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Abstract

Based on two independent samplesX1, ...,Xm andXm+1, ...,Xn drawn from
multivariate distributions with unknown Lebesgue densitiesp andq respectively, we
propose an exact multiple test in order to identify simultaneously regions of signifi-
cant deviations betweenp andq. The construction is built from randomized nearest-
neighbor statistics. It does not require any preliminary information about the multi-
variate densities such as compact support, strict positivity or smoothness and shape
properties. The adjustment for multiple testing is sharp-optimal for typical arrange-
ments of the observation values which appear with probability close to one, and it
relies on a new coupling Bernstein type exponential inequality, reflecting the non-
subgaussian tail behavior of the combinatorial process. For power investigation of
the proposed method a reparametrized minimax set-up is introduced, reducing the
composite hypothesis “p = q” to a simple one with the multivariate mixed den-
sity (m/n)p + (1 − m/n)q as infinite dimensional nuisance parameter. Within this
framework, the test is shown to be spatially and sharply asymptotically adaptive with
respect to uniform loss on isotropic Hölder classes.

1 Introduction

Given two independent multivariate iid samples

X1, ..., Xm and Xm+1, ..., Xn

with corresponding Lebesgue densitiesp andq respectively, we are interested in identi-
fying simultaneously subregions of the densities support wherep deviates significantly
from q at prespecified but arbitrarily chosen levelα ∈ (0, 1). For this aim a multiple test
of the composite hypothesisH0 : p = q versusHA : p 6= q is proposed, built from
a suitable combination of randomized nearest-neighbour statistics. The procedure does
not require any preliminary information about the multivariate densities such as compact
support, strict positivity or smoothness and shape properties, and it is valid for arbitrary
finite sample sizesm andn − m. The hierarchical structure of p-values for subsets of
deviation betweenp andq provides insight into the local power of nearest-neighbor clas-
sifiers, based on the training set{X1, ..., Xn}. Thus our method is of interest in particular
if the classification error depends strongly on the value of the feature vector, related to
recent literature on classification procedures by Belomestny and Spokoiny (2007).

There is an extensive amount on literature concerning two-sample problems. Most of it
is devoted to the one-dimensional case as there exists the simple but powerful “quantile
transformation”, allowing for distribution-freeness under the null hypothesis of several
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test statistics. Starting from the classical univariate mean shift problem (see e.g. Hájek
andŠidák 1967), more flexible alternatives as stochasticallylarger or omnibus alternatives
have been investigated for instance by Behnen, Neuhaus and Ruymgaart (1983), Neuhaus
(1982, 1987), Fan (1996), Janic-Wróblewska and Ledwina (2000) and Ducharme and
Ledwina (2003). Our approach is different in that it aims at spatially adaptive and simul-
taneous identification of local rather than global deviations. In the above cited literature
asymptotic power is discussed against single directional alternatives tending to zero at a
prespecified rate, typically formulated by means of the densities p̃ and q̃ corresponding
to the transformed observations̃Xi = H(Xi), whereH denotes the mixed distribution
function with densityh = (m/n)p + (1 − m/n)q. Note that the mappingH coincides
with the inverse quantile transformation under the null.

For power investigation of our procedure a specific two-sample minimax set-up is intro-
duced. It is based on a reparametrization of(p, q) to a couple(φ, h), reducing the compos-
ite hypothesis ”p = q” to the simple one ”φ ≡ 0” with the multivariate mixed densityh
as infinite dimensional nuisance parameter. The reparametrization conceptionally differs
from the above described transformation for the univariatesituation as it cannot rely on
the inverse mixed distribution function. Nevertheless it leads under moderate additional
assumptions in that case to the same notion of efficiency. In order to explore the power of
our method, the alternative is assumed to be of the form

{
(p, q) : (m/n)p+ (1 −m/n)q = h, φ ∈ F , ‖φ‖ ≥ δ

}
(1)

for fixed but unknownh, some suitably chosen (semi-)norm‖.‖, a constantδ > 0 and a
given smoothness classF . For anyα ∈ (0, 1) the quality of a statistical level-α-testψ is
then quantified by its minimal power

inf E(p,q)ψ,

where the infimum is running over all couples(p, q) which are contained in the set (1).
It is a general problem that an optimal solutionψ may depend onF andh. Since the
smoothness and shape of a potential differencep − q are rarely known in practice, it is
of interest to come up with a procedure which does not depend on these properties but is
(almost) as good as if they were known, leading to the notion of minimax adaptive testing
as introduced in Spokoiny (1996). Note that here we have however h as an additional
infinte dimensional nuisance parameter.

The problem of data-driven testing a simple hypothesis is further investigated for instance
by Eubank and Hart (1992), Ledwina (1994), Ledwina and Kallenberg (1995), Fan (1996)
and Dümbgen and Spokoiny (2001) among others. The idea in common is to combine a
family of test statistics corresponding to different values of the smoothing parameters,
respectively. The closest in spirit to ours is the multiscale test developed in D́’umbgen
and Spokoiny (2001) within the continuous time Gaussian white noise model and fur-
ther explored by Dümbgen (2002), Dümbgen and Walther (2008) and Rohde (2008), all
concerned with univariate problems.

The paper is organized as follows. In the subsequent section, a multiple randomization
test is introduced, built from a combination of suitably standardized nearest-neighbor
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statistics. Its calibration relies on a new coupling exponential bound and an appropriate
extension of the multiscale empirical process theory. Asymptotic power investigations
and adaptivity properties are studied in Section 3, where the reparametrized minimax set-
up is introduced. It is shown that our procedure is sharply asymptotically adaptive with
respect tosup-norm‖·‖ on isotropic Hölder classesF , i.e. minimax efficient over a broad
range of Hölder smoothness classes simultaneously. The application to local classifica-
tion is discussed in Section 4. The one-dimensional situation is considered separately
in Section 5 where an alternative approach based on local pooled order statistics is pro-
posed. In that case the statistic does not depend on the observations explicitly but only
on their order which in contrast to nearest-neighbor relations is invariant under the quan-
tile transformation. Section 6 is concerned with a decoupling inequality and the coupling
exponential bounds which are essential for our construction. Both results are of indepen-
dent theoretical interest. All proofs and auxiliary results about empirical processes are
deferred to Section 7 and Section 8.

2 Combining randomized nearest-neighbor statistics

The procedure below is mainly designed for dimensiond ≥ 2. The univariate case
contains a few special features and is considered separately in Section 5. Let X :=
(X1, ..., Xn)

′ and denote byXn the pooled set of observations. For any1 ≤ k ≤ n,
thek’th nearest-neighbor ofX ∈ Xn with respect to theEuclidean distanceis denoted
byXk; additionally defineX0 := X. Note that the nearest-neighbors are unique a.s. The
weighted labels are defined as follows

Λ(X) :=

{
n
m

if X is contained in the first sample

− n
n−m

otherwise.

In order to judge about some possible deviation ofp from q on a given setB ∈ Bd, a nat-
ural statistic to look at is a standardized version ofP̂n(B)− Q̂n(B) or more sophisticated,

∫

B

ψB(x)
(
dP̂n(x) − dQ̂n(x)

)

for some kernelψB supported byB, whereP̂n and Q̂n denote the empirical measures
corresponding to the first and second sample, respectively.Note that the statistic is not
distribution-free, and in order to build up a multiple testing procedure several statistics
corresponding to different setsB have to be combined in a certain way.
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2.1 Local nearest-neighbor statistics

Let ψ : [0, 1] → R denote any kernel of bounded total variation withmaxx∈[0,1] |ψ(x)| =
ψ(0) = 1. We introduce the local test statistics

Tjkn :=

√
(m/n)(1 −m/n)

γjkn

1√
n

k∑

i=0

ψ

( ‖Xj −X i
j‖2

‖Xj −Xk
j ‖2

)
Λ(X i

j)

=

√
(m/n)(1 −m/n)

γjkn

√
n

∫
ψ

( ‖Xj − x‖2

‖Xj −Xk
j ‖2

)(
dP̂n(x) − dQ̂n(x)

)
,

where

γjkn
2 :=

1

n− 1

n−1∑

i=0

[
ψ

( ‖Xj −X i
j‖2

‖Xj −Xk
j ‖2

)
− 1

n

n−1∑

l=0

ψ

( ‖Xj −X l
j‖2

‖Xj −Xk
j ‖2

)]2

.

Every Tjkn is some in a certain sense standardized weighted average of the nearest-
neighbor’s labels and its absolute value should tend to be large wheneverp is clearly larger
or smaller thanq within the random Euclidean ball with centerXj and radius‖Xj−Xk

j ‖2.

2.2 Adjustment for multiple testing

The idea is to build up a multiple test, combining all possible local statisticsTjkn. Pre-
cisely, we aim at a supremum type test statistic

Tn := sup
1≤k≤n

sup
1≤j≤n

{
|Tjkn| − Cjkn

}
,

where the constantsCjkn are appropriately chosen correction terms (independent ofthe
label vectorΛ) for adjustment of multiple testing within every ”scale”k of k-nearest-
neighbor statistics. Although the distribution ofTn under the null hypothesis depends on
the unknown underlying distributionp = q, the conditional distributionL0(Tn|Xn) of the
above statistic is invariant under permutation of the the components of the label vector
Λ. Here and subsequently, the index ”0” indicates the null hypothesis, i.e. any couple
(p, q) with p = q. Precisely, let the random variableΠ be uniformly distributed on the
symmetric groupSn of ordern, independent of X. ThenL0

(
Tn
Xn

)
= L

(
Tn ◦Π

Xn

)
,

where
(
Tn ◦ Π

)
(Λ) := Tn

(
ΛΠ1 , ...,ΛΠn

)
. Elementary calculation entails that

E

(
Tjkn ◦ Π

Xn

)
= 0 and Var

(
Tjkn ◦ Π

Xn

)
= 1.

Thus the null hypothesis is satisfied if, and only if, the hypothesis of permutation invari-
ance (or complete randomness) conditional onXn is satisfied.

An adequate calibration of the randomized nearest-neighbor statistics, i.e. the choice of
smallest possible constantsCjkn, requires both, an exact understanding of their tail be-
havior and their dependency structure. Note that the randomized nearest-neighbor statis-
tics have a geometrically involved dependency structure. Even in case of the rectangu-
lar kernelψ it depends explicitly on the ”random design”Xn which incomplicates the
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sharp-optimal calibration for multiple testing compared to univariate problems, where
the dependency of the single test statistics remains typically invariant under monotone
transformation of the design points. Also, the optimal correction originally designed for
Gaussian tails in Dümbgen and Spokoiny (2001) does not carry over as only the subse-
quent Bernstein type exponential tail bound is available.

A coupling exponential inequality Based on an explicit coupling, the following propo-
sition remarkably tightens the exponential bounds derivedin Serfling (1974) in the present
framework. If not stated otherwise, the random variableΠ is uniformly distributed onSn,
independent of X.

Proposition 1. LetTjkn be as introduced above and define

δ(m,n) :=

(
E min

( S
m
,
n− S

n−m

))−1

with S ∼ Bin
(
n,m/n

)
.

Then

P

(Tjkn ◦ Π
 > δ(m,n)η

Xn

)
≤ 2 exp

(
− η2/2

1 + η n−1/2γ−1
jknRψ(m,n)

)
,

where

Rψ(m,n) :=
‖ψ‖sup

3

max(m,n−m)√
m(n−m)

.

REMARK The expressionδ(m,n) is the payment for decoupling which appears by re-
placing the tail probability of an hypergeometric ensembleby that of the Binomial anal-
ogon. For details we refer to Section 6. In the typical case0 < lim infn(m/n) ≤
lim supn(m/n) < 1 we obtainδ(m,n) = 1 + O(n−1/2). Compared to results obtained
for weighted averages of standardized, independent Bernoulli’s, the above Bernstein type
appears to be nearly optimal, i.e. subgaussian tail behavior is actually not present.

Via inversion of the above exponential inequality, additive correction termsCjkn for ad-
justment of multiple testing are constructed. The next Theorem motivates our approach.
The construction is designed for typical arrangements of the observation values which
appear with probability close to one. To avoid technical expenditure, we restrict our at-
tention to compactly supported densities.dw denotes the dual bounded Lipschitz metric
which generates the topology of weak convergence. ”→Pn

” refers to convergence in prob-
ability along the sequence of distributions(Pn).

Theorem 1. Define the test statistic

Tn := sup
1≤j,k≤n

{
|Tjkn| − Cjkn

}

with
Cjkn := 3Rnγ

−1
jknδ(m,n)Γjkn + δ(m,n)

√
2 Γjkn,
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whereRn = n−1/2Rψ(m,n) and Γjkn := log
(
1
/
γjkn

2
)
. Assume that the sequence of

mixed densitieshn := (m/n)pn + (1 − m/n)qn on [0, 1]d is equicontinuous and uni-
formly bounded away from zero, while0 < lim infnm/n ≤ lim supnm/n < 1. Then
the sequenceL

(
Tn ◦ Π

Xn

)
of conditional distributions is tight in

(
P⊗m
n ⊗ Q

⊗(n−m)
n

)
-

probability. Additionally,

dw

(
L
(
Tn ◦ Π

Xn

)
, L(THn

)
)

−→
P⊗m

n ⊗Q
⊗(n−m)
n

0,

where

THn
:= sup

t∈[0,1]d,
0<r≤ max

x∈[0,1]d
‖x−t‖2

{  ∫
[0,1]d

φrt,n(x) dW (x)


γrt,n
−
√

2 log
(
1/γrt,n2

)
}

withW a standard Brownian sheet in[0, 1]d, γrt,n :=
( ∫

[0,1]d
φrt,n(x)

2dx
)1/2

and

φrt,n(x) :=

[
ψ
(‖x− t‖2

r

)
−
∫

[0,1]d
ψ
(‖z − t‖2

r

)
hn(z)dz

]√
hn(x).

The extra-term3Rnγ
−1
jknδ(m,n)Γjkn in the constantCjkn results from the exponential in-

equality in Proposition 1 and can be viewed as an additional penalty for non-subgaussianity.
The theorem entails in particular that the sequenceL(Tn ◦Π |Xn) is weakly approximated
in probability by a tight sequence ofnon-degeneratedistributionsL(THn

) which indi-
cates that our correctionsCjkn are appropriately defined and cannot be chosen essentially
smaller. Note that the approximationL(THn

) depends on the unknown mixed distribu-
tion even under the null hypothesis. For non-compactly supported densities, the tightness
may be shown using the coordinatewise quantile transformation (which however does not
preserve the geometry) before applying the techniques of the proof for the compact case.

2.3 The multiple rerandomization test

Letκα(X) := argminC>0

{
P
(
Tn ◦Π ≤ C| Xn

)
≥ 1−α

}
denote the generalized(1−α)-

quantile ofL
(
Tn ◦ Π

Xn

)
. Then we propose the conditional test

φα(X) :=

{
0 if Tn ≤ κα(X)

1 if Tn > κα(X).

Our method can be viewed as a multiple testing procedure. Fora given set of observations
{X1, ..., Xn}, the corresponding test statistic exceeds the(1 − α)-quantile if, and only if,
the random set

Dα :=
{
BXj

(
‖Xk

j −Xj‖2

) 1 ≤ j, k ≤ n; Tjkn(X) > Cjkn(X) + κα(X)
}

is nonempty, whereBt(r) denotes the Euclidean ball inRd with centert and radiusr.
Since the test is valid conditional on the set of observations, we may conclude thatp
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deviates fromq at significance levelα on everyEuclidean ballBt(r) ∈ Dα. In order to
reduce the computational expenditure and to increase sensitivity on smaller scales, one
may restrict one’s attention to pairs(j, k) for k ≤ m for some integerm ∈ {1, ..., n}.
Note the validity of the test does not require any assumptionabout the densities - even not
Lebesgue continuity.

3 Minimax-efficiency and spatial adaptivity

In this section we show that the above introduced multiple testing procedure possesses
optimality properties in a certain minimax sense. Let us first introduce some notation.
For any setJ ⊂ [0, 1]d and functionf from [0, 1]d → R, ‖f‖J := supx∈J |f(x)|. For any
pair of densities(p, q) on [0, 1]d, leth(m,n, p, q) denote the corresponding mixed density
(m/n)p+ (1−m/n)q. Fix a continuous densityh > 0 and defineF (m,n)

h (β, L) to be the
set of pairs of densities such that

φ(m,n, p, q) :=
p− q√

h(m,n, p, q)
∈ Hd

(
β, L; [0, 1]d

)
and h(m,n, p, q) = h.

For any convexI ⊂ Rd let Hd(β, L; I) denote the isotropic Hölder smoothness class,
which forβ ≤ 1 equals

Hd(β, L; I) :=
{
φ : I → R :

φ(x) − φ(y)
 ≤ L‖x− y‖β2

}
.

Let ⌊β⌋ denote the largest integer strictly smaller thanβ. Forβ > 1, Hd(β, L; I) consists
of all functionsf : I → R that are⌊β⌋ times continuously differentiable such that the
following property is satisfied: ifP (f)

y denotes the Taylor polynomial off at the point
y ∈ I up to the⌊β⌋’th order,

f(x) − P (f)
y (x)

 ≤ L‖x− y‖β2 for all x, y ∈ I.

In particular the definition entails thatf ∈ Hd(β, L; Rd) impliesf ◦ U ∈ Hd(β, L; Rd)
for every orthonormal transformationU ∈ Rd×d.

Reparametrizing the composite hypothesis With the notation above,

p = h ·
(
1 + (1 −m/n)φ

/√
h
)

and q = h ·
(
1 − (m/n)φ

/√
h
)
.

Consequently ”p = q” is equivalent to ”φ ≡ 0”, and if (m/n)p+ (1−m/n)q = h is kept
fixed, the composite hypothesis ”p = q” reduces to the simple hypothesis ”φ ≡ 0”. In
order to develop a meaningful notion of minimax-efficiency for the two-sample problem
we treat subsequently the mixed densityh = h(m,n, p, q) as fixed but unknown infinite
dimensional nuisance parameter for testing the hypothesis

H0 : φ = 0 versus HA : φ 6= 0.

Note that in case thath is uniformly bounded away from zero andp is close toq, φ coin-
cides approximately with the difference2

(√
p−√

q
)
, see also the explanation subsequent

to Theorem 2.

7



REMARK It is worth being noticed that the optimal statistic for testingH0 against any
fixed alternativeφ equals the likelihood ratio statistic

dP(m,n,p,q)

dP(m,n,h,h)

(X) =

m∏

i=1

(
1 − (m/n)

φ√
h

(Xi)
) n∏

j=m+1

(
1 + (1 −m/n)

φ√
h

(Xj)
)
,

whose distribution still depends onh under the null. Here and subsequently, the subscript
(m,n, p, q) indicates the distribution with density

∏m
i=1 p

∏n
i=m+1 q. The rational behind

the reparametrization is to eliminate the dependency on thenuisance parameterh in the
expectation under the null of the first and second order term of the log-likelihood expan-
sion, resulting in asymptotic independence ofh for its distribution under the hypothesis
for any local sequence(φn).

Theorem 2(Minimax lower bound). Let

ρm,n :=
( n log n

m(n−m)

)β/(2β+d)

and definec(β, L) :=

(
2 dLd/β

(2β + d)‖γβ‖2
2

)β/(2β+d)

,

whereγβ defines the solution to the optimal recovery problem (2) below. Assume that
the sequence of mixed densities(hn) on [0, 1]d is equicontinuous and uniformly bounded
away from zero. Then for any fixedδ > 0 and every nondegenerate rectangleJ ⊂ [0, 1]d,

lim sup
n→∞

inf
(p,q)∈F

(m,n)
hn

(β,L):

‖φ‖J≥(1−δ)c(β,L)ρm,n

E(m,n,p,q) ψn ≤ α

for arbitrary testsψn at significance level≤ α.

Note thatψn may depend on(β, L) and even on the nuisance parameterhn as already
does the Neyman-Pearson test for testingH0 against any one-point alternative.

We now turn to the investigation of the test introduced in Section 2. To motivate the choice
of an optimal kernel for our test statistics and its relationto the optimal recovery problem,
let us restrict our consideration to the Gaussian white noise context, leading in case of
univariate Hölder continuous densities on[0, 1] with β > 1/2 to locally asymptotically
equivalent experiments

dX1n(t) = pn(t) dt+

√
hn(t)√
m

dW1(t) and dX2n(t) = qn(t) dt+

√
hn(t)√

(n−m)
dW2(t)

for two independent Brownian motionsW1 andW2 on the unit interval (Nussbaum 1996,
Theorem 2.7 withf0 = hn and Remark 2.8). A multiscale statistic built from standardized
differences of kernel estimates

√
(m/n)(1 −m/n)

‖ψ
√
hn‖2

∫
ψ(t)

(
dX1n(t) − dX2n(t)

)

(which is actually not admissible sincehn is unknown in general) then yields a distri-
bution under the null close to ours in Theorem 1, up to the factthat our local integrals
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in dimension one are taken with respect to a Brownian bridge,reformulated to a Wiener
process integrand by change of the kernel. Concerning the optimization ofψ, the quantity
to be maximized within this Gaussian white noise context appears to be the expectation
of the single test statistics under the least favorable alternatives as their variances do not
depend on the mean. In casehn ≡ 1 this expression equals

inf
φ∈H1(β,L;[0,1]):

‖φ‖J≥δ

∫
φ(t)ψ(t) dt

‖ψ‖2
,

leading to the dual representation of the optimal recovery problem (see Donoho 1994a).

The optimal recovery problem in higher dimension In the framework of isotropic
Hölder balls, the optimal recovery problem leads to the solutionγ = γβ of the optimiza-
tion problem

Minimize ‖γ‖2 over allγ ∈ Hd

(
β, 1; Rd

)
with γ(0) ≥ 1. (2)

The closedness ofHd(β, L; Rd)∩
{
γ : Rd → R

 γ(0) ≥ 1
}

in L2 entails that the solution
exists, its convexity implies furthermore uniqueness whence by isotropy of the functional
classHd(β, 1; Rd) it must be radially symmetric. In caseβ ≤ 1, one easily verifies that
γβ(x) = ψβ

(
‖x‖2

)
=
(
1 − ‖x‖β2

)
+

. In its generality, the optimal recovery problem in
higher dimension has not yet been investigated. Considering the partial derivatives of
γβ at the origin entails thatψβ is necessarily contained inH1(β, L; R). However, the
transferred optimization problem

minimize
∫
ψ(r)2|r|d−1dr over allψ with ψ

(
‖.‖2

)
∈ Hd(β, 1; R) andψ(0) ≥ 1 (3)

does not coincide with the univariate optimal recovery problem due to the additional
weighting by|r|d−1 which comes into play by polar coordinate transformation. Whether
the solution of (3) forβ > 1 is compactly supported or not is still open. For the case
of univariate densities, it is known that the solution of theoptimal recovery problem has
compact support for anyβ > 0 (Leonov 1997), but an explicit solution in caseβ > 1 is
known forβ = 2 only. Concerning details and advice on its construction, see Donoho
(1994b) and Leonov (1999).

The next Theorem is about the asymptotic power of the multiple test developed in Section
2. We restrict our attention to compact rectangles of(0, 1)d to avoid boundary effects.
This restriction may be relaxed by the use of suitable boundary kernels, extending those
of Lepski and Tsybakov (2000) for the univariate regressioncase to higher dimension.

Theorem 3(Adaptivity and minimax efficiency). Letφ∗
n,α denote the multiple rerandom-

ization test at significance levelα, based on the kernelψβI{· ≥ 0} rescaled to[0, 1]. In
case of unbounded support ofψβ , we may use a truncated solutionψβ,K = ψβI{0 ≤ · ≤
K}. Let 0 < lim infnm/n ≤ lim supnm/n < 1. Assume that(hn) is equicontinuous
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and uniformly bounded away from zero. Then for any fixedδ > 0, there exists aK > 0
such that

lim inf
n→∞

inf
(p,q)∈F

(m,n)
hn

(β,L):

‖φ‖J≥(1+δ)c(β,L)ρm,n

P(m,n,p,q)

(
φ∗
n,α = 1

)
= 1

for any nondegenerate compact rectangleJ ⊂ (0, 1)d.

Note at this point that in its origin, the question of optimaladjustment for multiple testing
is connected to a fixed choice of local test statistics and does not involve any optimality
considerations concerning the kernel. Theorem 3 shows however that the use of ade-
quately chosen kernels in the local test statistics even leads to sharp-optimality in the
above introduced minimax sense - which in retrospect shows optimality of the calibration
for the multiple test with respect tosup-norm loss.

REMARK It is worth being noticed that the procedure achieves the upper bound uni-
formly over a large class of possible mixed densities. The intrinsic reason is that condi-
tioning onXn is actually equivalent to conditioning on̂Hn, which indeed is a sufficient
and complete statistic for the nuisance functionalHn.

REMARK (Sharp adaptivity with respect toβ andL) Our construction, including the
procedure especially designed for the one-dimensional situation, involves one kernel,
shifted and rescaled depending on location and volume of thenearest-neighbor cluster
under consideration. Due to the dependency of the optimal recovery solutionγβ on β,
the corresponding test statisticTn = Tn(β) achieves sharp adaptivity with respect to the
second Hölder parameterL only. Taking in addition the supremumsupβ∈[β0,β1] Tn(β)
over all kernelsγβ within a compact range[β0, β1] ⊂ (0,∞), one may check the proof
of Theorem 3 to verify that sharp adaptivity with respect to both Hölder parameters can
be attained, provided that the above supremum statistic still defines a tight sequence. We
however omit the investigation to avoid the technical expenditure as the result is rather of
theoretical interest than of practical relevance.

The next theorem shows however that our procedure simply based on the rectangular
kernel is rate-adaptive with respect to both Hölder parameters (β, L). Due to the fact
that it combines locally all nearest-neighbor scales at thesame time, it even adapts to
inhomogeneous smoothness ofp− q, i.e. achievesspatial adaptivity.

Theorem 4 (Spatial rate-optimality). Let φ∗
n,α denote the multiple rerandomization test

based on the rectangular kernel. Assume that0 < lim infnm/n ≤ lim supnm/n <
1. Then for any fixedk ∈ N and parameters(β1, ..., βk, L1, ..., Lk), K > 0 and any
collection of disjoint compact rectanglesJi ⊂ [0, 1]d, i = 1, ..., k, there exist constants
di = d(βi, Li, K) with

lim inf
n→∞

inf
(p,q):

(p−q)|Ji
∈Hd

(
βi,Li;Ji

)
‖p−q‖Ji

≥ di ρm,n(βi),

h(m,n,p,q)|Ji
≥K

P(m,n,p,q)

(
Ji ∩ Dα(Xn) 6= ∅ ∀ i = 1, ..., k

)
= 1.
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4 Application to classification

Suppose we are given an iid sample(Xi, Yi), i = 1, ..., n, where the marginal distribution
of Xi is assumed to be Lebesgue-continuous with densityh onRd, andYi takes values in
{0, 1} with

P

(
Yi = 1

Xi = x
)

= ρ(x).

ThenM :=
∑n

i=1 Yi ∼ Bin
(
n, λ

)
with λ :=

∫
ρ(x)h(x)dx. Assumingλ ∈ (0, 1) to be

known, the question of local classification is to identify simultaneously subregions inRd

whereρ deviates sifnificantly fromλ which results in local testing the hypotheses

H0 : ρ = λ versus HA : ρ 6= λ.

Imitating our procedure introduced in Section 2, we may combine suitably standardized
local weighted averages of labels, but the standardizationdiffers due to the fact that the
sum of (strictly) positive labels is random and not fixed, in particularY1, ..., Yn are stochas-
tically independent. Consequently, we may then rely the procedure on the classical Bern-
stein exponential inequality for weighted averages of standardized Bernoullis. Of course,
the optimal separation constant for testing ”ρ = λ” within some Euclidean ballBt(r) and
its complement depends on the amount of observations inBt(r), whence analogously to
the consideration above for the two-sample problem we may use the reparametrization of
(ρ, h) to (φ, h) with

φ :=
ρ− λ

λ(1 − λ)

√
h.

The power optimality results carry over to the classification context with similar argu-
ments as used in the proof of Theorem 3. We omit its explicit formulation at this point.

5 Distribution-freeness via quantile transformation – the
case d=1

The one-dimensional situation allows an alternative and more elegant approach based
on order relations. For letX(1), ..., X(n) denote the order statistic built from the pooled
sample and define for any0 ≤ j < k ≤ n the local test statistics

Ujkn : =

√
(m/n)(1 −m/n)

ηjkn

1√
n

k∑

i=j+1

ψ
( i

k − j

)
Λ(X(i)),

where

ηjkn
2 :=

1

n− 1

n∑

i=1

(
ψ
( i− j

k − j

)
− 1

n

n∑

l=1

ψ
( l − j

k − j

))2

.

Compared to the procedure described in the previous section, we omit the explicit depen-
dence of the weights on the observed values. Note that in contrast to nearest-neighbor
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relations, the order remains invariant under quantile transformation, i.e. rank(Hn(Xi)) =
rank(Xi), resulting in distribution-freeness of the correspondingmultiscale statistic under
the null. Suppose the null hypothesis is satisfied for some Lebesgue continuous distribu-
tion on the real line. Then conditional on the order statistics as well as unconditional, the
label vector is uniformly distributed on the set

{
Λ ∈

{
n/m,−n/(n−m)

}n
:

n∑

i=1

Λ−1
i = 0

}
.

The described test statistics are local versions of classical Wilcoxon rank sum statistics.
We omit any further investigation as the calibration for multiple testing can be done anal-
ogously to that proved in Theorem 1 – but keep in mind that the approximating Gaussian
multiscale statistic under the null hypothesis will be independent of the nuisance func-
tional Hn due to the quantile transformation. Note that the use of typical mathematical
tools for power investigation of rank statistics like Hoeffding’s decomposition is getting
involved because the kernelψβ for β ≤ 1 is not differentiable.

6 Decoupling inequality and coupling exponential bounds

This section contains the coupling exponential bounds, i.e. in this context for weighted av-
erages from a hypergeometric ensemble. Using a different technique, namely an explicit
coupling construction, the subsequent proposition extends results of Hoeffding (1963) on
decoupling of expectations of convex functions in the arithmetic mean of a sample with-
out replacement. Whereas in the latter case decoupling withconstant1 is actually correct,
a simple counterexample for an ensemble of two elements already shows that the result
does not extend to arbitrary weighted averages, and some payment for decoupling appears
to be necessary.

Proposition 2 (Decoupling inequality). LetZ1, Z2, ..., Zn be iid with

P
(
Zi = 1

)
=

m

n
and P

(
Zi = 0

)
= 1 − m

n
, 0 < m < n.

Leta ∈ Rn with
∑n

i=1 ai = 0 andΨ : R → R be convex. Then

E

(
Ψ
( n∑

i=1

aiZi

)
n∑

i=1

Zi = m

)
≤ E Ψ

(
δ(m,n)

n∑

i=1

aiZi

)
,

with

δ(m,n)−1 := E min
( S
m
,
n− S

n−m

)
, S ∼ Bin

(
n,
m

n

)
.

In particular, δ(m,n)−1 = 1 +O(n−1/2) for m/n→ λ ∈ (0, 1).
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PROOF LetX be uniformly distributed on the set

{
x ∈ {0, 1}n :

n∑

i=1

xi = m
}

and letS ∼ Bin(n,m/n) such thatX andS are independent. Define

M :=
{
i : Xi = 1

}
.

Conditional onX andS, the random vectorZ ∈ {0, 1}n is constructed as follows:

If S > m, letZi = 1 for all i ∈M and let(Zi)i∈Mc be uniformly distributed on the set
{
z ∈ {0, 1}Mc

:
∑

i∈Mc

zi = S −m
}
.

ForS ≤ m, letZi = 0 for all i ∈M c and let(Zi)i∈M be uniformly distributed on
{
z ∈ {0, 1}M :

∑

i∈M

zi = S
}
.

Note thatZ1, ..., Zn are iidBin(1, m/n). Then

E Ψ
( n∑

i=1

aiZi

)
= EE

(
Ψ
( n∑

i=1

aiZi

)X,S
)

≥ E Ψ

(
E

( n∑

i=1

aiZi

X,S
))

(Jensen inequality)

= E Ψ

(
I{S ≤ m} S

m

∑

i∈M

ai + I{S > m}
(∑

i∈M

ai +
S −m

n−m

∑

i∈Mc

ai

))

= E Ψ

(
I{S ≤ m} S

m

∑

i∈M

ai + I{S > m} n− S

n−m

∑

i∈M

ai

) ( n∑

i=1

ai = 0
)

= E Ψ

(
min

( S
m
,
n− S

n−m

) n∑

i=1

aiXi

)

= EE

[
Ψ

(
min

( S
m
,
n− S

n−m

) n∑

i=1

aiXi

)X
]

≥ E Ψ

(
E

{
min

( S
m
,
n− S

n−m

)} n∑

i=1

aiXi

)
(Jensen inequality).

Furthermore,

E min
( S
m
,
n− S

n−m

)
= 1 − E

((S −m)−
m

+
(S −m)+

n−m

)

≥ 1 − E

( |S −m|
min(m,n−m)

)

≥ 1 − λ(m,n)√
n
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with λ(m,n) :=
√
m(n−m)

/
min(m,n−m), which is uniformly bounded form/n→

λ ∈ (0, 1). �

Using the decoupling above, the next proposition presents the exponential bounds which
are essential for our construction. It implies Proposition1 in particular and remarkably
tightens related exponential bounds of Serfling (1974) for the present context. The results
may also be compared with the decoupling based exponential tail bounds in de la Pẽna
(1994, 1999).

Proposition 3 (Coupling exponential inequalities). LetZ1, ..., Zn be iid with

P
(
Zi = 1

)
=

m

n
and P

(
Zi = 0

)
= 1 − m

n
, 0 < m < n.

Letψ1, ..., ψn real valued numbers with̄ψ its arithmetic mean and denote

γm,n
2 := Var

( n∑

i=1

ψiZi


n∑

i=1

Zi = m

)
=

m(n−m)

n(n− 1)

n∑

i=1

(
ψi − ψ̄

)2
.

Then in case ofγm,n 6= 0,

P

(
1

γm,n

n∑

i=1

ψi

(
Zi −

m

n

) > δ(m,n)η



n∑

i=1

Zi = m

)
≤ 2 exp

(
− η2/2

1 + η R(ψ,m, n)

)

≤ 2 exp

(
− 3η

2c(m,n)
+

9

2c(m,n)2

)
,

where

R(ψ,m, n) :=
maxi |ψi − ψ̄|

3 γm,n
max

(m
n
, 1−m

n

)
and c(m,n) :=

max(m,n−m)√
m(n−m)

.

PROOF With

M :=
maxi |ψi − ψ̄|

γm,n
max

(m
n
, 1 − m

n

)

we obtain for anyt > 0

P

(
1

γm,n

n∑

i=1

ψi

(
Zi −

m

n

)
> δ(m,n)η



n∑

i=1

Zi = m

)

= P

(
1

γm,n

n∑

i=1

(
ψi − ψ̄

)(
Zi −

m

n

)
> δ(m,n)η



n∑

i=1

Zi = m

)

≤ exp
(
− t

η

M

)
E

{
exp

(
t δ(m,n)−1

M γm,n

n∑

i=1

(
ψi − ψ̄

)(
Zi −

m

n

))
n∑

i=1

Zi = m

}

≤ exp
(
− t

η

M

)
E exp

(
t

M γm,n

n∑

i=1

(
ψi − ψ̄

)(
Zi −

m

n

))
(Proposition 2)

≤ exp

(
1

M2

(
et − 1 − t

)
− t

η

M

)
, (4)
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whereby the last inequality follows from the fact that for any random variableY with
|Y | ≤ 1, EY = 0 andVar(Y ) = σ2,

E exp(tY ) ≤ 1 + σ2(et − 1 − t) ≤ exp
(
σ2(et − 1 − t)

)
.

Elementary algebra shows that (4) is minimized with the choicet := log
(
1+ηM

)
,which

yields first a Bennett (1962) exponential bound by Chebychef’s inequality and because of
(1 + x) log(1 + x) − 1 ≥ 1/(1 + x/3) consequently the Bernstein type

P

(
1

γm,n

n∑

i=1

ψi

(
Zi −

m

n

)
> δ(m,n)η



n∑

i=1

Zi = m

)
≤ exp

(
− η2/2

1 + ηM/3

)
.

A symmetry argument provides the same bound forψi replaced by−ψi, which completes
the proof of the first inequality. Using thatγm,n ≥

√
(m/n)(1 −m/n) maxi |ψi− ψ̄|, we

obtain the second asserted inequality from

η2/2

1 + ηM/3
≥ η2/2

1 + η c(m,n)/3

=
η

2c(m,n)/3
− η

2c(m,n)/3(1 + η c(m,n)/3)

≥ η

2c(m,n)/3
− 1

2c(m,n)2/9
.

�

7 Auxiliary results about empirical processes

This section collects results in the context of empirical processes which are essential for
the next section. For any totally-bounded pseudo-metric space(T , ρ), we define the cov-
ering number

N
(
ε, T , ρ

)
:= min

{
♯T0 : T0 ⊂ T , inf

t0∈T0

ρ(t, t0) ≤ ε for all t ∈ T
}
.

Let F ⊂ [0, 1]T . For any probability measureP on T , consider the pseudo-distance
dP (f, g)2 :=

∫
(f − g)2 dP for f, g ∈ F . Then the uniform covering numbers ofF are

defined as
N (u,F) := sup

P
N(u,F , dP )

for u > 0, where the supremum is running over all probability measuresP onT .

Theorem 5. (Dümbgen and Walther (2008, technical report))Let Z = (Z(t))t∈T be
a stochastic process on a totally bounded pseudo-metric space (T , ρ). LetK be some
positive constant, and forδ > 0 letG(·, δ) a nondecreasing function on[0,∞) such that
for all η ≥ 0 ands, t ∈ T ,

P

{ |Z(s) − Z(t)|
ρ(s, t)

> G(η, δ)
}

≤ K exp(−η) if ρ(s, t) ≥ δ. (5)
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Then for arbitraryδ > 0 anda ≥ 1,

P

{
|Z(s) − Z(t)| ≥ 12J(ρ(s, t), a) for somes, t ∈ T∗ with ρ(s, t) ≤ δ

}
≤ Kδ

2a
,

whereT∗ is a dense subset ofT , and

J(ǫ, a) :=

∫ ǫ

0

G(log(aD(u)2/u), u) du,

D(u) = D(u, T , ρ) := max
{

#To : To ⊂ T , ρ(s, t) > u for differents, t ∈ To
}
.

Remark. Suppose thatG(η, δ) = q̃ ηq for some constants̃q, q > 0. In addition let
D(u) ≤ Au−B for 0 < u ≤ 1 with constantsA ≥ 1 andB > 0. Then elementary
calculations show that for0 < ǫ ≤ 1 anda ≥ 1, J(ǫ, a) ≤ C ǫ log(e/ǫ)q with C =

q̃ max
(
1 + 2B, log(aA2)

)q ∫ 1

0
log(e/z)q dz.

For the proof of Theorem 1 the subsequent extension of the Chaining Lemma VII.9 in
Pollard (1984) and Theorem 8 in the technical report to Dümbgen and Walther (2008) will
be used. It complements in particular the existing multiscale theory by a uniform tightness
result and to a situation where only a sufficiently sharpuniform stochasticbound on local
covering numbers is available, which typically involves additional logarithmic terms. The
situation arises for example in the multivariate random design case where a non-stochastic
bound obtained via uniform covering numbers and VC-theory may be too rough.

Theorem 6 (Chaining). Let (Yn)n∈N a sequence of random variables such thatYn takes
values in some polish spaceYn. For anyyn ∈ Yn, let (Zn(t; yn))t∈Tyn

be a stochastic pro-
cess on some countable, metric space

(
Tyn

, ρn(., .; yn)
)
, whereρn(., .; yn) ≤ 1. Suppose

that the following conditions are satisfied:

(i) There are measurable functionsσn(.;Yn) : TYn
→ (0, 1] andGn : [0,∞) → [0,∞)

such that for arbitrarys, t ∈ TYn
, η ≥ 0 andδ > 0,

P

(
|Zn(t, Yn)| ≥ σn(t;Yn)Gn(η, δ)

Yn
)

≤ 2 exp(−η) if σn(t;Yn) ≥ δ,

sup
s,t∈TYn

|σn(t;Yn) − σn(s;Yn)|
ρn(s, t;Yn)

≤ C <∞ for some constantC > 0,

{
t ∈ TYn

: σn(t;Yn) ≥ δ
}

is compact, andGo := sup
n∈N

sup
η≥0,0<δ≤1

Gn(η, δ)

1 + η
< ∞ .

(ii) There exists a sequence(Cn)n∈N of measurable sets and positive constantsA,B,W, α
such that

N
(
uδ, {t ∈ TYn

: σn(t;Yn) ≤ δ}, ρn(., .;Yn)
)

≤ Au−Bδ−W log
(
e/(uδ)

)α
for u, δ ∈ (0, 1]

wheneverYn ∈ Cn.
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For constantsq, Q > 0 define

An(δ, q, Q;Yn) :=

{
sup

s,t∈TYn : ρn(s,t;Yn)≤δ

|Zn(s;Yn) − Zn(t;Yn)|
ρn(s, t;Yn) log(e/ρn(s, t;Yn))q

≤ Q

}
.

Then there exists a constantC = C(Go, A,B,W, α, q, Q) > 0 such that for0 < δ ≤ 1

P

(
|Zn(t;Yn)|
σn(t;Yn)

≤ Gn

(
W log

(
1/σn(t;Yn)

)
+ C log log

(
e/σn(t;Yn)

)
, σn(t;Yn)

)

+ C log(e/σn(t;Yn))
−1 on

{
t : σn(t;Yn) ≤ δ

}
Yn

)

is at leastP
(
An(2δ, q, Q;Yn)

Yn
)
− C log(e/δ)−1 wheneverYn ∈ Cn.

If in particular PYn(Cn) → 1 and limδց0 infn P

(
An(δ, q, Q;Yn)

Yn
)

= 1 a.s., then the
sequence

L
(

sup
t∈Tn

{
|Zn(t;Yn)|
σn(t;Yn)

− Gn

(
W log

(
1/σn(t;Yn)

)

+ C log log
(
e/σn(t;Yn)

)
, σn(t;Yn)

)}Yn

)

is tight in
(
PYn
)
-probability, provided thatinfn supt∈TYn

σn(t;Yn) > 0 a.s.

REMARK Note that in case ofG(η, δ) = (κη)1/κ with κ > 1,

G
(
W log(1/δ) + C log log(e/δ), δ

)
+ C log(e/δ)−1

= (κW log(1/δ))1/κ +O
(
log log(e/δ) log(eδ)1/κ−1

)

= (κW log(1/δ))1/κ + o(1) asδ ց 0.

PROOF Due to the factorization lemma, the conditional probability and expectation fac-
torize under the above conditions, i.e. we may consider a sequence(yn)n∈N and work with
the sequence of conditional lawsL(Zn(., Yn)|Yn = yn), but note that we do not assume
equality ofL(Zn(.;Yn)|Yn = yn) andL(Zn(.; yn)) in general. The first part of the proof is
a modification of the Chaining in Dümbgen and Walther (2008,technical report) applied
to the conditional distributionL(Zn(., Yn)|Yn = yn) for yn ∈ Cn. Here we need however
to define their additive correction functionH1 in a different way, taking into account the
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additional logarithmic terms in the bound of the covering numbers. Lining up with their
arguments, a suitable choice for the correction function appears to be

Gn

{
W log

( 1

σn(t; yn)

)
+ (B + α) log u

(
σn(t; yn)

)
+ (2 + α) log log

( e

σn(t; yn)

)
, σn(t; yn)

}

= Gn

{
W log

( 1

σn(t; yn)

)
+
(
(B + α)γ + (2 + α)

)
log log

( e

σn(t; yn)

)
, σn(t; yn)

}
.

This term is essential for our proof of efficiency. It is important that the constantα does
not influence the leading term. Concerning the tightness in probability as stated in the
second part of Theorem 6, notice that it does not follow by an immediate continuity
argument because the metric (and the metric space) change with both,Yn andn, hence
some additional uniformity is required. For0 ≤ δ < δ′ ≤ 1 letUn(δ, δ′;Yn) be defined by

sup
σn(t;Yn)∈(δ,δ′]

t∈Tn

{
|Zn(t;Yn)|
σn(t;Yn)

−Gn

(
W log

(
1/σn(t;Yn)

)
+ C log log

(
e/σn(t;Yn)

)
, σn(t;Yn)

)}
.

First observe that for any fixedK > 0,

P

(
Un(0, 1;Yn) > K

Yn
)

≤ P

(
Un(0, δ;Yn) > K/2

Yn
)

+ P

(
Un(δ, 1;Yn) > K/2

Yn
)
.

(6)
The first part of Theorem 6 implies that the first term on the right-hand-side in (6) is
bounded by1 − P

(
An(2δ, q, Q;Yn)

Yn
)

+ C log(e/δ)−1 for K > 2C log(e/δ)−1 when-
everYn ∈ Cn. Concerning the second term in (6), note that

Un(δ, 1;Yn) ≤ − inf
δ′∈[δ,1]

Hn(δ
′;Yn) +

1

δ
sup
t∈TYn :

σn(t;Yn)≥δ

Zn(t;Yn)
.

Then the conclusion follows if we establish that

lim
K→∞

lim sup
n→∞

P

(
sup
t∈TYn

Zn(t;Yn)
 > K; Yn ∈ Cn

Yn
)

= 0 a.s.

For ε > 0 and Yn ∈ Cn, let t1(Yn), ..., tm(Yn)(Yn) be a maximal subset ofTYn
with

ρn(ti, tj ;Yn) > ε for arbitrary different indicesi, j ∈ {1, ..., m(Yn)}. Note thatm(Yn) ≤
Aε−B log(e/ε)α by assumption (ii). Then condition (i) implies that

lim
K→∞

lim sup
n→∞

P

(
sup

i=1,...,m(Yn)

Zn
(
ti(Yn);Yn

) > K; Yn ∈ Cn
Yn

)
= 0 a.s. (7)

On the other hand, we have on the setAn(ε, q, Q;Yn) the bound

sup
t∈TYn

|Zn(t;Yn)| ≤ Qε log(e/ε)q + sup
i=1,...,m(Yn)

Zn(ti(Yn);Yn)|. (8)
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With ε tending to zero sufficiently slowly, (7) and (8) show together with the stochastic

equicontinuity conditionlimδց0 infn P

(
An(δ, q, Q;Yn)

Yn
)

= 1 a.s.

lim
K→∞

lim sup
n→∞

P

(
sup
t∈TYn

Zn(t;Yn)
 > K; Yn ∈ Cn

Yn
)

= 0 a.s.

Since the assumptioninfn supt∈TYn
σn(t;Yn) > 0 a.s. guarantees

lim
K→∞

sup
n

P

(
Un(Yn) < −K

Yn
)

= 0 a.s.,

the tightness in(PYn)-probability is proved. �

8 Proofs of the main results

PROOF OF THEOREM 1 Let λn := m/n. In view of theTjkn’s, the behavior of the
process (√

λn(1 − λn)√
n

k∑

i=0

ψ

( ‖Xj −X i
j‖2

‖Xj −Xk
j ‖2

)(
Λ ◦ Π

)
(X i

j)

)

1≤j,k≤n

conditional onXn needs to be investigated, whereΛ ◦ Π|Xn is uniformly distributed on
the set {

λ : Xn →
{
1/λn,−1/(1 − λn)

}
:
∑

x∈Xn

λ(x) = 0

}
.

For notational convenience it seems useful to redefine the process on the random index
set

T̂n :=
{(
Xj, ‖Xj −Xk

j ‖2

)
: 1 ≤ j, k ≤ n

}

via the map(j, k) 7→
(
Xj,

wwXj − Xk
j

ww
2

)
and extend it to a process

(
Yn(t, r)

)
(t,r)∈T

with T :=
{
(t, r) : t ∈ [0, 1]d, 0 < r ≤ maxx∈[0,1]d ‖x− t‖2

}
by the definition

Yn(t, r) :=
√
n
√
λn(1 − λn)

∫
ψ

(‖t− x‖2

r

)(
dP̂Π

n (x) − dQ̂Π
n (x)

)
,

where P̂Π
n and Q̂Π

n denote the empirical measures based on the permutated variables
XΠ(1), ..., XΠ(m) andXΠ(m+1), ..., XΠ(n), respectively. Let

γ̂n(t, r)
2 : = Var

(
Yn(t, r)

Xn

)

=
n

n− 1

∫ [
ψ

(‖t− x‖2

r

)
−
∫
ψ

(‖t− z‖2

r

)
dĤn(z)

]2

dĤn(x),

with Ĥn the empirical measure of the observationsX1, ..., Xn.
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In the sequel we make use of the results in the previous section twice - in order to prove
the tightness and weak approximation in probability of the sequence of conditional test
statistics and within the ”loop” we use the chaining arguments again to establish a suffi-
ciently tightened uniform stochastic bound for the covering numbers below.

I. (SUBEXPONENTIAL INCREMENTS AND BERNSTEIN TYPE TAIL BEHAVIOR) The in-
version of the conditional Bernstein type exponential inequality in Proposition 3 shows
that for anyη > 0,

P

(
Yn(t, r)

γ̂n(t, r)

 > Gn

(
η, γ̂n(t, r)

)Xn

)
≤ 2 exp(−η),

where

Gn

(
η, γ̂n(t, r)

)
:= Rn

(
γ̂n(t, r)

)
η +

((
Rn

(
γ̂n(t, r)

)
η
)2

+ 2δ(m,n)2η
)1/2

with

Rn(τ) := δ(m,n)
‖ψ‖sup

√
λn(1 − λn)

3 min(λn, 1 − λn)
√
n τ

.

Let the random metriĉρn onT be defined by

ρ̂n
(
(t, r), (t′, r′)

)2
:= Var

(
Yn(t, r) − Yn(t

′, r′)
Xn

)

=

∫ (
ψtr(x) − ψt′r′(x)

)2

dĤn(x) −
(∫ (

ψtr(x) − ψt′r′(x)
)
dĤn(x)

)2

,

with ψtr(x) := ψ
(

‖t−x‖2

r

)
. Then the application of the second exponential inequality of

Proposition 3 implies for any fixed(t, r), (t′, r′) ∈ T that

P

(Yn(t, r) − Yn(t
′, r′)

 > ρ̂n
(
(t, r), (t′, r′)

)
q η

Xn

)
≤ 2 exp(−η),

where

q := 2

(
1 +

9λn(1 − λn)

2 max(λn, 1 − λn)2

(
log 2

)−1
)
.

II. (RANDOM LOCAL COVERING NUMBERS) We need a bound for the local random cov-
ering numbersN

(
(uδ)1/2,

{
(t, r) ∈ T̂n : γ̂n(t, r)

2 ≤ δ
}
, ρ̂n
)
. This is the most involved

part of the proof. In order to establish a sufficiently sharp upper bound, the following two
claims are established:

(i) Let

ρ̂2,n

(
(t, r), (t′, r′)

)2
:=

∫ (
ψtr(x) − ψt′r′(x)

)2

dĤn(x)

and definedn for arbitrary different points in̂Tn via

dn
2 := max

[
E ρ̂2

2,n, 4/n
](

1 + C log
(
4 e
/

max
[
E ρ̂2

2,n, 4/n
]))

,
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with C a constant to be chosen later. Note that the mapx 7→ x
√

1 + 2C log(
√
e/x) is

subadditive forx ∈ (0, 1], hencedn defines a metric. Furthermore letγn2 := E γ̂2
2,n −(

Eγ̂1,n

)2
, where

γ̂1,n(t, r)
2 :=

(∫
ψtr(x)dĤn(x)

)2

and γ̂2,n(t, r)
2 :=

∫
ψtr(x)

2dĤn(x).

Then there exist a constantC ′ > 0 and a sequence(Cn)n∈N of measurable sets with
P⊗m
n ⊗ Q

⊗(n−m)
n (Cn) → 1, such that for anyδ > 0, u ∈ (0, 1] with uδ ≥ 1/n and any

realization(X1, ..., Xn) ∈ Cn

N
(
(uδ)1/2,

{
(t, r) ∈ T̂n :γ̂n(t, r)

2 ≤ δ
}
, ρ̂n

)

≤ N
(
(uδ)1/2,

{
(t, r) ∈ T̂n : γ2,n(t, r)

2 ≤ C ′δ log(e/δ)4
}
, dn

)
,

if ψ is not rectangular. In case of the rectangular kernel, the set
{

(t, r) ∈ T̂n : γ2,n(t, r)
2 ≤ C ′δ log(e/δ)4

}

in the covering number has to be replaced by
{

(t, r) ∈ T̂n : γ2
2,n ≤ C ′δ log

(
e
/
δ
)4} ∪

{
(t, r) ∈ T̂n : γ2

2,n ≥ 1 − C ′δ log
(
e
/
δ
)4}

.

(ii) There exists a constantA > 0, independent ofu, δ andn, such that wheneveruδ ≥
1/n, the upper bound given in (i) is again bounded from above byAu−d−1δ−1 log

(
e/(uδ)

)5
.

Moreover, the latter bound remains valid withT in place ofT̂n.

Note that we cannot rely our bound directly on uniform covering numbers and Vapnik-
Cervonenkis (VC) theory as the envelopeI{X ∈ Xn} only allows for a bound of order
u−2δ−2, which would result in the loss of efficiency of the procedure.

Proof of (i): We first derive a uniform stochastic bound for the random metric ρ̂2,n.
Recall that every functionψ of bounded total variation is representable as a differenceof
isotonic functionsψ(1) andψ(2). With the definition of the subgraphs

sgr
(
ψ

(i)
tr

)
:=
{

(x, y) ∈ [0, 1]d × R : y ≤ ψ
(i)
tr (x)

}
, i = 1, 2,

the set
{

sgr
(
ψ

(i)
tr

)
: (t, r) ∈ T

}
has a VC-dimension bounded byd + 3 (van der Vaart

and Wellner 1996) with envelopeTV (ψ). Consequently, the uniform covering numbers
N(ε,F) with

F :=
{(
ψtr − ψt′r′

)2
: (t, r), (t′, r′) ∈ T

}

are bounded byCε−α for some realvaluedα > 0 and some constantC > 0. The bound-
edness ofψ shows thatF is uniform Glivenko-Cantelli in particular (Dudley, Ginéand
Zinn 1991). As an immediate consequence,
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lim
n→∞

P

(wwwρ̂2,n

(
(t, r), (t′, r′)

)2 − Eρ̂2,n

(
(t, r), (t′, r′)

)2www
T ×T

> δ

)
= 0, (9)

for any δ > 0. However such a bound is not sufficient for our purposes. Because of
‖ψ‖sup ≤ 1, the squared random metriĉρ2

2,n is 1/n times the sum ofn independent
random variables with absolute values≤ 4, hence

Var
(
ρ̂2,n

(
(t, r), (t′, r′)

)2) ≤ 4

n
E

(
ρ̂2,n

(
(t, r), (t′, r′)

)2) ≤ max

{
4

n
,E
(
ρ̂2,n

(
(t, r), (t′, r′)

)2)
}2

.

Now the application of Bernstein’s exponential inequality(see Shorack and Wellner 1986)
entails

P

(
ρ̂2,n

(
(t, r), (t′, r′)

)2 − Eρ̂2,n

(
(t, r), (t′, r′)

)2

max[4/n,Eρ̂2,n

(
(t, r), (t′, r′)

)2
]

 > η

)
≤ 2 exp

(
− η2/2

1 + η/3

)

≤ 2 exp

(
− 3

2
η +

9

2

)

for arbitrary points(t, r), (t′, r′) ∈ T . I.e. ρ̂2
2,n − Eρ̂2

2,n, standardized by

max
{

4/n,Eρ̂2,n

(
(t, r), (t′, r′)

)2}
,

has (uniformly) subexponential tails. Analogously, the procesŝρ2
2,n−Eρ̂2

2,n has subexpo-

nential increments with respect to the metricD̂n given by

D̂n

(
a, b
)2

:= max
[
1/n,E

(
ρ̂2

2,n(a) − ρ̂2
2,n(b)

)2]2
I
{
a 6= b

}
, a, b ∈ T × T .

Note thatmax[4/n,Eρ̂2
2,n] is Lipschitz continuous with respect tôDn. Theorem 5 shows

that the above ingredients imply thatlimδց0 infn P
(
An(δ, 1, Q;Xn)

Xn

)
= 1 for some

adequately chosenQ > 0, where we use the definition ofAn from Theorem 6 with
Yn = Xn andZn = ρ̂2

2,n − Eρ̂2
2,n. Now we may apply the latter to conclude that there

exists some universal constantC > 0 such that the probability of the event
{ρ̂2,n

(
(t, r), (t′, r′)

)2 − Eρ̂2,n

(
(t, r), (t′, r′)

)2 > (10)

C max
[
4/n,Eρ̂2,n

(
(t, r), (t′, r′)

)2]
log
(
4 e
/

max
[
4/n,Eρ̂2,n

(
(t, r), (t′, r′)

)2])

for some(t, r), (t′, r′) with Eρ̂2,n

(
(t, r), (t′, r′)

)2 ≤ δ

}

is bounded by some functionε(δ) independent ofn with limδց0 ε(δ) = 0. Combining
(9) and (10) for a sequenceδ = δn ց 0 sufficiently slowly implies the existence of a
sequence of sets(An)n∈N with P⊗m ⊗ Q⊗(n−m)(An) → 1 such that

ρ̂2,n ≤ max
[
4/n,Eρ̂2

2,n

]1/2(
1 + C log

(
4 e
/

max
[
4/n,Eρ̂2

2,n]
))1/2

whenever X∈ An.
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The treatment of the random set

B̂δ :=
{

(t, r) ∈ T̂n : γ̂n(t, r)
2 ≤ δ

}

is similar in spirit but more involved because the random quantity γ̂2
n is not representable

as a sum of independent variables. However we can use the decomposition [n/(n −
1)]γ̂2

n = γ̂2
2,n − γ̂2

1,n. Before deriving a stochastic bound, we notice the following: If ψ
describes the rectangular kernel, we haveγ̂2

2,n = γ̂1,n, i.e.

γ̂2
2,n − γ̂2

1,n = γ̂2
2,n

(
1 − γ̂2

2,n

)
.

In this case, the random setB̂δ is consequently contained in the union
{
γ̂2

2,n ≤ 4δ
}
∪
{
γ̂2

2,n ≥ 1 − 4δ
}

for δ ≥ 1/n. (11)

Consider the general case. Using that

Var
(
γ̂1,n(t, r)

)
=

1

n2

n∑

i=1

(
Eψtr(Xi)

2 −
(
Eψtr(Xi)

)2) ≤ 1

n
E γ̂2

2,n (12)

and

Var
(
γ̂2,n(t, r)

2
)

=
1

n2

n∑

i=1

(
Eψtr(Xi)

4 −
(
Eψtr(Xi)

2
)2) ≤ 1

n
E γ̂2

2,n, (13)

we may apply the above chain of arguments forρ̂2
2,n to γ̂1,n and γ̂2

2,n together with the
upper bounds in (12) and (13) for the standardization respectively and obtain the existence
of a constantC1 > 0 such that

γ1,n −
C1 max

[
1/n, γ2

2,n

]1/2
√
n

log
(
e
√
n
/

max
[
1/n, γ2,n

]1/2)

≤ γ̂1,n ≤ γ1,n +
C1 max

[
1/n, γ2

2,n

]1/2
√
n

log
(
e
√
n
/

max
[
1/n, γ2

2,n

]1/2)

whenever X∈ Dn for some sequence(Dn)n∈N with asymptotic probability1, uniformly
evaluated at(t, r) ∈ T̂n. Note that̂γ1,n ≥ 1/n, γ̂2

2,n ≥ 1/n for all (t, r) ∈ T̂n. The same
holds true with a constantC2 > 0 and a sequence(D′

n)n∈N with asymptotic probability1
andγ̂1,n andγ1,n replaced bŷγ2

2,n andγ2
2,n. Using the lower bound for̂γ2

2,n and the upper
bound forγ̂1,n, a bit of algebra yields

B̂δ ⊂
{
γ2

2,n − γ2
1,n ≤ δ + max

[
1/n, γ2

2,n

]1/2 K√
n

log
(
e
√
n
/

max
[
1/n, γ2

2,n

]1/2)2
}

whenever X∈ Dn ∩ D′
n, δ ≥ 1/n. Here and from now on,K denotes some universal

constant, not dependent onn. Its value may be different in different expressions. Now we
first consider the case

sup
n∈N

sup
(t,r)∈T

(
γ2

1,n

/
γ2

2,n

)
≤ C ′ < 1.
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Then the above condition shows that

γ2
2,n(1 − C ′) ≤ δ + max

[
1/n, γ2

2,n

]1/2 K√
n

log
(
e
√
n
/

max
[
1/n, γ2

2,n

]1/2)2

≤ 2 max

{
δ, max

[
1/n, γ2

2,n

]1/2 K√
n

log
(
e
√
n
/

max
[
1/n, γ2

2,n

]1/2)2
}
,

which entails thatγ2
2,n ≤ K δ log

(
e
/
δ
)4

for δ ≥ 1/n by the isotonicity ofx 7→
x log(e/x)4 on (0, 1]. On the other hand, the case

sup
n∈N

sup
(t,r)∈T

(
γ2

1,n

/
γ2

2,n

)
= 1 (14)

implies already thatψ is equal to the rectangular kernel: If the sup is attained it is obvious.
The equicontinuity of(hn)n∈N and its uniformly boundedL1-norm‖hn‖1 = 1 imply its
uniform boundedness, hence relative compactness in the topology of uniform convergence
by the Arzel̀a-Ascoli-Theorem. There therefore exists at least a uniformly convergent
subsequence(hm(n)) with (uniformly) continuous limit, sayh, along this result holds true
as well, becausemax(t,r)∈T

(
γ2

1,n

/
γ2

2,n

)
depends continuously on the mixed density. This

however implies thatψ describes the rectangular kernel, because the uniform limit h of
that subsequence is bounded away from zero. Hence in case of (14), we consequently
obtain by (11)

B̂δ ⊂
{
γ2

2,n ≤ Kδ log
(
e
/
δ
)4}∪

{
γ2

2,n ≥ 1−Kδ log
(
e
/
δ
)4}

whenever X∈ Dn∩D′
n, δ ≥ 1/n.

Proof of (ii): Sinceψ is of bounded total variation, there exists some finite measure µ
such that for any0 ≤ z1 < z2 ≤ 1, |ψ(z1) − ψ(z2)| ≤ µ[z1, z2]. With

Mx(t, t
′, r, r′) :=

[
0,

‖t− x‖2

r

]
∆

[
0,

‖t′ − x‖2

r′

]

we obtain

Eρ̂2,n

(
(t, r), (t′, r′)

)2 ≤
∫ (

ψtr(x) − ψt′r′(x)
)2
dHn(x)

≤ K

∫
µ
(
Mx(t, t

′, r, r′)
)
dHn(x)

= K

∫
I
{
y ∈Mx(t, t

′, r, r′)} dHn(x)dµ(y)

≤ K sup
y∈[0,1]

∫
I
{
y ∈Mx(t, t

′, r, r′)
}
dHn(x). (15)

Then y ∈ Mx(t, t
′, r, r′) implies thatx ∈ Bt

(
ry
)
∆Bt′

(
r′y
)
. Sincehn is uniformly

bounded from above, we obtain that (15) is not greater thanCλ
(
Bt(r)∆Bt′(r

′)
)
. Be-

cause of
∫
[0,1]d

ψ(x)dx = 1 with maximum attained at0, there exists some compact ball
B0(r

∗) with ψ(x) ≥ 1/2 for all x ∈ B0(r
∗). Using in addition the uniform boundedness
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of hn away from zero we obtainγ2,n(t, r)
2 ≥ K · rd (t, r) ∈ T . We now start bounding

the covering numbers

N

(
(uδ)1/2,

{
(t, r) ∈ T : γ2,n(t, r)

2 ≤ 2δ log(e/δ)4
}
, d

)
,

where the metricd onT × T is pointwise defined by

d
(
(t, r), (t′, r′)

)2
:= λ

(
Bt(r)∆Bt′(r

′)
)(

1 + C log
[
e
/
λ
(
Bt(r)∆Bt′(r

′)
)])

.

Because of the isotonicity ofx 7→ x log(e/x) for x ∈ (0, 1], the inequalitỹd
(
(t, r), (t′, r′)

)
:=

λ
(
Bt(r)∆Bt′(r

′)
)1/2 ≤ ε/(log(e/ε)) implies thatd

(
(t, r), (t′, r′)

)
is not greater that

(C + 1)1/2ε. Thus it is sufficient to bound

N

(
(uδ)1/2

log(e/(uδ))
,
{

(t, r) ∈ T : rd ≤ δ log(e/δ)4
}
, d̃

)
. (16)

First note that there exists a finite collection of at mostm ≤ K/(δ log(e/δ)4) points

t1, ..., tm such that the set
{

(t, r) ∈ T : rd ≤ δ log(e/δ)4
}

is contained in the union

∪mi=1Ai with

Ai :=

{
(t, r) ∈ T : Bt(r) ⊂ Bti

(
[Kδ log(e/δ)4]1/d

)}

for some universalK > 0. The rotation and translatation invariance of the Lebesgue
measure leads to the rescaling invariance for the covering numbers

N
(
ε1/2,

{
(t, r) : Bt(r) ⊂ B0(R)

}
, d̃
)

= N
(
(ε/Rd)1/2,

{
(t, r) : Bt(r) ⊂ B0(1)

}
, d̃
)
.

Now it remains being noticed that the latter quantity is bounded byK(Rd/ε)d+1 uni-
formly in ε andR. Analogously forN

(
(uδ)1/2

/
log[e/(uδ)],Ai, d̃

)
, hence the covering

number (16) is bounded byAδ−1u−d+1 log(e/uδ)5 for some universal constantA > 0.
An analogous bound holds for̂Tn in place ofT : If (t1, r1), ..., (tk, rk) denotes anε-net
with respect tod in B ⊂ T , we may define a2 ε-net (t̂1, r̂1), ..., (t̂k, r̂k) in T̂n ∩ B via
the definition(t̂i, r̂i) := argmin(t,r)∈T̂n∩B

d
(
(t, r), (ti, ri)

)
. The corresponding covering

numbers in case of the rectangular kernel for the sets
{
γ2

2,n ≥ 1 − Kδ log
(
e
/
δ
)4}

can
be treated with similar arguments, which concludes the proof of (ii).

III. (T IGHTNESS AND WEAK APPROXIMATION IN PROBABILITY) As a consequence
of the above exponential inequalities in step I and the boundfor the uniform covering
numbersN(δ, T ), Theorem 5 shows

lim
δց0

lim sup
n→∞

P

(
sup

ρ̂n((t,r),(t′ ,r′))≤δ

|Yn(t, r) − Yn(t
′, r′)|

ρ̂n((t, r), (t′, r′)) log
(
e
/
ρ̂n((t, r), (t′, r′))

) > ε

Xn

)
= 0,

(17)
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where thesup within the brackets is even running over elements ofT ×T . Now the appli-
cation of Theorem 6 entails thatL

(
Tn ◦Π

Xn

)
is tight in

(
P⊗m
n ⊗Q

⊗(n−m)
n

)
-probability.

What remains being proved is the weak approximation. Starting from (17), the uniform
convergence (9) implies in particular the asymptotic stochastic equicontinuity

lim
δց0

lim sup
n→∞

E(pn,qn,λn)P

(
sup

ρn((t,r),(t′,r′))≤δ

Yn(t, r)−Yn(t′, r′)
 > ε

Xn

)
= 0 for all ε > 0.

Since to any subsequence of the metricρn there exists some uniformly convergent sub-
subsequence as a consequence of the relative compactness of(hn)n∈N in the uniform
topology, it suffices (via proof of contradiction) for the weak approximation in probabil-
ity

dw

{
L
((
Yn(t, r))(t,r)∈T

Xn

)
, L
((
Zn(t, r)

)
(t,r)∈T

)}
−→

P⊗m
n ⊗Q

⊗(n−m)
n

0

to establish the convergence of finite dimensional distributions. For letS :=
{
(t1, r1), ..., (tk, rk)

}

be a collection of points fromT . Denote furthermoreart(Xi) := n−1/2
√
λn(1 − λn)ψ

(
‖t−Xi‖2

r

)
.

Then

L
((
Yn(t, r)

)
(t,r)∈Tn

Xn

)
= L

( n∑

i=1

art(Xi)Λ(ti)

Xn

)
.

Let
(
Zn(t, r)

)
(t,r)∈T

be pointwise be defined byZn(t, r) :=
√
λn(1 − λn)

∫
φ

(n)
rt (x) dW (x).

Using that2 cov (X1, X2) equalsVar(X1 + X2) − Var(X1) − Var(X2) for two random
variablesX1 andX2, one finds

n

n + 1
cov
(
Yn(t, r), Yn(t

′, r′)
Xn

)

=
1

2

∫ (
ψtr(x) − ψt′r′(x)

)2

dĤn(x) −
1

2

(∫ (
ψtr(x) − ψt′r′(x)

)
dĤn(x)

)2

(18)

− 1

2

∫
ψtr(x)

2dĤn(x) +
1

2

(∫
ψtr(x)dĤn(x)

)2

− 1

2

∫
ψt′r′(x)

2dĤn(x) +
1

2

(∫
ψt′r′(x)dĤn(x)

)2

.

Replacing the empirical measurêHn by its expectationHn, the above six expressions
in (18) coincide with the covariancecov

(
Zn(t, r), Zn(t

′, r′)
)

of the limiting processZn.
Since

k∑

j=1

maxi(a
(n)
rjtj (Xi) − ā

(n)
rjtj )

2

∑n
i=1(a

(n)
rjtj (Xi) − ā

(n)
rjtj )

2
−→

P
⊗m
n ⊗Q

⊗(n−m)
n

0 (n→ ∞)

and
cov

(
Yn(t, r), Yn(t

′, r′)
Xn

)
− cov

(
Zn(t, r), Zn(t

′, r′)
) −→

P
⊗m
n ⊗Q

⊗(n−m)
n

0 by an
application of the weak law of large numbers for triangular arrays to each of the ex-
pressions in (18) separately, Hájek’s multivariate Central Limit Theorem for permutation
statistics yields the desired weak convergence in probability of the finite dimensional dis-
tributions. For notational convenience, define

TΠ
n (δ, δ′) := sup

(j,k):
δ<γn(j,k)≤δ′

{Tjkn ◦ Π
 − Cjkn

}
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and

Sn(δ, δ
′) := sup

(t,r):
δ<γn(t,r)≤δ′

{∫ φ(n)
rt (x) dW (x)


γn(t, r)

−
√

2 log
(
1/γn(t, r)

2)
}
.

Since∪n∈NT̂n is a.s. dense inT andsup(j,k): γn(j,k)≥δ

Cjkn−(2 Γjkn)
1/2
 −→

P
⊗m
n ⊗Q

⊗(n−m)
n

0 asn→ ∞, it follows from the above established weak approximation and tightness that

dw

(
L
(
TΠ
n (δ, 1)

Xn

)
, L
(
Sn(δ, 1)

))
−→

P
⊗m
n ⊗Q

⊗(n−m)
n

0

for any fixedδ ∈ (0, 1]. An application of Theorem 6 as well as its subsequent Remark
imply that

lim
δց0

lim sup
n→∞

P∗
(
TΠ
n (0, δ) ≥ ε

Xn

)
= 0 a.s. and lim

δց0
lim sup
n→∞

P
(
Sn(0, δ) ≥ ε

)
= 0

for anyε > 0. Thus, because obviouslylimδց0 lim infn→∞ P
(
Sn(δ, 1) ≤ −ε

)
= 0, we

obtain
dw

(
L
(
TΠ
n (0, 1)

Xn

)
, L
(
Sn(0, 1)

))
−→

P⊗m
n ⊗Q

⊗(n−m)
n

0. 2

PROOF OFTHEOREM 2 Let C be some compact rectangle ofJ . Fix β > 0. For any
integerk > 1 let Cn,k ⊂ C be some maximal subset of points such that‖x− y‖2 ≥ 2kδn
andBx(kδn) ⊂ C for arbitrary different pointsx, y ∈ Cn,k. Then♯Cn,k ∼ (kδn)

−d. Now
the letφx,n be the solution of the be the subsequent optimization problem:

(∗) Minimize ‖g‖2 under the constraints

g ∈ Hd(β, L; Rd), supp(g) ⊆ Bx(kδn), g(x) = Lδβn ,

∫
g(z)

√
hn(z)dz = 0.

These constraints define a closed and convex set inL2

(
[0, 1]d

)
which is non-empty fork

sufficiently large. Consequently in the latter case, the argmin φx,n exists and is unique.
The resulting density candidates

px,n = hn ·
(
1 − (m/n)φx,n

/√
hn

)
and qx,n = hn ·

(
1 + (1 −m/n)φx,n

/√
hn

)

are non-negative and thus contained inF (m,n)
hn

as soon as additionally

−
√
hn(.)

1 −m/n
≤ φx,n(.) ≤

√
hn(.)

m/n
for all x ∈ Cn.

This is guaranteed for sufficiently largen when sequence(δn)n∈N tends to zero. For any
statistical level-α-testψ = ψ(β, L, hn) : Rd×n → [0, 1] for testing the hypothesis ”φ = 0”
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it holds true that

min
x∈Cn

E(m,n,px,n,qx,n)ψ − α ≤ min
x∈Cn

E(m,n,px,n,qx,n)ψ − E(m,n,hn,hn)ψ

≤ 1

♯Cn
∑

x∈Cn

E(m,n,px,n,qx,n)ψ − E(m,n,hn,hn)ψ

≤ E(m,n,hn,hn)


1

♯Cn
∑

x∈Cn

dP(m,n,px,n,qx,n)

dP(m,n,hn,hn)

(X) − 1

. (19)

For short we writeE0 for E(m,n,hn,hn) in the sequel. Note that the test is allowed to depend
on the nuisance functionalhn (in fact thelog-likelihood and its distribution do). Now
we aim at determingδn such that the right-hand-side tends to zero asn goes to infinity.
Althoughλ

(
supp(φx,n) ∩ supp(φy,n)

)
= 0 for any differentx, y ∈ Ck,n, the likelihood-

ratios

Lx,n :=
dP(m,n,px,n,qx,n)

dP(m,n,hn,hn)

(X) =

m∏

i=1

(
1 − (m/n)

φx,n√
hn

(Xi)

) n∏

i=m+1

(
1 + (1 −m/n)

φx,n√
hn

(Xi)

)
,

are not independent. However, they are independent conditional on the random vector
∆n = (∆x,n)x∈Ck,n

with entries

∆x,n :=
(
♯
{
i ≤ m : ‖Xi − x‖2 ≤ kδn

}
, ♯
{
i > m : ‖Xi − x‖2 ≤ kδn

})
.

Note thatE0(Lx,n|∆n) = E0 Lx,n = 1. Following at this point standard truncation ar-
guments, it turns out to be sufficient for the convergence to zero of (19) to findδn and
γ = γn ∈ (0, 1] such that the ratio

max
x∈Cn

1

(♯ Cn)γ
E0 L

1+γ
x,n (20)

tends to zero asn goes to infinity. But

E0L
1+γ
x,n =

{∫
hn(z)

(
1 + (1 −m/n)

φx,n(z)√
hn(z)

)1+γ

dz

}m{∫
hn(z)

(
1 − (m/n)

φx,n(z)√
hn(z)

)1+γ

dz

}n−m

=

{
1 +

1

2
γ(1 + γ)

(
1 +O

(
δβn
))

(1 − (m/n))2

∫ 1

0

φx,n(z)
2dz

}m
× (21)

{
1 +

1

2
γ(1 + γ)

(
1 +O

(
δβn
))

(m/n)2

∫ 1

0

φx,n(z)
2dz

}n−m
,

using the bound(1 + ∆)1+γ ≤ 1 + (1 + γ)∆ + 2−1γ(1 + γ)∆2 + 3γ∆2|∆| for |∆| ≤ 1.
Now let φ̃k be the solution to the following optimization problem

(∗∗) Minimize ‖g‖2 subject to

g ∈ Hd(β, L; Rd), supp(g) ⊆ B0(k), g(0) = 1,

∫
g(x)dx = 0. (22)
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Notice the rescaling propertyLδβng(./δn) ∈ Hd(β, L; Rd) with supp(g) = B0(kδn) and
g(0) = Lδβn ⇔ g ∈ Hd(β, L; Rd) with supp(g) = B0(k) andg(0) = 1. Recall from the
previous proof that the sequence(hn)n∈N is relatively compact in the uniform topology,
in particular we have (proof via contradiction)

lim
δց0

sup
x∈Bz(δ)

sup
n

hn(x) − hn(z)
 = 0,

whence ∫
φx,n(z)

2 dz =
(
1 + o(1)

)
L2δ2β+d

n ‖φ̃k‖2
2 (23)

because the minimum in (∗) depends continuously on the mixed densityhn as can be
seen using a Lagrange multiplier for the centering constraint. Note that theo(1)-term is
uniformly inx ∈ Ck,n. Now the combination of (21) and (23) shows that forδn sufficiently
small, (20) is bounded by

exp

(
n(m/n)(1 −m/n)

1

2
γ(1 + γ)L2δ2β+d

n ‖φ̃k‖2
2

(
1 + o(1)

)
− γ log(♯ Ck,n)

)
.

By construction,♯ Ck,n ≥ dk · δ−dn for some constantdk > 0. Now fix δ > 0 and define

ck(β, L) :=

(
2 dLd/β

(2β + d)‖φ̃k‖2
2

)β/(2β+d)

.

Observe that the sequenceck(β, L) is increasing ink. We need to check thatlimk→∞ ‖φ̃k‖2 =
‖γβ‖2. Note that in contrast to (22), the solution of (2) does not integrate to zero in
general and it remains still open ifγβ is compactly supported ford ≥ 2 andβ > 1.
Starting fromγβ, it is sufficient to construct a sequenceγ̃β,k satisfying the constraints
of the optimization problem (∗∗) such thatlimk→∞ ‖γ̃β,k‖2 = ‖γβ‖2. Then the equality
limk→∞ ‖φ̃k‖2 = ‖γβ‖2 follows from ‖γ̃β,k‖2 ≥ ‖φ̃k‖2. The existence is sketched in the
appendix. As a consequence there exists somek′ ∈ N such thatc(β, L)(1−δ) > ck′(β, L).
Now one verifies that the lower bound is established with the choice

δn :=
(ck′(β, L)ρn

L

)1/β

.

and some sequenceγ = γn → 0 with limn γn(logn)1/2 = ∞. �

PROOF OFTHEOREM 3 By virtue of Theorem 1, the sequenceL
(
Tn ◦ Π

Xn

)
is tight

in
(
P⊗m
n ⊗ Q

⊗(n−m)
n

)
-probability, resulting in stochastic boundedness of the sequence of

random quantiles
(
κα(X)

)
n∈N

. The bounded total variation of the kernel forβ ≤ 1 is a
consequence of its monotonicity, forβ > 1 it results from the continuous differentiability
of ψβ,K and its compact support. For notational convenience the dependency onβ andK
is suppressed. They are arbitrary but fixed unless stated otherwise. First note that for any
random couple(ĵn, k̂n) it holds true that

P(m,n,pn,qn)

(
Tn > κα(X)

)
≥ P(m,n,pn,qn)

(
Tĵnk̂nn

− Cĵnk̂nn
> κα(X)

)
.
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Hence it is sufficient to prove that for any sequence(φn)n∈N of admissible alternatives
there exists a random sequence of(ĵn, k̂n)n∈N with Tĵnk̂nn

− Cĵnk̂nn
−→P⊗m⊗Q⊗(n−m) ∞.

As in the proof of Theorem 1 defineγn(t, r)2 := Eγ̂2,n(t, r)
2 −
(
Eγ̂1,n(t, r)

)2
, (t, r) ∈ T .

Let tn := argmaxx∈J |φn(x)| andrn :=
(
‖φn‖sup

/
L
)1/β

. Define
(
t̂n, r̂n

)
:=
(
Xĵn

,
wwXĵn

−
Xk̂n

ww
2

)
with

(ĵn, k̂n) := argmin
j,k=1,...,n

λ
(
Btn(rn) ∆BXj

(
‖Xj −Xk‖2

))
.

Now let the processSn onT pointwise be defined by

Sn
(
t, r
)

:=

√
λn(1 − λn)√

n

n∑

i=1

ψ
(‖Xi − t‖2

r

)
Λ(Xi).

Furthermore, let us introduce the random variables(t̂ni, r̂ni), based on the indices(ĵni, k̂ni)
which are defined analogously to(ĵn, k̂n) but with the minimum running over the set
j, k ∈ {1, ..., n} \ {i} only. Then

1

γn(tn, rn)

E

(
Sn(t̂n, r̂n) − Sn(tn, rn)

)

=
1

γn(tn, rn)

1√
n


n

m

m∑

i=1

E

(
ψt̂nr̂n(Xi) − ψtnrn(Xi)

)

− n

n−m

n∑

i=m+1

E

(
ψt̂nr̂n(Xi) − ψtnrn(Xi)

)

≤ 1

γn(tn, rn)

1√
n


n

m

m∑

i=1

E

(
ψt̂n r̂n(Xi) − ψt̂ni r̂ni

(Xi)
)

− n

n−m

n∑

i=m+1

E

(
ψt̂nr̂n(Xi) − ψt̂ni r̂ni

(Xi)
)

+
1

γn(tn, rn)

1√
n


n

m

m∑

i=1

E

(
ψt̂ni r̂ni

(Xi) − ψtnrn(Xi)
)

− n

n−m

n∑

i=m+1

E

(
ψt̂ni r̂ni

(Xi) − ψtnrn(Xi)
)

≤ 1

γn(tnrn)

4√
n
‖ψ‖sup max

( n
m
,

n

n−m

)

+
1

γn(tn, rn)

1√
n

E

{
n

m

m∑

i=1

∫ (
ψt̂ni r̂ni

(x) − ψtnrn(x)
)
pn(x)dx (24)

− n

n−m

n∑

i=m+1

∫ (
ψt̂nir̂ni

(x) − ψtnrn(x)
)
qn(x)dx

},
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whereby we used for the first term in the last inequality that(t̂ni, r̂ni) differs from(t̂n, r̂n)
for at most two indicesi, j ∈ {1, ..., n}; the second term follows by including and eval-
uating the conditional expectation given(t̂ni, r̂ni) asXi is independent of(t̂ni, r̂ni). Re-
placing again(t̂ni, r̂ni) by (t̂n, r̂n), the second expression behind the inequality in formula
(24) is bounded by

1

γn(tnrn)

4√
n
‖ψ‖sup max

( n
m
,

n

n−m

)

+

√
n

γn(tn, rn)

E

[ ∫ (
ψt̂nr̂n(x) − ψtnrn(x)

)(
pn(x) − qn(x)

)
dx

]. (25)

Now we can make use of the fact that
pn(x)−qn(x)

 =
φn(x)

√
hn(x)

 ≤ C‖φn‖sup

with C := supn supx
√hn(x)

. Recall that‖hn‖sup is uniformly bounded due to the
equicontinuity assumption on(hn)n∈N and the constraint on theL1-norm ‖hn‖1 = 1,
whence the term in (25) is not greater than

C

√
n‖φn‖sup

γn(tn, rn)
E

(∫ ψt̂nr̂n(x) − ψtnrn(x)
dx

)
. (26)

Using the bounded total variationTV (ψ) of ψ andMx andµ as defined in the proof of
Theorem 1, the integral which appears in (26) can be bounded by

E

(∫ ψt̂nr̂n(x) − ψtnrn(x)
dx

)

≤ E

(∫
µ
(
Mx(tn, rn, t̂n, r̂n)

)
dx

)

= E

(∫ ∫
I
{
y ∈Mx(tn, rn, t̂n, r̂n)

}
dxdµ(y)

)
(Fubini)

≤ TV (ψ) E sup
y∈[0,1]

(∫
I
{
y ∈Mx(tn, rn, t̂n, r̂n)

}
dx

)

≤ TV (ψ) Eλ
(
Btn(rn)∆Bt̂n(r̂n)

)

≤ TV (ψ) Eλ
(
Btn(rn)∆Bt̂n(rn)

)
+ TV (ψ) Eλ

(
Bt̂n(rn)∆Bt̂n(r̂n)

)

= O
(
rd−1
n n−1/d

)
, (27)

using in the last inequality besides the stochastic convergence rates of̂tn andr̂n the uni-
form integrability of the sequences

(
n1/d‖t̂n − tn‖2

)
,
(
n1/d|r̂n − rn|

)
which result from

P
(
‖t̂n − tn‖2 > x

)
∼ (1 − xd)n andP

(
|r̂n − rn| > x

)
≤ 2 P

(
‖t̂n − tn‖2 > x

)
. Together

with (24) - (26) this shows that for any sequence of admissible alternatives(φn)n∈N

E
(
Sn(t̂n, r̂n) − Sn(tn, rn)

)
γn(tn, rn)

= O
(
rd/2−1+β
n n−1/d+1/2

)
. (28)

If in particular‖φn‖sup = O
((

(log n)/n
)β/(2β+d)

)
, (28) isO

(
(log n)(β+d/2−1)/(2β+d)n−(2β/d)/(2β+d)

)
.

Compared to (26), note at this point that
√
nγn(tn, rn)

−1E
∫ ψt̂n r̂n(x)−ψtnrn(x)

dx is
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not even of order
√

logn if ‖φn‖sup decreases to zero at the fastest possible rate as soon
asd > 2. We need to check that

γn(tn, rn)

γ̂n(t̂n, r̂n)
−→P⊗m⊗Q⊗(n−m) 1. (29)

For this we use the decomposition[(n + 1)/n]γ̂n(t, r)
2 = γ̂n,2(t, r)

2 − γ̂n,1(t, r)
2 and

consider subsequentlyi = 1 only, the orther case is done analogously (taking the square).
To this end note first that

γ̂n,1(t̂n, r̂n) − γ̂n,1(tn, rn)


≤
wwψt̂nr̂n − ψtnrn

ww
sup

1

n

n∑

i=1

I
{
Xi ∈ Bt̂n

(
r̂n
)
∩ Btn

(
rn
)}

+ 2‖ψ‖sup
1

n

n∑

i=1

I
{
Xi ∈ Bt̂n

(
r̂n
)
∆Btn

(
rn
)}

≤
wwψt̂nr̂n − ψtnrn

ww
sup

1

n

n∑

i=1

I
{
Xi ∈ Btn

(
rn
)}

+ 2‖ψ‖sup
1

n

n∑

i=1

I
{
Xi ∈ Bt̂n

(
r̂n
)
∆Btn

(
rn
)}

= op(1)Op(r
d
n) + Op

(
rd−1
n n−1/d

)
= op

(
γn,1(tn, rn)

)
.

The ”op(1)”-term results from the Hölder continuity ofψ (for β > 1 the first deriva-

tive of ψ is uniformly bounded on[−K,K]) and the fact thatrn >
(
c(β, L)ρm,n/L

)1/β

while t̂n − tn ∼ n−1/d, r̂n − rn ∼ n−1/d. To verify (29) it remains to be shown that
γ̂n(tn, rn)/γn(tn, rn)−1 = op(1) which however is a simple consequence of Chebychef’s
inequality since for anyβ > 0 and any sequence of admissible alternatives(φn)n∈N, the
sequenceγn(tn, rn) ∼ r

d/2
n decreases (if it decreases) at a slower rate thann−1/2. The

above considerations show in particular that

Cĵnk̂nn
=

3Rψ(m,n)√
n γ̂n(t̂n, r̂n)

δ(m,n) log
(
γ̂n(t̂n, r̂n)

−2
)

+ δ(m,n)

√
2 log

(
γ̂n(t̂n, r̂n)−2

)

=

√
2 log

(
γn(tn, rn)−2

)
+ op(1),

using in addition thatδ(m,n) = 1 +O(n−1/2). Consequently,

Tĵnk̂nn
− Cĵnk̂nn

= Op(1) +
ESn(tn, rn)

γn(tn, rn)

(
1 + op(1)

)
−
√

2 log
(
γn(tn, rn)−2

)
,

(30)

and it has to be verified that the latter quantity goes to infinity. Recall that

ESn(tn, rn) =
√
n
√
λn(1 − λn)

∫

[0,1]d
ψtnrn(x)

(
pn(x) − qn(x)

)
dx

=
√
n
√
λn(1 − λn)

∫

[0,1]d
ψtnrn(x)φn(x)

√
hn(x)dx
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and analogously

γn(tn, rn)
2 =

∫

[0,1]d
ψtnrn(x)2hn(x)dx −

(∫

[0,1]d
ψtnrn(x)hn(x)dx

)2

=
(
1 +O(rdn)

)∫

[0,1]d
ψtnrn(x)2hn(x)dx. (31)

We first assume thatrn = o(1), i.e. ‖φn‖sup = o(1). Using that

lim
δց0

sup
n

sup
t∈[0,1]d

sup
x∈Bt(rn)

φn(x) − φn(t)
 = 0,

which follows by the same argument as used in Theorem 2 and thefact that any sequence
of centers(tn)n∈N has a convergent subsequence by the compactness of[0, 1]d,

ESn(tn, rn)

γn(tn, rn)
=

√
n
√
λn(1 − λn)

∫
[0,1]d

ψtnrn(x)φn(x)dx
[ ∫

[0,1]d
ψtnrn(x)2dx

]1/2
(
1 + o(1)

)
. (32)

Using the approximation in (31) we obtain analogously
√

2 log
(
γn(tn, rn)−2

)
=

[
2 log

(
1

/
O(1)

∫

[0,1]d
ψtnrn(x)2dx

)]1/2

. (33)

Recall thatψ = ψβ,K with K the bound of the support. Standard calculation shows that
the boundedL2-norm ofγβ implies
∫ ψtnrn;β,K(x)φn(x)dx


[ ∫

ψtnrn;β,K(x)2dx
]1/2 =

∫ ψtnrn;β(x)φn(x)dx


[ ∫
ψtnrn;β(x)2dx

]1/2
(
1+ck

)
with cK → 0 asK → ∞,

but note that the total variationTV (ψβ,K) is increasing inK. Define nowδn := (1 +
δ)c(β, L)ρm,n. Then by its construction,δnψtnrn;β ∈ Hd

(
β, L; Rd

)
. Moreover, by the

closedness inL2 and the convexity of the sets
{
φ ∈ Hd(β, L; Rd) : φ(tn) ≥ δn

}
and{

φ ∈ Hd(β, L; Rd) : φ(tn) ≤ −δn
}

, it results finally from convex analysis and the
definition ofγβ that

∫ ψtnrn;β(x)φn(x)dx


[ ∫
ψtnrn;β(x)2dx

]1/2 ≥ δ−1
n ‖δnψtnrn;β‖2

2

‖ψtnrn;β‖2

= δnr
d/2
n ‖γβ‖2.

Combining (31) – (33), one verifies for the expression of the right hand side in (30) that
it is possesses the approximation

(30) = Op(1) +
√
n
√
λn(1 − λn)δnr

d/2
n ‖γβ‖2

(
1 + cK

)
−
( 2d

2β + d

)1/2√
log
(
n
/

log n
)

= Op(1) +
√

logn

(
2dLd/β

(2β + d)‖γβ‖2
2

)1/2

L−d/(2β)‖γβ‖2(1 + cK)(1 + δ)d/(2β)+1

−
( 2d

2β + d

)1/2√
log
(
n
/

log n
)
,
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which goes to infinity forK sufficiently large. If there exists a sequence(φn)n∈N of
admissible alternatives such thatlim supn→∞ P(m,n,pn,qn)

(
Tn > κα(X)

)
< 1, there exists

by the considerations above a subsequence (for simplicity also denoted by(n)) along
which ‖φn‖sup stays uniformly bounded away from zero. But the bounds (28) and (29)
show that

ESn(t̂n, r̂n) − ESn(tn, rn)

γn(t̂n, r̂n)
= O

(
n−1/d+1/2

)(
1 + op(1)

)
,

as well as the logarithmic correction termCĵnk̂nn
are in this case of smaller order than

|ESn(tn, rn)|, which concludes the proof by contradiction. �

PROOF OFTHEOREM 4 Following the considerations of the proof of Theorem 3, it has
to be established that there exist random sequences

(
ĵni, k̂ni

)
n∈N

with BX
ĵni

(wwXĵni
−

Xk̂ni

ww
2

)
⊂ Ji, i = 1, ..., k, such that for any sequence of alternatives as formulated in

Theorem 4 and any fixedK > 0

lim inf
n→∞

P(m,n,pn,qn)

(
Tĵnik̂ni

− Cĵnik̂ni
> κα(X)

)
= 1, i = 1, ..., k.

Then the result follows because the finite intersection of sets with asymptotic probability
equal to1 has asymptotically mass1 as well. Inspired by the arguments in Rohde (2008)
for the univariate regression context, we first establish the following:

For φn ∈ Hd

(
β, L; [0, 1]d

)
with ‖φn‖sup ≤ 1 andx∗ = argmaxx∈[0,1]d |φn(x)|, there

exists some constantc = c(β, L) > 0 and a compact ballB = B(φn) ⊂ Rd with center
x∗ such that

λ
(
B ∩ [0, 1]d

)
≥ c|φn(x∗)|d/β and

φn(x)
 ≥ 1

2

φn(x∗)
 for all x ∈ B ∩ [0, 1]d.

(34)
For let us assume thatβ > 1 (the above inequality is trivial in caseβ ≤ 1). For let⌊β⌋
denote the largest integer strictly smaller thanβ andφ ∈ Hd

(
β, L; [0, 1]d

)
with ‖φ‖sup =

D > 0. With j = (j1, ..., jd) ∈ Nd
0 we denote subsequently some multi-index, where

|j| = j1 + ... + jd defines its length,j! :=
∏d

i=1 ji! the product of faculties,(x − y)j :=∏d
i=1(xi − yi)

ji and

Dj :=
∂|j|

∂xj11 · ... · ∂xjmm
the partial derivative operator. Taylor expansion around any pointy ∈ [0, 1]d provides the
the approximation

φ(x) =
∑

|j|≤⌊β⌋

Djφ(y)

j!
(x− y)j + Rφ(x, y)

with remainder term|Rφ(x, y)| ≤ L‖x − y‖β2 by definition ofHd

(
β, L; [0, 1]d

)
. In

particular, these considerations entail that the polynomial in x for any fixedy

∑

|j|≤⌊β⌋

Djφ(y)

j!
(x− y)j (35)
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is bounded insup-norm over[0, 1]d by2D+L
√
d
β
. In order to establish (34), note that for

any polynomialP =
∑

|j|≤⌊β⌋ ajx
j , the topology induced by the metrics corresponding

to the two norms‖P‖(1) = supx∈[0,1]d |P (x)| and‖P‖(2) := maxj |aj | respectively on the
ring of polynomials of total degree⌊β⌋ on [0, 1]d is the topology of uniform convergence,
hence these two norms are equivalent. Consequently, the boundedness of the polynomial

in (35) by2D + L
√
d
β

uniformly in y implies that there exists some constantC = C(β)
such that‖Djφ‖sup ≤ C

(
2D + L) for all multi-indicesj with |j| ≤ ⌊β⌋. Now the Mean

Value Theorem implies for some intermediate pointz ∈
{
x+ t(x∗ − x); 0 ≤ t ≤ 1

}

φ(x) − φ(x∗)
 =

(∇φ(z)
)T (

x− x∗
)

≤
√
d sup
j: |j|=1

wwDjφ
ww

sup
‖x− x∗‖2

≤
√
dC

(
2D + L

)
‖x− x∗‖2.

Thus,

|φ(x)| ≥ 1

2
|φ(x∗)| for all x in Bx∗

(
D

2
√
dC(2D + L)

)
∩ [0, 1]d.

If φ ∈ Hd

(
β, L; [0, 1]d

)
with ‖φ‖sup = δ ≤ 1, then the functiongδ, for x ∈ [0, 1]d

pointwise defined bygδ(x) := δ−1φ
(
δ1/βx+ x∗

)
· I
{
δ1/βx + x∗ ∈ [0, 1]d

}
is element of

Hd(β, L; supp(gδ)) with ‖gδ‖sup = 1. Note thatsupp(gδ) is a convex set. Therefore, the
above considerations imply that|φ(x)| ≥ δ/2 on

Bx∗

(
δ1/β

2
√
dC(2 + L)

)
∩ [0, 1]d.

But then its Lebesgue measure is always greater thanc|δ|d/β for some constantc =
c(β, L), independent ofδ andx∗, hence (34) is established.

Let nowβi, Li ∈ (0,∞) fixed but arbitrary,Ji ⊂ [0, 1]d some nondegenerate rectangle,
φn a sequence of functions withφn|Ji

∈ Hd

(
βi, Li; Ji

)
. It has to be shown that there

exists a universal constantki = ki(βi, Li, c) such thatTĵnk̂nn
− Cĵnk̂nn

→P⊗m⊗Q⊗(n−m) ∞
whenever‖φn‖Ji

≥ kiρm,n. First, we choose a compact ballBi(φn) with centerx∗i :=
argmaxt∈Ji

|φn(t)| satisfyingλ(Bi(φn) ∩ Ji) ≥ c|φn(x∗i )|d/β and (34). Let the couple
(t̂n, r̂n) :=

(
Xĵn

, ‖Xĵn
−Xk̂n

‖2

)
be defined by

(ĵn, k̂n) := argmin
j,k∈{1,...,n}

λ

(
BXj

(
‖Xj −Xk‖2

)
∆Bi(φn)

)
.

Consulting the proof of Theorem 3, this definition of(t̂n, r̂n) allows for an approximation
as in (30). Since|φn(x)| ≥ 2−1‖φn‖Ji

for all x ∈ Bi(φn) ∩ Bt̂n(r̂n) ∩ Ji,

ESn(tn, rn)

γn(tn, rn)
≥ 1

2
‖φn‖Ji

minx hn(x)

maxx hn(x)
Eλ
(
Bi(φn)∩Bt̂n(r̂n)∩[0, 1]d

)1/2

≥ C‖φn‖(β+d/2)/β
Ji

(
1+o(1)

)
.

Now the asserted result is easily deduced for a sufficiently large constantki. �

35



9 Appendix

We start with a basic but useful property of the solution to (3).

Lemma 4. If the solution to (3) is not of bounded support, it has infinitely many crossings
of zero. In that case, the lower isotonic and upper antitonicenvelopes ofψβI{· ≥ 0} are
strictly monotone and vanishing in+∞.

PROOF The first part is obvious: from any local extremal point, we may extend the func-
tion in a monotonic way by minimizing its absolute value pointwise under the constraint
thatψ

(
‖.‖2

)
belongs toHd(β, L; R) and end finally up in zero. Since theL2-norm of

the solution (3) is finite and if there exists a sequence of local extrema ofψβ which stays
uniformly bounded away from zero, their width must be bounded by a zero sequence. But
now the result follows via contradiction of (34), which, of course, is also applicable for
local extrema. �

Let ε > 0 be fixed. Definetε to be a positive real number such that the following con-
ditions are satisfied:tε is a local extremal point,

∫
Btε (0)

γβ(x)
2d(x) ≥ (1 − ε/2)‖γβ‖2

2,
‖ψβ‖[tε,∞) ≤ ε/2. Now extend the functionψβI{· ≤ tε} to a compactly supported
function Gε such thatGε ∈ H1(β, 1; R), Gε crosses zero at most once fort > tε,∫
Gε

(
‖x‖2

)
dx = 0 and

∫
Rd\Btε (0)

Gε

(
‖x‖2

)2
dx smaller thanε‖γβ‖2

2 (which is possible
for tε sufficiently large, we omit an explicit construction at thispoint). Withε sufficiently
small, this construction leads to what was required in the proof of Theorem 2.
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