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Abstract

In the setting of high-dimensional linear models with Gaussian noise, we investi-
gate the possibility of confidence statements connected to model selection. Although
there exist numerous procedures for adaptive point estimation, the construction of
adaptive confidence regions is severely limited (cf. Li, 1989). The present paper
sheds new light on this gap. We develop exact and adaptive confidence sets for the
best approximating model in terms of risk. Our constructionis based on a multiscale
procedure and a particular coupling argument. Utilizing exponential inequalities for
noncentralχ2–distributions, we show that the risk and quadratic loss of all models
within our confidence region are uniformly bounded by the minimal risk times a
factor close to one.

1 Introduction

When dealing with a high dimensional observation vector, the natural question arises
whether the data generating process can be approximated by amodel of substantially
lower dimension. Rather than on the true model, the focus is here on smaller ones which
still contain the essential information and allow for interpretation. Typically, the mod-
els under consideration are characterized by the non-zero components of some parameter
vector. Estimating the true model requires the rather idealistic situation that each com-
ponent is either sufficiently large or equal to zero: A small perturbation of the parameter
vector always results in the biggest model, with what the question about the true model
does not seem to be adequate in general. Precisely, the modelwhich is optimal in terms of
risk then appears as target of many model selection strategies. Within a specified class of
competing models, this paper is concerned with confidence regions for that approximating
model which is optimal in terms of risk.

Suppose that we observe a random vectorXn = (Xin)n
i=1 with distributionNn(θn, σ2In)

together with an estimator̂σn for the standard deviationσ > 0. Often the signalθn rep-
resents coefficients of an unknown smooth function with respect to a given orthonormal
basis of functions.

There is a vast amount of literature on point estimation ofθn. For a given estimator
θ̂n = θ̂n(Xn, σ̂n) for θn, let

L(θ̂n, θn) := ‖θ̂n − θn‖2
n and R(θ̂n, θn) := EL(θ̂n, θn)

be its quadratic loss and the corresponding risk, respectively. Here‖ · ‖n denotes the
standard Euclidean norm of vectors divided by

√
n. Various adaptivity results are known
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for this setting, often in terms of oracle inequalities. A typical result reads as follows:
Let (θ̌

(c)
n )c∈Cn

be a family of candidate estimatorsθ̌
(c)
n = θ̌

(c)
n (Xn) for θn, whereσ > 0 is

temporarily assumed to be known. Then there exist estimators θ̂n and constantsAn, Bn =
O(log(n)γ) with γ ≥ 0 such that for arbitraryθn in a certain setΘn ⊂ R

n,

R(θ̂n, θn) ≤ An inf
c∈Cn

R(θ̌(c)
n , θn) +

Bn

n
σ2.

Results of this type are provided, for instance, by Polyak and Tsybakov (1991) and
Donoho and Johnstone (1994, 1995, 1998). Further results ofthis type, partly in dif-
ferent settings, have been provided by Stone (1984), Lepskiet al. (1997), Efromovich
(1998), Cai (1999, 2002), to mention just a few.

By way of contrast, when aiming at adaptive confidence sets one faces severe limitations.
Here is a result of Li (1989), slightly rephrased: Suppose that Θn contains a closed ball
B(θo

n, cn−1/4) with respect to‖ · ‖n, wherec > 0. Still assumingσ to be known, let
D̂n = D̂n(Xn) ⊂ Θn be a(1 − α)–confidence set forθn ∈ Θn. Such a confidence
set may may be used as a test of the (Bayesian) null hypothesisthat θn is uniformly
distributed on the sphere∂B(θo

n, cn−1/4) versus the alternative thatθn = θo
n: We reject

this null hypothesis at levelα if ‖η− θo
n‖n < cn−1/4 for all η ∈ D̂n. Since this test cannot

have larger power than the corresponding Neyman-Pearson test,

Pθo
n

(

sup
η∈D̂n

‖η − θo
n‖n < cn−1/4

)

≤ P

(

S2
n ≤ χ2

n;α(n1/2c2/σ2)
)

(with S2
n ∼ χ2

n)

= Φ
(

Φ−1(α) + 2−1/2c2/σ2
)

+ o(1),

whereχ2
n;α(δ2) stands for theα–quantile of the noncentral chi–squared distribution with

n degrees of freedom and noncentrality parameterδ2. Throughout this paper, asymptotic
statements refer ton → ∞. The previous inequality entails that no reasonable confidence
set has a diameter of orderop(n

−1/4) uniformly over the parameter spaceΘn, as long
as the latter is sufficiently large. Despite these limitations, there is some literature on
confidence sets in the present or similar settings; see for instance Beran (1996, 2000),
Beran and Dümbgen (1998) and Genovese and Wassermann (2005).

Improving the rate ofOp(n
−1/4) is only possible via additional constraints onθn, i.e. con-

sidering substantially smaller setsΘn. For instance, Baraud (2004) developed nonasymp-
totic confidence regions which perform well on finitely many linear subspaces. Robins
and van der Vaart (2006) construct confidence balls via sample splitting which adapt to
some extent to the unknown “smoothness” ofθn. In their context,Θn corresponds to a
Sobolev smoothness class with given parameter(β, L). However, adaptation in this con-
text is possible only within a range[β, 2β]. Independently, Cai and Low (2006) treat the
same problem in the special case of the Gaussian white noise model, obtaining the same
kind of adaptivity in the broader scale of Besov bodies. Other possible constraints onθn

are so-called shape constraints; see for instance Cai and Low (2007), Dümbgen (2003) or
Hengartner and Stark (1995).
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The question is whether one can bridge this gap between confidence sets and point estima-
tors. More precisely, we would like to understand the possibility of adaptation for point
estimators in terms of some confidence region for the set of all optimal candidate estima-
tors θ̌

(c)
n . That means, we want to construct a confidence regionK̂n,α = K̂n,α(Xn, σ̂n) ⊂

Cn for the set
Kn(θn) := argmin

c∈Cn

R(θ̌(c)
n , θn)

such that for arbitraryθn ∈ R
n,

Pθn

(

Kn(θn) ⊂ K̂n,α

)

≥ 1 − α (1)

and
max

c∈K̂n,α

R(θ̌(c)
n , θn)

max
c∈K̂n,α

L(θ̌(c)
n , θn)







= Op(An) min
c∈Cn

R(θ̌(c)
n , θn) +

Op(Bn)

n
σ2. (2)

Solving this problem means that statistical inference about differences in the performance
of estimators is possible, although inference about their risk and loss is severely limited.
In some settings, selecting estimators out of a class of competing estimators entails esti-
mating implicitly an unknown regularity or smoothness class for the underlying signalθn.
Computing a confidence region for good estimators is particularly suitable in situations in
which several good candidate estimators fit the data equallywell although they look dif-
ferent. This aspect of exploring various candidate estimators is not covered by the usual
theory of point estimation.

Note that our confidence region̂Kn,α is required to contain the whole setKn(θn), not
just one element of it, with probability at least1 − α. The same requirement is used by
Futschik (1999) for inference about the argmax of a regression function.

The remainder of this paper is organized as follows. For the reader’s convenience our
approach is first described in a simple toy model in Section 2.In Section 3 we develop and
analyze an explicit confidence region̂Kn,α related toCn := {0, 1, . . . , n} with candidate
estimators

θ̌(k)
n :=

(

1{i ≤ k}Xin

)n

i=1
.

These correspond to a standard nested sequence of approximating models. Section 4
discusses richer families of candidate estimators. All proofs and auxiliary results are
deferred to Sections 5 and 6.

2 A toy problem

Suppose we observe a stochastic processY = (Y (t))t∈[0,1], where

Y (t) = F (t) + W (t), t ∈ [0, 1],
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with an unknown fixed continuous functionF on [0, 1] and a Brownian motionW =
(W (t))t∈[0,1]. We are interested in the set

S(F ) := argmin
t∈[0,1]

F (t).

Precisely, we want to construct a(1 − α)–confidence region̂Sα = Ŝα(Y ) ⊂ [0, 1] for
S(F ) in the sense that

P
(

S(F ) ⊂ Ŝα

)

≥ 1 − α, (3)

regardless ofF . To construct such a confidence set we regardY (s) − Y (t) for arbitrary
differents, t ∈ [0, 1] as a test statistic for the null hypothesis thats ∈ S, i.e. large values
of Y (s) − Y (t) give evidence fors 6∈ S.

A first naive proposal is the set

Ŝnaive
α :=

{

s ∈ [0, 1] : Y (s) ≤ min
[0,1]

Y + κnaive
α

}

with κnaive
α denoting the(1 − α)–quantile ofmax[0,1] W − min[0,1] W .

Here is a refined version based on results of Dümbgen and Spokoiny (2001): Letκα be
the(1 − α)–quantile of

sup
s,t∈[0,1]

( |W (s) − W (t)|
√

|s − t|
− Γ(s − t)

)

, (4)

where
Γ(±δ) :=

√

2 log(e/δ) for 0 ≤ δ ≤ 1.

Then constraint (3) is satisfied by the confidence region

Ŝα :=
{

s ∈ [0, 1] : Y (s) ≤ Y (t) +
√

|s − t|
(

Γ(s − t) + κα

)

for all t ∈ [0, 1]
}

.

To illustrate the power of this method, consider for instance a sequence of functionsF =
Fn such that for some parameterssn ∈ [0, 1], γ > 1/2 andcn → ∞,

Fn(t) − Fn(sn) ≥ cn|t − sn|γ for all t ∈ [0, 1].

Then for the naive confidence region one can only deduce that

max
t∈Ŝnaive

α

|t − sn| = Op

(

c−1/γ
n

)

,

whereas
max
t∈Ŝα

|t − sn| = Op

(

log(cn)1/(2γ−1)c−1/(γ−1/2)
n

)

.
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3 Confidence regions for nested approximating models

As in the introduction letXn = θn + ǫn denote then-dimensional observation vector with
θn ∈ R

n andǫn ∼ Nn(0, σ2In). For any candidate estimatorθ̌
(k)
n =

(

1{i ≤ k}Xin

)n

i=1
the loss is given by

Ln(k) := L(θ̌(k)
n , θn) =

1

n

n
∑

i=k+1

θ2
in +

1

n

k
∑

i=1

(Xin − θin)2

with corresponding risk

Rn(k) := R(θ̌(k)
n , θn) =

1

n

n
∑

i=k+1

θ2
in +

k

n
σ2.

Model selection usually aims at estimating a candidate estimator which is optimal in
terms of risk. Since the risk depends on the unknown signal and therefore is not available,
the selection procedure minimizes an unbiased risk estimator instead. In the sequel, the
bias-corrected risk estimator for the candidateθ̌

(k)
n is defined as

R̂n(k) :=
1

n

n
∑

i=k+1

(X2
in − σ̂2

n) +
k

n
σ̂2

n,

whereσ̂2
n is a variance estimator satisfying the subsequent condition.

(A) σ̂2
n andXn are stochastically independent with

mσ̂2
n

σ2
∼ χ2

m,

where1 ≤ m = mn ≤ ∞ with m = ∞ meaning thatσ is known, i.e. σ̂2
n ≡ σ2. For

asymptotic statements, it is generally assumed that

β2
n :=

2n

mn
= O(1)

unless stated otherwise.

Example Suppose that we observeY = Mη + δ with given design matrixM ∈
R

(n+m)×n of rankn, unknown parameter vectorη ∈ R
n and unobserved error vectorδ ∼

Nn+m(0, σ2In+m). Then the previous assumptions are satisfied byXn := (M⊤M)1/2η̂
with η̂ := (M⊤M)−1M⊤Y andσ̂2

n := ‖Y − Mη̂‖2/m, whereθn := (M⊤M)1/2η.

Important for our analysis is the behavior of the differenceprocess

Dn = (Dn(j, k))0≤j<k≤n :=

√
n

σ̂2
n

(

(

R̂n(k) − Rn(k)
)

−
(

R̂n(j) − Rn(j)
)

)

0≤j<k≤n
.
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Its asymptotic distribution depends on the unknown “signal-to-noise” vector(θ2
in/σ2)n

i=1,
as seen in the following proposition. It provides an approximation of the difference
process by a Gaussian process, where approximation in distribution refers to the dual
bounded Lipschitz metricdw, which metrizes the weak topology. For details we refer to
Section 6.

Proposition 1. In case of‖θn‖2
n = O(1), the difference processDn is approximated in

distribution by a centered Gaussian process∆n with covariances

cov
(

∆n(j, k), ∆n(j′, k′)
)

=
4β2

n

n2
(k − j)(k′ − j′) +

1

n

∑

i∈(j,k]∩(j′,k′]

(

4
θ2

in

σ2
+ 2

)

.

If we could estimate the covariance function in Proposition1 consistently, we could im-
itate the naive confidence region of Section 2. For a more powerful confidence region,
the crucial step is to analyze a suitably standardized version of the increment process
Dn, getting additionally rid of the restriction on‖θn‖2

n. Since this process does not have
subgaussian tails, the standardization is more involved than the correction in (4).

Theorem 2. Let (θn)n∈N be arbitrary. For0 ≤ j < k ≤ n let

γn(j, k)2 :=
1

n

k
∑

i=j+1

(4 θ2
in/σ

2 + 2)

and define

Cjkn :=

(

1 +
5 Γjkn√
n γn(j, k)

)

Γjkn

with Γjkn := Γ
(

max
{

γn(j, k)2/γn(0, n)2, 1/n
})

. Then the sequence of random vari-
ables

dn := sup
0≤j<k≤n

( |Dn(j, k)|
γn(j, k)

− Cjkn

)

is tight. Precisely, it is approximated in distribution by

δn := sup
0≤j<k≤n

(



W (γn(0, k)2) − W (γn(0, j)
2) + 2βn(k − j)/n Z





γn(j, k)
− Γjkn

)

,

whereW denotes a Brownian motion, independent ofZ ∼ N (0, 1).

The above non-degenerate limiting distribution demonstrates that the additive correction
is appropriately defined and cannot be chosen essentially smaller.

In order to construct a confidence set forKn(θn) by means ofdn, we are facing the prob-
lem that the auxiliary functionγn depends on the unknown signal-to-noise vectorθn/σ. In
fact, knowingγn would imply knowledge ofKn(θn) already. A natural approach is to re-
place the quantities which are dependent on the unknown parameter by suitable estimates.
A common estimator of the varianceγ2

n is given by

γ̂n(j, k)2 :=
1

n

k
∑

i=j+1

(

4(X2
in/σ̂

2
n − 1) + 2

)

, j < k.
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However, using such an estimator does not seem to work since

sup
0≤j<k≤n







γ̂n(j, k)

γn(j, k)
− 1






6−→p 0

asn goes to infinity. This can be verified by noting that
(

γ̂n(j, k)2
)

0≤j<k≤n
is, up to

centering, essentially of the same structure as the difference processDn itself.

The least favourable case of constant risk

The problem of estimating the setarg mink Rn(k) can be cast into our toy model where
Y (t), F (t) andW (t) correspond toR̂n(k), Rn(k) and the differencêRn(k) − Rn(k),
respectively. One may expect that the more distinctive the global minima are, the easier it
is to identify their location. Hence the case of constant risks appears to be least favourable,
corresponding to a signal

θ∗n :=
(

±σ
)n

i=1
,

In this situation, each candidate estimatorθ̌
(k)
n has the same riskσ2.

A related consideration leading to an explicit procedure isas follows: For fixed indices
0 ≤ j < k ≤ n,

Rn(j) − Rn(k) =
1

n

k
∑

i=j+1

θ2
in − k − j

n
σ2,

and if assumption (A) is satisfied, the statistic

Tjkn :=

∑k
i=j+1 X2

in

(k − j)σ̂2
n

= 2 − n(R̂n(k) − R̂n(j))

(k − j)σ̂2
n

has a noncentral (in the numerator)F–distribution

Fk−j,m

(

∑k
i=j+1 θ2

in

σ2

)

= Fk−j,m

(

k − j +
n
(

Rn(j) − Rn(k)
)

σ2

)

with k − j andm degrees of freedom. Thus large or small values ofTjkn give evidence
for Rn(j) being larger or smaller, respectively, thanRn(k). Precisely,

Lθn
(Tjkn)

{

≤st. Lθ∗n(Tjkn) wheneverj ∈ Kn(θn),

≥st. Lθ∗n(Tjkn) wheneverk ∈ Kn(θn).

Note that this stochastic ordering remains valid ifσ̂2
n is just independent fromXn, i.e. also

under the more general requirement of the remark at the end ofthis section. Via suitable
coupling of Poisson mixtures of centralχ2–distributed random variables, this observation
is extended to
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Proposition 3 (Coupling). For anyθn ∈ R
n there exists a probability space with random

variables
(

T̃jkn

)

0≤j<k≤n
and

(

T̃ ∗
jkn

)

0≤j<k≤n
such that

L
(

(

T̃jkn

)

0≤j<k≤n

)

= Lθn

(

(

Tjkn

)

0≤j<k≤n

)

,

L
(

(

T̃ ∗
jkn

)

0≤j<k≤n

)

= Lθ∗n

(

(

Tjkn

)

0≤j<k≤n

)

,

and for arbitrary indices0 ≤ j < k ≤ n,

T̃jkn

{

≤ T̃ ∗
jkn wheneverj ∈ Kn(θn),

≥ T̃ ∗
jkn wheneverk ∈ Kn(θn).

As a consequence of Proposition 3, we can define a confidence set for Kn(θn), based on
this least favourable case. Letκn,α denote the(1 − α)-quantile ofLθ∗n(dn). Motivated by
the procedure in Section 2 and Theorem 2, we define

K̂n,α :=
{

j : R̂n(j) ≤ R̂n(k) +
σ̂2

n

√

6|k − j|
n

(

Γ
(k − j

n

)

+ κn,α

)

(5)

+
5σ̂2

n

n
Γ
(k − j

n

)2

for all k 6= j
}

=
{

j : Tijn ≥ 2 − cijn for 1 ≤ i < j, Tjkn ≤ 2 + cjkn for j < k ≤ n
}

,

with

cjkn :=

√

6

|k − j|

(

Γ
(k − j

n

)

+ κn,α

)

+
5

|k − j|Γ
(k − j

n

)2

.

Theorem 4. Let (θn)n∈N be arbitrary. WithK̂n,α as defined above,

Pθn

(

Kn(θn) 6⊂ K̂n,α

)

≤ α.

In case ofn/m → 0, the critical valuesκn,α converge to the critical valueκα introduced
in Section 2. Under the weaker assumption thatn/m = O(1), κn,α = O(1), and the
confidence regionŝKn,α satisfy the oracle inequalities

max
k∈K̂n,α

Rn(k) ≤ min
j∈Cn

Rn(j) +
(

2
√

15 + op(1)
)

√

νn min
j∈Cn

Rn(j) + Op(νn) (6)

and

max
k∈K̂n,α

Ln(k) ≤ min
j∈Cn

Ln(j) + Op

(

√

νn min
j∈Cn

Ln(j)

)

+ Op(νn) (7)

with νn = (σ2 log n)/n andC some universal constant independent ofσ2.
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REMARK (Variance estimation) Instead of condition (A), one may require more gen-
erally thatσ̂2

n andXn are independent with

√
n
( σ̂2

n

σ2
− 1

)

→D N (0, β2)

for a givenβ ≥ 0. This covers, for instance, estimators used in connection with wavelets.
Thereσ is estimated by the median of some high frequency wavelet coefficients divided
by the normal quantileΦ−1(3/4). Theorem 2 continues to hold, and the coupling ex-
tends to this situation, too, withS2 in the proof being distributed asnσ̂2

n. Under this
assumption on the external variance estimator, the confidence regionK̂n,α, defined with
m := ⌊2n/β2⌋, is at least asymptotically valid and satisfies the above oracle inequalities
as well.

4 Confidence sets in case of larger families of candidates

The previous result relies strongly on the assumption of nested models. It is possible to
obtain confidence sets for the optimal approximating modelsin a more general setting,
albeit the resulting oracle property is not as strong as in the nested case. In particular, we
can no longer rely on a coupling result but need a different construction. For the reader’s
convenience, we focus on the case of knownσ, i.e. m = ∞; see also the remark at the
end of this section.

Let Cn be a family of index setsC ⊂ {1, 2, . . . , n} with candidate estimators

θ̌(C) :=
(

1{i ∈ C}Xin

)n

i=1

and corresponding risks

Rn(C) := R(θ̌(C), θn) =
1

n

∑

i6∈C

θ2
in +

#C

n
σ2.

For two index setsC andD,

(n/σ2)
(

Rn(D) − Rn(C)
)

= δ2
n(C \ D) − δ2

n(D \ C) + #D − #C

with the auxiliary quantities

δ2
n(J) :=

∑

i∈J

θ2
in/σ

2, J ⊂ {1, 2, . . . , n}.

Hence we aim at simultaneous(1 − α)–confidence intervals for these noncentrality pa-
rametersδn(J), whereJ ∈ Mn := {D \ C : C, D ∈ Cn}. To this end we utilize the fact
that

Tn(J) :=
1

σ2

∑

i∈J

X2
in

9



has aχ2
#J(δ2

n(J))-distribution. We denote the distribution function ofχ2
k(δ

2) by Fk(· |
δ2). Now let Mn := #Mn − 1 ≤ #Cn(#Cn − 1), the number of nonvoid index sets
J ∈ Mn. Then with probability at least1 − α,

α/(2Mn) ≤ F#J

(

Tn(J)
∣

∣ δ2
n(J)

)

≤ 1 − α/(2Mn) for all J ∈ Mn, J 6= ∅. (8)

SinceF#J(Tn(J) | δ2) is strictly decreasing inδ2 with limit 0 asδ2 → ∞, (8) entails the
following simultaneous(1 − α)–confidence intervals

[

δ̂2
n,α,l(J), δ̂2

n,α,u(J)
]

for all param-

etersδ2
n(J): We setδ̂2

n,α,l(∅) := δ̂2
n,α,u(∅) := 0, while for nonvoidJ ,

δ̂2
n,α,l(J) := min

{

δ2 ≥ 0 : F#J

(

Tn(J)
∣

∣ δ2
)

≤ 1 − α/(2Mn)
}

, (9)

δ̂2
n,α,u(J) := max

{

δ2 ≥ 0 : F#J

(

Tn(J)
∣

∣ δ2
)

≥ α/(2Mn)
}

. (10)

By means of these bounds, we may claim with confidence1−α that for arbitraryC, D ∈
Cn the normalized difference(n/σ2)

(

Rn(D)−Rn(C)
)

is at most̂δ2
n,α,u(C\D)−δ̂2

n,α,l(D\
C) + #D − #C. Thus a(1 − α)–confidence set forKn(θn) = argminC∈Cn

Rn(C) is
given by

K̂n,α :=
{

C ∈ Cn : δ̂2
n,α,u(C \ D) − δ̂2

n,α,l(D \ C) + #D − #C ≥ 0 for all D ∈ Cn

}

.

These confidence setŝKn,α satisfy the following oracle inequalities:

Theorem 5. Let (θn)n∈N be arbitrary, and suppose thatlog #Cn = o(n). Then

max
C∈K̂n,α

Rn(C) ≤ min
D∈Cn

Rn(D) + Op

(

√

ν̃n min
D∈Cn

Rn(D)

)

+ Op

(

ν̃n

)

,

max
C∈K̂n,α

Ln(C) ≤ min
D∈Cn

Ln(D) + Op

(

√

ν̃n min
D∈Cn

Ln(D)

)

+ Op

(

ν̃n

)

with ν̃n := σ2 log(#Cn)/n.

REMARK The upper bounds in Theorem 5 are of the formρn + Op

(√
ρnν̃n

)

+ Op

(

ν̃n

)

,
with ρn denoting minimal risk or minimal loss. For any fixedε > 0 this bound doesn’t
exceed(1 + ε)ρn + Op(ν̃n). Thus Theorem 5 entails that the maximal risk (loss) over
K̂n,α exceed the minimal risk (loss) by a factor close to one, provided that the minimal
risk (loss) is substantially larger thañνn.

REMARK (Suboptimality in case of nested models) In case of nested models, the gen-
eral construction is suboptimal in the factor of the leading(in most cases) term

√

minj Rn(j);
following the proof carefully and using̃νn = 2νn + O(1) in this special setting, one may
verify that

max
k∈K̂n,α

Rn(k) ≤ min
j∈Cn

Rn(j) +
(

8
√

2 + op(1)
)
√

νn min
j∈Cn

Rn(j) + Op

(

νn

)

.

The intrinsic reason seems to be that the general procedure does not assume any structure
of the candidate estimators so that advanced multiscale theory is not applicable.
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REMARK In case of unknownσ, letα′ := 1− (1−α)1/2. Then with probability at least
1 − α′,

α′/2 ≤ Fm

(

m(σ̂n/σ)2
∣

∣ 0
)

≤ 1 − α′/2.

The latter inequalities entail that(σ/σ̂n)2 lies betweenτn,α,l := m/χm;1−α′/2 andτn,α,u :=

m/χ2
m;α′/2. Then we obtain simultaneous(1−α)–confidence boundŝδ2

n,α,l(J) andδ̂2
n,α,u(J)

as in (9) and (10) by replacingα with α′ andTn(J) with

τn,α,l

σ̂2
n

∑

i∈J

X2
in and

τn,α,u

σ̂2
n

∑

i∈J

X2
in,

respectively. The conclusions of Theorem 5 continue to hold, as long asn/mn = O(1).

5 Proofs

5.1 Exponential inequalities

An essential ingredient for our main results is an exponential inequality for quadratic
functions of a Gaussian random vector. It extends inequalities of Dahlhaus and Polonik
(2006) for quadratic forms and may be of independent interest.

Proposition 6. LetZ1, Z2, . . . , Zn be independent standard normally distributed random
variables. Furthermore, letλ1, λ2, . . . , λn andδ1, δ2, . . . , δn be real constants, and define

γ2 := Var
(

∑n
i=1 λi(Zi + δi)

2
)

=
∑n

i=1 λ2
i (2 + 4δ2

i ). Then

P

(

n
∑

i=1

λi

(

(Zi + δi)
2 − (1 + δ2

i )
)

≥ ηγ
)

≤ exp
(

− η2/2

1 + 2ηλmax/γ

)

≤ e1/8 exp(−η/4)

for arbitrary η ≥ 0, whereλmax := max(λ1, λ2, . . . , λn, 0).

Note that replacingλi in Proposition 6 with−λi yields twosided exponential inequali-
ties. By means of Proposition 6 and elementary calculationsone obtains exponential and
related inequalities for noncentralχ2 distributions:

Corollary 7. For an integern > 0 and a constantδ ≥ 0 let Fn(· | δ2) be the distribution
function ofχ2

n(δ2). Then for arbitraryr ≥ 0,

Fn(n + δ2 + r | δ2) ≥ 1 − exp
(

− r2

4n + 8δ2 + 4r

)

, (11)

Fn(n + δ2 − r | δ2) ≤ exp
(

− r2

4n + 8δ2

)

. (12)

11



In particular, for anyα ∈ (0, 1) andA := log(2/α),

F−1
n (1 − α/2 | δ2) ≤ n + δ2 +

√

(4n + 8δ2)A + 4A, (13)

F−1
n (α/2 | δ2) ≥ n + δ2 −

√

(4n + 8δ2)A. (14)

Moreover, for any number̂δ ≥ 0, the inequalitiesα/2 ≤ Fn(t | δ2) ≤ 1−α/2 entail that

δ̂2 −
√

(4n + 8δ̂2)A ≤ δ2 ≤ δ̂2 +

√

(4n + 8δ̂2)A + 8A. (15)

Conclusion (15) follows from (11) and (12), applied tor = δ̂2 − δ2 andr = δ2 − δ̂2,
respectively.

PROOF OFPROPOSITION6 Standard calculations show that for0 ≤ t < (2λmax)
−1,

E exp
(

t
n

∑

i=1

λi(Zi + δi)
2
)

= exp
(1

2

n
∑

i=1

{

δ2
i

2tλi

1 − 2tλi

− log(1 − 2tλi)
})

.

Then for any sucht,

P

(

n
∑

i=1

λi

(

(Zi + δi)
2 − (1 + δ2

i )
)

≥ ηγ
)

≤ exp
(

−tηγ − t

n
∑

i=1

λi(1 + δ2
i )

)

· E exp
(

t

n
∑

i=1

λi(Zi + δi)
2
)

= exp
(

−tηγ +
1

2

n
∑

i=1

{

δ2
i

4t2λ2
i

1 − 2tλi
− log(1 − 2tλi) − 2tλi

})

. (16)

Since the derivative ofx 7→ − log(1 − x) − x equalsx/(1 − x), one can easily deduce
that

− log(1 − x) − x ≤
{

x2/2 if x ≤ 0,

x2/(2(1 − x)) if x ≥ 0.

Thus (16) is not greater than

exp
(

−tηγ +
1

2

n
∑

i=1

{

δ2
i

4t2λ2
i

1 − 2tλi
+

2t2λ2
i

1 − 2t max(λi, 0)

})

≤ exp
(

−tηγ +
γ2t2/2

1 − 2tλmax

)

.

Setting

t :=
η

γ + 2ηλmax

∈
[

0, (2λmax)
−1

)

,

the preceding bound becomes

P

(

n
∑

i=1

λi

(

(Zi + δi)
2 − (1 + δ2

i )
)

≥ ηγ
)

≤ exp
(

− η2/2

1 + 2ηλmax/γ

)

.

Finally, sinceλmax ≤ γ, the second asserted inequality follows from

η2/2

1 + 2ηλmax/γ
≥ η2/2

1 + 2η
=

η

4
− η

4 + 8η
≥ η

4
− 1

8
. 2
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5.2 Proofs of the main results

For notational convenience, we denote byXk andǫk thek-th component of then-dimensional
observation and error vector respectively and drop the index n if this is clear from the con-
text. Throughout the proofs, letTn :=

{

(j, k)


 0 ≤ j < k ≤ n
}

.

PROOF OFPROPOSITION1 Becausêσ2
n/σ2 →p 1, it is sufficient to prove the result for

D̃n :=
σ̂2

n

σ2
Dn,

where we may assume without loss of generalityσ2 = 1. The process̃Dn, evaluated at
some point(j, k) ∈ Tn, is then given by

D̃n(j, k) :=
1√
n

k
∑

i=j+1

(

2ǫiθin + (ǫ2
i − σ̂2

n)
)

− k − j√
n

(

σ̂2
n − 1

)

= 2
(

1 − σ̂2
n

)k − j√
n

+
1√
n

k
∑

i=j+1

(

2ǫiθin + (ǫ2
i − 1)

)

= D̃1,n(j, k) + D̃2,n(j, k).

Note that both processes are centered with covariance functions

cov
(

D̃1,n(j, k), D̃1,n(j
′, k′)

)

=
4

n2
β2

n(k − j)(k′ − j′)

and

cov
(

D̃2,n(j, k), D̃2,n(j′, k′)
)

=
2

n

∑

i∈(j,k]∩(j′,k′]

(

2θ2
in + 1

)

,

respectively. By assumption, the processesD̃1,n andD̃2,n are independent. The approx-
imation of the first process is straightforward and hence omitted in this section. In order
to investigate

(

1√
n

∑

i∈(j,k]

(

2ǫiθin + (ǫ2
i − 1)

)

)

(j,k)∈Tn

,

we consider in view of Theorem 2 the normed version of the process, i.e.D̃2,n/γn(0, n),
without any restrictions on(θn)n∈N. In case‖θn‖2

n = O(1), γn(0, n) is uniformly bounded
away from zero and infinity, and the result as stated in Proposition 1 follows in particular.

For letφi be thei’th summand of this process, that is

φi(j, k) :=
I(j,k](i)√
nγn(0, n)

{

2ǫiθin + (ǫ2
i − 1)

}

.
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Now define the partition of{1, ..., n} =: Sn = S(1)
n + S(2)

n with S(1)
n := {i ∈ Sn|θ2

in ≤√
nγn(0, n)} andS(2)

n = Sn \ S(1)
n . Then the process̃D2,n is the sum of the two indepen-

dent parts
(

∑

i∈S
(1)
n

φi(j, k)

)

(j,k)∈Tn

and

(

∑

i∈S
(2)
n

φi(j, k)

)

(j,k)∈Tn

.

By Markov’s inequality,

P

(

sup
(j,k)∈Tn







∑

i∈S
(2)
n

1√
nγn(0, n)

I(j,k](i)(ǫ
2
i − σ2)






> ǫ

)

≤ 1

ǫ

♯S(2)
n√

nγn(0, n)
E

(

sup
(j,k)∈Tn







1

♯S(2)
n

∑

i∈S
(2)
n

I(j,k](i)(ǫ
2
i − σ2)







)

for anyε > 0. LetFn :=
{

I(j,k]



(j, k) ∈ Tn

}

. Using Lemma 6.4 in Beran and Dümbgen
(1998), the last expression is bounded by

1

ǫ

√

♯S(2)
n√

nγn(0, n)
CJ (Fn)

{

E

(

1

♯S(2)
n

∑

i∈S
(2)
n

ǫ4
i

)}1/2

,

whereC denotes a universal constant independent ofn andJ (Fn) stands for
∫ 1

0

√

log N(u,Fn)du
with N(u,Fn) the uniform covering number as defined in section 6. Note thatfor the
classes under consideration,supn J (Fn) is finite. Since♯S(2)

n ≤ √
nγn(0, n), the above

expression tends to zero asn goes to infinity. Therefore,
(

∑

i∈S
(2)
n

φi(j, k)

)

(j,k)∈Tn

=

(

2√
nγn(0, n)

∑

i∈S
(2)
n

I(j,k](i)ǫiθin

)

(j,k)∈Tn

+ op(1).

Concerning the first part
∑

i∈S
(1)
n

φi(.), note that

E

(

∑

i∈S
(1)
n

‖φi‖2
Tn

)

= E

(

∑

i∈S
(1)
n

(φi(0, n))2

)

=
1

nγn(0, n)2

∑

i∈S
(1)
n

E
{

4ǫ2
i θ

2
in+(ǫ2

i−σ2)2
}

= O(1)

while for anyu > 0, the (uniform) Lindeberg condition

E

(

∑

i∈S
(1)
n

I
{

‖φi‖2
Tn

> u
}

‖φi‖2
Tn

)

= E

(

∑

i∈S
(1)
n

I
{

φi(0, n)2 > u
}

φi(0, n)2

)

= o(1)

is easily seen to be satisfied. Since by construction the covariance function ofD̃n/γn(0, n)
is absolutely bounded by1,

sup
{♯T l

n=l|T l
n⊂Tn}

dw

{

L
( n

∑

k=1

φk(t)

)

t∈T l
n

, N
(

0, cov
(

n
∑

k=1

φk(t)
)

t∈T l
n

)}

−→ 0

for all natural numbersl, due to the multivariate Lindeberg central limit theorem and
the compactness of[−1, 1], which shows that condition (i) of Theorem 8 is satisfied.
Condition (ii) results from the first part of the subsequent proof of Theorem 2. 2
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PROOF OFTHEOREM 2 With the same argument as in the proof of Proposition 1, it is
sufficient to prove the result with̃Dn in place ofDn. Without loss of generality, we may
further assume thatVar

(

D̃2,n(0, n)
)

= γn(0, n)2 = 1 by a simple rescaling argument. We
begin with the situation whereσ2 is known (βn = 0), i.e. we only consider the process
D̃2,n. By expanding the square,̃D2,n is of the general form

n
∑

i=1

λi(Zi + δi)
2 −

n
∑

i=1

λi(1 + δ2
i )

with

λi = λin(j, k) =
1√
n

I(j,k](i)
(

|λi| ≤
1√
n

)

, δi = δin =
θin

σ

andZ1, ..., Zn i.i.d. N (0, 1). Its expectation and variance are given by zero and

Var
n

∑

i=1

λi(Zi + δi)
2 =

n
∑

i=1

2λ2
i (1 + 2δ2

i ),

respectively. Let the metricρn onTn × Tn be defined by

ρn

(

(j, k), (j′, k′)
)2

:=
1

n

∑

i∈(j,k]△(j′,k′]

(4 θ2
in

σ2
+ 2

)

.

We first establish the following bound for the capacity numbers

D
(

uξ,
{

(j, k) ∈ Tn|γn(j, k) ≤ ξ
}

, ρn

)

≤ Au−4ξ−2

for some positive constantA > 0, independent ofn, θn andξ. For0 ≤ s ≤ t ≤ 1 let

µn([s, t]) :=

∫ 1

0

2I[s,t](x)(1 + 2δn(x)2)dλ(x),

whereδn(.) :=

n
∑

i=1

δin · I[ i−1
n

, i
n

)(.). Note thatµn([0, 1]) = 1 in particular (by assumption).

Then

ρn

(

(j, k), (j′, k′)
)2

=

∫ 1

0

I[j/n,k/n]∆[j′/n,k′/n]dµn

and
{

(j, k) ∈ Tn|γn(j, k) ≤ ξ
}

=

{

(j, k) ∈ Tn







∫ k/n

j/n

dµn ≤ ξ2

}

for anyξ ∈ (0, 1]. Let Sn = {t1, ..., tm} ⊂ [0, 1] be a maximal subset witht1 = 0 such
that

∫ ti+1

ti

dµn(x) =
u2ξ2

2
.
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Thenm ≤ 3/(u2ξ2). If now (j, k), (j′, k′) ∈ Tn with j/n, j′/n ∈ [ti−1, ti] andk/n, k′/n ∈
[tl−1, tl], 1 < i ≤ l ≤ m + 1 with tm+1 = 1 (if not already contained inSn), then

ρn

(

(j, k), (j′, k′)
)

=

(
∫ 1

0

(

I[j/n,k/n] − I[j′/n,k′/n]

)2
dµn

)1/2

≤ uξ.

But ξ2 ≥ γ2(j, k)2 implies

ξ2 ≥
∫ k/n

j/n

dµn ≥
(

l − i − 1
)u2ξ2

2

which givesl − i − 1 ≤ 2u−2. Hence,

D
(

uξ,
{

(j, k) ∈ Tn|γ2(j, k) ≤ ξ
}

, ρn

)

≤ ♯
{

i < l ∈ {1, ..., m + 1}, l − i ≤ 1 +
2

u2

}

≤ (m + 1)
(

2 + 2u−2
)

≤ Au−4ξ−2.

with A > 0 independent ofn, θn andξ.

The second exponential inequality in Proposition 6 gives

P

(

|D̃2,n(j, k) − D̃2,n(j′, k′)| ≥ ρn

(

(j, k), (j′, k′)
)

(4η + 1/2)
)

≤ 2 exp(−η),

which implies that

P

(

|D̃2,n(j, k) − D̃2,n(j′, k′)| ≥ ρn

(

(j, k), (j′, k′)
)

qη
)

≤ 2 exp(−η)

with q = 4 + (2 log 2)−1. According to Theorem 7 and the subsequent remark 3 in
Dümbgen and Walther (2008), there exists a constantQ > 0 such that

lim
δց0

sup
n∈N

P

(

sup
ρn

(

(j,k),(j′,k′)
)

≤δ



D̃2,n(j, k) − D̃2,n(j′, k′)




ρn

(

(j, k), (j′, k′)
)

log
(

e/ρn

(

(j, k), (j′, k′)
)) > Q

)

= 0,

implying in particular the stochastic equicontinuity condition (ii) of Theorem 8 in the
appendix which has been left open in the proof of Proposition1. Note that the same holds
true withD̃2,n replaced by the approximating Gaussian process.

For notational convenience, let

Tn(δ, δ′) := sup
(j,k)∈Tn:

δ<γn(j,k)≤δ′

{

|D̃2,n(j, k)|
γn(j, k)

− Cjkn

}

for any0 ≤ δ < δ′ ≤ 1 and analogously

Sn(δ, δ′) := sup
(j,k)∈Tn:

δ<γn(j,k)≤δ′

{



W
(

γn(0, k)2
)

− W
(

γn(0, j)2
)




γn(j, k)
− Γjkn

}
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with W (.) some Brownian motion on the unit interval. For anyδ ∈ (0, 1), supγn(j,k)≥δ |Cjkn−
Γjkn| → 0 asn goes to infinity. Consequently by the proof of Proposition 1,

dw

(

L
(

Tn(δ, 1)
)

,L(
(

Sn(δ, 1)
)

)

−→ 0 (n → ∞) (17)

for any fixedδ ∈ (0, 1). Note at this point that for the weak approximation by the dual
bounded Lipschitz metric as defined in the appendix the continuous mapping theorem is
not applicable in general. The statement follows since the mapping is Lipschitz continu-
ous as long asδ > 0.

Let

Gn(η, δ) :=
2η√
nδ

+
(4η2

nδ2
+ 2η

)1/2

.

The Bernstein-type exponential inequality implies

P

(

|D̃2,n(j, k)| ≥ γn(j, k)Gn(η, δ)
)

≤ 2 exp(−η)

if γn(j, k) ≥ δ for any fixedδ > 0. The same holds true for the approximating Gaussian
process withGn replaced by(2η)1/2. Then Theorem 8 in Dümbgen and Walther (2008)
and its subsequent Remark imply

lim
δց0

sup
n

P
(

Tn(0, δ) ≥ ǫ
)

= 0 and lim
δց0

sup
n

P
(

Sn(0, δ) ≥ ǫ
)

= 0 (18)

for ε > 0. For note that the variancesγn(j, k)2/γn(0, n)2 appearing in the logarithms
of the additive correction termsCjkn can be replaced bymax

(

γn(j, k)2/γn(0, n)2, 1/n
)

since the local covering numbers are bounded byn2 anyway. Evidently,

lim
δց0

sup
n

P
(

Sn(δ, 1) ≤ −ǫ
)

= 0 (19)

for any fixedǫ > 0. Combining (17) – (19) yields

dw

(

L(Tn(0, 1)),L(Sn(0, 1))
)

→ 0

asn goes to infinity.

So far we only considered the processD̃2,n. If an additional estimation ofσ2 is involved,
the process̃D1,n has to be taken into account as well. As the covariance function demon-
strates, the standardized version ofD̃1,n is stochastically bounded,

sup
(j,k)∈Tn

|D̃1,n(j, k)|
γn(j, k)

= Op(1).

Note thatγ2
n(·, ·) · 2β2

n ≥ Var
(

D̃1,n(·, ·)
)

. Let T ′
n be defined asTn above withD̃n in place

of D̃2,n, analogously define

S ′
n(δ, δ′) := sup

(j,k)∈Tn:
δ<γn(j,k)≤δ′

(



W
(

γn(0, k)2
)

− W
(

γn(0, j)2
)

+ 2βn(k − j)/nZ




γn(j, k)
− Γjkn

)
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Figure 1: Construction of the coupling

for any0 ≤ δ < δ′ ≤ 1. Claim (17) remains valid withT ′
n andS ′

n in place ofTn andSn

with the same argument. Furthermore,

lim
δց0

lim sup
n→∞

P(T ′
n(0, δ) ≥ ǫ)

≤ lim
δց0

lim sup
n→∞

P(Tn(0, δ) ≥ ǫ/2) + lim
δց0

lim sup
n→∞

P

(

sup
(j,k)∈Tn:

0<γn(j,k)≤δ

|D̃1,n(j, k)|
γn(j, k)

≥ ǫ/2

)

= 0,

using limδց0 sup0<γn(j,k)<δ Var
(

D̃1,n(j, k)
)

/γn(j, k) = 0. Analogously, the conclusion
is true withS ′

n in place ofT ′
n. Clearly, (19) follows forS ′

n as well, which completes the
proof. �

PROOF OFPROPOSITION3 The main ingredient is a well-known representation of non-
centralχ2 distributions as Poisson mixtures of centralχ2 distributions. Precisely,

χ2
k(δ

2) =
∞

∑

j=0

e−δ2/2 (δ2/2)j

j!
· χ2

k+2j ,

as can be proved via Laplace transforms. Now we define ‘time points’

tkn :=
k

∑

i=1

θ2
in/σ2 and t∗kn := tj(n)n + k − j(n)

with j(n) any fixed index inKn(θn). This construction entails thatt∗kn ≥ tkn with equality
if, and only if,k ∈ Kn(θn).
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Figure 1 illustrates this construction. It shows the time points tkn (crosses) andt∗kn (dots
and line) versusk for a hypothetical signalθn ∈ R

40 with σ = 1. Note that in this
example,Kn(θn) is given by{10, 11, 20, 21}.

Let Π, G1, G2, . . . , Gn, Z1, Z2, Z3, . . . andS2 be stochastically independent random
variables, whereΠ = (Π(t))t≥0 is a standard Poisson process,Gi andZj are standard
Gaussian random variables, andS2 ∼ χ2

m. Then one can easily verify that

T̃jkn :=
m

(k − j)S2

(

k
∑

i=j+1

G2
i +

2Π(tkn/2)
∑

s=2Π(tjn/2)+1

Z2
s

)

,

T̃ ∗
jkn :=

m

(k − j)S2

(

k
∑

i=j+1

G2
i +

2Π(t∗
kn

/2)
∑

s=2Π(t∗jn/2)+1

Z2
s

)

define random variables(T̃jkn)0≤j<k≤n and(T̃ ∗
jkn)0≤j<k≤n with the desired properties.2

PROOF OFTHEOREM 4 Recall that

γn(j, k)2 =
1

n

k
∑

i=j+1

(

4θ2
in/σ

2 + 2
)

, (20)

which equalsγ∗
n(j, k)2 := 6|k − j|/n in case ofθn = θ∗n. Without loss of generality let

σ = 1. If σ̂2
n satisfies condition (A), Proposition 3 yields that

Pθn

(

Kn(θn) ⊂ K̂n,α

)

≥ 1 − α.

The statements about the asymptotic behavior ofκn,α are an immediate consequence of
Theorem 2. Our next goal is to establish the oracle inequality (6), where the stochastic
order termsop andOp are supposed to be independent of(θn)n∈N. First note that

1√
n

γn(j, k)Cjkn ≤ K
log n

n
+

γn(j, k)√
n

Γ(1/n). (21)

Here and in what follows,K denotes some universal constant, independent of(θn)n∈N, j,
k andn. Its value may be different in different expressions. By thedefinition ofK̂n,α,

R̂(k) ≤ R̂(j) +
σ̂2

nγ∗
n(j, k)√
n

(

Γ
(

|k − j|/n
)

+ κn,α

)

+
5 σ̂2

n

n
Γ
(

|k − j|/n
)2

(22)

for all k ∈ K̂n,α andj 6= k, in particular for everyj ∈ Kn(θn). As a consequence of the
tightness shown in Theorem 2,

R(k) − R(j) ≤ R̂(k) − R̂(j) + σ̂2
nK

log n

n
+ σ̂2

n

γn(j, k)√
n

(

Γ(1/n) + Z ′
n

)

= R̂(k) − R̂(j) +
(

1 + Op(n
−1/2)

)

{

K
log n

n
+

γn(j, k)√
n

(

Γ(1/n) + Z ′
n

)

}

(23)
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for some random variableZ ′
n = Op(1), independent ofj, k, θn. Thus (21 – 23) imply for

anyj ∈ Kn(θn) andk ∈ K̂n,α,

R(k) − R(j) ≤ (K + Zn)
log n

n
+

Γ(1/n)√
n

(

1 + Zn

)

(

γn(j, k) + γ∗
n(j, k)

)

(24)

for some positive constantK and a positive random variableZn = op(1), independent of
j, k andθn. Using that

√
x +

√
y ≤

√

x/λ + y/(1 − λ) for anyx, y ≥ 0 andλ ∈ (0, 1),

√
n
(

γn(j, k) + γ∗
n(j, k)

)

≤

√

√

√

√10
1

n

max(j,k)
∑

i=min(j,k)+1

θ2
in + 15

|k − j|
n

≤
√

15(Rn(j) + Rn(k))

settingλ = 2/5. This is easily shown to entail that

R(k) ≤ R(j) +
Γ(1/n)

n

(

1 + Zn

)
√

30
√

R(j) + (K + Zn)2 log n

n
.

Let L(j, k) := L(k) − L(j) andR(j, k) := R(k) − R(j). First note that for anyj < k,

(

L(j, k) − R(j, k)
)

=
1

n

k
∑

i=j+1

(ε2
i − 1).

Analogously to the proof of Theorem 2, there exist a sequenceof random variables(Zn)
and some constantK, both independent ofj, n and(θn) with Zn = Op(1) such that



L(j, k) − R(j, k)


 ≤
{

K
log n

n
+

γ+
n (j, k)√

n

(

Γ(1/n) + Zn

)

}

with γ+
n (j, k)2 := 2|k − j|/n. Consequently, for anyj ∈ K̂n,α andj 6= k,

L(j) − L(k) = (L − R)(j, k) + R(j, k)

≤ (K + op(1))
log n

n
+

Γ(1/n)√
n

(

1 + op(1)
)

(

γ+
n (j, k) + γ∗

n(j, k) + γn(j, k)
)

.

But √
n
(

γ+
n (j, k) + γ∗

n(j, k) + γn(j, k)
)

≤
√

K(R(j) + R(k)),

while the above inequality applied for|L(j) − R(j)| shows that

R(j) −
{

K
log n

n
+

√

2R(j)√
n

(

Γ(1/n) + Zn

)

}

≤ L(j),

whenceR̃(j) ≤ 2L̃(j) + (K + Zn)2(log n)/n. Therefore,

L(j) ≤ L(k) +
Γ(1/n)√

n

(

1 + op(1)
)
√

KL(k) + (K + op(1))
log n

n
. 2
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PROOF OFTHEOREM 5 Letµn := log Mn. The application of inequality (15) in Corol-
lary 7 to the tripel(#J, Tn(J), α/Mn) in place of(n, t, α) yields bounds for̂δ2

n,α,l(J) and

δ̂2
n,α,u(J) in terms ofδ̂2

n(J) := (Tn(J) − #J)+. Then we apply (13–14) toTn(J), where
(n, δ2, α) is to be replaced with(#J, δ2

n(J), α′/Mn) for any fixedα′ ∈ (0, 1). Using the
fact that for arbitrary constantsa, b, c > 0, the functionh(x) := x +

√
a + bx + c, x ≥ 0,

satisfies the inequality

h(h(x)) ≤ x + 2
√

a + bx +
(

2c + b/2 +
√

bc
)

,

we obtain finally

δ̂2
n,α,u(J) − δ2

n(J)

δ2
n(J) − δ̂2

n,α,l(J)

}

≤ (1 + op(1))
√

(16#J + 32 δ2
n(J))µn + (K + op(1))µn (25)

for all J ∈ Mn. Here,K denotes denotes some universal constant, independent ofσ,
(θn)n∈N, C, D andn. Its value may be different in different expressions. We consider
R̃n(C) := (n/σ2)Rn(C) = δ2

n(Cc)+#C. It follows from the definition of the confidence
regionK̂n,α that for arbitraryC ∈ K̂n,α andD ∈ Cn,

R̃n(C) − R̃n(D) = δ2
n(D \ C) − δ2

n(C \ D) + #C − #D

= (δ2
n − δ̂2

n,α,l)(D \ C) + (δ̂2
n,α,u − δ2

n)(C \ D)

−
(

δ̂2
n,α,u(C \ D) − δ̂2

n,α,l(D \ C) + #D − #C
)

≤ (δ2
n − δ̂2

n,α,l)(D \ C) + (δ̂2
n,α,u − δ2

n)(C \ D).

Moreover, according to (25) the latter bound is not larger than

(1 + op(1))
{
√

(

16#(D \ C) + 32δ2
n(D \ C)

)

µn +
√

(

16#(C \ D) + 32δ2
n(C \ D)

)

µn

}

+(K + op(1))µn

≤ (1 + op(1))
√

2µn

(

16#D + 32δ2
n(Cc) + 16#C + 32δ2

n(Dc)
)

+ (K + op(1))µn

≤ 8
√

µn

(

R̃n(C) + R̃n(D)
)

(1 + op(1)) + (K + op(1))µn.

Thus we obtain the quadratic inequality

R̃n(C) − R̃n(D) ≤ 8
√

µn

(

R̃n(C) + R̃n(D)
)

(1 + op(1)) + (K + op(1))µn,

which is easily shown to entail that

R̃n(C) ≤ R̃n(D) + 8
√

2

√

R̃n(D)µn(1 + op(1)) + (K + op(1))2µn.

This yields the assertion about the risks.

As for the losses, note that̃Ln(·) := (n/σ2)Ln(·) andR̃n(·) are closely related in that

(L̃n − R̃n)(D) =
∑

i∈D

ǫ2
in/σ2 − #J
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for arbitraryD ∈ Cn. Hence we may utilize (13–14) with(#D, 0, α′/µn) in place of
(n, δ2, α) to complement (25) with the following observation:

−A
√

#Dµn ≤ L̃n(D) − R̃n(D) ≤ A
√

#Dµn + Aµn for all D ∈ Cn (26)

with probability tending to one asn → ∞ andA → ∞. Note also that (26) implies the

inequalityR̃n(D) − A
√

R̃n(D)µn ≤ L̃n(D), whence

R̃n(D) ≤ 2L̃n(D) + A2µn/2 for all D ∈ Cn

Assuming that both (25) and (26) hold for some large but fixedA, we may conclude that
for arbitraryC ∈ K̂n,α andD ∈ Cn,

L̃n(C) − L̃n(D)

= (L̃n − R̃n)(C) − (L̃n − R̃n)(D) + R̃n(C) − R̃n(D)

≤ A
√

2(#C + #D)µn + A
√

2µn

(

R̃n(C) + R̃n(D)
)

+ 4Aµn

≤ 2A
√

2µn

(

R̃n(C) + R̃n(D)
)

+ 4Aµn

≤ A′
√

2µn

(

L̃n(C) + L̃n(D)
)

+ 2A′µn

for some constantA′ = A′(A). Again this inequality entails that

L̃n(C) ≤ L̃n(D) + A′

√

2L̃n(D)µn + 4A′2µn. 2

6 Auxiliary results

This section collects the main auxiliary results in the context of empirical processes which
are useful to establish our results. They are formulated in quite an abstract framework to
avoid notational expenditure.

For any pseudo–metric space(X , d) andu > 0, we define the covering number

N(u,X , d) := min
{

♯Xo



Xo ⊂ X , inf
xo∈Xo

d(x, xo) ≤ u for all x ∈ X
}

.

The proof of Proposition 1 requires the following definitionof uniform covering numbers.
For some setT , let F ⊂ [0, 1]T . For any discrete probability measureP onT , consider
the pseudo-distancedP (f, g)2 :=

∫

(f − g)2 dP for f, g ∈ F . Then the uniform covering
numbers ofF are defined as

N (u,F) := sup
P

N(u,F , dP )

for u > 0, where the supremum is running over all discrete probability measuresP onT .
If in particularT = Cn andF = Fn =

{

I[0,t]|t ∈ Cn

}

, then elementary calculations show
thatN(u,Fn) ≤ 1 + u−2 ≤ 2u−2 for 0 < u ≤ 1.
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It is well-known that convergence in distribution of randomvariables with values in a
separable metric space may be metrized by the dual bounded Lipschitz distance. Now
we adapt the latter distance for stochastic processes. Letℓ∞(T ) be the space of bounded
functionsx : T → R, equipped with supremum norm‖·‖∞. For two stochastic processes
X andY onT with bounded sample paths we define

dw(X, Y ) := sup
f∈H(T )

∣

∣E
∗f(X) − E

∗f(Y )
∣

∣,

whereP
∗ andE

∗ denote outer probabilities and expectations, whileH(T ) is the family of
all funtionalsf : ℓ∞(T ) → R such that

|f(x)| ≤ 1 and |f(x) − f(y)| ≤ ‖x − y‖∞ for all x, y ∈ ℓ∞(T ).

If d is a pseudo-metric onT , then the modulus of continuityw(x, δ|d) of a function
x ∈ l∞(T ) is defined as

w(x, δ|d) := sup
s,t∈T :d(s,t)≤δ

|x(s) − x(t)|.

Furthermore,Cu(T , d) denotes the set of uniformly continuous functions on(T , d), that
is

Cu(T , d) =
{

x ∈ l∞(T ) : lim
δց0

w(x, δ|d) = 0
}

.

Theorem 8. For n = 1, 2, 3, . . . let Xn =
(

Xn(t)
)

t∈Tn
andYn =

(

Yn(t)
)

t∈Tn
be stochas-

tic processes on a metric space(Tn, ρn) with bounded sample paths. Then

dw(Xn, Yn) → 0

provided that the following three conditions are satisfied:

(i) For any integerk > 0,

sup
An⊂Tn:♯An≤k

dw

(

Xn

∣

∣

An
, Yn

∣

∣

An

)

−→ 0;

(ii) for each positive numberǫ,

lim
δց0

lim sup
n→∞

P
∗
(

w(Zn, δ|ρn) > ǫ
)

= 0 for Zn = Xn, Yn;

(iii) for all u > 0, supn N(u, ρn, Tn) < ∞.

PROOF For every natural numberk let T k
n be some maximal subset ofTn such that

ρn(t, t′) ≥ 1/k for anyt, t′ ∈ T k
n , andT 1

n ⊂ T 2
n ⊂ T 3

n ⊂ · · · . Consequently,ρ(t, T k
n ) ≤

1/k for everyt ∈ Tn. Now define

λk
n(t, u) :=

(

1 − kρn(t, u)
)+

∑

v∈T k
n

(

1 − kρn(t, v)
)+
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for all t ∈ Tn andu ∈ T k
n . Note that0 ≤ λk

n(·, u) ∈ Cu(Tn, ρn),
∑

u∈T k
n

λk
n(·, u) ≡ 1, and

λk
n(t, u) = 0 if ρn(t, u) ≥ 1/k. Now let

πn
k : l∞(Tn) (or l∞(T k

n )) → Cu(Tn, ρn)

be defined by
πn

kf :=
∑

u∈T k
n

f(u)λn
k(., u)

Thenπn
k is is some linear map such that

‖πn
k f‖sup ≤ ‖f‖T k

n
for all f ∈ l∞(Tn) ∪ l∞(T k

n ) and

‖f − πn
k f‖sup ≤ w(f, 1/k|ρn) for all f ∈ l∞(Tn).

Especially,πn
k is Lipschitz continuous with constant1, because forf, g ∈ l∞(Tn),



πn
k f−πn

k g


 =






∑

u∈T k
n

(

f(u)−g(u)
)

λn
k(., u)






≤ sup

u∈T k
n



f(u)−g(u)




∑

u∈T k
n

λn
k(., u) ≤

w

wf−g
w

w

Tn
.

Hence note that for all
f : l∞(Tn) or l∞(T k

n ) → [0, 1]

which are Lipschitz continuous with constantL, the compositionf ◦πn
k again takes values

in [0, 1] and is Lipschitz continuous with constantL.

Then

sup
f∈H(Tn)

|E∗f(Xn) − E
∗f(Yn)|

≤ sup
f∈H(Tn)

E
∗|f(Xn) − f(πn

kXn)| + sup
f∈H(Tn)

E
∗|f(Yn) − f(πn

kYn)|

+ sup
f∈H(Tn)

|E∗f(πn
kXn) − E

∗f(πn
kYn)|

Because of assumption (i),supn ♯T k
n < ∞ by (iii) and{f ◦ πn

k |f ∈ H(Tn)} ⊂ H(T k
n ),

sup
f∈H(Tn)

|E∗f(πn
kXn) − E

∗f(πn
kYn)| −→

n→∞
0.

Let ǫ > 0. Because of (ii), there exists some natural numberk = k(ǫ) such that

lim sup
n→∞

P
∗
(

w(Zn, 1/k) > ǫ
)

≤ ǫ for Zn = Xn, Yn.

With this choice ofk,

lim sup
n→∞

sup
f∈H(Tn)

E
∗|f(Zn) − f(πn

k Zn)| ≤ lim sup
n→∞

(

ǫ + P
∗
(

w(Zn, 1/k) ≥ ǫ
)

)

≤ 2ǫ.

This yields the desired result. �
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Proposition 9. Let
(

Xn(t)
)

t∈Tn
and

(

Yn(t)
)

t∈Tn
independent stochastic processes on a

metric space(Tn, ρn). Let
(

X ′
n(t)

)

t∈Tn
and

(

Y ′
n(t)

)

t∈Tn
be independent stochastic pro-

cesses such that
dw

(

Xn, X
′
n

)

→ 0 and dw

(

Yn, Y
′
n

)

→ 0.

Assume thatTn is either countable or all processes have continuou sample paths with
respect toρn. Then

dw

(

Xn + Yn, X ′
n + Y ′

n

)

→ 0.
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