *( n+ )* are considered as MA-modules (with respect 
to the coadjoint action). 
The sum (2) is finite since for each choice of p and q there are only finitely 
many representations 7r E G with a nontrivial contribution to the inner sum. 
The notation ch(I', p) does not reflect the choices of no and nt since the sum 
on the right hand side of (2) is independent of such choices. In fact, the Weyl 
group W = W(g0 , ao) = M' / M operates simply transitive on the set of Weyl 
chambers in a0 • This implies that all pairs (no, nci) of opposite algebras can be 
obtained from a fixed one by the action of M' / M via the adjoint action. Since 
the group MA is stable under conjugation by Weyl group elements E M' / M 
this shows that the definition of ch(I', p) is independent of the choices of nQ 
and ncl· 
5. For p = 1 there is a formal interpretation of the integer ch(I') = ch(r, 1) 
as the Euler characteristic of the space of r-orbits on the space YDF of all 
directed flats in Y. 
Here a flat is a totally geodesic flat submanifold of maximal dimension ( = 
rk(Y)). Each geodesic in Y is contained in at least one flat. A geodesic which 
uniquely determines the flat containing it is called regular. A regular directed 
geodesic determines a flat together with a distinguished class of asymptotic 
Weyl chambers (directed flat). As a G-space the space of all directed flats in 
Y is isomorphic to G /MA. If the rank of Y is 1 then directed flats are directed 
geodesics and the space YDF = G /MA is the space of directed geodesics in Y. 
See [7]. 
The space XDF = r\ YDF of r-orbits on YDF is, however' far from being a 
manifold! 
The action of A on the space I'\G/M of all Weyl chambers in X = I'\Y is 
ergodic (see [10]) and the closed orbits of this action are dense in the space of 
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all orbits (see [9]). These results are generalizations of well-known results on 
the geodesic fl.ow of compact locally symmetric spaces of rank one. 
Now the definition of the secondary Euler characteristic ch(I') is formally ana-
logous to the following formula for the Euler characteristic of a locally homo-
geneous complex manifold M = I'\G/ H. Here G and rare as before and H 
is a compact Cartan subgroup of G. The Euler characteristic x(M) of M can 
be written in the form 
(3) 

p,q 

= l)-l)P+q (L. Nr,1(?r) dimc(W(n:H, V.-,o) 1811\"(nji)*)H) , 
p,q 7rEG 

where n}i and n'j[ = n}i are the (opposite) nilpotent Lie subalgebras of g 
defined by 

n~ = ffi 9a· 
aeA±(g,fJ) 

Here fl. +(g, £J) is the set of positive roots of the adjoint action of £J on g with 
respect to the choice of an order. Then fl. = fl.+ U (-fl.+), !:l,- = -fl.+ and 

g = n}i EB fJ EB nj{. 

Note that the situations in (2) and (3) both are extreme cases in the sense that 
the algebras n± (in (2)) are totally real, i.e., n± = n±, whereas the algebras n~ 
(in (3)) are totally complex, i.e., n~ = nh-. 
The analogy of (2) and (3) justifies it to refer to ch(I') (and ch(I',p)) also as 
an Euler characteristic. More precisely, ch(I') will be called the horospherical 
Euler characteristic of r by a reason which is expl<l-ined in the following point. 

6. From the point of view of the geometry of geodesics in YDF the minimal 
parabolic subgroup P = MAN+ can be regarded as the subgroup of isometries 
(in G) operating on the family of all directed geodesics which are asymptotic 
to a given regular directed geodesic Co = exp(tX0 )K, X 0 E aci in Y = G/ K. 
Co is regular since Xo is regular in ao, i.e., a(Xo) =I- 0 for all a E !:l.(go, ao). The 
group L = MA then is the subgroup of P consisting of all isometries leaving 
invariant the parallel set P( Co) of Co· Here the parallel set P( c0 ) of c0 is the 
set of all directed geoderics c which are parallel to Co in the sense that the 
distance between c and Co is finite. If the rank of Y is 1 then P( eo) ==Co· See 
([8]). Mis the subgroup of L consisting of the isometries leaving the elements 
of P( eo) pointwise fixed. Moreover, the group N+ acts simply transitive on 
each submanifold of Y which is orthogonal to all geodesics being asymptotic 
to Co· These submanifolds are the horospheres (of maximal dimension) and 
N+ is referred to as the horospherical group of the family defined by Co· 

7. In the definition (2) the symplectic structure also plays an important role. 
In fact, the space G /MA carries a canonical invariant symplectic form since 
it can be identified with the G-adjoint orbit through the (regular) element 
Xo E ao (Kostant, Kirillov ). 
The G-invariant tangent bundles T±(G/MA) C T(G/MA) with the property 
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r;(G/MA) ~ ttii=, ~= eMA 
are involutive Lagrangian subbundles, i.e., both subbundles T± are (real) in-
variant polarizations of G /MA. In other words, the space of directed fiats is 
bi polarized. 
Thus the integer ch(I') can be regarded also as being canonically associated 
to the r-action on the bi polarized symplectic space YDF. 

8. Now having introduced ch(I', p) the obvious problem is to calculate it. Here 
it turns out to be usefull to follow the suggestion of the analogy between (2) 
and (3) a bit further. 
The Euler characteristic x( M) of the complex manifold M = r\ GI H can be 
calculated as the integral 

( 4) j en(T(t,o)(M)), n = dimc(M), 
r\G/H 

where en(T(l,O)(M)) is the top degree Chern class of the holomorphic tangent 
bundle T(t,o)(M) of M. The class en(T(i,o)(M)) E H2n(M) can be represented, 
for instance, by the differential form 

c = Ca1 /\ ••• /\ Can, a; E ..6. +(g, fJ), 
where the 2-forms Ca; E C00

(/\
2T*(M)) are induced by G-invariant 2-forms 

~·on G/H such that 
J 

~.(X, Y)eH = _.!:.__ a([X, Y]), X, YE 90· 
J 27r 

In other words, the G-invariant volume form~ on GI H (inducing con r\ GI H) 
is given by 

(5) c = det (__£_ n) - 27r - ' 

where n E C00
(/\

2 T*(G/ H), End(T<1•0>(G/ H)) is the G-invariant End(T(i,o)(G/ H))-
valued 2-form ( curvative form) given in eH by 

!1(X, Y)eH = -[[X, Yh, ·]. 
Here the subscript fJ denotes the fJ-component of elements in g with respect 
to the decomposition 

g = nH- EB fJ EB nfi.. 
The analogy therefore suggests to look for a formula of a similar type for 
ch(I'). But besides the formal analogy there is, at least at first sight, not 
much evidence for such a result. In fact, the non-ellipticity of the invariant 
complex on G /MA being responsible for the definition of ch(r) rather suggest 
not to expect a result of such a type. In fact, the n--cohomology of Harish-
Chandra modules is well-known to be a much more subtle subject than the 
nH--cohomology (see ([1])! 

9. However, in contrast to these arguments, we have the following result. 
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Theorem 1. (Index formula). Let the rank of Y be 1 and assume that there 
exists a compact Cartan subgroup in G. Then 

(6) ch(r, p) = dim(p) j det c~ 7r*(!1±)) A a±, 
r\G/M 

7r : G/M --7 G/MA, where n± is the G-invariant End(T±(G/MA))-valued 
2-form (curvative form) on G/MA which is given in~= eMA by 

n±(X, Y)!t = -[[X, Y]moEBao, ·], X, YE go, 
where the subscript m0 EB ao denotes the m0 EB ao- component of elements in go 
with respect to the decomposition 

90 = n() EB (mo EB ao) EB nci. 
a± is an A-invariant 1-form which is canonically determined by 7r*(!1±). 
The integer ch(I') = ch(I', 1) coincides with the multipicity of the singularity 
of the Ruelle zeta function ZR ins= 0. 

For more details see ([4]), ([5]), where the case p = 1 is discussed. The same 
arguments extend to the more general situation in theorem 1. 
Note ~hat in contrast to ( 4) the class represented by 

det (2~ 7r*(!1±)) A a± 

is of odd degree and should be regarded as a secondary characteristic class. 
In the case of the upper half plane· Y = H 2 the forms under the integral in 
( 6) represent (27r )-2 times the Godbillon-Vey class of the weak-unstable (or 
weak-stable) foliation of S(X). 
The assumption of the existence of a compact Cartan subgroup is equivalent 
to the condition that the dimension of Y is even. If there is no compact Cartan 
subgroup but Y is still of rank 1 then theorem 1 is no longer true (see also 
16.). 

Now we formulate 

Conjecture 1. {Index formula) Let Y == G / K be a Riemannian symmetric 
space of the non-compact type and arbitrary rank. Assume that there exists a 
compact Cartan subgroup in G. 
Then there is an A-invariant volume form a± (of degree rk(Y)) on the A-
orbits {being canonically determined by 7r*(n±)) such that 

(7) ch(r, p) = dim(p) j _det c~ 7r*(!1±)) A a±, 7r: G/M-> G/MA 
r\G/M 

where n± is the G-invariant End(T±(G/MA))-valued {curvature) 2-form on 
G/MA given by 

n±(X, Y)eMA = -[[X, Y]moEBa0 ,-], X, YE n0 EB nt. 
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Conjecture 1 is a direct generalization of theorem 1 to the arbitrary rank case. 

10. In the situation of theorem 1 there is also a proportionality formula rela-
ting ch(I', p) to the Euler characteristic of the space ~~0 of directed geodesics 
in the compact dual space Yd. (see [4]). More precisely, we have 

Theorem 2. {Proportionality). Let the situation be as in theorem 1. Then 

(8) ch(r, p) = dim(p) :(~~ x ( J'g~.) . 

In the case of compact quotients I'\H;[ of quaternionic hyperbolic spaces HH_ 
(and p = 1) a proof of theorem 2 by explicating the definition of ch(I') in 
terms of the multiplicities Nr,1( 7r) is given in [11]. 

Now theorem 2 suggests 

Conjecture 2. (Proportionality) Let the situation be as in conjecture 1. Then 

(9) . 

where YtF is the space of directed fiats in the compact dual symmetric space 
yd_ 

l l .Remarks. 
( i) The assumption of the existence of a compact Cartan subgroup in conjec-
ture 1 is essential. If this condition is violated then the resulting formulas are 
no longer expected. 
(ii) In the rank 1 case (theorem 1) the 1-forms '<'.l::± are closely related to the 
real roots in f:l.±(g, t EB a), T C M a maximal torus in M with Lie algebra to 
(see [4], [5]). In the general case it is natural to expect that the (volume) forms 
a± are canonically determined by the subsystem of real roots in f:l.±(g, tEB a). 
(iii) From the point of view of conjecture 2 a natural normalization condition 
(compatible with theorem 1 and conjecture 1) which would uniquely determine 
the forms a± (up to a sign) is that the induced volume of the flat tori in yd 
is equal to 1. 
(iv) Let (a, Vu) E M. Then we conjecture the following even more general 
results. 

p,q wEG 

(10) - dim(p) dim(u) j det (2~ ... •(n±)) /\a± 
r\G/M 

- dim(p) dim( u) :(~~ x(YtF) 
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if a gives rise to a homogeneous vector bundle over Y_tF. 
In the rank 1 case ch(I'; a) ~f ch(I', 1 : a) coincides with the multiplicity 
ord0 ( Za-) of the singularity of the twisted Ruelle zeta function 

(11) Za-( s) ~f II det(l - a(mc) exp(-slcl)t1 

c 

in s = 0. This generalizes the formula ord0 ( ZR) = ch(I', 1) and can be proved 
also by using the same methods as in [ 4]. 

12. Let TC M be a maximal torus with Lie algebra fo. Then TA is a Cartan 
subgroup of G and we define 

(12) 
ch(I',p;TA) ~f 2:)-l)p+q(:E Nr,p(7r)dimc(HP(nTA, v .... ,o) ® /\q(ntA)*)TA). 

p,q ...-eG. 

Here the complex Lie algebras ~A C g are defined as 

~A= E9 9ct> 
cxEA±(g,tffia) 

for any choice of a positive system .6. +(g, t EB a). In analogy to 

90 = n() EB· (mo E9 ao) EB nci . 
we have the more refined decomposition 

g = nTA EB (t EB a) EB nf A· 
ch(I', p; TA) is independent of the choice of nf A and. we have 

(13) ch(I', p; TA)= x(M/T) ch(I', p). 

13. In a similar way as in (12) one can define ch(I', p; L) with respect to any 
Cartan subgroup L (with Lie algebras [0 ) of G . . 
In fact, replace in (12) TA by L and i4A by nL, where nt are the nilpotent 
Lie algebras determined by the polarization 

g = n£ EB [EB n! 
of the root decomposition of g with respect to [given by a choice of a positive 
system in .6.(g, [). Then the L-modules H*( n£, V...-,o) are finite-dimensional 
and ch(r, Pi L) is well-defined. 

Conjecture 3. Let Y = G / K be a Riemannian symmetric space of the 
non-compact type and arbitrary rank. Then 

(14) ch(I', p; TA)= ch(I', p; LturuJ). 
where Ltund is a fundamental Cartan subgroup of G (being uniquely determined 
up to conjugation). 

Conjecture 3 relates the integers ch(I', Pi L) for the both extreme types of 
Cartan subgroups: the maximal compact one (LJuruI) and the maximal non-
compact one (TA). If the fundamental Cartan subgroup LfuruI is compact 
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then the right hand side of (14) coincides with the usual Euler characteristic 
x(r\G/ Ltund) of the complex manifold r\G/ Ltund· 
Since on the other hand by conjecture 2 and (13) 

ch(r, p; TA)= ch(I', p) x(M/T) 

= dim(p) ;(~~ x(Yfia,) x(M/T) 

= dim(p) X (I'\G/LJund) 

we see that the conjecture 2, in fact, implies conjecture 3 if there exists a 
compact Cartan subgroup. 
If the fundamental Cartan subgroup is not compact then the nature of the 
integer ch(r, p; Ltund) is still mysterious! In any case one should regard it as 
a secondary Euler characteristic of (r, p ). 

Conjecture 4. Let the situation be as in conjecture 3. Then ch(r, p; Lfund) 
only depends on the group cohomology H*(r;p). In particular, H*(I';p) = 0 
implies 
ch(r, p; Ltund) = 0. 

However, we.still have no general conjecture concerning an explicit description 
of the relation ch(r, p; Ltund) and H*(r; p ). 
If Ltund has real rank 1 then there is also a relation between ch(r, p; L1un0.) 
and the multiplicity of the singularity of a dynamical zeta function in s = 0 
(see [4]). Thus the vanishing property in conjecture 4 implies the regularity of 
the corresponding zeta function in s = 0. 

15. Example. Let Y = Hi,n+l be an odd-dimensional real hyperbolic space 
and X= I'\Y a compact quotient. Then 

ch(r, p) = 2 ((-1r bn+i (X; p) + .. · + (-1)2n(n + l)b2n+i(X; p )) , 
- (E(-l)P+lp bp(X; p)) + E (-l)P+lbp(X; p), 

P n+l~p~2n+l 

where 

bp(X; p) = dim(HP(X; p)) = dim(HP(r; p)) 

is the pth p-twisted Betti number and H* ( X; p) denotes the cohomology of 
differential forms on X with values in the vector bundle Y Xr Vp ~ X. -
ch(I', p) coincides with the multiplicity of the singularity of the Ruelle zeta 
function 

ZR,p(s) =II det(l - p(c)exp(-slcl)t1 

c 

of X ins= 0. 

16. We conjecture also that it is always possible to replace the abstract 
representation theoretical definition of ch(I') by a definition only involving 
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differential forms with distributional coefficients on r\ GI M. In the case y = 
Hin this is discussed in detail in (6], but the general case is not yet understood! 
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