Weierstraß–Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Secondary Euler characteristics of locally symmetric spaces. Results and Conjectures.

Andreas Juhl

submitted: 16th December 1994

Weierstraß-Institut für Angewandte Analysis und Stochastik Mohrenstraße 39 D – 10117 Berlin Germany

> Preprint No. 136 Berlin 1994

1991 Mathematics Subject Classification. 22E40, 22E46, 58F17, 58F18, 58F20.

Edited by Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) Mohrenstraße 39 D — 10117 Berlin Germany

Fax: + 49 30 2004975 e-mail (X.400): c=de;a=d400;p=iaas-berlin;s=preprint e-mail (Internet): preprint@iaas-berlin.d400.de

SECONDARY EULER CHARACTERISTICS OF LOCALLY SYMMETRIC SPACES.

RESULTS AND CONJECTURES

ANDREAS JUHL

0. The present paper deals with conjectural generalizations to the higher rank case of some index formulas previously found in [4] as an intrinsic part of the cohomological theory of the dynamical zeta function

$$Z_R(s)=\prod_c(1-\exp(-s|c|))^{-1}$$

of the geodesic flow Φ_t of compact locally symmetric spaces X of rank 1. Here the product runs over the prime directed closed geodesics c in X and |c| denotes length. Z_R will be called the Ruelle zeta function of Φ_t . The functional equation of Z_R relates $Z_R(s)$ to $Z_R(-s)$ and if the dimension of X is even then there are always two types of formulas for the multiplicities of the zeros and poles of $Z_R(s) \cdot Z_R(-s)$. In fact, the multiplicity of each singularity of the product $Z_R(s) \cdot Z_R(-s)$ can be calculated by a formula of analytical nature (analytical index) as well as by a formula only involving characteristic classes. For s = 0 the equality of both integers can be regarded as an index formula for a secondary type Euler characteristic of the space of directed geodesics in X being defined by using the hyperbolic structure of the geodesic flow Φ_t .

Here we are concerned with the problem of generalizing the index formula (theorem 1) to the space of all *directed flats* (See [7]) in a compact locally symmetric space X of arbitrary rank.

If the rank of X exceeds 1 then no relation of the index formulas to the theory of zeta functions is known.

1. Let Y = G/K be a Riemannian symmetric space of the non-compact type, $\Gamma \subset G$ a uniform lattice without torsion and $X = \Gamma \setminus Y$ the compact C^{∞} locally symmetric quotient space. Let $P \subset G$ be a minimal parabolic subgroup (in standard position) with Langlands decomposition $P = MAN^+$. Here M is a compact subgroup of K, $A = \exp(\mathfrak{a}_0)$ is a vector group with Lie algebra $\mathfrak{a}_0 \subset p_0$ (p_0 being the (-1)-eigenspace of the infinitesimal Cartan involution Θ) of dimension rk(G/K) and N^+ is a nilpotent Lie group with Lie algebra \mathfrak{n}_0^+ . Recall that the choice of P (and hence that of N^+) corresponds to the choice of an open Weyl chamber \mathfrak{a}_0^+ in \mathfrak{a}_0 . In fact, \mathfrak{a}_0^+ determines a positive system $\Delta^+(\mathfrak{g}_0, \mathfrak{a}_0)$ of roots of the adjoint action of \mathfrak{a}_0 on \mathfrak{g}_0 and we have

$$\mathfrak{n}_0^+ = \bigoplus_{\alpha \in \Delta^+(\mathfrak{g}_0,\mathfrak{a}_0)} (\mathfrak{g}_0)_{\alpha}.$$

Let $N^- = \Theta N^+$ with Lie algebra $\mathfrak{n}_0^- = \Theta \mathfrak{n}_0^+$ given by

$$\mathfrak{n}_0^- = \bigoplus_{-\alpha \in \Delta^+(\mathfrak{g}_0,\mathfrak{a}_0)} (\mathfrak{g}_0)_{\alpha}.$$

2. Let $\rho : \Gamma \to U(H)$ be a finite-dimensional unitary representation. Let

 $L^{2}(\Gamma \setminus G, \rho)$ be the Hilbert space of sections of the vector bundle $G \times_{\Gamma} H \to \Gamma \setminus G$ being square-integrable (with respect to an invariant measure on $\Gamma \setminus G$). The right regular representation $R_{\Gamma,\rho}$ of G on $L^{2}(\Gamma \setminus G, \rho)$ splits as a direct sum

(1)
$$(R_{\Gamma,\rho}, L^{2}(\Gamma \backslash G, \rho)) = \bigoplus_{\pi \in \hat{G}} N_{\Gamma,\rho}(\pi) (\pi, V_{\pi})$$

of irreducible unitary representations (π, V_{π}) of G each occuring with finite multiplicity $N_{\Gamma,\rho}(\pi)$.

3. Let $\mathfrak{g} = (\mathfrak{g}_0)_{\mathbb{C}}, \mathfrak{n}^{\pm} = (\mathfrak{n}_0^{\pm})_{\mathbb{C}}$ and denote by $H^*(\mathfrak{n}^{\pm}, V)$ the \mathfrak{n}^{\pm} -cohomology of the \mathfrak{g} -module V. If V is the Harish-Chandra module $((\mathfrak{g}, K)$ -module) of K-finite vectors of a (global) representation (π, V_{π}) of G then we write $V = V_{\pi,0}$. $V_{\pi,0}$ consists of smooth vectors. The cohomology groups $H^*(\mathfrak{n}^{\pm}, V_{\pi,0})$ are finite dimensional MA-modules ([2]).

4. Now we define the secondary Euler characteristic of (Γ, ρ) as the integer

(2)

$$ch(\Gamma,\rho) \stackrel{\text{def}}{=} \sum_{p,q} (-1)^{p+q} \left(\sum_{\pi \in \hat{G}} N_{\Gamma,\rho}(\pi) \dim_{\mathbb{C}} (H^p(\mathfrak{n}^-, V_{\pi,0}) \otimes \wedge^q(\mathfrak{n}^+)^*)^{MA} \right).$$

Here the exterior powers $\wedge^*(\mathfrak{n}^+)^*$ are considered as MA-modules (with respect to the coadjoint action).

The sum (2) is finite since for each choice of p and q there are only finitely many representations $\pi \in \hat{G}$ with a nontrivial contribution to the inner sum. The notation $ch(\Gamma, \rho)$ does not reflect the choices of \mathfrak{n}_0^- and \mathfrak{n}_0^+ since the sum on the right hand side of (2) is *independent* of such choices. In fact, the Weyl group $W = W(\mathfrak{g}_0, \mathfrak{a}_0) = M'/M$ operates simply transitive on the set of Weyl chambers in \mathfrak{a}_0 . This implies that all pairs $(\mathfrak{n}_0^-, \mathfrak{n}_0^+)$ of opposite algebras can be obtained from a fixed one by the action of M'/M via the adjoint action. Since the group MA is stable under conjugation by Weyl group elements $\in M'/M$ this shows that the definition of $ch(\Gamma, \rho)$ is independent of the choices of $\mathfrak{n}_0^$ and \mathfrak{n}_0^+ .

5. For $\rho = 1$ there is a formal interpretation of the integer $ch(\Gamma) = ch(\Gamma, 1)$ as the Euler characteristic of the space of Γ -orbits on the space Y_{DF} of all directed flats in Y.

Here a flat is a totally geodesic flat submanifold of maximal dimension (= rk(Y)). Each geodesic in Y is contained in at least one flat. A geodesic which uniquely determines the flat containing it is called regular. A regular directed geodesic determines a flat together with a distinguished class of asymptotic Weyl chambers (directed flat). As a G-space the space of all directed flats in Y is isomorphic to G/MA. If the rank of Y is 1 then directed flats are directed geodesics and the space $Y_{DF} = G/MA$ is the space of directed geodesics in Y. See [7].

The space $X_{DF} = \Gamma \setminus Y_{DF}$ of Γ -orbits on Y_{DF} is, however, far from being a manifold!

The action of A on the space $\Gamma \setminus G/M$ of all Weyl chambers in $X = \Gamma \setminus Y$ is ergodic (see [10]) and the closed orbits of this action are dense in the space of

2

all orbits (see [9]). These results are generalizations of well-known results on the geodesic flow of compact locally symmetric spaces of rank one.

Now the definition of the secondary Euler characteristic $ch(\Gamma)$ is formally analogous to the following formula for the Euler characteristic of a locally homogeneous complex manifold $M = \Gamma \setminus G/H$. Here G and Γ are as before and H is a *compact* Cartan subgroup of G. The Euler characteristic $\chi(M)$ of M can be written in the form

(3)

$$\begin{split} \chi(M) &= \sum_{p,q} (-1)^{p+q} h^{p,q} \\ &= \sum_{p,q} (-1)^{p+q} \left(\sum_{\pi \in \hat{G}} N_{\Gamma,1}(\pi) \dim_{\mathbb{C}} (H^p(\mathfrak{n}_H^-, V_{\pi,0}) \otimes \wedge^q(\mathfrak{n}_H^+)^*)^H \right), \end{split}$$

where n_{H}^{-} and $n_{H}^{+} = \overline{n_{H}^{-}}$ are the (opposite) nilpotent Lie subalgebras of \mathfrak{g} defined by

$$\mathfrak{n}_{H}^{\pm}=igoplus_{lpha\in\Delta^{\pm}(\mathfrak{g},\mathfrak{h})}\,\mathfrak{g}_{lpha}$$

Here $\Delta^+(\mathfrak{g},\mathfrak{h})$ is the set of positive roots of the adjoint action of \mathfrak{h} on \mathfrak{g} with respect to the choice of an order. Then $\Delta = \Delta^+ \cup (-\Delta^+), \ \Delta^- = -\Delta^+$ and

$$\mathfrak{g} = \mathfrak{n}_H^- \oplus \mathfrak{h} \oplus \mathfrak{n}_H^+.$$

Note that the situations in (2) and (3) both are extreme cases in the sense that the algebras n^{\pm} (in (2)) are totally real, i.e., $\overline{n^{\pm}} = n^{\pm}$, whereas the algebras n_{H}^{\pm} (in (3)) are totally complex, i.e., $\overline{n_{H}^{\pm}} = n_{H}^{\mp}$.

The analogy of (2) and (3) justifies it to refer to $ch(\Gamma)$ (and $ch(\Gamma, \rho)$) also as an Euler characteristic. More precisely, $ch(\Gamma)$ will be called the *horospherical Euler characteristic* of Γ by a reason which is explained in the following point.

6. From the point of view of the geometry of geodesics in Y_{DF} the minimal parabolic subgroup $P = MAN^+$ can be regarded as the subgroup of isometries (in G) operating on the family of all directed geodesics which are asymptotic to a given regular directed geodesic $c_0 = \exp(tX_0)K$, $X_0 \in \mathfrak{a}_0^+$ in Y = G/K. c_0 is regular since X_0 is regular in \mathfrak{a}_0 , i.e., $\alpha(X_0) \neq 0$ for all $\alpha \in \Delta(\mathfrak{g}_0, \mathfrak{a}_0)$. The group L = MA then is the subgroup of P consisting of all isometries leaving invariant the parallel set $P(c_0)$ of c_0 . Here the parallel set $P(c_0)$ of c_0 is the set of all directed geoderics c which are parallel to c_0 in the sense that the distance between c and c_0 is finite. If the rank of Y is 1 then $P(c_0) = c_0$. See ([8]). M is the subgroup of L consisting of the isometries leaving the elements of $P(c_0)$ pointwise fixed. Moreover, the group N^+ acts simply transitive on each submanifold of Y which is orthogonal to all geodesics being asymptotic to c_0 . These submanifolds are the horospheres (of maximal dimension) and N^+ is referred to as the horospherical group of the family defined by c_0 .

7. In the definition (2) the symplectic structure also plays an important role. In fact, the space G/MA carries a canonical invariant symplectic form since it can be identified with the G-adjoint orbit through the (regular) element $X_0 \in \mathfrak{a}_0$ (Kostant, Kirillov).

The G-invariant tangent bundles $T^{\pm}(G/MA) \subset T(G/MA)$ with the property

$$T_e^{\pm}(G/MA) \simeq \mathfrak{n}_0^{\pm}, \ \underline{e} = eMA$$

are involutive Lagrangian subbundles, i.e., both subbundles T^{\pm} are (real) invariant polarizations of G/MA. In other words, the space of directed flats is bipolarized.

Thus the integer $ch(\Gamma)$ can be regarded also as being canonically associated to the Γ -action on the bipolarized symplectic space Y_{DF} .

8. Now having introduced $ch(\Gamma, \rho)$ the obvious problem is to calculate it. Here it turns out to be usefull to follow the suggestion of the analogy between (2) and (3) a bit further.

The Euler characteristic $\chi(M)$ of the complex manifold $M = \Gamma \backslash G/H$ can be calculated as the integral

(4)
$$\int_{\Gamma \setminus G/H} c_n(T^{(1,0)}(M)), \ n = \dim_{\mathbb{C}}(M),$$

4

where $c_n(T^{(1,0)}(M))$ is the top degree Chern class of the holomorphic tangent bundle $T^{(1,0)}(M)$ of M. The class $c_n(T^{(1,0)}(M)) \in H^{2n}(M)$ can be represented, for instance, by the differential form

$$c = c_{\alpha_1} \wedge \cdots \wedge c_{\alpha_n}, \ \alpha_j \in \Delta^+(\mathfrak{g},\mathfrak{h}),$$

where the 2-forms $c_{\alpha_j} \in C^{\infty}(\wedge^2 T^*(M))$ are induced by *G*-invariant 2-forms \underline{c}_{α_i} on G/H such that

$$\underline{c}_{\alpha_j}(X,Y)_{eH} = -\frac{i}{2\pi} \alpha([X,Y]), \ X,Y \in \mathfrak{g}_0.$$

In other words, the G-invariant volume form \underline{c} on G/H (inducing c on $\Gamma \setminus G/H$) is given by

(5)
$$\underline{c} = \det\left(\frac{\imath}{2\pi} \underline{\Omega}\right),$$

where $\underline{\Omega} \in C^{\infty}(\wedge^2 T^*(G/H), \operatorname{End}(T^{(1,0)}(G/H))$ is the *G*-invariant $\operatorname{End}(T^{(1,0)}(G/H))$ -valued 2-form (curvative form) given in *eH* by

$$\underline{\Omega}(X,Y)_{eH} = -[[X,Y]_{\mathfrak{h}},\cdot].$$

Here the subscript \mathfrak{h} denotes the \mathfrak{h} -component of elements in \mathfrak{g} with respect to the decomposition

$$\mathfrak{g} = \mathfrak{n}_H^- \oplus \mathfrak{h} \oplus \mathfrak{n}_H^+.$$

The analogy therefore suggests to look for a formula of a similar type for $ch(\Gamma)$. But besides the formal analogy there is, at least at first sight, not much evidence for such a result. In fact, the non-ellipticity of the invariant complex on G/MA being responsible for the definition of $ch(\Gamma)$ rather suggest not to expect a result of such a type. In fact, the n⁻-cohomology of Harish-Chandra modules is well-known to be a much more subtle subject than the n_H^- -cohomology (see ([1])!

9. However, in contrast to these arguments, we have the following result.

Theorem 1. (Index formula). Let the rank of Y be 1 and assume that there exists a compact Cartan subgroup in G. Then

(6)
$$ch(\Gamma,\rho) = \dim(\rho) \int_{\Gamma \setminus G/M} \det\left(\frac{i}{2\pi}\pi^*(\underline{\Omega}^{\pm})\right) \wedge \alpha^{\pm},$$

 $\pi: G/M \to G/MA$, where $\underline{\Omega}^{\pm}$ is the G-invariant $End(T^{\pm}(G/MA))$ -valued 2-form (curvative form) on G/MA which is given in $\underline{e} = eMA$ by

$$\underline{\Omega}^{\pm}(X,Y)_{\underline{e}} = -[[X,Y]_{\mathfrak{m}_0\oplus\mathfrak{a}_0},\cdot], \ X,Y\in\mathfrak{g}_0,$$

where the subscript $\mathfrak{m}_0 \oplus \mathfrak{a}_0$ denotes the $\mathfrak{m}_0 \oplus \mathfrak{a}_0$ - component of elements in \mathfrak{g}_0 with respect to the decomposition

$$\mathfrak{g}_0 = \mathfrak{n}_0^- \oplus (\mathfrak{m}_0 \oplus \mathfrak{a}_0) \oplus \mathfrak{n}_0^+.$$

 α^{\pm} is an A-invariant 1-form which is canonically determined by $\pi^*(\Omega^{\pm})$. The integer $ch(\Gamma) = ch(\Gamma, 1)$ coincides with the multiplicity of the singularity of the Ruelle zeta function Z_R in s = 0.

For more details see ([4]), ([5]), where the case $\rho = 1$ is discussed. The same arguments extend to the more general situation in theorem 1. Note that in contrast to (4) the class represented by

$$\det\left(\frac{i}{2\pi}\pi^*(\Omega^{\pm})\right)\wedge\alpha^{\pm}$$

is of odd degree and should be regarded as a secondary characteristic class. In the case of the upper half plane $Y = H^2$ the forms under the integral in (6) represent $(2\pi)^{-2}$ times the Godbillon-Vey class of the weak-unstable (or weak-stable) foliation of S(X).

The assumption of the existence of a compact Cartan subgroup is equivalent to the condition that the dimension of Y is *even*. If there is *no* compact Cartan subgroup but Y is still of rank 1 then theorem 1 is no longer true (see also 16.).

Now we formulate

Conjecture 1. (Index formula) Let Y = G/K be a Riemannian symmetric space of the non-compact type and arbitrary rank. Assume that there exists a compact Cartan subgroup in G.

Then there is an A-invariant volume form α^{\pm} (of degree rk(Y)) on the Aorbits (being canonically determined by $\pi^*(\Omega^{\pm})$) such that

(7)
$$ch(\Gamma,\rho) = \dim(\rho) \int_{\Gamma \setminus G/M} \det\left(\frac{i}{2\pi}\pi^*(\underline{\Omega}^{\pm})\right) \wedge \alpha^{\pm}, \ \pi: G/M \to G/MA$$

where $\underline{\Omega}^{\pm}$ is the G-invariant $End(T^{\pm}(G/MA))$ -valued (curvature) 2-form on G/MA given by

$$\underline{\Omega}^{\pm}(X,Y)_{eMA} = -[[X,Y]_{\mathfrak{m}_0\oplus\mathfrak{a}_0},\cdot], X,Y\in\mathfrak{n}_0^-\oplus\mathfrak{n}_0^+,$$

Conjecture 1 is a direct generalization of theorem 1 to the arbitrary rank case.

10. In the situation of theorem 1 there is also a proportionality formula relating $ch(\Gamma, \rho)$ to the Euler characteristic of the space Y_{geo}^d of directed geodesics in the compact dual space Y^d . (see [4]). More precisely, we have

Theorem 2. (Proportionality). Let the situation be as in theorem 1. Then

(8)
$$ch(\Gamma,\rho) = \dim(\rho) \frac{\chi(X)}{\chi(Y^d)} \chi\left(Y^d_{geo}\right).$$

In the case of compact quotients $\Gamma \setminus H^n_{\mathbb{H}}$ of quaternionic hyperbolic spaces $H^n_{\mathbb{H}}$ (and $\rho = 1$) a proof of theorem 2 by explicating the definition of $ch(\Gamma)$ in terms of the multiplicities $N_{\Gamma,1}(\pi)$ is given in [11].

Now theorem 2 suggests

Conjecture 2. (Proportionality) Let the situation be as in conjecture 1. Then

(9)
$$ch(\Gamma,\rho) = \dim(\rho) \frac{\chi(X)}{\chi(Y^d)} \chi\left(Y^d_{DF}\right),$$

where Y_{DF}^{d} is the space of directed flats in the compact dual symmetric space Y^{d} .

11.Remarks.

(i) The assumption of the existence of a compact Cartan subgroup in conjecture 1 is *essential*. If this condition is violated then the resulting formulas are no longer expected.

(ii) In the rank 1 case (theorem 1) the 1-forms α^{\pm} are closely related to the real roots in $\Delta^{\pm}(\mathfrak{g}, \mathfrak{t} \oplus \mathfrak{a}), T \subset M$ a maximal torus in M with Lie algebra \mathfrak{t}_0 (see [4], [5]). In the general case it is natural to expect that the (volume) forms α^{\pm} are canonically determined by the subsystem of real roots in $\Delta^{\pm}(\mathfrak{g}, \mathfrak{t} \oplus \mathfrak{a})$. (iii) From the point of view of conjecture 2 a natural normalization condition (compatible with theorem 1 and conjecture 1) which would uniquely determine the forms α^{\pm} (up to a sign) is that the induced volume of the flat tori in Y^d is equal to 1.

(iv) Let $(\sigma, V_{\sigma}) \in M$. Then we conjecture the following even more general results.

$$ch(\Gamma,\rho;\sigma) \stackrel{\text{def}}{=} \sum_{p,q} (-1)^{p+q} (\sum_{\pi \in \hat{G}} N_{\Gamma,\rho}(\pi) \dim_{\mathbb{C}} (H^{p}(\mathfrak{n}^{-}, V_{\pi,0}) \otimes \wedge^{q}(\mathfrak{n}^{+})^{*} \otimes V_{\sigma})^{MA}).$$

$$(10) = \dim(\rho) \dim(\sigma) \int_{\Gamma \setminus G/M} \det\left(\frac{i}{2\pi}\pi^{*}(\underline{\Omega}^{\pm})\right) \wedge \alpha^{\pm}$$

$$= \dim(\rho) \dim(\sigma) \frac{\chi(X)}{\chi(Y^{d})} \chi(Y^{d}_{DF})$$

6

if σ gives rise to a homogeneous vector bundle over Y_{DF}^d .

In the rank 1 case $ch(\Gamma; \sigma) \stackrel{\text{def}}{=} ch(\Gamma, 1 : \sigma)$ coincides with the multiplicity $\operatorname{ord}_0(Z_{\sigma})$ of the singularity of the *twisted* Ruelle zeta function

(11)
$$Z_{\sigma}(s) \stackrel{\text{def}}{=} \prod_{c} \det(1 - \sigma(m_{c}) \exp(-s|c|))^{-1}$$

in s = 0. This generalizes the formula $\operatorname{ord}_0(Z_R) = ch(\Gamma, 1)$ and can be proved also by using the same methods as in [4].

12. Let $T \subset M$ be a maximal torus with Lie algebra t_0 . Then TA is a Cartan subgroup of G and we define

$$ch(\Gamma,\rho;TA) \stackrel{\text{def}}{=} \sum_{p,q} (-1)^{p+q} (\sum_{\pi \in \hat{G}} N_{\Gamma,\rho}(\pi) \dim_{\mathbb{C}} (H^p(\mathfrak{n}_{TA}^-, V_{\pi,0}) \otimes \wedge^q(\mathfrak{n}_{TA}^+)^*)^{TA}).$$

Here the complex Lie algebras $\mathfrak{n}_{TA}^{\pm} \subset \mathfrak{g}$ are defined as

$$\mathfrak{n}_{TA}^{\pm} = \bigoplus_{lpha \in \Delta^{\pm}(\mathfrak{g}, \mathfrak{t} \oplus \mathfrak{a})} \mathfrak{g}_{lpha},$$

for any choice of a positive system $\Delta^+(\mathfrak{g},\mathfrak{t}\oplus\mathfrak{a})$. In analogy to

$$\mathfrak{g}_0 = \mathfrak{n}_0^- \oplus (\mathfrak{m}_0 \oplus \mathfrak{a}_0) \oplus \mathfrak{n}_0^+.$$

we have the more refined decomposition

$$\mathfrak{g} = \mathfrak{n}_{TA}^- \oplus (\mathfrak{t} \oplus \mathfrak{a}) \oplus \mathfrak{n}_{TA}^+.$$

 $ch(\Gamma, \rho; TA)$ is independent of the choice of \mathfrak{n}_{TA}^{\pm} and we have

(13) $ch(\Gamma,\rho;TA) = \chi(M/T) ch(\Gamma,\rho).$

13. In a similar way as in (12) one can define $ch(\Gamma, \rho; L)$ with respect to any Cartan subgroup L (with Lie algebras l_0) of G.

In fact, replace in (12) TA by L and \mathfrak{n}_{TA}^{\pm} by \mathfrak{n}_{L}^{\pm} , where \mathfrak{n}_{L}^{\pm} are the nilpotent Lie algebras determined by the polarization

$\mathfrak{g}=\mathfrak{n}_L^-\oplus\mathfrak{l}\oplus\mathfrak{n}_L^+$

of the root decomposition of \mathfrak{g} with respect to \mathfrak{l} given by a choice of a positive system in $\Delta(\mathfrak{g},\mathfrak{l})$. Then the *L*-modules $H^*(\mathfrak{n}_L^-, V_{\pi,0})$ are finite-dimensional and $ch(\Gamma, \rho; L)$ is well-defined.

Conjecture 3. Let Y = G/K be a Riemannian symmetric space of the non-compact type and arbitrary rank. Then

(14)
$$ch(\Gamma,\rho;TA) = ch(\Gamma,\rho;L_{fund}).$$

where L_{fund} is a fundamental Cartan subgroup of G (being uniquely determined up to conjugation).

Conjecture 3 relates the integers $ch(\Gamma, \rho; L)$ for the both extreme types of Cartan subgroups: the maximal compact one (L_{fund}) and the maximal noncompact one (TA). If the fundamental Cartan subgroup L_{fund} is compact then the right hand side of (14) coincides with the usual Euler characteristic $\chi(\Gamma \setminus G/L_{fund})$ of the complex manifold $\Gamma \setminus G/L_{fund}$. Since on the other hand by conjecture 2 and (13)

$$ch(\Gamma, \rho; TA) = ch(\Gamma, \rho) \chi(M/T)$$

= dim(\rho) $\frac{\chi(X)}{\chi(Y^d)} \chi(Y^d_{flat}) \chi(M/T)$
= dim(\rho) $\chi (\Gamma \setminus G/L_{fund})$

we see that the conjecture 2, in fact, implies conjecture 3 if there exists a compact Cartan subgroup.

If the fundamental Cartan subgroup is not compact then the nature of the integer $ch(\Gamma, \rho; L_{fund})$ is still mysterious! In any case one should regard it as a secondary Euler characteristic of (Γ, ρ) .

Conjecture 4. Let the situation be as in conjecture 3. Then $ch(\Gamma, \rho; L_{fund})$ only depends on the group cohomology $H^*(\Gamma; \rho)$. In particular, $H^*(\Gamma; \rho) = 0$ implies $ch(\Gamma, \rho; L_{fund}) = 0.$

However, we still have no general conjecture concerning an explicit description of the relation $ch(\Gamma, \rho; L_{fund})$ and $H^*(\Gamma; \rho)$.

If L_{fund} has real rank 1 then there is also a relation between $ch(\Gamma, \rho; L_{fund})$ and the multiplicity of the singularity of a dynamical zeta function in s = 0(see [4]). Thus the vanishing property in conjecture 4 implies the regularity of the corresponding zeta function in s = 0.

15. Example. Let $Y = H_{\mathbb{R}}^{2n+1}$ be an odd-dimensional real hyperbolic space and $X = \Gamma \setminus Y$ a compact quotient. Then

$$ch(\Gamma,\rho) = 2((-1)^{n} b_{n+1}(X;\rho) + \dots + (-1)^{2n}(n+1)b_{2n+1}(X;\rho)),$$

= $(\sum_{p}(-1)^{p+1}p b_{p}(X;\rho)) + \sum_{n+1 \le p \le 2n+1}(-1)^{p+1}b_{p}(X;\rho),$

where

$$b_p(X;\rho) = \dim(H^p(X;\rho)) = \dim(H^p(\Gamma;\rho))$$

is the $p^{th} \rho$ -twisted Betti number and $H^*(X; \rho)$ denotes the cohomology of differential forms on X with values in the vector bundle $Y \times_{\Gamma} V_{\rho} \to X$. $-ch(\Gamma, \rho)$ coincides with the multiplicity of the singularity of the Ruelle zeta function

$$Z_{R,\rho}(s) = \prod_c \det(1-\rho(c)\exp(-s|c|))^{-1}$$

of X in s = 0.

16. We conjecture also that it is always possible to replace the abstract representation theoretical definition of $ch(\Gamma)$ by a definition only involving

differential forms with distributional coefficients on $\Gamma \setminus G/M$. In the case $Y = H_{\mathbb{R}}^{2n}$ this is discussed in detail in [6], but the general case is not yet understood!

References

- 1. D. Collingwood: Representations of rank one Lie groups, Pitman, 1985.
- 2. H. Hecht and W. Schmid: Characters, asymptotics and n-homology, Acta Math. 151 (1983), 49-151.
- 3. H.-C. im Hof: An Anosov action on the bundle of Weyl chambers, Ergodic Theory and Dynam. Systems 5 (1985), 587-593.
- 4. A. Juhl: Zeta-Funktionen, Index-Theorie und hyperbolische Dynamik, Habilitationsschrift, Humboldt-Universität, Berlin, 1993.
- 5. A. Juhl: Secondary invariants and the multiplicity of the singularity of the Ruelle zetafunction in the central critical point, (submitted to Bull. of AMS).
- 6. A. Juhl: On the divisor of dynamical zeta functions (in preparation).
- 7. E. Leuzinger: A class of Anosov actions and coadjoint orbits, Preprint IHES (1991).
- 8. E. Leuzinger: New geometric examples of Anosov actions, submitted to Annals of Global Anal. and Diff. Geom. (1993).
- 9. G.D. Mostow: Strong rigidity of locally symmetric spaces, Princeton 1973.
- 10. C. Pugh, M. Shub: Ergodicity of Anosov actions, Invent. Math. 15 (1972), 1-23.
- 11. S. Seifarth: Kohomologische Untersuchungen dynamischer Zeta-Funktionen, Dissertation, Humboldt-Universität, Berlin, 1993.

Recent publications of the Weierstraß–Institut für Angewandte Analysis und Stochastik

Preprints 1994

- 107. Michael H. Neumann: Bootstrap confidence bands in nonparametric regression.
- 108. Henri Schurz: Asymptotical mean square stability of an equilibrium point of some linear numerical solutions with multiplicative noise.
- 109. Gottfried Bruckner: On the stabilization of trigonometric collocation methods for a class of ill-posed first kind equations.
- 110. Wolfdietrich Müller: Asymptotische Input-Output-Linearisierung und Störgrößenkompensation in nichtlinearen Reaktionssystemen.
- 111. Vladimir Maz'ya, Gunther Schmidt: On approximate approximations using Gaussian kernels.
- 112. Henri Schurz: A note on pathwise approximation of stationary Ornstein-Uhlenbeck processes with diagonalizable drift.
- 113. Peter Mathé: On the existence of unbiased Monte Carlo estimators.
- 114. Kathrin Bühring: A quadrature method for the hypersingular integral equation on an interval.
- 115. Gerhard Häckl, Klaus R. Schneider: Controllability near Takens-Bogdanov points.
- 116. Tatjana A. Averina, Sergey S. Artemiev, Henri Schurz: Simulation of stochastic auto-oscillating systems through variable stepsize algorithms with small noise.
- 117. Joachim Förste: Zum Einfluß der Wärmeleitung und der Ladungsträgerdiffusion auf das Verhalten eines Halbleiterlasers.
- 118. Herbert Gajewski, Konrad Gröger: Reaction-diffusion processes of electrically charged species.
- 119. Johannes Elschner, Siegfried Prössdorf, Ian H. Sloan: The qualocation method for Symm's integral equation on a polygon.
- 120. Sergej Rjasanow, Wolfgang Wagner: A stochastic weighted particle method for the Boltzmann equation.
- 121. Ion G. Grama: On moderate deviations for martingales.

- 122. Klaus Fleischmann, Andreas Greven: Time-space analysis of the clusterformation in interacting diffusions.
- 123. Grigori N. Milstein, Michael V. Tret'yakov: Weak approximation for stochastic differential equations with small noises.
- 124. Günter Albinus: Nonlinear Galerkin methods for evolution equations with Lipschitz continuous strongly monotone operators.
- 125. Andreas Rathsfeld: Error estimates and extrapolation for the numerical solution of Mellin convolution equations.
- **126.** Mikhail S. Ermakov: On lower bounds of the moderate and Cramer type large deviation probabilities in statistical inference.
- 127. Pierluigi Colli, Jürgen Sprekels: Stefan problems and the Penrose-Fife phase field model.
- 128. Mikhail S. Ermakov: On asymptotic minimaxity of Kolmogorov and omegasquare tests.
- 129. Gunther Schmidt, Boris N. Khoromskij: Boundary integral equations for the biharmonic Dirichlet problem on nonsmooth domains.
- 130. Hans Babovsky: An inverse model problem in kinetic theory.
- 131. Dietmar Hömberg: Irreversible phase transitions in steel.
- 132. Hans Günter Bothe: How 1-dimensional hyperbolic attractors determine their basins.
- 133. Ingo Bremer: Waveform iteration and one-sided Lipschitz conditions.
- 134. Herbert Gajewski, Klaus Zacharias: A mathematical model of emulsion polymerization.
- 135. J. Theodore Cox, Klaus Fleischmann, Andreas Greven: Comparison of interacting diffusions and an application to their ergodic theory.