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Abstract

In the setting of high-dimensional linear models with Gaussoise, we investi-
gate the possibility of confidence statements connectedtehselection. Although
there exist numerous procedures for adaptive point estmathe construction of
adaptive confidence regions is severely limited (cf. Li, 998 The present paper
sheds new light on this gap. We develop exact and adaptiviedeoice sets for the
best approximating model in terms of risk. Our construcibased on a multiscale
procedure and a particular coupling argument. Utilizingamential inequalities for
noncentraly>—distributions, we show that the risk and quadratic lossllahadels
within our confidence region are uniformly bounded by theimal risk times a
factor close to one.

1 Introduction

When dealing with a high dimensional observation vectoe, rtatural question arises
whether the data generating process can be approximatediimdal of substantially
lower dimension. Rather than on the true model, the focuerie bn smaller ones which
still contain the essential information and allow for imgestation. Typically, the mod-
els under consideration are characterized by the non-penpanents of some parameter
vector. Estimating the true model requires the rather ig@alsituation that each com-
ponent is either sufficiently large or equal to zero: A smalttprbation of the parameter
vector always results in the biggest model, with what thesjae about the true model
does not seem to be adequate in general. Precisely, the mbidélis optimal in terms of
risk then appears as target of many model selection stegteWiithin a specified class of
competing models, this paper is concerned with confidergiems for that approximating
model which is optimal in terms of risk.

Suppose that we observe a random vedfer= (X;, )", with distribution\,,(6,,, o*1,,)
together with an estimatar, for the standard deviatiom > 0. Often the signa#,, rep-
resents coefficients of an unknown smooth function with eesp a given orthonormal
basis of functions.

'[herq is a vast amount of literature on point estimatio,of For a given estimator
0, = 0,(X,,d,) for b, let

L(0,,0,) = ||6, —06,]> and R(6,,0,) = EL(,,0,)

be its quadratic loss and the corresponding risk, respdgtiHere|| - ||, denotes the
standard Euclidean norm of vectors divided\y. Various adaptivity results are known
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for this setting, often in terms of oracle inequalities. Aitsal result reads as follows:
Let (67).cc, be a family of candidate estimatat$’ = 6 (X,,) for 6,, wheres > 0 is
temporarily assumed to be known. Then there exist estimétand constants,,, B, =
O(log(n)) with v > 0 such that for arbitrary,, in a certain se®,, C R",

R(0,,0,) < A, inf R(ég@,enw%a?.
ceCn n
Results of this type are provided, for instance, by Polya#t @sybakov (1991) and
Donoho and Johnstone (1994, 1995, 1998). Further resultsiotype, partly in dif-
ferent settings, have been provided by Stone (1984), Legisél. (1997), Efromovich
(1998), Cai (1999, 2002), to mention just a few.

By way of contrast, when aiming at adaptive confidence set¢dares severe limitations.
Here is a result of Li (1989), slightly rephrased: Suppose @), contains a closed ball
B(6°, cn~'/*) with respect ta|| - ||,,, wherec > 0. Still assumings to be known, let
D, = D,(X,) C ©, be a(l — a)—confidence set fof,, € ©,. Such a confidence
set may may be used as a test of the (Bayesian) null hypottiedis,, is uniformly
distributed on the sphei@B(6°, cn=/*) versus the alternative théf, = 0°: We reject
this null hypothesis at level if || — 62 ||, < cn~*/*for alln € D,. Since this test cannot
have larger power than the corresponding Neyman-Pearsgn te

Py (Sup In = 62]ln < cn‘1/4) < P(Si < xi;a(n1/262/02)> (with S ~ x7)
UEDH

= @(q)_l(a) + 2_1/202/02) +o(1),

wherex?. ,(0*) stands for the—quantile of the noncentral chi-squared distribution with
n degrees of freedom and noncentrality paramé&teihroughout this paper, asymptotic
statements refer to — oo. The previous inequality entails that no reasonable coniee
set has a diameter of ordeg(n~—/*) uniformly over the parameter spaég,, as long
as the latter is sufficiently large. Despite these limitagiothere is some literature on
confidence sets in the present or similar settings; see &ance Beran (1996, 2000),
Beran and Dimbgen (1998) and Genovese and Wassermanr).(2005

Improving the rate oD, (n~'/*) is only possible via additional constraints &y i.e. con-
sidering substantially smaller seéfs . For instance, Baraud (2004) developed nonasymp-
totic confidence regions which perform well on finitely mamelr subspaces. Robins
and van der Vaart (2006) construct confidence balls via sasyditting which adapt to
some extent to the unknown “smoothness¥pf In their context,©,, corresponds to a
Sobolev smoothness class with given paramgtef.). However, adaptation in this con-
text is possible only within a randé, 2/3]. Independently, Cai and Low (2006) treat the
same problem in the special case of the Gaussian white nadelpobtaining the same
kind of adaptivity in the broader scale of Besov bodies. ©Offwessible constraints of),
are so-called shape constraints; see for instance Cai an@d097), Dumbgen (2003) or
Hengartner and Stark (1995).



The question is whether one can bridge this gap between emofidsets and point estima-
tors. More precisely, we would like to understand the pobssilof adaptation for point
estimators in terms of some confidence region for the set opimal candidate estima-
torsd. That means, we want to construct a confidence relion = K, o(X,., 6,) C
C, for the set

Kn(6,) = argmin R(A\,6,)

ceCn
such that for arbitrary,, € R",
Py, (Ka(0a) € Kno) = 1-a (1)

and -

max R(6,",0,)

c€kna _ . ji(c) Op(Bn)

max L(6\,0,) Op(An) cetn (6.7, 6.) + n @

CEICn,a

Solving this problem means that statistical inference atisierences in the performance
of estimators is possible, although inference about th&irand loss is severely limited.
In some settings, selecting estimators out of a class of etimpestimators entails esti-
mating implicitly an unknown regularity or smoothness slés the underlying signdl,.
Computing a confidence region for good estimators is pdatityusuitable in situations in
which several good candidate estimators fit the data equallyalthough they look dif-
ferent. This aspect of exploring various candidate esbnsas not covered by the usual
theory of point estimation.

Note that our confidence regidﬁn,a is required to contain the whole skt,(6,,), not
just one element of it, with probability at least- «. The same requirement is used by
Futschik (1999) for inference about the argmax of a regoedssinction.

The remainder of this paper is organized as follows. For #agler's convenience our
approach is first described in a simple toy model in Sectidn 3ection 3 we develop and
analyze an explicit confidence regi#p, , related taC,, := {0, 1,...,n} with candidate
estimators )

0P = (1{i < k}Xu)!,.

These correspond to a standard nested sequence of apptiogimeodels. Section 4
discusses richer families of candidate estimators. Allbfgand auxiliary results are
deferred to Sections 5 and 6.

2 Atoy problem

Suppose we observe a stochastic proteéss (Y (t)).cp,1), where

Y(t) = F(t)+W(t), te]0,1],



with an unknown fixed continuous functiafi on [0, 1] and a Brownian motioi/ =
(W(t))scp,1- We are interested in the set

S(F) := argmin F(t).
te[0,1]
Precisely, we want to construct(a — a)—confidence regioss, = S.(Y) c [0,1] for
S(F) in the sense that

P(S(F)C8.) = 1—a, 3)

regardless of'. To construct such a confidence set we regats) — Y'(¢) for arbitrary
differents, ¢ € [0, 1] as a test statistic for the null hypothesis that S, i.e. large values
of Y'(s) — Y (t) give evidence fok ¢ S.

A first naive proposal is the set

Spaive . {s €[0,1]:Y(s) < I[nir]lY + mgaivo}
0,1

with 22V denoting thg1 — «)—quantile ofmaxpy ;) W — mingg ;; W.

Here is a refined version based on results of Dimbgen ando8po001): Letx, be
the (1 — a)—quantile of

o (W) =WOI L
s,te[0p,1}< Vs = 2 t))’ )

where
['(£0) := +/2log(e/d) for0<4d <1.

Then constraint (3) is satisfied by the confidence region

S, = {56 0,1]: Y (s) < V(1) + /s —#](T(s — t) + ko) forall t € [0,1]}.

To illustrate the power of this method, consider for inseasequence of functiords =
F,, such that for some parametetsc [0, 1], v > 1/2 andc¢,, — oo,

F.(t) — Fu(sn) > cult —s,|7 forallt € 0,1].
Then for the naive confidence region one can only deduce that

max |t —s,| = Op(@?”)»
tes‘galve

whereas

max [t — su| = O, (log(e,)V/ Ve /012),
teESy



3 Confidence regions for nested approximating models

As in the introduction lefX,, = 6,, + ¢,, denote thez-dimensioqal observation vector with
0, € R* ande,, ~ N,(0,0%1,). For any candidate estimatéy” — (1{i < k}Xm)f:l
the loss is given by

n k
- 1 1
Lu(k) == LY. 6,) = — > 0h+— > (Xin — b)’
i=1

i=k+1

with corresponding risk

Model selection usually aims at estimating a candidatemegtir which is optimal in
terms of risk. Since the risk depends on the unknown sigraittzerefore is not available,
the selection procedure minimizes an unbiased risk estinastead. In the sequel, the

bias-corrected risk estimator for the candidéfé is defined as

. 1 < R k.

i=k+1
wheres? is a variance estimator satisfying the subsequent conditio

(A) 62 and X,, are stochastically independent with

52
mao,,

2
=~ X
wherel < m = m, < oo with m = oo meaning that is known, i.e.52 = ¢%. For
asymptotic statements, it is generally assumed that

2n

g ==L — o)

My

unless stated otherwise.

Example Suppose that we obsenié = Mn + § with given design matrix)M €
R +m)>xn of rankn, unknown parameter vectgre R” and unobserved error vectdr~

Ntm(0,0%1,+.m). Then the previous assumptions are satisfiedkhy:= (M " M)'/?)
with 7j := (MTM)"*MTY andé? := ||Y — M3||>/m, whered,, ;= (M T M)'/?p,

Important for our analysis is the behavior of the differepoecess

D, = (Dui ozsncn = Yo (k) — o)) — (Ruli) — Ru(1))

0<j<k<n
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Its asymptotic distribution depends on the unknown “sigoahoise” vector(6?, /o)™,

as seen in the following proposition. It provides an appration of the difference
process by a Gaussian process, where approximation inbdistn refers to the dual
bounded Lipschitz metrid,,, which metrizes the weak topology. For details we refer to
Section 6.

Proposition 1. In case of|6,]|2 = O(1), the difference proces®,, is approximated in
distribution by a centered Gaussian procésswith covariances

2 62
cov (Bali,B). 8T ) = Ta k= )~ )4 S (40,— + 2) -

i€ kING )

If we could estimate the covariance function in Propositiaconsistently, we could im-
itate the naive confidence region of Section 2. For a more dalveonfidence region,
the crucial step is to analyze a suitably standardized oersf the increment process
D,,, getting additionally rid of the restriction df9,,||>. Since this process does not have
subgaussian tails, the standardization is more involvad the correction in (4).

Theorem 2. Let (0,,),en be arbitrary. For0 < j < k < nlet
k

WGP = S (o4 2)

i=j+1
and define
o= 14 —2 T
oo = (1 5 3 e
with Iy, := I'(max {7,,(j, k)?/7.(0,n)%, 1/n}). Then the sequence of random vari-
ables DGR
n ]7
d, ;= su —2 — Ciin
O<j<g<n( Y (J, ) " )
is tight. Precisely, it is approximated in distribution by
5 = < | W (10, K)%) = W (74(0,4)%) + 26u(k — j)/n Z | )
n sup . _ijn )
0<j<k<n Y (J, k)

wherelV denotes a Brownian motion, independenfof A/ (0, 1).

The above non-degenerate limiting distribution demonesstrthat the additive correction
is appropriately defined and cannot be chosen essentiafiijesm

In order to construct a confidence set foy(6,,) by means ofi,,, we are facing the prob-
lem that the auxiliary function,, depends on the unknown signal-to-noise veétgr. In
fact, knowingy,, would imply knowledge ofC,(6,,) already. A natural approach is to re-
place the quantities which are dependent on the unknowmnedes by suitable estimates.
A common estimator of the varianeg is given by

k
0P = 30 (X8 - 1)+2), j<k

i=j+1



However, using such an estimator does not seem to work since

- -1 /-, 0
0<j<k<n %(97 k) g

asn goes to infinity. This can be verified by noting thé, (J, k)2)0<j<k<n
centering, essentially of the same structure as the diftereroces®,, itself.

is, up to

The least favourable case of constant risk

The problem of estimating the satg min, R, (k) can be cast into our toy model where
Y (t), F(t) andW (t) correspond tak,(k), R,(k) and the difference?, (k) — R, (k),
respectively. One may expect that the more distinctive tblea minima are, the easier it
is to identify their location. Hence the case of constakisregppears to be least favourable,
corresponding to a signal

0, = (:I:U)ﬁ

=1’
In this situation, each candidate estimeé}ﬁ? has the same risk?.

A related consideration leading to an explicit procedurasigollows: For fixed indices
0<j<k<n,

k .
. 1 2 k=7 5
Buj) = Bulk) = — 3 0, = =0,
i=j+1
and if assumption (A) is satisfied, the statistic

i Ko n(Ra(k) — Ra(d))
(k- 7)o (k— 7)o

has a noncentral (in the numeratéi}-distribution

B (Ei;jﬂ an) n (k B - Rnac)))

o2

j}kn =

with k£ — j andm degrees of freedom. Thus large or small value$pf give evidence
for R, (j) being larger or smaller, respectively, thBR(k). Precisely,

<«. Lo:(Tjrn) wWheneverj € IC,(6,),
Lo, (Tjrn)

>«. Lo (Tikn) wWhenevek € K, (6,,).
Note that this stochastic ordering remains valiéifis just independent fronX,,, i.e. also
under the more general requirement of the remark at the etidsadection. Via suitable
coupling of Poisson mixtures of centrgl—distributed random variables, this observation
is extended to



Proposition 3(Coupling). For any,, € R" there exists a probability space with random

variables (7}, ) and (77 such that

0<j<k<n jkn)0§j<k§n

L ((ﬁk")0§j<k§n> = Ly, <(Tjk")0§j<k§n>’
L <(Tfkn)ogg’<k§n> = Ly, ((Tjk")ogj<k§n>’
and for arbitrary indice®) < j < k£ <mn,

7 < T4, wheneverj € K,(6,),
AL P T4, whenevetk € K, (6,).

As a consequence of Proposition 3, we can define a confidehter $§,(6,,), based on
this least favourable case. Lit, denote the1 — «o)-quantile of Ly (d,,). Motivated by
the procedure in Section 2 and Theorem 2, we define

Koo = {j: R,(j) < én(k)+&3v67lk_j‘(r(k_j) +an,a) (5)

n
| 20 (k—;jf forall i # j |

n

= {J: T = 2—cyufor 1 <i < j, T < 2+ cforj <k <nj,

with

e = Aoy () e )+ g ()"

Theorem 4. Let (6,,),cn be arbitrary. Withl@,w as defined above,

P, (/cn(en) ¢ /CW) < a

In case ofn/m — 0, the critical valuess,, , converge to the critical valug,, introduced
in Section 2. Under the weaker assumption that: = O(1), x,., = O(1), and the
confidence regionk’,, , satisfy the oracle inequalities

max R,(k) < min R,(j) + (2\/ﬁ+0p(1)> vpomin R, (j) + O,(v,)  (6)

kelcn,a jec” jecn

and
max L,(k) < min L,(j) + Op( I/nmiIan(j)> + O,(vy) (7)
ke]ﬁn,a jec” jecn

with v, = (0?1logn)/n andC some universal constant independentf



REMARK (Variance estimation) Instead of condition (A), one may require more gen-
erally thats2 and X,, are independent with
(3'” 2

V(% —1) —p N(0.8)
for a givens > 0. This covers, for instance, estimators used in connectitinwavelets.
Thereo is estimated by the median of some high frequency waveldticeats divided
by the normal quantil@~*(3/4). Theorem 2 continues to hold, and the coupling ex-
tends to this situation, too, with? in the proof being distributed ass2. Under this
assumption on the external variance estimator, the corcfda:iergionl@nva, defined with
m := |2n/3?], is at least asymptotically valid and satisfies the aboveleiaequalities
as well.

4 Confidence sets in case of larger families of candidates

The previous result relies strongly on the assumption ofegiesiodels. It is possible to

obtain confidence sets for the optimal approximating mouoheés more general setting,

albeit the resulting oracle property is not as strong asemtisted case. In particular, we
can no longer rely on a coupling result but need a differenstraction. For the reader’s

convenience, we focus on the case of knawn.e. m = oo; see also the remark at the
end of this section.

LetC,, be a family of index set6’ C {1,2,...,n} with candidate estimators
0@ = (1{i € C}Xin)
and corresponding risks
. 1 #C
- © [ 2 L T 2
Ru(C) = R(09,0,) = ~ >0+ —o”.
igC
For two index set§’ and D,
(n/0*)(R(D) = Ra(C)) = 63(C'\ D) = 63(D\ C) + #D — #C
with the auxiliary quantities
62(J) = 26’2-2”/02, Jc{1,2,...,n}.
i€J

Hence we aim at simultaneo{s — «)—confidence intervals for these noncentrality pa-
rameters),,(J), whereJ €¢ M,, .= {D\ C : C,D € C,}. To this end we utilize the fact
that

1
() = > X

icJ

9



has ay? (0% (J))-distribution. We denote the distribution function gf(6*) by Fj.(- |
6?). Now let M, := #M, — 1 < #C,(#C, — 1), the number of nonvoid index sets
J € M,,. Then with probability at least — «,

a/(2M,) < Fus(T.(J)|62(J)) < 1—a/(2M,) forallJe M, J#0. (8)

SinceFy (T, (J) | §2) is strictly decreasing id* with limit 0 asé? — oo, (8) entails the
following simultaneoug1 — «)—confidence interval Ml(]) 02 (J)] for all param-

rEn,onu

eterss?(J): We set? , ,(0) := 2, () := 0, while for nonvoidJ,

2] = mm{52>o Fis (T \52)<1—a/(2M)} 9)
2 () = max{5 > 01 Fys (T \52)>a/(2M)} (10)

n,o,u

By means of these bounds, we may claim with confideneex that for arbitraryC D e
C,, the normalized differencer/o?) (R, (D) — R, (C)) isatmosv? , ,(C\D)—d2 ,,(D\
C) + #D — #C. Thus a(1 — a)—confidence set fok,,(6,,) = argminCECn R, (C) is
given by

Koo = {c €C,: 82

n,o,u

(C\ D)= 82,,(D\C)+#D —#C >0forall D € C, }

These confidence se’@a satisfy the following oracle inequalities:
Theorem 5. Let (6,,),.en be arbitrary, and suppose thaig #C,, = o(n). Then

max R,(C) < min R,(D) + Op<\/’7n min Rn(D)) + OP(DH)’

Cekn.a DeC, DeC,
< m —— .
Créllgi( L,(C) < min L,(D) + Op<\/yn min Ln(D)> + Oy(7)

with 7,, := o2 log(#C,,)/n.

REMARK  The upper bounds in Theorem 5 are of the formt- O, (v/pnin) + O, (7)),
with p,, denoting minimal risk or minimal loss. For any fixed> 0 this bound doesn’t
exceed(1 + ¢)p, + O,(7,). Thus Theorem 5 entails that the maximal risk (loss) over
f(w exceed the minimal risk (loss) by a factor close to one, pledithat the minimal
risk (loss) is substantially larger thas.

REMARK (Suboptimality in case of nested models) In case of nested models, the gen-
eral construction is suboptimal in the factor of the leadingnost cases) terRy'min; R,,(j);
following the proof carefully and using, = 2v,, + O(1) in this special setting, one may
verify that

max R,(k) < min R.(j) + (8V2+0,(1)), /vamin R,(j) + O,(v)-

kel&n,a jeln Jj€Cn
The intrinsic reason seems to be that the general procedesertbt assume any structure
of the candidate estimators so that advanced multiscabeytlienot applicable.
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REMARK In case of unknowam, leta’ := 1 — (1 —a)'/2. Then with probability at least
11—,

o'/2 < Frp(m(6,/0)*|0) < 1—d'/2.
The latter inequalities entail that /5,,)? lies between, . ; := m/Xm:1—a/2 @NAT, o4 =
M/ X2, j2- Then we obtain simultaneo(is—a)—confidence bound§ (/) andd2 , , (/)
as in (9) and (10) by replacing with o/ andT,,(.J) with

T, 1 T,
"; E X2 and "Z“E X2,
g, g,

noo4eJ noo4eJ

respectively. The conclusions of Theorem 5 continue to taddong as:/m,, = O(1).

5 Proofs

5.1 Exponential inequalities

An essential ingredient for our main results is an expoaémiequality for quadratic
functions of a Gaussian random vector. It extends inegesldf Dahlhaus and Polonik
(2006) for quadratic forms and may be of independent interes

Proposition 6. Let 7;, Z,, .. ., Z, be independent standard normally distributed random
variables. Furthermore, lek;, \o, ..., A, anddy, 0o, . . ., 0,, be real constants, and define

v = Val“(Z?:l Ni(Zi + 52‘)2) = 2oin1 AT(2 4 467). Then

14 20 A max/ 7
< eMBexp(—n/4)

P(iAi((Zi+5i)2—(1+5?))Z??V) < eXP( L)

for arbitrary n > 0, where\,,,,x := max(A, A2, ..., Ap, 0).

Note that replacing\; in Proposition 6 with—); yields twosided exponential inequali-
ties. By means of Proposition 6 and elementary calculabm@sobtains exponential and
related inequalities for noncentrgt distributions:

Corollary 7. For an integern > 0 and a constand > 0 let F,,(- | 6) be the distribution
function ofy2(§?). Then for arbitraryr > 0,

2

r
Fn(n+52+T ‘ (52) Z 1 —eXp<— m), (11)
2 2 r?
_ < ).
F.n+0*—r]|é) < exp( 4n—|—852> (12)

11



In particular, for anya € (0,1) and A := log(2/«),

E'1—a/2|0%) < n+6++/(4n+852)A + 4A, (13)
F ' a/2|6%) > n+ 8 —/(4n + 852)A. (14)

Moreover, for any number > 0, the inequalitiesy/2 < F, (¢ | 6%) < 1 — o/2 entail that

—\/(4n+852)A < 6% < 6%+ \/(4n +862)A + 8A. (15)

Conclusion (15) follows from (11) and (12), appliedito= 6% — 62 andr = §2 — &2,
respectively.

PROOF OFPROPOSITION6 Standard calculations show that foK ¢ < (2\ax) 71,

Bexp(1N(Z+60°) = ep(23{ 22 _iog(1 -2},
i=1 i=1 !

1=

Then for any such,

P N((Zi+6)? = (148) 2 )

< exp< tn'y—tZ)\ 1+52)>-Eexp(tZ)\i(Zi+5i)2)

1=1

_ exp< tny + = i{ 211%2;; —log(1—2t)\z-)—2t>\i}). (16)

Since the derivative af — —log(1 — x) — x equalsz/(1 — z), one can easily deduce
that
2?2/2 if x <0,

—log(l—z) —z < {12/(2(]__1')) if x> 0.

Thus (16) is not greater than

(o S50+ ) < e )
P T ST o T om0 ) = P T )

Setting

= T € @),

the preceding bound becomes

P (07— (14 80) 2 m) < eo(—p i),

1+ 2nnax /7Y
Finally, since\,.x < 7, the second asserted inequality follows from
2 2
n°/2 > w2 _n_n o _n_1 -

L4+ 20 max/y — 14+2n 4 448 — 4 8

12



5.2 Proofs of the main results

For notational convenience, we denoteXyyande, thek-th component of the-dimensional
observation and error vector respectively and drop thexindgthis is clear from the con-
text. Throughout the proofs, I6F, := {(j,k) | 0 < j <k <n}.

PROOF OFPROPOSITION1 Becaus&?/o? —, 1, itis sufficient to prove the result for

~2
D, := U_;LDna
o
where we may assume without loss of generality= 1. The proces®,,, evaluated at
some pointj, k) € 7,, is then given by

k

D)= = D (et (- 0) - L (62 -1
TN ey R T NP
=2(1 n)ﬁ+\/ﬁ2(229m+(2 1)

i=j+1

- Dl,n(j> k) + DZ,n(jv k)

Note that both processes are centered with covariancedasct

5y D 4 , .
cov (D1 k). Diali's k) = — 52k = 5)(K = )
and )
cov (DZ,n(jv k)7D2,n(j/7k,)) = Z (292271_'_ 1)7
1€(g,kIN(y’ k"

respectively. By assumption, the procesgks, and D, ,, are independent. The approx-
imation of the first process is straightforward and hencettechin this section. In order

to investigate
1
LS fesar@-n))
(\/ﬁ Z ( ) (G.k)ET

i€(4,k]

we consider in view of Theorem 2 the normed version of the ggsgi.e.Ds /7, (0, n),
without any restrictions of?,,),.cn. In case|d, |2 = O(1),,(0, n) is uniformly bounded
away from zero and infinity, and the result as stated in Pritipasl follows in particular.

For letg; be the:'th summand of this process, that is

bi(4, k) = %{%iem + (& — 1)}

13



Now define the partition of1,...,n} = S, = S + S with I := {i € 8,62, <
V7.(0,n)} andst? = S, \ SIV. Then the procesB, , is the sum of the two indepen-

dent parts
(3 otn) and (3 oiih)
(J,k)ETn (J,k)ET,

iestM ies(?
By Markov’s inequality,

(| 5 oot )

1 hS
= e\/_%(O n)E< yskugf[ ‘ ZIM] ‘i _U)D

ies®

foranye > 0. Let %, := {I(;4 | (j, k) € 7, }. Using Lemma 6.4 in Beran and Duimbgen
(1998), the last expression is bounded by

EMCJ(}‘H){E< 1 264)}1/2,

€ v/nyn(0,7n) ) Z

whereC denotes a universal constantindependentarid.7 (F,, standsfo[f0 Vlog N (u, F,)du
with N(u, F,,) the uniform covering number as defined in section 6. Note fthrathe

classes under considerationp,, 7 (F,,) is finite. Sincetst? < v/ny,(0,n), the above
expression tends to zero agjoes to infinity Therefore,

QSZ ], ) ( I k] 62 zn) + o (1)
(Z (k) ETn V(0 n) Z@) v (G,k)ETn ’

e5(2)

iest?

Concerning the first paizieé,(l) ¢:(.), note that
1
B( X otk ) = B( 2 @0n?) = - 3 Bladt o) = o)
iesM) iesh TSI s
while for anyu > 0, the (uniform) Lindeberg condition
B( 3 H{lal, > o) = E( T o007 > wo0n?) = o)
iesH iesV

is easily seen to be satisfied. Since by construction theriemeae function oD, /v,,(0, n)
is absolutely bounded hy,

dys L t , /\/(0, t )} 0
{iiH:SllllTpéCTn} { (kz:; il ))teﬁ COV(; O )>teT7§

for all natural numberg, due to the multivariate Lindeberg central limit theorend an
the compactness df-1, 1], which shows that condition (i) of Theorem 8 is satisfied.
Condition (ii) results from the first part of the subsequeawigh of Theorem 2. a

14



PROOF OFTHEOREM 2 With the same argument as in the proof of Proposition 1, it is
sufficient to prove the result with,, in place ofD,,. Without loss of generality, we may
further assume thatar(b2n(0 n)) = 7,(0,n)? = 1 by a simple rescaling argument. We
begin with the situation where? is known (3, = 0), i.e. we only consider the process
D, . By expanding the squar@2 . IS of the general form

Z)\ (Zi + 6;)° ZA (1+02)

with

A= X k) = el ) CE %) 5 = G =

andZy, ..., Z, i.i.d. N(0, 1). Its expectation and variance are given by zero and

VarZ)\ (Z; + ;) 22A21+262)

=1 =1

respectively. Let the metrig, on7, x 7, be defined by
ey (g2 - b 46;,
pn((.]7k>7<.]7k>) T n Z < 0_2 _'_2)

i€ (kA" K]

We first establish the following bound for the capacity nursbe

D(U& {(J.k) € T|wm(j. k) < €}, pn> < Autie?

for some positive constant > 0, independent of, 6,, and¢. For0 < s <t <1 let

palls.1) = / 2y (2)(1 + 26, (2))dA(2),

whered,, ( Zém i1 5(.). Note thatu, ([0, 1]) = 1in particular (by assumption).
Then )
. . 2
pu((5,5), (5 K))" = /O 15 m k)AL ke ] i,

and
k/n

{GF) € Tl k) <€} = { » dun§£2}

forany¢ € (0,1). LetS,, = {t1,....t,} C [0,1] be a maximal subset with = 0 such

that . 2
i+1 u
/ dpin(z) = 5
t.

7

15



Thenm < 3/(u?€?). Ifnow (4, k), (', k') € T, with j/n, j'/n € [ti_1,t;] andk/n, k' /n €
[ti—1,t], 1 <i<Il<m+ 1witht,., =1 (if not already contained is,,), then

1 1/2
. . 2
(3 K), (7' ) = (/o (Lt /b = iy ) dﬂn) < ug.

But &2 > v, (4, k)? implies

k/n 2¢2
2 o u”g
3 Z/jn dpy > (I — 1)—2

which givesl — i — 1 < 2u~2. Hence,
. ‘ . . 2
D(ug, {(k) € TlalGi k) < €}, pn) <t{i <l {lm+1}1-i < 14
< (m+1)(2+2u7%) < Aule
with A > 0 independent of, 6,, and§.
The second exponential inequality in Proposition 6 gives
P(1D2n (G k) = Daalf' K| = pu (G, 1), (7, K)) (40 + 1/2) ) < 2exp(—n),

which implies that

P(1D20 (. k) = Danl'sK)| = pa (). (5, K))am) < 2exp(=n)

with ¢ = 4 + (2log2)~t. According to Theorem 7 and the subsequent remark 3 in
Dumbgen and Walther (2008), there exists a consfant0 such that

D 1 _ T T
lim sup IP’( |D27n(37 k) = Dyn(5' k) |
N

sup
N0 neN

) zs PR, G R Tog(e/p (GR), G D))~ Q) -

implying in particular the stochastic equicontinuity cdrmah (ii) of Theorem 8 in the
appendix which has been left open in the proof of PropositiadNote that the same holds
true with D, ,, replaced by the approximating Gaussian process.

For notational convenience, let

Da(j, )|
T,(6,0') :=  sup |Ds 2 — Clirn
( ) (j,k)ETn: { rYn(.% k) 7w

5<’Y’n (.77k) Sél

forany0 < § < ¢’ < 1 and analogously

, | W (7,(0,%)%) = W (7,(0,7)?) |
S, (5,8 = . — T
(6.4) R Vu(j, k) 7
6<’Yn(.77k)§5/

16



with W (.) some Brownian motion on the unitinterval. For ang (0, 1), sup., ;x5 |Cjrn—
I';kn| — 0 asn goes to infinity. Consequently by the proof of Proposition 1,

dw<£(Tn(5,1)),5((Sn(5,1))> 0 (n— o0) (17)

for any fixedd € (0,1). Note at this point that for the weak approximation by theldua
bounded Lipschitz metric as defined in the appendix the poatis mapping theorem is
not applicable in general. The statement follows since thpping is Lipschitz continu-
ous as long aé > 0.

Let ) 42 "
Ui Ui
Gulnd) = 5+ (Gt 2n)

The Bernstein-type exponential inequality implies

P(1D2n (s ) 2 (i, K)Ga(1,8) ) < 2exp(—)

if v.(j,k) > ¢ for any fixedd > 0. The same holds true for the approximating Gaussian
process withi7,, replaced by(27)'/2. Then Theorem 8 in Diimbgen and Walther (2008)
and its subsequent Remark imply

(lsi{r(l]sgpIP’(Tn(O,cS) > e) =0 and (lsi{r(l)sgpIP’(Sn(O,cS) > e) =0 (18)

for e > 0. For note that the variances (4, k)?/7.(0,n)* appearing in the logarithms
of the additive correction term(s;,,, can be replaced byiax (v, (j, k)?/7,(0,n)?, 1/n)
since the local covering numbers are boundedbginyway. Evidently,

. <) -
(151{% sgp P(Sn(é, 1) < e) 0 (19)

for any fixede > 0. Combining (17) — (19) yields
dw (L£(T,(0,1)), £(S,(0,1))) — 0

asn goes to infinity.

So far we only considered the procei§§n. If an additional estimation aof? is involved,
the procesd), ,, has to be taken into account as well. As the covariance fmckmon-
strates, the standardized versionaf, is stochastically bounded,
Dy (G, k
sup 7| L (j ) = 0,(1).

GreT, (k)
Note thaty2(-, ) - 262 > Var(Di (-, -)). Let T, be defined ag;, above withD,, in place
of DM, analogously define

W (7,(0, k)2) — W (7,(0, 1)) + 28, (k — §)/nZ
§ 6.5 = sup <| (1 (0,%)?) = W (3u(0,4)?) + 26u(k — 5)/nZ | _ijn)
(G.k)ETn: Yn(J, k)
6<7n(]7k)g5,

17



0 é 1‘0 1‘5 2‘0 2‘5 36 5;5 4‘0
Figure 1: Construction of the coupling

forany0 < 9 < ¢ < 1. Claim (17) remains valid witl’ and S/, in place of7,, and.S,
with the same argument. Furthermore,

lm% limsup P(77(0,6) > ¢)

n—o0

<lim limsup P 0,0) >¢€/2) + hm lim sup IP’( sup ————— >¢€/2
lim Timsup P(T,(0,0) = €/2) + lim lim su SR /
0<yn (4,k)<6

= 0,

using lims~ o SUPg.,. ;<5 Var (D1, (4. k)) /7 (j. k) = 0. Analogously, the conclusion
is true withS!, in place of7. Clearly, (19) follows forS! as well, which completes the
proof. O

PROOF OFPROPOSITION3 The main ingredient is a well-known representation of non-
centraly? distributions as Poisson mixtures of centyaldistributions. Precisely,

g 5/2
Ze e Xk+ZJ’

J=0

as can be proved via Laplace transforms. Now we define ‘tinm@go

k
= > 62/ and t;, = tign +k—j(n)

with j(n) any fixed index inc, (¢,,). This construction entails thgt, > t,, with equality
if, and only if, k € KC,,(6,,).

18



Figure 1 illustrates this construction. It shows the timenfsx,,, (crosses) and;,, (dots
and line) versus: for a hypothetical signa#,, € R* with ¢ = 1. Note that in this
example[C,,(60,,) is given by{10, 11, 20, 21}.

LetII, Gy, Go, ..., Gy, Z1, Zy, Zs, ...andS? be stochastically independent random
variables, wherél = (II(¢)):>o is a standard Poisson proceés,and Z; are standard
Gaussian random variables, afiti~ y2 . Then one can easily verify that

~ " k 2H(tkn/2)
T = glm(S e Y 2)
(k—j)S i=j+1 5=2I1(t;5/2)+1
in
~ . B 201(t5,,/2)
( - ]) i=j+1 s=2I1(¢}, /2)+1

define random variable@jkn)OSKkSn and(TNjkn)OSKkSn with the desired properties]

PROOF OFTHEOREM 4 Recall that
k
1
AV 2 /2
W k) = = Y (465,/0° +2), (20)
i=j+1

which equalsy; (4, k)? := 6]k — j|/n in case off,, = 6%. Without loss of generality let
o = 1. If 52 satisfies condition (A), Proposition 3 yields that

P, (/cn(en) c /CW) > 1-a

The statements about the asymptotic behaviot,Qf are an immediate consequence of
Theorem 2. Our next goal is to establish the oracle inequéi, where the stochastic
order terms), andO,, are supposed to be independent®f),.cn. First note that

I logn (4, k)
Here and in what followsl denotes some universal constant, independe(rﬁnggeN, 7
k andn. Its value may be different in different expressions. Bydeénition of IC,, ,,

; by o Onnld k) 557 2

< nin U A n A

R(E) < RG)+ 22 (D = 1/n) + o) + 220 (K= jl/n)* (@2
forall k € I@W andj # k, in particular for everyj € K, (6,,). As a consequence of the
tightness shown in Theorem 2,

: : o 4 s2p-logn o (k) :
R(K) = RG) < R = BG) + 63K == + 612 (ra/m +2,)

— R(k) - R(j) + (1+0p(n—1/2)){K1°i” + V"Ej’ﬁk) (r(1/n)+z,g)}
(23)
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for some random variablg/, = O,(1), independent of, k, 6,,. Thus (21 — 23) imply for
anyj € K,(6,) andk € K, 4,

logn N ['(1/n)
Vn

for some positive constarif and a positive random variablg, = o0,(1), independent of

j, k andd,,. Using thaty/z + /y < \/z/A + y/(1 — X) foranyz,y > 0 andX € (0,1),

R(k) = R(j) < (K +Z,) (14 Z) (k) + 256, 0)  (24)

max(j, ) .
1 E—
ﬁ(%(j, k) + 1, k)) < \IIO > 02+ 151k =l

n
t=min(j,k)+1

< V15(Ru(j) + Ru(k))
setting\ = 2/5. This is easily shown to entail that

R(k) < R(j) + F(l/")(uzn)\/%\/}z(j) b (K 4 2,)2087

o n

n

Let L(j, k) := L(k) — L(j) andR(j, k) := R(k) — R(j). First note that for any < &,

k

(LG.K) ~RGR) = — S (1)

i=j+1

Analogously to the proof of Theorem 2, there exist a sequehcandom variable$”,,)
and some constarit, both independent gf » and(6,,) with Z,, = O,(1) such that

|LG.K) — RGLK) | < {Kl"i” i Wj%k) (F(l/n>+Zn)}

with ~:F (5, k)% := 2|k — j|/n. Consequently, for any € K, , andj # k,

L(j) = L(k) = (L= R)(5,k) + R(j, k)

< (K+0p(1))loin + F%”)

(1 0(1) (3 G k) + 2.0+ 7. 1))

But

V(5 Gk + 3G k) + (k) ) < VERG) + R(R)),
while the above inequality applied fok(j) — R(j)| shows that

logn N 2R(j)
n vn
whenceR(j) < 2L(j) + (K + Z,)*(logn)/n. Therefore,

R(j) - {K (P(l/n>+zn)} < L),

L(j) < L(k) + r(;/;) (1 +0,(1)) VEL(K) + (K+op(1))loi”.
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PROOF OFTHEOREM5 Letpu, := log M,. The application of inequality (15) in Corol-

lary 7 to the tripe#.J, T,,(J), o/ M,,) in place of(n, t, «) yields bounds f06§7a7l(J) and
02, .(J) interms ofd?(.J) := (T,,(J) — #J). Then we apply (13-14) t&,,(.J), where
(n, 2, «) is to be replaced witli#.J, 62(.J), o/ /M,,) for any fixeda’ € (0, 1). Using the
fact that for arbitrary constanis b, ¢ > 0, the function(z) := =z + Va+ bx + ¢,z > 0,

satisfies the inequality

h(h(z)) < o+ 2vVa +bx + (2¢+b/2 + Vbe),

we obtain finally

02, (J) = 62(J)

n,o,u

5721(‘]) - S?L,a,l(J)

} < (1+ 0, (1) V/(T6HT + B282(T))jim + (K + (1))t (25)

forall J € M,,. Here, K denotes denotes some universal constant, independent of
(0.)nen, C, D andn. Its value may be different in different expressions. Wesider

R,(C) := (n/o®)R,(C) = 62(C°) +#C. It follows from the definition of the confidence
regionkC,, ., that for arbitraryC' € IC,, , andD € C,,,
R.(C) = R,(D) = 6:(D\C)—=6,(C\ D) +#C —#D
= (0 =020 )(D\C) + (5 0 = 62)(C\ D)
— (0.0u(C\ D) =67, /(D \ O) + #D — #0)
< (87 =0 W )(D\C) + (87 o = 32)(C\ D).

Moreover, according to (25) the latter bound is not larganth
(1+ 0,(1) {y/ (16#(D\ €) + 325D\ C)) o + 1/ (16#(C'\ D) + 3262(C'\ D)) un }
(K + 0,(1)in
< (14 0,(1))/ 241 (164D + 3262(C) + 164C + 3202(D°)) + (K + 0,(1))pin

< 84110 (Ral(C) + Ba(D)) (L4 0,(1)) + (K + 0,(1))p.

Thus we obtain the quadratic inequality

Rol(C) = Ra(D) < 84/ pa(Ra(C) + Ra(D)) (1 + 0,(1)) + (K + 0,(1))tn,

which is easily shown to entail that

R,(C) < Ru(D) 4 8V24/ Ro(D)pn(1 4 0,(1)) + (K 4 0,(1))* fin.

This yields the assertion about the risks.
As for the losses, note that,(-) := (n/0?)L,(-) andR,(-) are closely related in that

(Ln — Rn)(D) = Ze?n/gz —#J

€D
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for arbitrary D € C,,. Hence we may utilize (13-14) witt# D, 0,a'/u,,) in place of
(n, 82, ) to complement (25) with the following observation:

—A\/#Dp, < Lo(D)— R,(D) < A\/#Du,+ An, foralDecC,  (26)
with probability tending to one as — oo andA — oo. Note also that (26) implies the
inequalityR,, (D) — A\/ R, (D) < L, (D), whence

R.(D) < 2L,(D)+ A%*u,/2 forall D e C,

Assuming that both (25) and (26) hold for some large but fidedve may conclude that
for arbitraryC' € K, , andD € C,,

En(C> - En(D)
= (Ln = R)(C) = (Ln = Ry)(D) + Ry (C) — Ru(D)

AVRGHC T FD) i + Ay 200 (Ra(C) + (D)) + 4410
2A\/2,un Rn C) + Rn(D)) +4Apu,
A2012(La(C) + Lo(D)) +24'n,

for some constant’ = A’(A). Again this inequality entails that

IN

IA

IA

Ln(C) < Ln(D) + A'\/2L0(D)pan + 4A% . 0

6 Auxiliary results

This section collects the main auxiliary results in the eahof empirical processes which
are useful to establish our results. They are formulatediite@n abstract framework to
avoid notational expenditure.

For any pseudo—metric spac#, d) andu > 0, we define the covering number

N(u, X,d) :== min {§X, | X, C X, ingf d(z,z,) <uforallz € X}.
ToEAXo

The proof of Proposition 1 requires the following definitimiruniform covering numbers.
For some sef’, let £ C [0,1]7. For any discrete probability measureon 7, consider
the pseudo-distancg-(f, g)? := [(f — g)*dP for f, g € F. Then the uniform covering
numbers ofF are defined as

N(u, F) :=sup N(u, F,dp)
P
for u > 0, where the supremum is running over all discrete probgbiiéasures’ on7.
If in particular? = C, andF = F, = {Ipylt € C, }, then elementary calculations show
that V(u, F,) <14+ u? <2u2for0 <u < 1.
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It is well-known that convergence in distribution of randmariables with values in a
separable metric space may be metrized by the dual boungsgdHiiz distance. Now
we adapt the latter distance for stochastic processed..l(&t) be the space of bounded
functionsz : 7 — R, equipped with supremum norjn||.. For two stochastic processes
X andY on7 with bounded sample paths we define

dy(X,Y) = Sup |E*f(X) —E*f(Y)],

whereP* andE* denote outer probabilities and expectations, whilg") is the family of
all funtionalsf : /,.(7) — R such that

[f@)] <1 and |f(z) = f(y)| < [z —yllee forallz,y € (7).

If d is a pseudo-metric off, then the modulus of continuity(x,d|d) of a function
x € lo(7) is defined as

w(zx,0|d) :=  sup |x(s) — z(t)].
s,t€T:d(s,t)<d

Furthermore(, (7, d) denotes the set of uniformly continuous functions(@nd), that
IS
Cu(T,d) = {x € o(T) : limw(a, 0]d) = o}.

Theorem 8.Forn =1,2.3,...letX,, = (Xn(t))teT andY, = (Yn(t))teT be stochas-
tic processes on a metric spacg,, p,,) with bounded sample paths. Then

duw(X,,Y,) — 0

provided that the following three conditions are satisfied:
(i) For any integerk > 0,

sup d (X Y, ) 0
AnCThitAn<k w ”‘An "‘An

(ii) for each positive numbet,

(lsim lim sup P* (w(Zn,5|,0n) > e) =0 forZz,=X,,Y,;

0 n—~o0

(iii) forall w >0, sup, N(u,pn,7,) < cc.

PROOF For every natural numbek let 7* be some maximal subset &f, such that
pa(t,t') > 1/kforanyt, ¢’ € T*, andZ,! c 7,? C 7,? C ---. Consequentlyy(t, 7,F) <
1/k for everyt € 7,,. Now define

(1 — kpn(t, u))Jr
Eve']’ric (1 - kpn<t7 U))+

23
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forall ¢t € 7, andu € 7,*. Note that) < Xe(-,u) € Cu(Tn, pn), Do pers A¥(-,u) = 1, and

MNe(t,u) = 0if p,(t,u) > 1/k. Now let

T loo(T) (08 Uo(T)) = Cul(Tns pn)

n

be defined by
T f = Z f(u))\Z(,u)

ueTF

Thenr} is is some linear map such that
77 fllowp < [1fllzx forall f e lo(Z,) Uln(Z,) and

If = 7 Fllsup < w(f.1/klpn) forall f € luo(Ts).
Especiallyr}! is Lipschitz continuous with constant because foff, g € ((7,,),

wpf-mtg] = | S0 (Fe-g@)Xp(w | < swp | =gl | 3 N(u) < || f-g

ueTk

ueTk ueTk

Hence note that for all
i loo(Tn) OF 1o (TF) — [0, 1]

which are Lipschitz continuous with constdntthe compositiorf o7 again takes values

in [0, 1] and is Lipschitz continuous with constaht

Then
sup |E*f(Xn) - E*f(yn)|
fEH(Tn)
S sup E*|f(Xn) - f(ﬂ-l?Xn” + sup E*|f(Yn) - f(ﬂ-l?Yn”
feEH(Tn) FEH(T,)
+ sup |E*f(m; X,) — E*f(m.Y5)]
fEH(Tn)

Because of assumption (§up,, #7.% < oo by (i) and { f o 72| f € H(7,)} C H(T}F),

sup |E*f(mp Xy) — E* f(m.Yy,)| — 0.
JEH(Tr) oo

Lete > 0. Because of (ii), there exists some natural nuniberk(e) such that

lim sup P* (w(Zn, 1/k) > e) <e forZz, =X,.,Y,.

n—~o0

With this choice ofk,

limsup sup E*|f(Z,) — f(m; Z,)| < limsup <e + P* (w(Zn, 1/k) > e)) < 2e.

n—oo  feH(Ty) n—00

This yields the desired result.
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Proposition 9. Let (X, ( )) ez, @nd (Y,(t)),., independent stochastic processes on a

metric spac€T,,, p,). Let (X)(t)),., and(Y;(t)),, be independent stochastic pro-
cesses such that

dw(Xn, X)) — 0 and d,(Y,,Y,) — 0.

Assume thaf, is either countable or all processes have continuou samataspwith
respect tq,,. Then

d(Xy + Yo, X, +Y,) — 0.
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