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Abstract

Based on two independent samplgs, ..., X,,, and X,,, 11, ..., X;, drawn from
multivariate distributions with unknown Lebesgue deesiti andq respectively, we
propose an exact multiple test in order to identify simudt@usly regions of signifi-
cant deviations betweenandg. The construction is built from randomized nearest-
neighbor statistics. It does not require any preliminafgrimation about the multi-
variate densities such as compact support, strict pdgitbri smoothness and shape
properties. The adjustment for multiple testing is shasproal for typical arrange-
ments of the observation values which appear with proltglilbse to one, and it
relies on a new coupling Bernstein type exponential inatylakflecting the non-
subgaussian tail behavior of the combinatorial process.pBwer investigation of
the proposed method a reparametrized minimax set-up @dimted, reducing the
composite hypothesisp“= ¢” to a simple one with the multivariate mixed den-
sity (m/n)p + (1 — m/n)q as infinite dimensional nuisance parameter. Within this
framework, the test is shown to be spatially and sharply asgtically adaptive with
respect to uniform loss on isotropic Holder classes.

1 Introduction

Given two independent multivariate iid samples
X1, .., X, and Xm+17 e Xp

with corresponding Lebesgue densitieandq respectively, we are interested in identi-
fying simultaneously subregions of the densities suppdwnep deviates significantly
from ¢ at prespecified but arbitrarily chosen levekE (0, 1). For this aim a multiple test
of the composite hypothesi§, : p = ¢ versusH, : p # q is proposed, built from
a suitable combination of randomized nearest-neighbatissts. The procedure does
not require any preliminary information about the multia#e densities such as compact
support, strict positivity or smoothness and shape pragserand it is valid for arbitrary
finite sample sizes: andn — m. The hierarchical structure of p-values for subsets of
deviation betweep andq provides insight into the local power of nearest-neightbas-c
sifiers, based on the training et ..., X,,}. Thus our method is of interest in particular
if the classification error depends strongly on the valueheffeature vector, related to
recent literature on classification procedures by Belonyeshd Spokoiny (2007).

There is an extensive amount on literature concerning &vogde problems. Most of it
is devoted to the one-dimensional case as there existsrtimesbut powerful “quantile
transformation”, allowing for distribution-freeness @ndhe null hypothesis of several
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test statistics. Starting from the classical univariatemshift problem (see e.g. Hajek
andSidak 1967), more flexible alternatives as stochasti¢attyer or omnibus alternatives
have been investigated for instance by Behnen, Neuhaus@ayrdart (1983), Neuhaus
(1982, 1987), Fan (1996), Janic-Wrbblewska and Ledwir@®@2 and Ducharme and
Ledwina (2003). Our approach is different in that it aimstgally adaptive and simul-
taneous identification of local rather than global deviagioln the above cited literature
asymptotic power is discussed against single directiotedratives tending to zero at a
prespecified rate, typically formulated by means of the i3 andg corresponding
to the transformed observatiodé = H(X;), whereH denotes the mixed distribution
function with densityh = (m/n)p + (1 — m/n)q. Note that the mapping/ coincides
with the inverse quantile transformation under the null.

For power investigation of our procedure a specific two-dampnimax set-up is intro-
duced. Itis based on a reparametrizatiofyof;) to a couplg ¢, h), reducing the compos-
ite hypothesisp = ¢” to the simple one $ = 0” with the multivariate mixed density

as infinite dimensional nuisance parameter. The reparaatdn conceptionally differs
from the above described transformation for the univas#teation as it cannot rely on
the inverse mixed distribution function. Neverthelese#&ds under moderate additional
assumptions in that case to the same notion of efficiencyrderdo explore the power of
our method, the alternative is assumed to be of the form

{p.0): (m/mp+ (@ =m/m)g=h, o€ F. |oll =3} o

for fixed but unknowm, some suitably chosen (semi-)noini, a constand > 0 and a
given smoothness clags. For anya € (0, 1) the quality of a statistical level-testy is
then quantified by its minimal power

inf E(pﬂ)i/),

where the infimum is running over all couplés ¢) which are contained in the set (1).
It is a general problem that an optimal solutipnrmay depend o andh. Since the
smoothness and shape of a potential differeneeq are rarely known in practice, it is
of interest to come up with a procedure which does not departtiase properties but is
(almost) as good as if they were known, leading to the notfaninimax adaptive testing
as introduced in Spokoiny (1996). Note that here we have hemweas an additional
infinte dimensional nuisance parameter.

The problem of data-driven testing a simple hypothesisrih & investigated for instance
by Eubank and Hart (1992), Ledwina (1994), Ledwina and Kdiéxg (1995), Fan (1996)
and Dumbgen and Spokoiny (2001) among others. The ideanmam is to combine a
family of test statistics corresponding to different value the smoothing parameters,
respectively. The closest in spirit to ours is the multisdaist developed in 'Dmbgen
and Spokoiny (2001) within the continuous time Gaussiarntevhoise model and fur-
ther explored by Dumbgen (2002), Dumbgen and Walther&2@@d Rohde (2008), all
concerned with univariate problems.

The paper is organized as follows. In the subsequent seaiamultiple randomization
test is introduced, built from a combination of suitablynstardized nearest-neighbor
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statistics. Its calibration relies on a new coupling expdia bound and an appropriate
extension of the multiscale empirical process theory. Astytic power investigations
and adaptivity properties are studied in Section 3, whexed¢parametrized minimax set-
up is introduced. It is shown that our procedure is sharpyyrgdotically adaptive with
respect taup-norm|| - || on isotropic Holder classes, i.e. minimax efficient over a broad
range of Holder smoothness classes simultaneously. Tlecation to local classifica-
tion is discussed in Section 4. The one-dimensional sdnas considered separately
in Section 5 where an alternative approach based on locd¢gaoder statistics is pro-
posed. In that case the statistic does not depend on thevalisas explicitly but only
on their order which in contrast to nearest-neighbor refetis invariant under the quan-
tile transformation. Section 6 is concerned with a decagpinequality and the coupling
exponential bounds which are essential for our constracBwth results are of indepen-
dent theoretical interest. All proofs and auxiliary reswdbout empirical processes are
deferred to Section 7 and Section 8.

2 Combining randomized nearest-neighbor statistics

The procedure below is mainly designed for dimension> 2. The univariate case
contains a few special features and is considered sepaiat8ection 5. Let X:=

(X1, ..., X,)" and denote by, the pooled set of observations. For any< k£ < n,

the k’th nearest-neighbor ok € &, with respect to thé&uclidean distancés denoted

by X*; additionally defineX® := X. Note that the nearest-neighbors are unique a.s. The
weighted labels are defined as follows

A(X) = p if X is contained in the first sample
- ——  otherwise

In order to judge about some possible deviatiop &Gbm q on agiven sef3 € B¢, a nat-
ural statistic to look at is a standardized versio®pfB) — Q,,(B) or more sophisticated,

[ o) (dB.0) - dQ. (o))

for some kernely; supported byB, whereP,, andQ, denote the empirical measures
corresponding to the first and second sample, respectiidgie that the statistic is not
distribution-free, and in order to build up a multiple testiprocedure several statistics
corresponding to different sef$ have to be combined in a certain way.



2.1 Local nearest-neighbor statistics

Lete : [0,1] — R denote any kernel of bounded total variation withx,c(o 1) [¢(x)| =
1 (0) = 1. We introduce the local test statistics

_V/m/n)(1 —m/n) 1% — X2 Z
Tk = \/—Z ( )A(X.)

Yikn ||X XkHz
_ Vm/n)(A—m/n) (IIX wlh) B () — dO
= T (S ) (#8) — a)
where
L[ I = X 1 = X1l
.2': 7‘7 .
R n—li:o[¢<||xj—Xf||z) D(HX X’“Hz)]

Every T}, is some in a certain sense standardized weighted averades afeiarest-
neighbor’s labels and its absolute value should tend torge lahenevep is clearly larger
or smaller thamy within the random Euclidean ball with cent&r; and radiug| X; — X||,.

2.2 Adjustment for multiple testing

The idea is to build up a multiple test, combining all possilsical statisticsjx,,. Pre-
cisely, we aim at a supremum type test statistic

T, := sup sup {\Tﬂm| Jlm}
1<k<n 1<j<n
where the constants},,, are appropriately chosen correction terms (independetfteof
label vectorA) for adjustment of multiple testing within every "scalé’of k-nearest-
neighbor statistics. Although the distribution’8f under the null hypothesis depends on
the unknown underlying distribution= ¢, the conditional distributior£y(7,,|X,,) of the
above statistic is invariant under permutation of the the@ponents of the label vector
A. Here and subsequently, the indeX indicates the null hypothesis, i.e. any couple
(p,q) with p = q. Precisely, let the random variablebe uniformly distributed on the
symmetric grougs,, of ordern, independent of XThenZo (T, | X,) = L(T, 01| X,,),
where(T,, o IT) (A) := T, (An,, .., A, ). Elementary calculation entails that

E(TmoTl|X,) = 0 and Var(Tp,oll|,) = L.

Thus the null hypothesis is satisfied if, and only if, the hyyasis of permutation invari-
ance (or complete randomness) conditional¢ris satisfied.

An adequate calibration of the randomized nearest-neigstiatistics, i.e. the choice of
smallest possible constants,,, requires both, an exact understanding of their tail be-
havior and their dependency structure. Note that the rammmhmearest-neighbor statis-
tics have a geometrically involved dependency structureengn case of the rectangu-
lar kernel it depends explicitly on the "random desigA;, which incomplicates the
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sharp-optimal calibration for multiple testing comparedunivariate problems, where
the dependency of the single test statistics remains tjpicwariant under monotone
transformation of the design points. Also, the optimal ection originally designed for
Gaussian tails in Dumbgen and Spokoiny (2001) does noy carer as only the subse-
guent Bernstein type exponential tail bound is available.

A coupling exponential inequality Based on an explicit coupling, the following propo-
sition remarkably tightens the exponential bounds delin&erfling (1974) in the present
framework. If not stated otherwise, the random varidbis uniformly distributed ors,,,
independent of X

Proposition 1. LetTj;, be as introduced above and define

-1
d(m,n) = (Emln(%,z:;?;)) with S ~ Bin(n, m/n).
Then
2
n°/2
P(‘lemoﬂ‘ > 0(m,nn ‘ X"> = 2o <_ 1 +77n—1/2%_/<;1an(m,n)> 7
where

_ Wllsup max(m, n —m)

Ru,(’ﬂl, n) =

3 m(n —m)

REMARK The expression(m,n) is the payment for decoupling which appears by re-
placing the tail probability of an hypergeometric ensenihehat of the Binomial anal-
ogon. For details we refer to Section 6. In the typical case liminf,(m/n) <
limsup, (m/n) < 1 we obtains(m,n) = 1 + O(n~"/?). Compared to results obtained
for weighted averages of standardized, independent Biéragilne above Bernstein type
appears to be nearly optimal, i.e. subgaussian tail behmsvaxtually not present.

Via inversion of the above exponential inequality, additeorrection termg’;,, for ad-
justment of multiple testing are constructed. The next Teomotivates our approach.
The construction is designed for typical arrangements efdbservation values which
appear with probability close to one. To avoid technicalemditure, we restrict our at-
tention to compactly supported densitiefs, denotes the dual bounded Lipschitz metric
which generates the topology of weak convergeneep,™ refers to convergence in prob-
ability along the sequence of distributiof, ).

Theorem 1. Define the test statistic

T, == sup {\Tjkn| — Cjkn}

1<j,k<n

with
Citn = 3R 0(m, )ik + 6(m,1)1/2 T,
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whereR, = n~"2Ry,(m,n) and Ty, := log (1/7;t°). Assume that the sequence of
mixed densities,, := (m/n)p, + (1 — m/n)q, on [0,1]¢ is equicontinuous and uni-
formly bounded away from zero, while< liminf,, m/n < limsup, m/n < 1. Then
the sequencé& (T, o I1| ;) of conditional distributions is tight ifP™ ® QS("_’”))-
probability. Additionally,

4 (LT, 0T 2. £(Ts,)) —pgnggginm O

where
Gren(z) AW ()
T, = sup ‘f[o’l]d ‘ — \/2log(1/%t7n2)
tefo,1]4, Trtn
0<r< max ||lz—t|2
ze[0,1]4

1/2 and

Grin(T) 1= {1?(@) - /[Ol]dib(@)hn(z)dz} B ().

The extra-ternd Rﬂj‘kﬁlé (m,n)I'ji, in the constan€;,,, results from the exponential in-
equality in Proposition 1 and can be viewed as an additicgra|by for non-subgaussianity.
The theorem entails in particular that the sequef(¢g, o I1 | X, ) is weakly approximated

in probability by a tight sequence ofon-degeneratelistributions£(7y, ) which indi-
cates that our correctiords;;,, are appropriately defined and cannot be chosen essentially
smaller. Note that the approximatiai(7y, ) depends on the unknown mixed distribu-
tion even under the null hypothesis. For non-compactly etegd densities, the tightness
may be shown using the coordinatewise quantile transfeoméihich however does not
preserve the geometry) before applying the techniquesegbttbof for the compact case.

with W a standard Brownian sheet 0, 1]¢, v, := (f[o,ud Grin(z)dz)

2.3 The multiple rerandomization test

Let ko (X) := argming {P(Tn oIl < (] Xn) >1-— a} denote the generalizéd — «)-
quantile of£ (7T}, o IT | X,,). Then we propose the conditional test

{0 T, < Ra(X)
$a(X) = {1 if T, > Ka(X).

Our method can be viewed as a multiple testing procedurea §iven set of observations
{X3, ..., X,,}, the corresponding test statistic exceeds(the «)-quantile if, and only if,
the random set

D, = {BXj(]\Xf—Xj||2)‘ 1< jik <n; Tign(X) > Cirn(X) + ’ia@)}

is nonempty, whereB;(r) denotes the Euclidean ball i&? with centert and radius-.
Since the test is valid conditional on the set of observatiave may conclude that
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deviates from; at significance levek on everyEuclidean ballB,(r) € D,. In order to
reduce the computational expenditure and to increasets#tysbn smaller scales, one
may restrict one’s attention to paifg, k) for £ < m for some integem € {1,...,n}.
Note the validity of the test does not require any assumpaimut the densities - even not
Lebesgue continuity.

3 Minimax-efficiency and spatial adaptivity

In this section we show that the above introduced multipdtirig procedure possesses
optimality properties in a certain minimax sense. Let ug firtsoduce some notation.
For any set/ C [0,1]? and functionf from [0, 1] — R, || f||; := sup,e, | f(z)|. For any
pair of densitiesp, ) on [0, 1]%, let h(m, n, p, q) denote the corresponding mixed density
(m/n)p + (1 —m/n)q. Fix a continuous densitly > 0 and defineF."™"™ (3, L) to be the
set of pairs of densities such that

p—q
h(m7 n? p7 Q)
For any convex’ C R? let H,(3, L; I) denote the isotropic Holder smoothness class,
which for 3 < 1 equals

HalB, Li1) = {o: 1 =R: |¢(a) = 6(y)| < Ll —yll5}.

Let | 3] denote the largest integer strictly smaller titarFor 5 > 1, Hy(5, L; I) consists
of all functionsf : I — R that are|| times continuously differentiable such that the
following property is satisfied: iiPy(f) denotes the Taylor polynomial gf at the point

y € I up to the[5|’'th order,

o(m,n,p,q) == € Hd(ﬁ, L; [0, 1]d) and h(m,n,p,q) = h.

fz) =P (z)| < Ljjz—y|5 forallz,ye 1.

In particular the definition entails that € H,(3, L; R?) implies f o U € Hy(5, L; RY)
for every orthonormal transformatidn € R%*,

Reparametrizing the composite hypothesis With the notation above,
p=nh- <1+(1 —m/n)gb/\/ﬁ) andg=nh- (1 — (m/n)qﬁ/\/ﬁ)

Consequentlyp = ¢” is equivalentto % = 0", and if (m/n)p+ (1 —m/n)q = his kept
fixed, the composite hypothesis = ¢” reduces to the simple hypothesig = 0”. In
order to develop a meaningful notion of minimax-efficienoy the two-sample problem
we treat subsequently the mixed dendity- h(m,n, p, q) as fixed but unknown infinite
dimensional nuisance parameter for testing the hypothesis

Hy: ¢ =0 versus Hy: ¢ # 0.

Note that in case thdt is uniformly bounded away from zero apds close tog, ¢ coin-
cides approximately with the diﬁeren@é\/ﬁ — \/5), see also the explanation subsequent
to Theorem 2.



REMARK It is worth being noticed that the optimal statistic for tegt/, against any
fixed alternatives equals the likelihood ratio statistic

AP (1r,n.p,q) . ¢ . ¢

mmww—g@mmﬂmmgﬁwummﬂm»
whose distribution still depends énunder the null. Here and subsequently, the subscript
(m,n,p, q) indicates the distribution with densiy[;", p[[;,,.., ¢- The rational behind
the reparametrization is to eliminate the dependency omtisance parametérin the
expectation under the null of the first and second order tdredog-likelihood expan-
sion, resulting in asymptotic independencendbr its distribution under the hypothesis
for any local sequencg,,).

Theorem 2 (Minimax lower bound) Let
nlogn \#A/(26+d) . 2d L8
Pmp = —— and definec(3, L) = <—
(=) B =\ G ale

where~; defines the solution to the optimal recovery problem (2) Wweldssume that
the sequence of mixed densit{és) on [0, 1]¢ is equicontinuous and uniformly bounded
away from zero. Then for any fixéd> 0 and every nondegenerate rectangdle- [0, 1]¢,

) B/(28+d)

9

lim sup inf Emmnpg ¥n < «a
nT0 (pg)eF ™™ (B,L):
8117=>(1=6)c(B,L)pm,n

for arbitrary testsy,, at significance levek «.

Note thaty,, may depend ori3, L) and even on the nuisance paramétgras already
does the Neyman-Pearson test for tesfiijgagainst any one-point alternative.

We now turn to the investigation of the test introduced intlBa2. To motivate the choice
of an optimal kernel for our test statistics and its relatmthe optimal recovery problem,
let us restrict our consideration to the Gaussian whiteenoantext, leading in case of
univariate Holder continuous densities [n1] with 5 > 1/2 to locally asymptotically
equivalent experiments

Vo (1) ha(¢)
dX1,(t) = p,(t) dt + dWi(t) and dXos,(t) = q,(t) dt + ——Z= dW>(t
for two independent Brownian motiofs; andi¥; on the unit interval (Nussbaum 1996,
Theorem 2.7 wittfy, = h,, and Remark 2.8). A multiscale statistic built from standzed
differences of kernel estimates

LSS o650

(which is actually not admissible singg, is unknown in general) then yields a distri-
bution under the null close to ours in Theorem 1, up to the tla&t our local integrals
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in dimension one are taken with respect to a Brownian bridgfeymulated to a Wiener
process integrand by change of the kernel. Concerning ttmiaation of), the quantity
to be maximized within this Gaussian white noise contexeappto be the expectation
of the single test statistics under the least favorablerateres as their variances do not
depend on the mean. In cagg= 1 this expression equals

J o) (t) dt
SEM (B.L;[0,1)): [l
llollg>8

leading to the dual representation of the optimal recovenplem (see Donoho 1994a).

The optimal recovery problem in higher dimension In the framework of isotropic
Holder balls, the optimal recovery problem leads to thesmh v = ~4 of the optimiza-
tion problem

Minimize ||y||, over ally € Hq(3, 1;R?) with 4(0) > 1. )

The closedness 6{4(6, L; R?) N {y : R — R | 7(0) > 1} in L, entails that the solution
exists, its convexity implies furthermore uniqueness vdedoy isotropy of the functional
classH,(/3, 1; R?) it must be radially symmetric. In cage< 1, one easily verifies that
Ys(z) = Yg([|z]]2) = (1 - Hx||§)+. In its generality, the optimal recovery problem in
higher dimension has not yet been investigated. Consiglehia partial derivatives of
v at the origin entails that; is necessarily contained iH, (5, L; R). However, the
transferred optimization problem

minimize/w(r)2|r\d‘1dr over ally) with ¢ (|.]]2) € Ha(3,1;R) andy(0) > 1 (3)

does not coincide with the univariate optimal recovery pFobdue to the additional
weighting by|r|~! which comes into play by polar coordinate transformatiorhetier
the solution of (3) fors > 1 is compactly supported or not is still open. For the case
of univariate densities, it is known that the solution of tdpgimal recovery problem has
compact support for ang > 0 (Leonov 1997), but an explicit solution in case> 1 is
known for 5 = 2 only. Concerning details and advice on its constructior,3enoho
(1994b) and Leonov (1999).

The next Theorem is about the asymptotic power of the meltgdt developed in Section
2. We restrict our attention to compact rectangles(ofi )¢ to avoid boundary effects.
This restriction may be relaxed by the use of suitable boynklernels, extending those
of Lepski and Tsybakov (2000) for the univariate regressise to higher dimension.

Theorem 3(Adaptivity and minimax efficiency)Let ¢;, , denote the multiple rerandom-
ization test at significance level based on the kernelz/{- > 0} rescaled td0, 1]. In
case of unbounded support®f, we may use a truncated solutign x = ¢z/{0 < - <
K}. Let0 < liminf, m/n < limsup, m/n < 1. Assume thath,,) is equicontinuous



and uniformly bounded away from zero. Then for any fixed 0, there exists & > 0
such that
lim inf inf P(rmnp.q) ((b* = 1) =1

n—oo (m,n) . n,a
(pvq)efhn (67L)
91l = (140)c(B,L)pm,n

for any nondegenerate compact rectangle (0, 1)%.

Note at this point that in its origin, the question of optiradjustment for multiple testing
is connected to a fixed choice of local test statistics and do¢ involve any optimality
considerations concerning the kernel. Theorem 3 shows \ewhat the use of ade-
quately chosen kernels in the local test statistics evetisiéa sharp-optimality in the
above introduced minimax sense - which in retrospect shpisality of the calibration
for the multiple test with respect taip-norm loss.

REMARK It is worth being noticed that the procedure achieves theeuppund uni-
formly over a large class of possible mixed densities. Thenisic reason is that condi-
tioning on X, is actually equivalent to conditioning dfi,, which indeed is a sufficient
and complete statistic for the nuisance functidrial

REMARK (Sharp adaptivity with respect t6 and L) Our construction, including the
procedure especially designed for the one-dimensionaatsiin, involves one kernel,
shifted and rescaled depending on location and volume oh#agest-neighbor cluster
under consideration. Due to the dependency of the optincalvery solutiony; on g,
the corresponding test statisfi; = 7,,(3) achieves sharp adaptivity with respect to the
second Holder parametdr only. Taking in addition the supremusnp ez, 5, 70.(5)
over all kernelsys within a compact rangé3,, 51] C (0, c0), one may check the proof
of Theorem 3 to verify that sharp adaptivity with respect tohbHOIder parameters can
be attained, provided that the above supremum statislidstines a tight sequence. We
however omit the investigation to avoid the technical exjieme as the result is rather of
theoretical interest than of practical relevance.

The next theorem shows however that our procedure simplgdoan the rectangular
kernel is rate-adaptive with respect to both Holder patams€/, L). Due to the fact
that it combines locally all nearest-neighbor scales atstirae time, it even adapts to
inhomogeneous smoothnessof ¢, i.e. achievespatial adaptivity

Theorem 4 (Spatial rate-optimality)Let ¢;, , denote the multiple rerandomization test
based on the rectangular kernel. Assume that liminf, m/n < limsup,m/n <

1. Then for any fixede € N and parametersg;, ..., Bk, L1, ..., L), K > 0 and any
collection of disjoint compact rectangles C [0,1]¢, i = 1, ..., k, there exist constants

lim inf (inf) Plrnnp.ag) (J,- NDy(X,) #OVi=1,.., k) = 1.
n—oo p,q):
(p—q)s;€Ha (5i7Li;J¢)
”p_q”JiZdi pm,n(Bi),
h(m,n,p,q)5,> K
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4  Application to classification

Suppose we are given an iid samplé,, Y;), i = 1, ..., n, where the marginal distribution
of X; is assumed to be Lebesgue-continuous with densityg R?, andY; takes values in
{0, 1} with

IP’(Yizl‘Xi:x> = p(z).

ThenM := 3" | Y; ~ Bin(n,A) with X := [ p(z)h(x)dz. AssumingX € (0,1) to be
known, the question of local classification is to identifgnsitaneously subregions R¢
wherep deviates sifnificantly from\ which results in local testing the hypotheses

Hy: p= X\ versus Ha: p # A\

Imitating our procedure introduced in Section 2, we may coisuitably standardized
local weighted averages of labels, but the standardizalifbers due to the fact that the
sum of (strictly) positive labels is random and not fixed,antcularYs, ..., Y,, are stochas-
tically independent. Consequently, we may then rely thegulare on the classical Bern-
stein exponential inequality for weighted averages ofdaadized Bernoullis. Of course,
the optimal separation constant for testipg= \” within some Euclidean balB,(r) and
its complement depends on the amount of observatio (in), whence analogously to
the consideration above for the two-sample problem we mayhesreparametrization of

(p, h) to (¢, h) with

Y
¢ = A(l—A)\/ﬁ

The power optimality results carry over to the classifiaatotmntext with similar argu-
ments as used in the proof of Theorem 3. We omit its explicihidation at this point.

5 Distribution-freeness via quantile transformation — the
case d=1

The one-dimensional situation allows an alternative andensbegant approach based
on order relations. For leX(y), ..., X(,) denote the order statistic built from the pooled
sample and define for arly< j < k < n the local test statistics

. V/(m/n)(1 —m/n)
Upton © = \F Zw(

Nikn

) (X@),

where

1 i—3y ls= /l—iV)’
. 2 [ R — [
ik - n—1;<¢(k—j) n;w<k—j>) '
Compared to the procedure described in the previous seetmomit the explicit depen-
dence of the weights on the observed values. Note that inmagirtb nearest-neighbor
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relations, the order remains invariant under quantilesfiammation, i.e. ran{f,,(X;)) =
rank( X;), resulting in distribution-freeness of the correspondimgtiscale statistic under
the null. Suppose the null hypothesis is satisfied for sonietgue continuous distribu-
tion on the real line. Then conditional on the order statsséis well as unconditional, the
label vector is uniformly distributed on the set

{Ae{n/m —n/(n—m ZAl_o}

The described test statistics are local versions of clasgicoxon rank sum statistics.
We omit any further investigation as the calibration for tiplé testing can be done anal-
ogously to that proved in Theorem 1 — but keep in mind that gfpr@imating Gaussian
multiscale statistic under the null hypothesis will be ipeedent of the nuisance func-
tional H,, due to the quantile transformation. Note that the use othipnathematical
tools for power investigation of rank statistics like Hakffg’'s decomposition is getting
involved because the kerngk for 3 < 1 is not differentiable.

6 Decoupling inequality and coupling exponential bounds

This section contains the coupling exponential boundsifi.#is context for weighted av-
erages from a hypergeometric ensemble. Using a differehhtque, namely an explicit
coupling construction, the subsequent proposition exeesllts of Hoeffding (1963) on
decoupling of expectations of convex functions in the anigtic mean of a sample with-
out replacement. Whereas in the latter case decouplingowitbtant is actually correct,
a simple counterexample for an ensemble of two elementadirehows that the result
does not extend to arbitrary weighted averages, and sonmegrayor decoupling appears
to be necessary.

Proposition 2 (Decoupling inequality)Let 7, Z,, ..., Z,, be iid with

P(Z=1) = — and P(Z,=0) = 1-—, 0<m<n.

n

Leta € R*with )" , a; = 0and¥ : R — R be convex. Then

E( (Z ) ) < E@(é(m,n)gai&),

=1

with

S(m,n)"' = Emm(s n—S)) SwBin(n,%).

m n—m

In particular, §(m,n) ™t = 1+ O(n~Y2) for m/n — X € (0, 1).
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PROOF Let X be uniformly distributed on the set

{x e {0,1}": le = m}
=1
and letS ~ Bin(n, m/n) such thatX and.S are independent. Define

= {i: X; = 1}.

Conditional onX andS, the random vecta¥ € {0, 1}"™ is constructed as follows:

If S >m,letZ; =1foralli € M and let(Z;);ca- be uniformly distributed on the set
{z c {0, 1}M°: Z 2 = S—m}.
ieMe
ForS < m,letZ;, = 0foralli € M and let(Z;);c, be uniformly distributed on
{z c {0,1}M: Zzz = S}.
€M
Note that7, ..., Z,, are iidBin(1,m/n). Then

n

EW(ZaiZ,-) - EE( (Za Z ‘X S)

i=1

> E < Za’ )) (Jensen inequality)

:EW(I{S<m} Zaz I{S>m}<2ai+i:22ai>)
ieM ieM ieMe

:E\If(l{5<m} Za, n::;Zal) (Zai:(])
ieM ieM i=1

S n— “
mln T —m )Z%‘Xz)

:EE[@<min i;‘: )Zaz )‘X]

> BV (E{ min (:;7 :_ i) } i aiX,-) (Jensen inequality)
Furthermore, -
i () = 1S S
> 1- E<mm‘(fn,_nn1| m))
> 1 A(Lﬁ”)

13



with A(m, n) := y/m(n — m)/ min(m, n —m), which is uniformly bounded fom /n —
A e (0,1). O

Using the decoupling above, the next proposition preséetexponential bounds which
are essential for our construction. It implies Propositloim particular and remarkably
tightens related exponential bounds of Serfling (1974)Herdresent context. The results
may also be compared with the decoupling based exponeailifidunds in de la Fea
(1994, 1999).

Proposition 3 (Coupling exponential inequalitiesh.et 71, ..., Z, be iid with
P(2,=1) = — and P(Z=0) = 1-—, 0<m<n.
Let, ..., v, real valued numbers with its arithmetic mean and denote
- m(n —m) =\ 2
= 7 - Y _ )
Var(; GiZ, m) ) 2= (=)

=1
Then in case of,,, ,, # 0,

P(|E w0

=1

> §(m,n)n

~,, /2
Zzi_m> = 2er (‘1 = an,m,n))

i=1
3n 9
< 2 —
= 2o ( 2¢(m,n) * 2c(m,n)2) ’

where

R(¢,m,n) = wmax (_7 1_@) and c(m,n) = max(m,n —m)
37m,n n n m(n_m)

PROOF With

3 e B ()
'Vm,n n
we obtain for any > 0

IP’( ! Zi:%(Z,——%) > d(m,n)n

_ p( LS wi=d) (2= > smnin

’Ym,n i=1

=1

t%) E{em(% g(% v (Z’_ _)) _m}

(-
< exp ( —t %) E exp <Mj;mn Z:(@b,- — 1)) (Z,— - %)) (Proposition 2)

— (et —1—1) —t%), 4)




whereby the last inequality follows from the fact that folyalmndom variabler” with
Y| <1,EY = 0andVar(Y) = o2,

Eexp(tY) < 1+o0%(e' —1—1) < exp (az(et -1- t))

Elementary algebra shows that (4) is minimized with the ohibi= log (1+nM), which
yields first a Bennett (1962) exponential bound by Chebysheéquality and because of
(14 x)log(l4+x) —1>1/(1 + 2/3) consequently the Bernstein type

IP’( 1 iw(Zl—%) > §(m,n)n iZi:m> < eXp<_1—|—7]72]7/]\24/3)'

’Vm,n i=1 =1

A symmetry argument provides the same bound/faeplaced by, which completes
the proof of the first inequality. Using thay,,, > /(m/n)(1 —m/n) max; [¢; — 1|, we
obtain the second asserted inequality from

72 /2
1+nM/3 = 1+nc(m,n)/3
_ 7 B U
2c(m,n)/3  2¢(m,n)/3(1+nc(m,n)/3)
> 1

2¢(m,n)/3  2¢(m,n)?/9

7 Auxiliary results about empirical processes

This section collects results in the context of empiricalgesses which are essential for
the next section. For any totally-bounded pseudo-metaces{y , p), we define the cov-
ering number

N(e,T,p) = min{ufo T C T, jinf plt,ty) < cforallt € T}.

Let F c [0 1]7. For any probability measur® on 7, consider the pseudo-distance
dp(f,9)? :== [(f — g)*dP for f,g € F. Then the uniform covering numbers &fare

defined as
N(u, F) :=sup N(u, F,dp)
P

for v > 0, where the supremum is running over all probability measiren 7.

Theorem 5. (Dimbgen and Walther (2008, technical repotft Z = (Z(t)).er be
a stochastic process on a totally bounded pseudo-metricesfia, p). Let K be some
positive constant, and far > 0 let G(-, ) a nondecreasing function df, co) such that
foralln > 0ands,t € 7,

P{% > Gn,0)} < Kexp(=n) i pls1) = o 5)
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Then for arbitrarys > 0 anda > 1,
P{|Z(s) — Z(t)| > 12J(p(s, 1), a) for somes, ¢ € T, with p(s, ) < 5} < 20

where7, is a dense subset @f, and

J(€,a) = /OGG(log(aD(u)Q/u),u)du,

D(u) = D(u, T, p) := max{#'fo . T, C T, p(s,t) > u for differents, t € TO}.

Remark. Suppose tha&(n,d) = ¢n? for some constantg,¢ > 0. In addition let
D(u) < Au™P for0 < u < 1 with constantsd > 1 and B > 0. Then elementary
calculations show that far < ¢ < 1 anda > 1, J(e,a) < Ce log(e/e)? with C' =
¢ max(1+ 2B, log(aA?))? fol log(e/z)1dz.

For the proof of Theorem 1 the subsequent extension of then@igaLemma VII.9 in
Pollard (1984) and Theorem 8 in the technical report to Dgemand Walther (2008) will
be used. It complements in particular the existing multesttzeory by a uniform tightness
result and to a situation where only a sufficiently shamgorm stochastibound on local
covering numbers is available, which typically involveslgidnal logarithmic terms. The
situation arises for example in the multivariate randomgiesase where a non-stochastic
bound obtained via uniform covering numbers and VC-theoay tye too rough.

Theorem 6 (Chaining) Let (Y,,),.en @ Sequence of random variables such thiatakes
values in some polish spagg. For anyy,, € V,, let(Z,(t; y,)):e7,, be a stochastic pro-
cess on some countable, metric Sp&Eg, , (., -;yn)), Wherep, (., ;y,) < 1. Suppose
that the following conditions are satisfied:

(i) There are measurable functions(.;Y,,) : 7y, — (0,1] andG,, : [0,00) — [0, 00)
such that for arbitrarys, t € 7y,,, 7 > 0 andé > 0,

IP><|Zn(t,Yn)| > ot Yn)Gn(n,é)‘Yn> < 2exp(—n) ifon(t;Y,) >4,

00 (t;Y5) — 0n(s; Y0

sup < C < oo for some constard’ > 0,
s,teTy, pn(sa tu Yn)
. Gn(n,6
{t € Ty, : 0,(t;Y,) > 6} is compact, and7, :=sup sup Gn(1,9) < 0.

neN n>0,0<6<1 1 +7

(i) There exists a sequen(®,),,cn of measurable sets and positive constatit®, W, «
such that

N(ua, (e Ty :on(t:Y,) < 6), pul., .;Yn)> < AuP5"log (e/(ud))" foru, 5 € (0, 1]

wheneverl,, € C,,.
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For constants;, Q > 0 define

| Z,(s;Y,) — Zu(t;Y,)]
(8,0, 0:Y,) = { sup < ob.
( e D P TS T N Y P PRI AT

Then there exists a constafit= C(G,, A, B, W, «, ¢, Q) > 0 such that fol) < 6 <1

P(M < G, (W log (I/Un(t; Yn)) + C'loglog (e/gn(t; YN))’ on(t; Y"))

on(t; Yn)
)

Yn> = 1 a.s., then the

+ Clog(e/o,(t; V)t on{t : 0, (t;Yy,) < 6}

is at leastP (An(%, q,Q;Y,)

Yn> — C'log(e/d)~! whenevel, € C,,.

If in particular P¥»(C,,) — 1 andlims g inntP’<An(5,q, Q;Y,)
sequence

teT,

E(sup {% - G, (Wlog (1/0n(t;Y))

)

+ Cloglog (e/0n(t;Yy)), on(t; Yn)) }

is tight in (P*» ) -probability, provided thatnf, sup,c 7, on(t;Y,) > 0 as.

REMARK Note that in case ofi(n, d) = (kn)'/* with xk > 1,

G(Wlog(l 16) + Cloglog(e/9), 5) +Clog(e/d) ™"
— (kW log(1/8))"/" + O log log(e/8) log(c8)"/ ")
= (kWlog(1/8))"* +0(1) asd \,0.

PROOF Due to the factorization lemma, the conditional probapaihd expectation fac-
torize under the above conditions, i.e. we may consider @y, ) ,cny and work with
the sequence of conditional lawi® Z,,(., Y,,)|Y,, = v.), but note that we do not assume
equality of £(Z,,(.; Y,)|Yn = yn) andL(Z,.(.; y,)) in general. The first part of the proof is
a modification of the Chaining in Dumbgen and Walther (2@68hnical report) applied
to the conditional distributio(Z,(., Y,,)|Y. = v.) for y, € C,. Here we need however
to define their additive correction functidif, in a different way, taking into account the
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additional logarithmic terms in the bound of the coveringmers. Lining up with their
arguments, a suitable choice for the correction functiqreaps to be

Gn{Wlog <0n(t1; yn)> + (B+ ) logu(an(t; yn)) + (24 a)loglog (ﬁ), on(t; yn)}

1 e
— Gn{Wlog <m> + ((B +a)y+ (2+ oz)) log log (m>, on(t; yn)}
This term is essential for our proof of efficiency. It is impaort that the constant does
not influence the leading term. Concerning the tightnessabability as stated in the
second part of Theorem 6, notice that it does not follow by ramediate continuity
argument because the metric (and the metric space) chatigdeth, Y, andn, hence
some additional uniformity is required. For< § < ¢’ < 1letU,(d,d';Y,) be defined by

Zn(t; Y,
sup | Zn( )| -G, <Wlog (l/an(t; Yn)) + C'loglog (e/on(t; Yn)), on(t; Yn)) )
7n(12)E(59" on(t; Yn)
tel,

First observe that for any fixed > 0,

P(Un(o, 1,Y,) > K ‘ Yn) < P(Un(o,a; Y,) > K/2 ‘ Yn) +P<Un(6, 1,Y,) > K/2 ‘ Yn>.

(6)
The first part of Theorem 6 implies that the first term on thétrigand-side in (6) is
bounded byl — P(A,(26,¢,Q;Y,)|Y,) + Clog(e/§)~! for K > 2C log(e/§)~ when-
everY, € C,. Concerning the second term in (6), note that

1
Un(6,1:Y,) < — inf Ho(8:Y,) + =  sup ’Zn(t;Yn) .
8'€[6,1] 0 tety,:

on(t;Yn)>0

Then the conclusion follows if we establish that

lim limsupIP’( sup ’Zn(t; Y,) ‘ > K;Y,eC,

K—oo 5500 teTy,,

Yn> = 0 a.s.

Fore > 0 andY, € C,, letti(Y,),....tmy,)(Y,) be a maximal subset dfy, with
pn(ti, t;;Y,) > e for arbitrary different indices, j € {1, ..., m(Y,)}. Note thatn(Y,,) <
Ae"Blog(e/e)™ by assumption (ii). Then condition (i) implies that

I}im limsupIP( sup ‘Zn(ti(Yn);Yn) ‘ >K;Y,eC, Yn) =0as (7)
T n—oo i=1,...m(Yy)
On the other hand, we have on the ggtc, ¢, Q); Y,,) the bound
sup |Z,(t;Y,)| < Qelog(e/e)? + sup ’Zn(ti(Yn);Yn)L (8)

teTy,, i=1,.;m(Yy)
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With ¢ tending to zero sufficiently slowly, (7) and (8) show togetivith the stochastic
equicontinuity conditiodims ¢ inf,, P(An(é, q,Q;Y,) ‘ Yn> =1a.s.

lim limsupIP’( sup ‘ Zn(t;Yy) ’ >K:; Y, eC,

K—oo 5500 teTy,,

Yn) = 0 a.s.
Since the assumptidnf,, sup,c7, 0.(t;Y,) > 0 a.s. guarantees

im supIP(Un(Yn) < —K‘Yn> — 0 as.,

1
K—oo o

the tightness ifP¥»)-probability is proved. OJ

8 Proofs of the main results

PROOF OFTHEOREM 1 Let )\, := m/n. In view of theTj;,’s, the behavior of the

process
V=) o [ I1X; = X Z.
( v )§¢(||Xj—x;-fu2)(““>“ﬂ')>

1<j,k<n

conditional onX,, needs to be investigated, wheke» I1|X,, is uniformly distributed on
the set

{)\ X, = {1/ A, =1/ = X)) D Ae) = 0}.

For notational convenience it seems useful to redefine theegs on the random index
set A
7, = {(Xj, 1X; = XEL) s 1< gk < n}

via the map(j, k) — (Xj, || X; — XJ||,) and extend it to a proces¥/,(t,7))
with 7 := {(¢,r) : t € [0,1]%, 0 < r < max,c e ||z — t]|]2} by the definition

r) = vava i [ oI (i) - agio),

(t,r)eT

where P and Q' denote the empirical measures based on the permutatedlearia
X111y s X11(m) @NAX11(m41), -, X11(n)» r€SPECtively. Let

Gult.r)? = Var(Ya(t,r) | )

- ) [ ()

with HL,, the empirical measure of the observations ..., X,.
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In the sequel we make use of the results in the previous sewtice - in order to prove
the tightness and weak approximation in probability of taguence of conditional test
statistics and within the "loop” we use the chaining arguta@gain to establish a suffi-
ciently tightened uniform stochastic bound for the covgmmbers below.

|. (SUBEXPONENTIAL INCREMENTS ANDBERNSTEIN TYPE TAIL BEHAVIOR) The in-
version of the conditional Bernstein type exponential reddy in Proposition 3 shows
that for anyn > 0,

#(
where

Gn(n,%(t,r)) = Rn(%(t,r))n + ((Rn(%(t,r))n)z+25(m,n)2n>1/2

with

Y, (t,7)
Ynlt,T)

] > G (n, An(t, ) ‘Xn) < 2 exp(—n),

5(m7 TL) H¢||Sup V )\71(1 - )\n)

Bu(7) = 3 min(h,, 1 — A )y/n
Let the random metrig,, on7 be defined by
pa((t7), (#.7))7 == Var (Yn(t, ) — Yo (') xn)
= [ (vurte) = o)) (@) - ( [ (@)~ v <x>)dHn<x>) )

with ¢, (z) = w(@) Then the application of the second exponential inequafity o
Proposition 3 implies for any fixe@t, r), (¢, ') € 7 that

IP( | Yo (t,r) =Y, (¢, ") ‘ > ﬁn((t,r), (t, T/)) qan ‘ Xn) < 2 exp(—n),

where
I (1=,

q = 2(1 + 2max()\n,1—;n)2(log2)_l>'

1. (RANDOM LOCAL COVERING NUMBERS) We need a bound for the local random cov-
ering numbersV (ué)/2, {(t,r) € T, : 4.(t,7)> < 3}, pn). This is the most involved
part of the proof. In order to establish a sufficiently shgoper bound, the following two
claims are established:

(i) Let 2
pra((t.0),(6)" = [ (o) = vn(a)) i (o)

and definel, for arbitrary different points i, via
d,? == max [Ep3,,,4/n] (1 + C'log <4 e/ max [Eﬁ;n,ll/n})),
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with C a constant to be chosen later. Note that the map /1 + 2C log(y/e/z) is
subadditive forz € (0, 1], henced,, defines a metric. Furthermore let* := E43, —

(E%,n)2. where

’Yln t T = </¢tr dH ) and 4 ’YZn t T /wtr QdH

Then there exist a constagt > 0 and a sequenc&’, ),y Of measurable sets with
Pem @ Q™™ (C,) — 1, such that for any > 0, u € (0,1] with u§ > 1/n and any
realization( X1, ..., X,,) € C,
N ()2, {(t,r) € Tu Ault,1)? < 6}.5n)

< N((@0)"2 {(t.r) € T yanlt.r)? < C'5logle/0)'},dy ),

if ¢ is not rectangular. In case of the rectangular kernel, the se
{(tﬂ") €Tyt yan(t,r)? < C”(Slog(e/é)‘l}

in the covering number has to be replaced by

{(t,r) e, Yo, < C'dlog (6/5)4} U {(t,r) e, Vo, = 1—C'dlog (6/5)4}.

(i) There exists a constant > 0, independent ofi, 6 andn, such that wheneverj >
1/n, the upper bound given in (i) is again bounded from aboveby' 15! log (e/(ué))5.
Moreover, the latter bound remains valid within place of 7, .

Note that we cannot rely our bound directly on uniform covgmumbers and Vapnik-
Cervonenkis (VC) theory as the envelopeX € X} only allows for a bound of order
u~26~2, which would result in the loss of efficiency of the procedure

Proof of (i): We first derive a uniform stochastic bound for the random méi,,.
Recall that every functiogy of bounded total variation is representable as a difference
isotonic functions)™™ andy(?). With the definition of the subgraphs

sor(l))) = {(z.9) € 0, xR: y <v(0)}, i=1.2,

the set{sgr(wtr) (t,r) € T} has a VC-dimension bounded by+ 3 (van der Vaart
and Wellner 1996) Wlth envelopEV (1)). Consequently, the uniform covering numbers
N (e, F) with

F = {(%r - @bt'r’)Q (), () € T}

are bounded by's~“ for some realvalued > 0 and some constait > 0. The bound-
edness of) shows thatF is uniform Glivenko-Cantelli in particular (Dudley, Girend
Zinn 1991). As an immediate consequence,
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n—oo

lim IP’( H,ﬁz,n((t,r), (#))? = Epon((t, 1), (£,1"))° H:w > 5) —0, (9

for anyd > 0. However such a bound is not sufficient for our purposes. Bszaf
[¢llsep < 1, the squared random metrig , is 1/n times the sum of. independent
random variables with absolute valu€st, hence

Var(po (1), (7)) < %E@z,n((tﬁ’)’(t/ﬂ“/))z) < max{%,E(ﬁz,n((t,r),(t’,r’))2)}2-

Now the application of Bernstein’s exponential inequal#e Shorack and Wellner 1986)

entails
2
n°/2
> < 2 —
n) - eXp( 1+n/3>

P( ‘ pan((t:7), (#,11))" = B ((t,7), (¢ 1))
max[4/n, Bpy, ((t,7), (t,17))°]

for arbitrary pointgt,r), (t',+') € 7. l.e. p3,, — Ep3 ,,, standardized by

max {4/n, Bpo ((t,7), ()" }.

has (uniformly) subexponential tails. Analogously, theqassj; ,, — Ep; ,, has subexpo-
nential increments with respect to the mettig given by

D, (a, b)2 = max [1/n,E(p3,,(a) — ﬁg,n(b))ﬁzl{a #b}, a,beT xT.

Note thatmax[4/n, Ep3 ] is Lipschitz continuous with respect 10,. Theorem 5 shows
that the above ingredients imply thias o inf, P(A,(6,1,Q; X,) | X,) = 1 for some
adequately chose® > 0, where we use the definition od,, from Theorem 6 with
Y, =&, and”Z, = ﬁ%,n — Eﬁ%vn. Now we may apply the latter to conclude that there
exists some universal constanit> 0 such that the probability of the event

{ \ pon ((8,7), (E,7))° = Bpn (1), (£,7)) ‘ > (10)
C max [4/n, By, (£, 1), (t',7'))°] log <4e / max [4/n, By, ((t,7), (¢, 7’/))2])
for some(t, ), (¢, ') with Epy,,, (£, 7), (¢, 7)) < 5}
is bounded by some functior(d) independent of: with lims\ (d) = 0. Combining

(9) and (10) for a sequenee= 9, \, 0 sufficiently slowly implies the existence of a
sequence of setsd,, ) ,en With P& @ Q®("~™)(A,)) — 1 such that
2n

pon < max [4/n,Ep; }1/2 (1 + C'log (4 e/ max [4/n, Eﬁgm]))l/z whenever Xe A,,.
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The treatment of the random set
Bs = {(t,r) €T An(t,r)? < 5}

is similar in spirit but more involved because the randomnjitya? is not representable
as a sum of independent variables. However we can use thengesdion[n/(n —
1)]32 = 43, — 41.,.- Before deriving a stochastic bound, we notice the follayitf +
describes the rectangular kernel, we h&ye = 4 ,,, i.e.

&22,n - &in = %,n(l - &g,n) :
In this case, the random sBt is consequently contained in the union
{&Sm < 45} U {@;n >1- 45} for § > 1/n. (11)

Consider the general case. Using that
. IS 1
Var(fua(t.m)) = = 3 (Bvu(X0)? - (Bvu (X)) < ~E4Z,  (12)
=1

and
Var(3en(t,1)’) = %;(EW(XZ-)‘*— (B (X:)?)°) < %Eﬁim (13)

we may apply the above chain of arguments ﬁ@g to 41, and &%n together with the

upper bounds in (12) and (13) for the standardization reés@®zand obtain the existence
of a constant’; > 0 such that

]1/2

Cimax [1/n,~3

Tin \/ﬁ
) Cimax [1/n,43,]" 2 1172
< Mp < M+ \/ﬁ : log (e\/ﬁ/ max [1/’@, 72,n} )

whenever Xe D,, for some sequenad,, ),y With asymptotic probabilityl, uniformly
evaluated aft,r) € 7,. Note thaty, , > 1/n, 43, > 1/nfor all (t,r) € 7,. The same
holds true with a constarit, > 0 and a sequendé,,)..cn With asymptotic probabilityl
and¥, , andy,, replaced byy;, and~;,. Using the lower bound fof;,, and the upper
bound fory, ,,, a bit of algebra yields

5 2 2 5 112 K 2 11/2)?
85 C VZ,n - Vl,n < 4 + max [1/,”7 72,nj| % IOg (e\/ﬁ/ max [1/n7 72,n:| )

whenever Xe D, N D), 6 > 1/n. Here and from now oni denotes some universal
constant, not dependent enlts value may be different in different expressions. Now we
first consider the case

sup sup (vfn/vgn) < O < 1.
neN (¢,r)eT

23



Then the above condition shows that

12,(1=C") < § +max[1/n,~3,]"

7 (e\/_/ max [1/n,73 ,] 1/2)
< 2max{5 max [1/71 VM} —log (e\/_/max 1/n, %n}l/2)2}’

which entails thaty;, < Kdlog (e/é)4 for § > 1/n by the isotonicity ofz —
zlog(e/z)* on (0, 1]. On the other hand, the case

sup sup <vf,n / 722,”) =1 (14)

neN (¢,r)eT
implies already that is equal to the rectangular kernel: If the sup is attainezlotivious.
The equicontinuity of4,,),en and its uniformly bounded.;-norm||%,,||; = 1 imply its
uniform boundedness, hence relative compactness in tbgppof uniform convergence
by the Arzeh-Ascoli-Theorem. There therefore exists at least a umipiconvergent
subsequencgh,,,(,)) with (uniformly) continuous limit, say,, along this result holds true
as well, becausmax )7 (71,,/73.,,) depends continuously on the mixed density. This
however implies that) describes the rectangular kernel, because the uniforn Airaf
that subsequence is bounded away from zero. Hence in cadd)pfwe consequently
obtain by (11)

Bs C {vgn < Kélog (6/5)4}U{7227n > 1—-Kdélog (6/5)4} whenever Xe D,ND,,, § > 1/n.

Proof of (ii): Sincev is of bounded total variation, there exists some finite mesagu
such that forany) < z; < zo < 1, [0(21) — ¥(22)| < plz1, 22). With

t— —
M, (t, ¢ r,r") = {0’ M}A{O, w}
r

,r/

we obtain
Epon((t,7), (7)) < / (Ger () — W () *dHL, ()
gK/ (6,8, ")) dH ()

= K [ Hy € Moot} dit,(a)duly)

< K sup /]{y € M,(t,t',r,r")} dH,(z). (15)

y€[0,1]

Theny € M,(t,t,r ') implies thatz € Bt(ry)ABt/ (r'y). Sinceh,, is uniformly
bounded from above we obtain that (15) is not greater tﬁaﬁBt YABy(r )). Be-
cause off0 1 Y(z)dr = 1 with maximum attained &i, there exists some compact ball

By(r*) With w(x) > 1/2for all x € By(r*). Using in addition the uniform boundedness
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of h,, away from zero we obtain, ,(t,r)? > K - r¢ (¢,7) € 7. We now start bounding
the covering numbers

N((u5)1/2, {(t,r) €T :yon(t,r)? <26 log(e/6)4}, d),

where the metrid on7 x 7 is pointwise defined by
d((t, r), (', 7‘/))2 = )\(Bt(T)ABt/ (T/)) (1 + C'log [e/)\(Bt(r)ABt/ (7’/))] )

Because of the isotonicity af — z log(e/z) for = € (0, 1], the inequalityl((¢, r), (7)) :=
)\(Bt(r)ABt/(r’))l/2 < ¢/(log(e/e)) implies thatd((t,r), (¢',7’)) is not greater that
(C +1)2¢. Thus it is sufficient to bound

(ud)/?
N <log<e/<u6>>’

First note that there exists a finite collection of at moest< K/(dlog(e/d)*) points
t1, ..., tm such that the se{(t,r) €7 : 1t < 5log(e/6)4} is contained in the union

{(t,r) eT i< 510g(e/5)4}, J). (16)

A = {(t,r) €T :Bi(r)C Bti<[K510g(e/5)4]1/d)}

for some universalk > 0. The rotation and translatation invariance of the Lebesgue
measure leads to the rescaling invariance for the covetingoers

N(al/z, {(t,r): Bi(r) C Bo(R)}, d) - N( (e/RYY2 {(t,7) : Bt(r)CBo(l)},J>.

Now it remains being noticed that the latter quantity is beoh by K (R4 /<)4+! uni-
formly in e and R. Analogously forN ((u8)'/?/log[e/(ud)], A;, d), hence the covering
number (16) is bounded bytd~tu =41 log(e/ud)® for some universal constant > 0.
An analogous bound holds far, in place of7: If (tl,rl) (tk,rk) denotes am-net
with respect tal in B ¢ 7, we may define & e-net ({1, 71), ..., (tx, 7%) in 7. N B via
the definition(t;, 7;) := argmin, .5 5 d((t,7), (t;, 3)). The corresponding covering

numbers in case of the rectangular kernel for the §efs, > 1 — Kdlog (6/6)4} can
be treated with similar arguments, which concludes thefob6i).

[1l. (TIGHTNESS AND WEAK APPROXIMATION IN PROBABILITY) As a consequence
of the above exponential inequalities in step | and the bdondhe uniform covering
numbersN (4, 7)), Theorem 5 shows

( \Y <t r) = Yo (t', )]
pn((t,r

hm limsup P

n—oo

sup >cl&, | =0,

Autan<s Pu((t, 1), (#,7) log (e/pn((t,7), (', 7))

(17)
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where thesup within the brackets is even running over elementg of 7. Now the appli-
cation of Theorem 6 entails that(7,, o I1 | X,,) is tight in (P$™ ® @g(n_m))-probability.

What remains being proved is the weak approximation. &taftiom (17), the uniform
convergence (9) implies in particular the asymptotic sastic equicontinuity

lim lim sup E(pmqm,\n)IP( sup | Yo(t,r)=Y, (' r')| >e
™ A

n—o0 ), (t 7)) <6

Xn) = 0 foralle > 0.

Since to any subsequence of the metrjdhere exists some uniformly convergent sub-
subsequence as a consequence of the relative compactnésg,efs in the uniform
topology, it suffices (via proof of contradiction) for the akeapproximation in probabil-
ity

dw{£<(Yn(t7 T))(t,r)ET ‘ Xn)u £<<Zn<t7 T))(t7r)€7->} —>P§m®(@§(n*m) 0
to establish the convergence of finite dimensional distidims. For letS := {(t1,71), ..., (tx, %) }
be a collection of points fror. Denote furthermore,,(X;) := n=Y2/\,(1 — \,) ¢<M)

Then
Xn) |

Let (Zn(t,r))( . be pointwise be defined 0¥, (¢, ) := /A, M) [ ol (x (7).
Using that2 cov (Xl, X5) equalsVar(X; + Xs) — Var(X;) — Var(Xg) for two random
variablesX; and X5, one finds

n X")

= 5 [ (vote) = v <x>)2dﬂn<x> -3 ( [ (0@ - v ain) a9

£((050) e, | 2:) = ﬁ(iammw

i=1

n - cov <Yn(t, r), Ya(t', ')

-5 [nlerati ( [ vwlarai @)2 = 5 [ vtapat e + %( / wtw(x)d]ﬂln(x))z.

Replacing the empirical measulg, by its expectatiort,, the above six expressions
in (18) coincide with the covarianeev (Z,(t,r), Z,(t,r')) of the limiting proces<,,.

Since
k

Z X)) — 7(n) 2
i1 i ( %( i) = Gryt;)
and | cov (Y, (t,7), Yn(t )| ) = cov(Za(t,7), Za(t', 7)) | —pemggee-m 0 Dy an
application of the weak law of large numbers for triangulalgs to each of the ex-
pressions in (18) separately, Hajek’s multivariate Caritrmit Theorem for permutation
statistics yields the desired weak convergence in proibabflthe finite dimensional dis-
tributions. For notational convenience, define

(6,68 = sup { | Tjpp o 11| — jkn}
(4,k):
6<'Yn(j7k)§5,

(n) (X) . C—L(n) )2

it

_)P§m®Q§(n7"L) 0 (n — OO)
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and

| J o (2) AW (x) | ;
S,(8,8") == sup — 1/ 2log(1/v,(t, 7 .
( ) (t,r): 7n(t7 T) \/ ( /7 ( ) )
0<yn (t,r)<d’

SinceU,en7, is a.s. denseiff andsup; .., (=5 | Citn— (2 jgn)"? | —pomggomm
0 asn — oo, it follows from the above established weak approximatiod tghtness that

du(L(T16,1) | ), £(S0(8,1))) —pom ot 0

for any fixedd € (0,1]. An application of Theorem 6 as well as its subsequent Remark
imply that

o % (Il > _ m i >¢) =
(ls{n limsup P*(7,,(0,0) > | ;) 0 a.s. and (ls{n limsup P(S,(0,8) >¢) = 0

n—~o0 n—oo

for anye > 0. Thus, because obviousliyns. o lim inf,, .o P(5,(6,1) < —¢) = 0, we
obtain
du(L(TH0.1) [ X,), £(S0(0,1)) —pemgotm 0. O

PROOF OFTHEOREM 2 LetC be some compact rectangle &f Fix 3 > 0. For any
integerk > 1 letC, , C C be some maximal subset of points such that- y||» > 2kd,
and B, (ké,) C C for arbitrary different points;, y € C,, . ThentC, . ~ (kd,)~¢. Now
the letg, ,, be the solution of the be the subsequent optimization pnoble

(x) Minimize ||g||2 under the constraints

g € Ha(B, L; RY), supp(g) C B.(kd,), g(z) = Lé", /g(z)\/hn(z)dz =0.

These constraints define a closed and convex sk 0, 1]%) which is non-empty fok:
sufficiently large. Consequently in the latter case, thenamgy,. ,, exists and is unique.
The resulting density candidates

are non-negative and thus contained—“gﬁ”’") as soon as additionally

hn(-)

m/n

hn(.)

-7 for all Cp.
1—m/n ve

< Gaml.) <

This is guaranteed for sufficiently largewhen sequencg,,),.cn tends to zero. For any
statistical levela-testy = ¥(3, L, h,,) : R>" — [0, 1] for testing the hypothesis)’= 0"
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it holds true that

min E(m7n7pz,n7(Iz,n)¢ -« S min E(m7n7pz,n7(Iz,n)w - E(mvnyhnyhn),l?b

z€Cp zeCp
1
S 7 Z E(mvnvamqu,7b)¢ - E(mm’h"’h")w
ﬁ n (EGCTL
1 AP (1, ps msge.m)
< Emnnoh | — —_RPrnden] (X) — 1. (19)
(msmshn ) ﬁcnagc:n dP(m,n,hn,hn) ( )

For short we writéf, for E,,, » 1., 1,.) in the sequel. Note that the test is allowed to depend
on the nuisance functional, (in fact thelog-likelihood and its distribution do). Now
we aim at determing,, such that the right-hand-side tends to zeraapoes to infinity.
Although A (supp(¢,,,) N supp(ey,)) = 0 for any differentz, y € Cy ,, the likelihood-
ratios

m

Lag 1= Zp (%) = ||(1—<m/n> o <Xi>) <1+ 1= m/m)22n (xy),
| LLICR N i=1 hin i:l;[H ( /)\/h7n< )

are not independent. However, they are independent condlton the random vector
Ay = (Azn)zec,,, With entries

App = (h{i <m | Xi— 2y < k6, b, #{i > m || X — 2]y < k6, }).

Note thatE (L, ,|A,) = Eq L,, = 1. Following at this point standard truncation ar-
guments, it turns out to be sufficient for the convergenceeto of (19) to finds,, and
v = 7 € (0, 1] such that the ratio

1 14+~
max i Cn)VEO L, (20)

tends to zero as goes to infinity. But

macliy = { fmia) (14 0= %f’;((?))mdz} RVECIOE %izy;((i)))mdz}n_m

- {1 + %v(l +9)(1+0(87) ) (1 = (m/n)? /0 1 @,n(z)?dz}mx (22)

{1 + %7(1 +7) (1 + 0(55)) (m/n)? /01 cbx,n(Z)QdZ}n_m,

using the boundl + A)'*7 <1+ (1 +7)A +27'y(1 4+ 7)A? + 3yA?| Al for |A| < 1.
Now let ¢, be the solution to the following optimization problem

(x+) Minimize ||g||» subject to
9 € Ha(B, L;R?), supp(g) C Bo(k), 9(0) =1, /g(x)dx = 0. (22)
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Notice the rescaling propertyd2q(./6,) € Ha(B, L; R?) with supp(g) = By(kd,) and
g(0) = Lé? & g € Hq(B, L; RY) with supp(g) = By(k) andg(0) = 1. Recall from the
previous proof that the sequenge, ),y is relatively compact in the uniform topology,
in particular we have (proof via contradiction)

lim sup sup |h,(z) — h,(z)| =0,
N0 zeB.(5) n | (@) ()‘

whence
/ Gom(2)? dz = (14 0(1)) L2624 2 (23)

because the minimum in<) depends continuously on the mixed dendityas can be
seen using a Lagrange multiplier for the centering constrdote that the(1)-term is

uniformlyinz € Cy,,. Now the combination of (21) and (23) shows thatdpsufficiently

small, (20) is bounded by

exp (nlm/m)(1 = ) (14 )1+ (1) — 710g(6Cr) ).

By construction Cy.,, > dy, - 6, ¢ for some constant;, > 0. Now fix § > 0 and define

( 2d LB )5/(25+d)
(26 + d) || dk13 .

Observe that the sequengés3, L) is increasing irk. We need to check théin,_. . ||d/|2 =
|lvsll2. Note that in contrast to (22), the solution of (2) does néegnate to zero in
general and it remains still openf; is compactly supported faf > 2 andjg > 1.
Starting from~;, it is sufficient to construct a sequengg;, satisfying the constraints
of the optimization problemx¢) such thatlim; ... ||9s.x[[2 = [|7sll2- Then the equality
limy, oo ||0|l2 = ||75]|2 follows from ||55.]l2 > ||éx|l2- The existence is sketched in the
appendix. As a consequence there exists sdmeeN such that(3, L)(1—0) > cx (8, L).
Now one verifies that the lower bound is established with tieae

Ck(ﬁ, L) =

S = <Ck”(ﬁ7 ) )1/6
and some sequenge= ,, — 0 with lim,, v, (logn)"/? = oo. O

PROOF OFTHEOREM 3 By virtue of Theorem 1, the sequent¢T;, o IT | X,,) is tight

in (IP’%’” ® Qf?("_m))-probability, resulting in stochastic boundedness of #gugnce of
random quantileina(l))neN. The bounded total variation of the kernel for< 1 is a
consequence of its monotonicity, f6r> 1 it results from the continuous differentiability
of ¢35 x and its compact support. For notational convenience thersgncy o and X

is suppressed. They are arbitrary but fixed unless statesvage. First note that for any
random coupléj,, k,) it holds true that

IP)(mm,pn,qn) <Tn > “a(l>) > IP)(ﬂ”b,n,pn,qn) <Tgnknn - Cjnknn > ’ia(l)>
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Hence it is sufficient to prove that for any sequeiiog),cn of admissible alternatives
there exists a random sequenceé Bf &, ),y With T hn = Ciobun ——PEm@@en-m) 00.

As in the proof of Theorem 1 defing, (t,r)? := Ew,n(t,r) — (Ifi‘ﬁym(t,r))2 (t,r) e T.
Lett, := argmax,; |¢,(x)| andr, := (||¢n||sup/L)1/ﬁ. Define(fn,fn) = ( [ |X —
X;, ||,) with

(o) = argmin A(By, () A B, (1X; = Xilo)).
J:k=1,...,

Now let the process,, on7 pointwise be defined by

Su(t,r) = —VA"(\lfn_A”) iw(w)z\m).

Furthermore, let us introduce the rgngom variablgs,;), based on the indicéﬁm-, l%m-)
which are defined analogously t9,, k,,) but with the minimum running over the set

j, k€ {1,...n}\ {i} only. Then

m E(Sn(fn,fn) ~ Sultwra)) |
- ZE(%M — Yt (X))
. j‘mi;ﬂ (1050 = 1,30 |
< ZE(%M — g (X))
POR: (SNEORTmAE: )]
; ﬁ% ﬁf (%nxxn—ww(x»)

(45,0 (X0) = P10, (X)) ‘

i=m+1
1 4 n n
S _
= Yu(tarn) \/_||¢||SUPmaX (m’ n—m)

: { Z / Vi o (2) = Yy, (@ )) pn(z)dz (24)

Yo(tnsTn) V10
mrm — Ytr, (T )) n(:l?)d:l?} ‘>

+

i=m+1
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whereby we used for the first term in the last inequality that #,,;) differs from (,,, 7,

for at most two indices, j € {1, ...,n}; the second term follows by including and eval-
uating the conditional expectation givei;yi, Tni) @SX; is independent oﬁm-,fm). Re-
placing agair(t,;, 7,;) by (£, 7,), the second expression behind the inequality in formula
(24) is bounded by

Wy ma (2 )
= sup Max | —,
V(L) /1 P m’'n—m

VOB [ (0 5) — 1, 00) (1) — (o)) ]

Yo (tns Tn)
Now we can make use of the fact that,, () — ¢, (2) | = | ¢n(@)v/hu(2) | < Cllnllsup
with C' := sup,, sup, | v/.(z) | . Recall thath,||., is uniformly bounded due to the

equicontinuity assumption ofh,,),n and the constraint on thg,-norm ||h,||; = 1,
whence the term in (25) is not greater than

VSl E( [ [ura@) = (o ‘dm) (26)

Yoty )

. (25)

Using the bounded total variatiahl’(¢)) of » and M, andp as defined in the proof of
Theorem 1, the integral which appears in (26) can be bounged b

B [ [t 0) ~ ()| o)

< E(/M(Mz(tn,rn,fn,fn))dx>
= E(//I{y € Mx(tn,rn,fn,fn)}da?du(y)> (Fubini)
< TV E sup ([ Hye Maltnraf)}ar

y€[0,1]
< TVR)EA(By, (r)AB;, (7))
< TV)EA(B, (r)AB;, (ra)) + TV(@)EX(By, (r)AB;, (7))
— 0@, (27)

using in the last inequality besides the stochastic comverg rates of, and+, the uni-
form integrability of the sequencds!/?||t,, — t,|»), (n'/?|, — r,|) which result from
P(|lt, — tall2 > 2) ~ (1 — 29" andP (|, — r,| > z) < 2P(||En — tall2 > z). Together
with (24) - (26) this shows that for any sequence of admissliernative$o,,),cn

| E(Sx (fns7n) — Sn(tn, ) | _ d/2—148,, —1/d+1/2
) = Orizr+n ). (28)

Ifin particular|| ¢, [|sup = O(((log n)/n)ﬁ/(%”)), (28)isO ((log n)(ﬁ+d/2—1)/(2ﬁ+d)n—(2ﬁ/d)/(2ﬁ+d)).
Compared to (26), note at this point tRgk ., (t,,, 7,) 'E [ | ¢y, ;, (x) — Uy, () | d is
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not even of ordek/log n if ||¢,||s., decreases to zero at the fastest possible rate as soon
asd > 2. We need to check that

Yo (tns )

A (s )
For this we use the decompositi@im + 1)/n]%,(t,7)* = An2(t,7)* — Ana(t,r)* and
consider subsequently= 1 only, the orther case is done analogously (taking the s@juare
To this end note first that

—>p®m®Q®(nfm) ]_ (29)

| A1 (Fs Pn) = At (b, 1) |

n

95,6, — e S T{X: € By (7)1 Buy ()}

i=1

IA

n

+ 2l S 1{Xs € By, (7)AB, (1)}

=1

H wfnf‘n - ,l/)tnrn

n

Sup% S i{Xie B, (r)}

1=1

+ Wil S I{ X € By, (72) AB, ()}

i=1

IN

= op(l)Op(rfL) + Op(rflfln_l/d) = 0p<%,1(tn,rn)).

The "o,(1)"-term results from the Holder continuity af (for 5 > 1 the first deriva-
tive of ¢ is uniformly bounded or— K, K1) and the fact that,, > (c(3, L)pm,n./L) e
while £, — t, ~ n=Y4 7, —r, ~ n~Y4 To verify (29) it remains to be shown that
An(tny 1) [ (tn, rn)—1 = 0,(1) which however is a simple consequence of Chebychef’s
inequality since for anyy > 0 and any sequence of admissible alternatives,.cn, the

sequencey,(t,, r,) ~ r¥? decreases (if it decreases) at a slower rate thad®. The
above considerations show in particular that

o 3Rw(m>”) A A \—2 \/ 2o (A =2
Ciukun = Tz g y00msm)log (3l 7)) + 0(m, )y 2108 (dn(En, 7))

= 2108 (1(tnr)?) + o,00),

using in addition tha&(m,n) = 1 + O(n~'/2). Consequently,

Tt = Ciin = Oo1) + o) (14, 13) . fatog (st ) 2),

Tn (tn ) Tn)
(30)

and it has to be verified that the latter quantity goes to ityfifRecall that

ES,(tn 1) = VIVAE =) |, (@) (pal@) = gale) ) do

[0,1]¢

= Vny/ (1= A) Uty (2)On () T () dz

[0,1]¢
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and analogously

ltra = [ e J(as — ( lwwx>awwf

[0,1] [0,1]

= (1+00D) [ rn (@ ha(a)de (D)

We first assume that, = o(1), i.e. ||¢,|sup = 0(1). Using that

limsup sup sup | on(2) — ¢u(t)| = 0,
N0 4e[0,1)4 w€By ()

which follows by the same argument as used in Theorem 2 arfd¢hthat any sequence
of centers(t,,),.en has a convergent subsequence by the compactnés {ff

ES, (tn, ) f[o 1)d Vtrn () Pp () d
e ()
Tn (tTH Tn) |:f[0 1]d wtnrn ) } 12

Using the approximation in (31) we obtain analogously

\/2log (%(tn,rn)—2> — [QIOg (1/0(1) . bor (2)2d )T/Q. (33)

Recall thaty = 13  with K the bound of the support. Standard calculation shows that
the bounded.,-norm of~; implies

‘ fwtnrn;ﬁ,K(x)ﬁbn@)Cm ‘ _ | f¢tnrn x)op(x)dx ‘
[ s ()] * [ tarip)2d]

but note that the total variatioh'V'(vs i) is increasing ink. Define nows,, := (1 +
8)c(3, L)pmn- Then by its constructiont,,...s € Ha(0, L; R?). Moreover, by the
closedness i, and the convexity of the sefsp € Hq(3, L;R?) : ¢(t,) > 4, } and
{¢ € Ha(B,L;R?) : ¢(t,) < —6,}, it results finally from convex analysis and the
definition ofy4 that

[ Vtara@nlade | 5 outiol
|: f ¢t7L7"7L 2d$:| 1/2 B ||wtn7'n;ﬁ ||2

Combining (31) — (33), one verifies for the expression of fgatrhand side in (30) that
it is possesses the approximation

(30) = O,(1) + ViV/A(T At plla(L 4 ex) — (o) \/log (n/ log)

26 +d

(1+0(1). (32

(1+ck) with cx — 0 askK — oo,

= GuriIsll2-

2d L4
= 0,(1) + logn(—
? (26 + d)||vsll3

2d  \1/2
_ (Qﬁ—l—d) log (n/logn),

1/2
) LCO |y l5(1 + cx) (1 + 6)HCAH
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which goes to infinity forK sufficiently large. If there exists a sequengg, ),y of
admissible alternatives such thah sup,, ... Pn.n.p,.0.) (I > £a(X)) < 1, there exists
by the considerations above a subsequence (for simplitsty @enoted by(n)) along
which ||¢,||syp Stays uniformly bounded away from zero. But the bounds (28)(@9)

show that ¢ ) ( )
ES, (t,,7,) — ES,(t,,r

n\Un,Tn A n\tn;,'n) O —1/d+1/2 14+ 1 7

%(tmfn) <n )( Op( ))

as well as the logarithmic correction tei® ; , are in this case of smaller order than
|ES,,(t., )|, which concludes the proof by contradiction. O

PROOF OFTHEOREM 4  Following the considerations of the proof of Theorem 3ai h
to be established that there exist random seque(tesini) ., With Bx. (|| X;,, —

X, 2) C Ji,i = 1,...,k, such that for any sequence of alternatives as formulated in
Theorem 4 and any fixed” > 0

i inf P (15, — G > FaX)) = 1, i =1,k

n—oo

Then the result follows because the finite intersection tf w&th asymptotic probability
equal tol has asymptotically madsas well. Inspired by the arguments in Rohde (2008)
for the univariate regression context, we first establighfdfiowing:

For ¢, € Hd(ﬁ, L; [0,1]d) With [|¢,[lsup < 1 andz* = argmax,c(y 4 |¢n(z)|, there
exists some constant= ¢(3, L) > 0 and a compact balb = B(¢,,) C R? with center
x* such that

forallz € BN 0, 1]".

(34)
For let us assume that > 1 (the above inequality is trivial in caseé < 1). For let|j]
denote the largest integer strictly smaller thithand¢ € H, (ﬁ, L; |0, 1]d) With ||¢||sup =
D > 0. With j = (j1,...,74) € N we denote subsequently some multi-index, where
1j| = j1 + ... + ja defines its length;! := []°_, j;! the product of faculties,z — y)/ :=
H?:1(xi —y;)’ and

MBAWOY > clon (@) and |6,(x)| > 5] on(a)

Dl o= . 07 -
oxy' - .- Ozl
the partial derivative operator. Taylor expansion aroumd@ointy € [0, 1]¢ provides the
the approximation

o) = 3 2y Ry
lj1<18] '

with remainder termRy(z,y)| < Lz — yl||5 by definition of H4(8, L; [0,1]%). In
particular, these considerations entail that the polymbmix for any fixedy

S 2O,y (35)

]
151<18] J:
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is bounded isup-norm over(0, 1] by 2D+ L+v/d ?. In order to establish (34), note that for
any polynomialP = ngm a;x?, the topology induced by the metrics corresponding
to the two normg| P|| 1) = sup,¢(o.1)« | P(z)| and|| P|| () := max; |a;| respectively on the
ring of polynomials of total degreg3| on |0, 1]¢ is the topology of uniform convergence,
hence these two norms are equivalent. Consequently, thedkeduaess of the polynomial
in (35) by2D + Lvd ’ uniformly in y implies that there exists some constaht C(5)
such tha| Di¢||s.,, < C(2D + L) for all multi-indices; with |j| < [3]. Now the Mean
Value Theorem implies for some intermediate pairg {z + ¢(z* — 2);0 <t < 1}

[6(x) = o) | = | (V(2)" (x = a7)
< Vi sw | D0, "l
< VdC (2D + L) ||z — 2*||2.
Thus,
lp(z)] > l\gb(x*)\ forall z in B ( = ) n[o, 1%
=2 “\2vdCc(2D + L) ’

If ¢ € Ha(B,L;[0,1]%) with [|¢]lsup = & < 1, then the functionys, for = € [0,1]?
pointwise defined by;(z) := 0~1¢(6"Px + z*) - I{6"/Px + 2* € [0,1]?} is element of
Ha(0, L;supp(gs)) with ||gs||lsup = 1. Note thatsupp(gs) is a convex set. Therefore, the
above considerations imply thgt(x)| > 6/2 on

51/8 p
Bx*(m) N1

But then its Lebesgue measure is always greater thdf” for some constant =
¢(B, L), independent of andz*, hence (34) is established.

Let now 3;, L; € (0, c0) fixed but arbitrary,/; C [0, 1] some nondegenerate rectangle,
¢, a sequence of functions Witbl,lui € Hd(ﬁi,Li; Ji). It has to be shown that there
exists a universal constaht = k;(3;, L;, ¢) such thatfjn,%nn — Cmnn — pemgQe(n—m) 00
whenever||¢,||;, > kipmn. First, we choose a compact bdll(¢,) with centerz; :=

argmax, ; ¢, (t)| satisfyingA\(B;(¢,) N Ji) > c|pn(27)|¥? and (34). Let the couple

(tns ) == (X5, X5, — X, |l2) be defined by

J

~

(G, k) := argmin A(BXJ(HXJ-—Xk||2>ABi(¢n)).

Jke{l,...n}

Consulting the proof of Theorem 3, this definition(af, #,,) allows for an approximation
as in (30). Sincép,(z)| > 27 |¢,||,, forall z € B;(¢,) N B;, (7,) N J;,

ESn(tn, ’T’n) 1 minx hn([lf) . d 1/2 (B+d/2)/8
— > ol —————LEN Bi(¢n)NB; (7, o1 > s 14+o0(1)).
s 2 gl S SEA (BN B, ()0, 1)) T 2 Cllanll i (1+0(1)
Now the asserted result is easily deduced for a sufficieattyel constant;. O
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9 Appendix

We start with a basic but useful property of the solution fo (3

Lemma 4. If the solution to (3) is not of bounded support, it has in&éhitmany crossings
of zero. In that case, the lower isotonic and upper antit@ricelopes ofz/{- > 0} are
strictly monotone and vanishing ico.

PROOF Thefirst partis obvious: from any local extremal point, weyragtend the func-
tion in a monotonic way by minimizing its absolute value paiise under the constraint
thatv (|.]|2) belongs toH,(3, L; R) and end finally up in zero. Since thg-norm of
the solution (3) is finite and if there exists a sequence dadllegtrema of)s which stays
uniformly bounded away from zero, their width must be bouhidg a zero sequence. But
now the result follows via contradiction of (34), which, afwrse, is also applicable for
local extrema. O

Lete > 0 be fixed. Define. to be a positive real number such that the following con-
ditions are satisfiedt. is a local extremal pointf,  vs(z)*d(z) > (1 —/2)|7sll3,
Y8000 < €/2. Now extend the functionig/{- < t.} to a compactly supported
function G. such thatG. € H;(3,1;R), G. crosses zero at most once for> t¢.,

2 . . .
fG€(||x||?)_dx = 0 and fRd\BtE(O) G5(||x|_|2_) dx smaller thanz||_7_5||§ (which is possible
for t. sufficiently large, we omit an explicit construction at thisint). Withe sufficiently
small, this construction leads to what was required in tlo®pof Theorem 2.
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