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Abstract

Self-compression of intense ultrashort laser pulses inside a self-guided fil-
ament is discussed. The filament self-guiding mechanism requires a balance
between diffraction, plasma self-defocusing and Kerr-type self-focusing, which
gives rise to asymptotic intensity profiles on axis of the filament. The asymp-
totic solutions appear as the dominant pulse shaping mechanism in the leading
part of the pulse, causing a pinch of the photon density close to zero delay,
which substantiates as pulse compression. The simple analytical model is
backed up by numerical simulations, confirming the prevalence of spatial cou-
pling mechanisms and explaining the emerging inhomogeneous spatial struc-
ture. Numerical simulations confirm that only spatial effects alone may already
give rise to filament formation. Consequently, self-compression is explained by
a dynamic balance between two optical nonlinearities, giving rise to soliton-like
pulse formation inside the filament.

1 Introduction

Opening a new avenue towards compression of multi-mJ few cycle pulses, nonlinear
optical processes in self-guided filamentary geometries have recently seen a strongly
revived interest. Hauri et al. pioneered this application, loosely focusing 840 uJ
pulses from a Ti:sapphire system into argon gas, which resulted in compression of
43 fs pulses down to about 6fs [1]. Compared to hollow fiber compressors [2], self-
guiding filament compression does neither exhibit coupling losses nor is it limited
by potential damage to the guiding structure. Filament self-guiding arises from
a balance of the self-focusing Kerr effect and a complementary defocusing effect
from plasma generation via multiphoton ionization, locking the beam profile at a
few hundred micron diameter for propagation lengths exceeding the Rayleigh range
of a Gaussian beam with equal diameter [3, 4]. While the early work of Hauri
still required chirped mirrors for dispersion compensation, pure self-compression of
multi-mJ pulses to below 10 fs pulse duration has been subsequently experimentally
demonstrated, obliterating the requirement for any external dispersion compensa-
tion scheme [5]. Under other experimental conditions, self-compression has also been
found in strongly ionized gases [6] or at much longer pulse durations [7]. The poten-
tial of filaments to compress pulses directly into the few-cycle range had been pre-
dicted in numerical simulations [8, 9, 10] and more specifically analyzed in Ref. [11].
These numerical simulations clearly identify self-steepening and plasma defocusing
as primary effects shaping the trailing part of the pulse in the filamentary channel.
However, no effect has yet been isolated to explain shaping in the leading part of
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the pulse. This part often exhibits a pedestal structure and typically rises much
slower than the falling edge drops. These characteristic asymmetric pulse shapes
have clearly been observed both, in experiment and numerical simulations. Their
exact origin, however, is still unclear.

To clear up the origins of filamentary self-compression, in Sec. 1 we present a simple
analytical model leading to predictions on the temporal shape of the self-stabilizing
intensity profiles. In Sec. 2, we present numerical evidence that filamentation can
already be reached in a simplified model, including only Kerr and plasma nonlinear-
ities, identifying spatial effects as key players for the formation of stable filaments.
Finally, in Sec. 3 we compare these results to numerical simulations of the full model
equations.

2 Analytical predictions for asymptotic pulse shapes

In the following, we identify the pedestal-like asymmetric self-compressed pulses as
arising from an asymptotic solution for the pulse shape, stemming from a dynamic
balance between plasma-induced defocusing and Kerr-type self-focusing. This bal-
ance is typically considered the prevalent mechanism for the appearance of spatially
stable beam profiles [3, 4], and it has to be met in every temporal point of a short
pulse to ensure self-confined propagation of the pulse beyond the Rayleigh range. On
the central axis of the filament, a dynamic balance between Kerr-induced refractive
index changes and those arising from multiphoton ionization leads to self-guiding
when the following condition [3, 12| between intensity profile I(¢) and beam radius
wo(t) is met
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is the critical plasma density calculated from Drude theory, py the number den-
sity of atoms in the nonlinear medium. The factor pg/2p. converts from ionization
probability of an individual atom to the resulting change in refractive index, where
po is the number density of atoms in the nonlinear medium. ny is the nonlinear
index of refraction, ¢, and m, are electron charge and mass, respectively, ¢ is the
dielectric constant, ¢ the speed of light, \y the wavelength. Finally, we define the
critical power for self-focusing as P., = 0.146\%/ny [13]. Despite its simplicity, the
self-guiding model Eq. (1) has been confirmed to describe intensities and electron
densities inside the filament channel remarkably well, even when setting wg = const.,
thereby neglecting filament radius variations [12]. In this case, using a simple mul-
tiphoton expression for the ionization rate
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Figure 1: Asymptotic pulse shapes in the filament: Solution of Eq. (1) with (solid
line) and without (dashed line) diffraction term for argon.

gives rise to root-like solutions of Eq. (1),
I(t) oc (=)0, (4)

as indicated by the dashed line in Fig. 1. For computation of the data we used
N* =8.51, oy« = 3.6 x 1071 cm?" W~""s7! as a local fit to ADK theory [14, 15].
These solutions already exhibit the characteristic asymmetry of the pulses observed
in the experiments [5, 11] with a slowly rising pedestal-like leading edge and a sharp
falling edge that may additionally be shaped by self-steepening effects. As Eq. (1)
imposes a balance between an instantaneous and a cumulative effect on the phase,
the solution must be monotonously growing with respect to t. Other than solitonic
solutions of the nonlinear Schréodinger equation, the solutions of Eq. (1) are not
localized and exhibit a pole at ¢ = 0. Removing the simplifying assumption of a
constant beam diameter, one can solve Eq. (1) for any given input power profile P(t),
utilizing wo(t) = [P(t)/71(t)]*/?. Using ADK theory for computation of W|I] and a
Gaussian pulse shape with ¢ty = 45fs pulse duration (FWHM) and 3 P., peak power,
we calculate the solution depicted as a solid line in Fig. 1. This solution shows the
same symmetry and the same root-like functional dependence as under the constant
diameter assumption, however, at a strongly reduced apparent N* ~ 2—4 in Eq. (4)
compared to MPI theory. This reduction of the root index shapes out as a strongly
reduced pedestal, which brings these solutions closer to the shapes experimentally
observed and seen in full numerical simulations [11].

The solutions depicted in Fig. 1 do not only constitute solutions to Eq. (1), yet more
importantly, small deviations from the ideal solution will induce negative feedback,
i.e., the nonlinear mechanisms will automatically correct perturbations from the



ideal pulse shape. If, for example, the intensity exceeds the solution I(t) of Eq. (1)
by +A[ for a duration 7, this deviation creates excess electrons. As plasma genera-
tion grows much faster with intensity than the Kerr effect, defocusing forces prevail
over a slightly enhanced self-focusing effect. Consequently, the intensity reduces ow-
ing to an increasing wy, reestablishing the balance of focusing and defocusing effects.
Similarly, plasma generation will quickly stall for a negative deviation —AI, again
reestablishing the balance and increasing the intensity via shrinking wgy. Perturb-
ing Eq. (1), the restoration of the balancing solution demands that plasma effects
overrule Kerr contributions, i.e., that

Po a—WAIT ~ polN”
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ny AI < on- IV TAIT (5)
be fulfilled for a given duration 7 of the perturbation. As a criterion for the strength
of the self-compression effects, we determine the smallest possible 7 for the above
inequality to hold and find remarkably little variation with wavelength and gas
[16], which clearly underlines the universality of the observed self-compression phe-
nomenon 17, 18]|. However, the stability analysis also clearly points out that filament
self-compression only becomes active when initial power levels are sufficiently high,
which may explain why a more traditional pulse compression route was pursued in
early experiments. Stability of Eq. (1) against perturbations makes its solutions
asymptotic ones. Upon extended propagation, the on-axis intensity profile therefore
converges against this asymptotic solution, similar to the formation of fiber solitons
if only the energy of the fundamental temporal soliton is exceeded. In contrast to the
latter, however, the shaping mechanism inside the filament is of spatial nature, with
excess energy being stripped off into the reservoir surrounding the core of the fila-
ment whereas fiber solitons transfer their excess energy into a temporal continuum.

Despite the proven stability of the soliton-like solutions of Eq. (1), it is yet unclear
whether typical propagation lengths in the filament suffice for substantial reshaping
of the intensity profile towards its asymptotic solution.

3 Numerical simulations of a reduced model leading
to filamentary propagation

In order to substantiate our analytical results with numerical data, we use a radi-
ally symmetric evolution model for envelope of the light electric field E(r, 2, t) [11].
For an isolation of spatial shaping mechanisms, we suspended temporal dispersion,
few-cycle corrections and dissipative effects in the model and only included Kerr
nonlinearity, plasma nonlinearity and linear diffraction. This effectively eliminates
all coupling mechanisms leading to exchange of energy between adjacent temporal
sections of the pulse. The field envelope £ and the density of plasma p generated
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Figure 2: a) Evolution of the peak intensity along the propagation direction z (solid
line). The dashed line corresponds to the evolution of I(t = 0,r = 0) b) Evolution
of the on-axis temporal intensity profile. A soliton-like structure emerges at about
z=1.6 m.

by multiphoton or tunneling ionization evolve as
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where I = £*€ is the intensity of the laser beam. To reestablish experimental
conditions in [5], we choose ny = p x 107¥cm?/W for modeling argon, a density
po = p x 2.7x 10" cm™3, and a pressure p = 30kPa. The ionization rate W/[E]
in argon for the relevant intensity range is calculated according to ADK theory for
tunneling ionization [14]. The incident field is modeled as a Gaussian in space and
time (wg = 5.5mm, t, = 45fs), being subsequently focused into the medium an
f = 1.5m lens. The peak input power was set to P = 5PF,,.

The result of these simulations clearly illustrates that spatial effects alone already
suffice for the formation of a filament, as the evolution of the maximum intensity
along z depicted in Fig. 2a) shows. Passing through the focus, the time slice with
maximum intensity is shifted back and forth in time, as is illustrated by the dashed
line in Fig. 2a) and even more clearly by the evolution of the on-axis temporal
intensity profile shown in Fig. 2b). This process continues until at z = 1.6m a
soliton-like structure emerges. A more detailed illustration of the pulse-shaping
processes in the vicinity of the focus is given by the sequence of pulses in the (¢,7)-
plane depicted in Fig. 3(a-d). Approaching the nonlinear focus, the pulse strips
off energy into a spatial reservoir and a system of spatial rings develops at about
z=1.45m. At z = 1.5m, the trailing part of the pulse refocuses, while the leading
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part defocuses. The stable filamentary pulse thus formed during passage through
the focus exhibits a small leading sub-pulse at negative delays, while the main
portion of the pulse is shifted towards positive delays, with a very steep leading
edge. Closer inspection of this data also shows pulse self-compression during the
stage of filamentary propagation. The evolution of on-axis temporal pulse profiles

100 0 100 -100 0 100
t [fs] t[fs]

Figure 3: Sequence of pulses in the (¢,r) representation. A strip-off of energy into
a system of spatial rings can be observed as the pulses passes the focus. A stable
soliton-like structure with characteristic temporal asymmetry emerges at about z =
1.6 m.

is shown in Fig. 4(a), clearly revealing compression of the initial pulse shape (solid
line, z = 1.7 m) toward gradually shorter duration (dashed line, z = 1.8 m and dash-
dotted line, 2 = 1.9 m). The intensity distribution of the soliton-like pulses in the
(t,r) plane in Fig. 4b) and Fig. 3d) furthermore reveals a pinched structure in the
region of maximum intensity and a characteristic temporal asymmetry. Interestingly,
this characteristic structure can be observed in the numerics for a wide range of
initial conditions, provided only that a stable filament is formed. We conclude
that spatial deformation of the beam profile is, in fact, capable of driving the on-
axis intensity profile toward the asymptotic solution within a few centimeters of
propagation through the filament channel.

4 Comparison with the full numerical model

To this point, our analysis has concentrated on spatial effects and completely ne-
glected effects like dispersion and self-steepening that may cause an energy flow



between adjacent temporal slices of the pulse. This reduction appears reasonable
in the slowly rising, leading part of the pulse, the shaping of which is our strongest
concern. To convince ourselves that spatial effects dominate in this part of the pulse
and that soliton-like structures also appear in complete simulations of the scenario,
we pursued full simulations of the filament propagation, including few-cycle correc-
tions, space-time focusing, and dissipative effects, cf. Ref. [11]. In the full model,
the envelope £ and the plasma density p evolve according to

0.6 = TN E +iDE + i%n2T|5|25
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Here, the operator D models nonlinear dispersion in argon, and 7" = 1 + wioat

introduces few-cycle corrections. Further on, ¢ = p x 107%m? is the inverse

Bremsstrahlung cross section and U; = 16eV the ionization potential of argon.
As shown with the pulse sequence in Fig. 4c) and the evolution of the maximum

t [fs] t [fs]
Figure 4: (a) Sequence of on-axis temporal intensity profiles in the filamentary
channel, reduced model (b) (¢, r) representation of a pulse in the filamentary channel,
reduced model (c) Sequence of pulses in the full numerical model governed by Eq.
(8). (d) Soliton-like structure in the full numerical model.

intensity and the on-axis temporal profile in Fig. 5a), minor adjustment of param-
eters suffices to see pulse self-compression within the full model equations. Here
self-steepening provides a much more effective compression mechanism in the trail-
ing part, however, with nearly unchanged behavior in the leading part of the pulse.



Otherwise, these pulses exhibit the same characteristic asymmetry and similar in-
tensity levels as in the analytic solutions. Quite clearly, energy exchange between
neighboring temporal sections of the pulse is not negligible, in particular in the steep
trailing edge where it clearly dominates. Otherwise, however, temporal effects have
only a modifying effect. Despite the extreme complexity of the filament scenario, our
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Figure 5: (a) Evolution of the maximum on-axis intensity along z for the full nu-
merical model Eq. (8) (solid-line) and evolution of I(t = 0,7) along z (dashed
line).

analytical model isolates a rather intuitive picture for the major mechanisms lead-
ing to the recently observed self-compression of few-cycle pulses. While the trailing
part of the pulse is dominantly shaped by self-steepening, the other half evolves in a
soliton-like fashion towards an asymptotic pulse shape. In this process radial energy
flow leads to a concentration or deconcentration of energy on the axis of propagation
and gives rise to a characteristic spatio-temporal shapes of the pulse. As can clearly
be seen in Fig. 4d), the pinching of the pulses inside the filament therefore causes the
strongest intensity increase close to the discontinuity-like trailing edge, being shaped
by self-steepening effects. Apart from being coupled by the integral in Eq. (1), there
is only negligible energy exchange between adjacent temporal slices in the leading
edge of the pulse, which sets filament compression apart from traditional laser pulse
compression [19]. In fact, we find that the self-compression scenario is related more
closely to soliton compression 20|, yet with the compression mechanism arising from
the dynamic balance of two nonlinear effects rather than that of dispersion and self-
phase modulation. This dynamic balance gives rise to the discussed new class of
soliton-like pulse shaping effects, even if the awkward mathematical structure of the
root-like solution [Eq. (4)| cannot formally be considered a localized wave.

From the viewpoint of applications, however, the pinch-like structure of Fig. 4d)
restricts self-compression to the spatial center of the filament [11]. For certain
applications, it therefore appears advisable not to use self-compression but to stick to
the traditional spectral-broadening dispersion-compensation scheme [1], as a barely
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measurable radial dependence of pulse duration will result [21]. Given the universal
nature of the self-compression phenomenon, however, a spatial structure appears
tolerable in the ultraviolet range, as dispersion compensation becomes a challenging
task at in the uv. Additionally, soliton-like compression effects may well explain
some of the already demonstrated remarkably simple generation of sub-10 fs pulses
at 300nm inside a filament [17], the potential for even shorter pulses [22]|, and
substantial self-compression observed in the infrared [18].

5 Conclusion

In conclusion, we explained pulse self-compression as a novel soliton-like pulse shap-
ing effect in plasmas, with the noted difference of stemming from the balance of
two competing nonlinear optical effects. While traditional pulse compression mech-
anisms utilize longitudinal energy concentration, the effects underlying filament self-
compression act radially and cause self-pinching of the pulse’s beam profile. Nev-
ertheless, pulse self-compression enables the most efficient energy concentration of
femtosecond laser pulses at kHz repetition demonstrated to date. Ultimately, we
believe that revealing the structures behind this remarkably powerful mechanism
opens up an avenue to novel applications of nonlinear plasma optics for few-cycle
pulse generation in otherwise inaccessible wavelength regions.
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