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Abstra
tLet Λ be a �nite measure on the unit interval. A Λ-Fleming-Viot pro
ess is a probabilitymeasure valued Markov pro
ess whi
h is dual to a 
oales
ent with multiple 
ollisions (Λ-
oales
ent) in analogy to the duality known for the 
lassi
al Fleming Viot pro
ess andKingman's 
oales
ent, where Λ is the Dira
 measure in 0.We expli
itly 
onstru
t a dual pro
ess of the 
oales
ent with simultaneous multiple 
olli-sions (Ξ-
oales
ent) with mutation, the Ξ-Fleming-Viot pro
ess with mutation, and providea representation based on the empiri
al measure of an ex
hangeable parti
le system along thelines of Donnelly and Kurtz (1999). We establish pathwise 
onvergen
e of the approximatingsystems to the limiting Ξ-Fleming-Viot pro
ess with mutation. An alternative 
onstru
tionof the semigroup based on the Hille-Yosida theorem is provided and various types of dualityof the pro
esses are dis
ussed.In the last part of the paper a populations is 
onsidered whi
h undergoes re
urrentbottlene
ks. In this s
enario, non-trivial Ξ-Fleming-Viot pro
esses naturally arise as limitingmodels.1 Introdu
tion and main results1.1 MotivationOne of the fundamental aims of mathemati
al population geneti
s is the 
onstru
tion of pop-ulation models in order to des
ribe and to analyse 
ertain phenomena whi
h are of interestfor biologi
al appli
ations. Usually these models are 
onstru
ted su
h that they des
ribe theevolution of the population under 
onsideration forwards in time. A 
lassi
al and widely usedmodel of this kind is the Wright-Fisher di�usion, whi
h 
an be used for large populations toapproximate the evolution of the fra
tion of individuals 
arrying a parti
ular allele. On theother hand it is often quite helpful to look from the present ba
k into the past and to tra
e ba
kthe an
estry of a sample of n individuals, genes or parti
les. In many situations, the Kingman
oales
ent [K82a, K82b℄ turns out to be an appropriate tool to approximate the an
estry of asample taken from a large population. It is well known that the Wright-Fisher di�usion is dualto the blo
k 
ounting pro
ess of the Kingman 
oales
ent. More general, the Fleming-Viot pro-
ess [FV79℄, a measure-valued extension of the Wright-Fisher di�usion, is dual to the Kingman
oales
ent. Su
h and similar duality results are quite 
ommon in parti
ular in the physi
s litera-ture on intera
ting parti
le systems [L85℄ and in the more theoreti
al literature on mathemati
alpopulation geneti
s [DK96, DK99, EK95, M99, M01℄. Donnelly and Kurtz [DK96℄ establisheda so-
alled lookdown 
onstru
tion and used this 
onstru
tion to show that the Fleming-Viotpro
ess is dual to the Kingman 
oales
ent. This 
onstru
tion and 
orresponding duality resultshave been extended [DK99, BLG03, BLG05, BLG06℄ to the Λ-Fleming-Viot pro
ess, whi
h is themeasure-valued dual of a 
oales
ent pro
ess allowing for multiple 
ollisions of an
estral lineages.For more information on 
oales
ent pro
esses with multiple 
ollisions, so-
alled Λ-
oales
ents,we refer to Pitman [P99℄ and Sagitov [S99℄.There exists a broader 
lass of 
oales
ent pro
esses [MS01, S00, S03℄ in whi
h many multiple
ollisions 
an o

ur with positive probability simultaneously at the same time. These pro
esses1




an be 
hara
terized by a measure Ξ on an in�nite simplex and are hen
e 
alled Ξ-
oales
ents.It is natural to further extend the above 
onstru
tions and results to this full 
lass of 
oales
entpro
esses and, in parti
ular, to provide 
onstru
tions of the dual pro
esses, 
alled Ξ-Fleming-Viot pro
esses. Although su
h extensions have been brie�y indi
ated in [DK99℄ and [BLG03℄,these extensions have not been 
arried out in detail yet. Ξ-
oales
ents have also re
ently beenapplied to study population geneti
 problems, see [TV08, SW08℄.The motivation to present this paper is hen
e manifold. We expli
itly 
onstru
t the Ξ-Fleming-Viot pro
ess and provide a representation via empiri
al measures of an ex
hangeable parti
lesystem in the spirit of Donnelly and Kurtz [DK96, DK99℄. We furthermore establish 
orre-sponding 
onvergen
e results and pathwise duality to the Ξ-
oales
ent. We also provide analternative, more 
lassi
al fun
tional-analyti
 
onstru
tion of the Ξ-Fleming-Viot pro
ess basedon the Hille-Yosida theorem and present representations for the generator of the Ξ-Fleming-Viotpro
ess. Our approa
hes in
lude neutral mutations. The results give insights into the pathwisestru
ture of the Ξ-Fleming-Viot pro
ess and its dual Ξ-
oales
ents. Examples and situationsare presented in whi
h 
ertain Ξ-Fleming-Viot pro
esses and their dual Ξ-
oales
ents o

urnaturally.1.2 Moran models with (o

asionally) large familiesConsider a population of �xed size N ∈ N := {1, 2, . . .} and assume that ea
h individual isof a 
ertain type, where the spa
e E of possible types is assumed to be 
ompa
t and Polish.Furthermore assume that for ea
h ve
tor k = (k1, k2, . . .) of integers satisfying k1 ≥ k2 ≥ · · · ≥ 0and ∑∞
i=1 ki ≤ N a non-negative real quantity rN (k) ≥ 0 is given. The population is assumedto evolve in 
ontinuous time as follows. Given a ve
tor k = (k1, . . . , km, 0, 0, . . .), where k1 ≥

· · · ≥ km ≥ 1 and k1 + · · · + km ≤ N , with rate rN (k) we 
hoose randomly m groups of sizes
k1, . . . , km from the present population. Inside ea
h of these m groups we furthermore 
hooserandomly a `parent' whi
h for
es all individuals in its group to 
hange their type to the type ofthat parent. We say that a k-reprodu
tion event o

urs with rate rN (k). The 
lassi
al Moranmodel 
orresponds to rN (2, 0, 0, . . .) = N .Ex
ept for the fa
t that these models are formulated in 
ontinuous time, they essentially 
oin-
ide with the 
lass of neutral ex
hangeable population models with non-overlapping generationsintrodu
ed by Cannings [C74, C75℄. Starting with the seminal work of Kingman [K82a, K82b℄,the genealogy of samples taken from su
h populations is well understood, in parti
ular for thesituation when the total population size N tends to in�nity.1.3 Genealogies and ex
hangeable 
oales
entsFor neutral population models of large, but �xed population size and �nite-varian
e reprodu
tionme
hanism, Kingman [K82a℄ showed that the genealogy of a �nite sample of size n 
an beapproximately des
ribed by the so 
alled n-
oales
ent (Π

δ0,(n)
t )t≥0. The n-
oales
ent is a time-homogeneous Markov pro
ess taking values in Pn, the set of partitions of {1, . . . , n}. If i and

j are in the same blo
k of the partition Π
δ0,(n)
t , then they have a 
ommon an
estor at time tago. Π

δ0,(n)
0 is the partition of {1, . . . , n} into singleton blo
ks. The transitions are then givenas follows: If there are b blo
ks at present, then ea
h pair of blo
ks merges with rate 1, thusthe overall rate of seeing a merging event is (b

2

). Note that only binary mergers are allowed andthat at some random time, all individuals will have a (most re
ent) 
ommon an
estor.Kingman [K82a℄ also showed that there exists a PN-valued Markov pro
ess (Πδ0
t )t≥0, where PN2



denotes the set of partitions of N. This pro
ess, the so-
alled Kingman 
oales
ent, is 
hara
terisedby the fa
t that for ea
h n the restri
tion of (Πδ0
t )t≥0 to the �rst n natural numbers is the n-
oales
ent. The pro
ess 
an be 
onstru
ted by an appli
ation of the standard Kolmogoro�extension theorem, sin
e the restri
tion of every n-
oales
ent to {1, . . . ,m}, where 1 ≤ m ≤ n,is an m-
oales
ent.Whereas the Kingman 
oales
ent allows only for binary mergers, the idea of a time-homogeneous

PN-valued Markov pro
ess that evolves by the 
oales
en
e of blo
ks was extended by Pitman[P99℄ and Sagitov [S99℄ to 
oales
ents where multiple blo
ks are allowed to merge at the sametime, so-
alled Λ-
oales
ents, whi
h arise as the limiting genealogy of populations where thevarian
e of the o�spring distribution diverges as the population size tends to in�nity. Möhleand Sagitov [MS01℄ and S
hweinsberg [S00℄ introdu
ed the even larger 
lass of 
oales
ents withsimultaneous multiple 
ollisions, also 
alled ex
hangeable 
oales
ents or Ξ-
oales
ents, whi
hdes
ribe the genealogies of populations allowing for large family sizes.S
hweinsberg [S00℄ showed that any ex
hangeable 
oales
ent (ΠΞ
t )t≥0 is 
hara
terised by a �nitemeasure Ξ on the in�nite simplex

∆ := {ζ = (ζ1, ζ2, . . .) : ζ1 ≥ ζ2 ≥ · · · ≥ 0,
∑∞

i=1ζi ≤ 1}.Throughout the paper, for ζ ∈ ∆, the notation |ζ| :=
∑∞

i=1 ζi and (ζ, ζ) :=
∑∞

i=1 ζ
2
i will beused for 
onvenien
e. Note that Möhle and Sagitov [MS01℄ provide an alternative (though some-what less intuitive) 
hara
terisation of the Ξ-
oales
ent based on a sequen
e of �nite symmetri
measures (Fr)r∈N. Coales
ent pro
esses with multiple 
ollisions (Λ-
oales
ents) o

ur if themeasure Ξ is 
on
entrated on the subset of all points ζ ∈ ∆ satisfying ζi = 0 for all i ≥ 2. TheKingman-
oales
ent 
orresponds to the 
ase Ξ = δ0. It is 
onvenient to de
ompose the measure

Ξ into a `Kingman part' and a `simultaneous multiple 
ollision part', that is, Ξ = aδ0 + Ξ0 with
a := Ξ({0}) ∈ [0,∞) and Ξ0({0}) = 0. The transition rates of the Ξ-
oales
ent ΠΞ are given asfollows. Suppose there are 
urrently b blo
ks. Exa
tly ∑r

i=1 ki blo
ks 
ollide into r new blo
ks,ea
h 
ontaining k1, . . . , kr ≥ 2 original blo
ks, and s single blo
ks remain un
hanged, su
h thatthe 
ondition ∑r
i=1 ki + s = b holds. The order of k1, . . . , kr does not matter. The rate at whi
hthe above 
ollision happens is then given as (S
hweinsberg [S00, Theorem 2℄)

λb;k1,...,kr;s = a1{r=1,k1=2} +

∫

∆

s∑

l=0

(
s

l

)
(1 − |ζ|)s−l

∑

i1 6=···6=ir+l

ζk1
i1

· · · ζkr

ir
ζir+1 · · · ζir+l

Ξ0(dζ)

(ζ, ζ)
.(1.1)An intuitive explanation of (1.1) is given below in terms of S
hweinsberg's [S00℄ Poisson pro
ess
onstru
tion of the Ξ-
oales
ent. If Ξ(∆) 6= 0, then without loss of generality it 
an be assumedthat Ξ is a probability measure, as remarked after Eq. (12) of [S00℄. Otherwise simply divideea
h rate by the total mass Ξ(∆) of Ξ.1.4 Poisson pro
ess 
onstru
tion of the Ξ-
oales
entIt is 
onvenient to give an expli
it 
onstru
tion of the Ξ-
oales
ent in terms of Poisson pro
esses.Indeed, S
hweinsberg [S00, Se
tion 3℄ shows that the Ξ-
oales
ent 
an be 
onstru
ted from afamily of Poisson pro
esses {NK

i,j}i,j∈N,i<j and a Poisson point pro
ess MΞ0 on R+×∆× [0, 1]N.The pro
esses NK
ij have rate a = Ξ({0}) ea
h and govern the binary mergers of the 
oales
ent.The pro
ess MΞ0 has intensity measure

dt ⊗
Ξ0(dζ)

(ζ, ζ)
⊗ (1[0,1](t)dt)

⊗N. (1.2)3



These pro
esses 
an be used to 
onstru
t the Ξ-
oales
ent as follows: Assume that before thetime tm the pro
ess Π is in a state {B1, B2, . . .}. If tm is a point of in
rease of one of the pro
esses
NK

i,j (and there are at least i∨ j blo
ks), then we merge the 
orresponding blo
ks Bi and Bj intoa single blo
k (and renumber). This me
hanism 
orresponds to the Kingman-
omponent of the
oales
ent.The non-Kingman 
ollisions are governed by the points
(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .)) (1.3)of the Poisson pro
ess MΞ0 . ζm denotes the respe
tive asymptoti
 family sizes in the multiplemerger event at time tm and the um are �uniform 
oins�, determining the blo
ks parti
ipatingin the respe
tive merger groups; see (2.2) or [S00, Se
tion 3℄ for details.1.5 Ξ-Fleming-Viot pro
essesAn in many senses dual approa
h to population geneti
s is to view a population of �nite sizeas a ve
tor of types (Y N
1 , . . . , Y N

N ) with values in EN or as an empiri
al measure of that ve
tor
1
N

∑N
i=1 δY N

i
and look at the evolution under mutation and resampling forwards in time. WhenNtends to in�nity one obtains the Fleming-Viot pro
ess [FV79℄. This pro
ess has been extended toin
orporate other important biologi
al phenomena and has found wide appli
ations, see [EK93℄for a survey.Donnelly and Kurtz [DK96℄ embedded an E∞-valued parti
le system into the 
lassi
al Fleming-Viot pro
ess, via a 
lever lookdown 
onstru
tion, and showed that it is dual to the Kingman-
oales
ent. This 
onstru
tion and the duality has been extended to the so-
alled Λ-Fleming-Viotpro
ess, dual to the Λ-
oales
ents, and investigated by several authors, see, e.g., [DK99, BBC05,BLG03, BLG05, BLG06℄, or [BB07℄ for an overview.Let f ∈ Cb(E

p), µ ∈ M1(E) and Gf (µ) := 〈f, µ⊗p〉. The generator of the Λ-Fleming-Viotpro
ess without mutation has the form (see [BBC05, Equation (1.11)℄)
LΛGf (µ) =

∑

J⊂{1,...,p},|J |≥2

λp;|J |;p−|J |

∫ (
f(xJ) − f(x)

)
µ⊗p(dx), (1.4)where

(xJ)i =

{
xmin(J) if i ∈ J ,
xi otherwise. (1.5)Note that (1.4) in
ludes the generator of the 
lassi
al Fleming-Viot pro
ess (without mutation)if the summation is restri
ted to sets J satisfying |J | = 2.Our aim in this paper is to present the modi�ed lookdown 
onstru
tion for a measure-valuedpro
ess that we will 
all the Ξ-Fleming-Viot pro
ess with mutation, or the (Ξ, B)-Fleming-Viotpro
ess. The symbol B stands here for an operator des
ribing the mutation pro
ess. We willestablish its duality to the Ξ-
oales
ent with mutation. The modi�ed lookdown 
onstru
tionwill also enable us to establish some path properties of the (Ξ, B)-Fleming-Viot pro
ess.1.6 A modi�ed lookdown 
onstru
tion of the (Ξ, B)-Fleming-Viot pro
essConsider a population des
ribed by a ve
tor Y N (t) = (Y N

1 (t), . . . , Y N
N (t)) with values in EN ,where Y N

i (t) is the type of individual i at time t. The evolution of this population (forwards in4



time) has two 
omponents, namely reprodu
tion and mutation. During its lifetime, ea
h parti
leundergoes mutation a

ording to the bounded linear mutation operator
Bf(x) = r

∫

E
(f(y) − f(x))q(x, dy), (1.6)where f is a bounded fun
tion on E, q(x, dy) is a Feller transition fun
tion on E × B(E), and

r ≥ 0 is the global mutation rate.The resampling of the population is governed by the Poisson point pro
ess MΞ0 , whi
h wasintrodu
ed as a driving pro
ess for the Ξ-
oales
ent. In parti
ular, the resampling events allowfor the simultaneous o

urren
e of one or more large families. The resampling pro
edure isdes
ribed in detail in Se
tion 2. An important fa
t is that this resampling is made su
h that itretains ex
hangeability of the population ve
tor.In Se
tion 2, we introdu
e another parti
le system XN = (XN
1 , . . . ,X

N
N ) again with values in

EN . Ea
h parti
le mutates a

ording to the same generator (1.6) as before. For the resamplingevent, we will use the same driving Poisson point pro
ess MΞ0 , but we will use the modi�edlookdown 
onstru
tion of Donnelly and Kurtz introdu
ed in [DK99℄, suitably adapted to ours
enario. This (Ξ, B)-lookdown pro
ess will be introdu
ed in Se
tion 2.2. It is 
ru
ial that theresampling events retain ex
hangeability of the population ve
tor and that the pro
ess {XN (t)}has the same empiri
al measure ∑N
i=1 δXN

i (t) as the pro
ess {Y N (t)}.The 
onstru
tion of the resampling events allows us to pass to the limit as N tends to in�nityand obtain an E∞-valued parti
le system X = (X1,X2, . . .). Sin
e this parti
le system is alsoex
hangeable, this pro
edure enables us to a

ess the almost sure limit of the empiri
al measureas N tends to in�nity by the De Finetti Theorem (whi
h is not possible for the Y N ).1.7 ResultsLet f1, f2, . . . ∈ D(E) be fun
tions that separate points of M1(E) in the sense that ∫
fk dµ =∫

fk dν for all k ∈ N implies that µ = ν. Su
h sequen
es exists, see, e.g. Se
tion 1 (Lemma 1.1in parti
ular) of [DK96℄. We use the metri
 d on M1(E) de�ned via
d(µ, ν) :=

∑

k

1

2k

∣∣∣
∫
fk dµ−

∫
fk dν

∣∣∣ µ, ν ∈ M1(E) (1.7)and metrise the topology of lo
ally uniform 
onvergen
e on DM1(E)[0,∞) by
dp(µ, ν) =

∫ ∞

0
e−td

(
µ(t), ν(t)

)
dt. (1.8)Theorem 1.1. The M1(E)-valued pro
ess (Zt)t≥0, de�ned in terms of the ordered parti
lesystem X = (X1,X2, . . . ) by

Zt := lim
n→∞

Zn
t = lim

n→∞

1

n

n∑

i=1

δXi(t), t ≥ 0,is 
alled the Ξ-Fleming-Viot pro
ess with mutation operator B or simply the (Ξ, B)-Fleming-Viot pro
ess. Moreover, the empiri
al pro
esses (Zn
t )t≥0 
onverge almost surely on the path spa
e

DM1(E)([0,∞)) to the 
àdlàg pro
ess (Zt)t≥0.Sin
e the empiri
al measures of XN and Y N are identi
al, we arrive at the following 
orollary.5



Corollary 1.2. De�ne, for ea
h n,̃
Zn

t :=
1

n

n∑

i=1

δYi(t), t ≥ 0,the empiri
al pro
ess of the n-th unordered parti
le system, and assume that Z̃n
0 → Z0 weaklyas n → ∞. Then, (Z̃n

t )t≥0 
onverges weakly on the path spa
e DM1(E)([0,∞)) to the (Ξ, B)-Fleming-Viot pro
ess (Zt)t≥0.The Markov pro
ess (Zt)t≥0 is 
hara
terized by its generator as follows.Proposition 1.3. The (Ξ, B)-Fleming-Viot pro
ess (Zt)t≥0 is a strong Markov pro
ess. Itsgenerator, denoted by L, a
ts on test fun
tions of the form
Gf (µ) :=

∫

En

f(x1, . . . , xn)µ⊗n(dx1, . . . , dxn), µ ∈ M1(E), (1.9)where f : En → R is bounded and measurable, via
LGf (µ) := Laδ0Gf (µ) + LΞ0Gf (µ) + LBGf (µ), (1.10)where

Laδ0Gf (µ) := a
∑

1≤i<j≤n

∫

En

(
f(x1,.., xi,.., xi,.., xn) − f(x1,.., xi,.., xj ,.., xn)

)
µ⊗n(dx), (1.11)

LΞ0Gf (µ) :=

∫

∆

∫

EN

[
Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)
−Gf (µ)

]
µ⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
, (1.12)

LBGf (µ) := r
n∑

i=1

∫

En

Bi(f(x1, . . . , xn))µ⊗n(dx), (1.13)and Bif is the mutation operator B, de�ned in (1.6), a
ting on the i-th 
oordinate of f .Remark 1.4. 1) In [DK99℄, Donnelly & Kurtz established a 
onstru
tion and pathwise dualityfor the Λ-Fleming-Viot pro
ess. In some sense, their paper works under the general assumption�allow simultaneous and/or multiple births and deaths, but we assume that all the births thathappen simultaneously 
ome from the same parent� (p. 166), even though they very brie�yin Se
tion 2.5 mention a possible extension to s
enarios with simultaneous multiple births tomultiple parents. In essen
e, the present paper 
onverts these ideas into theorems.2) Note that in a similar dire
tion, Bertoin & Le Gall remark brie�y on p. 277 of [BLG03℄ howtheir 
onstru
tion of the Λ-Fleming-Viot pro
ess via �ows of bridges 
an be extended to thesimultaneous multiple merger 
ontext (but leave details to the interested reader). We are notfollowing this approa
h, as it is hard to 
ombine with a general type spa
e and general mutationpro
ess.3) The Ξ-Fleming-Viot pro
ess has re
ently been independently 
onstru
ted by Taylor andVéber (personal 
ommuni
ation, 2008) via Bertoin and Le Gall's �ow of bridges (see [BLG03℄)and Kurtz and Rodriguez' Poisson representation of measure-valued bran
hing pro
esses (see[KR08℄). In this 
ontext we refer to Taylor and Véber [TV08℄ for a larger study of stru
turedpopulations, in whi
h Ξ-
oales
ents appear under 
ertain limiting s
enarios.4) Note that the modi�ed lookdown 
onstru
tion of the Λ-Fleming-Viot pro
ess 
ontains allinformation available about the genealogy of the pro
ess and therefore also provides a pathwiseembedding of the Λ-
oales
ent measure tree 
onsidered by Greven, Pfa�elhuber and Winter[GPW07℄. A similar statement holds for the Ξ-
oales
ent.6



The rest of the paper is organised as follows: In Se
tion 2 we use the Poisson point pro
ess
MΞ0 to introdu
e the �nite unordered (Ξ, B)-Moran model Y N and the �nite ordered (Ξ, B)-lookdown model XN . It is shown that the ordered model is 
onstru
ted in su
h a way that we
an let N tend to in�nity and obtain a well de�ned limit. We will also show that the reorderingpreserves the ex
hangeability property, whi
h will be 
ru
ial for the proof in Se
tion 3. In thisse
tion, we will introdu
e the empiri
al measures of the pro
ess Y N and XN , show that they areidenti
al and 
onverge to a limiting pro
ess having ni
e path properties, whi
h is the statementof Theorem 1.1.Se
tion 4.2 will be 
on
erned with the generator of the Ξ0-Fleming-Viot pro
ess. We will give twoalternative representations and show that it generates a strongly 
ontinuous Feller semigroup.Furthermore, we will show that the pro
ess 
onstru
ted in Se
tion 3 solves the martingaleproblem for this generator.One representation of the generator will then be used in Se
tion 5 to establish a fun
tionalduality between the Ξ-
oales
ent and the Ξ-Fleming-Viot pro
ess on the genealogi
al level. Dueto the Poissonian 
onstru
tion, this duality 
an also be extended to a �pathwise� duality. Wewill also give a fun
tion-valued dual, whi
h in
orporates mutation.In Se
tion 6, we look at two examples: The �rst example is 
on
erned with a population modelwith re
urrent bottlene
ks. Here, a parti
ular Ξ-
oales
ent, whi
h is a subordination of King-man's 
oales
ent, arises as a natural limit of the genealogi
al pro
ess. The se
ond exampledis
usses the Poisson-Diri
hlet-
oales
ent and obtains expli
it expressions for some quantities ofinterest.2 Ex
hangeable E∞-valued parti
le systems2.1 The 
anoni
al (Ξ, B)-Moran modelWe 
an use the Poisson pro
ess from Se
tion 1.4 governing the Ξ-
oales
ent to des
ribe a 
orre-sponding forward population model in a 
anoni
al way, simply reversing the 
onstru
tion of the
oales
ent by interpreting the merging events as birth events.Consider the points

(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .)) (2.1)of MΞ0 de�ned by (1.2). The tm denote the times of reprodu
tion events. De�ne
g(ζ, u) =

{
min{j | ζ1 + . . .+ ζj ≥ u} if u ≤

∑
i∈N

ζi,

∞ else. (2.2)At time tm, the N parti
les are grouped a

ording to the values g(ζm, uml), l = 1, . . . ,N asfollows: For ea
h k ∈ N, all parti
les l ∈ {1, . . . ,N} with g(ζm, uml) = k form a family. Amongea
h non-trivial family we uniformly pi
k a `parent' and 
hange the others' types a

ordingly.Note that although the jump times (tm) may be dense in R+, the 
ondition
∫

∆

∑

i

ζ2
i

Ξ0(dζ)

(ζ, ζ)
= Ξ(∆) <∞guarantees that in a �nite population, in ea
h �nite time interval only �nitely many non-trivialreprodu
tion events o

ur. As above, ea
h parti
le follows an independent mutation pro
ess,a

ording to (1.6), inbetween reprodu
tive events.7



We des
ribe the population 
orresponding to the N -parti
le (Ξ, B)-Moran model at time t by ave
tor
Y N (t) := (Y N

1 (t), . . . , Y N
N (t)) ∈ EN . (2.3)Remark 2.1. Note that this model is 
ompletely symmetri
, thus, for ea
h t, the populationve
tor Y N (t) is ex
hangeable if Y N (0) is ex
hangeable.2.2 The ordered model and ex
hangeabilityWe now de�ne an ordered population model with the same family size distribution, extending theideas of Donnelly and Kurtz [DK99℄ in an obvious way. This time ea
h parti
le will be atta
heda �level� from {1, 2, . . . } in su
h a way that we obtain a nested 
oupling of approximating (Ξ, B)-Moran models as N tends to in�nity. It will be 
ru
ial to show that this ordered model retainsinitial ex
hangeability, so that the limit as N → ∞ of the empiri
al measures of the parti
lesystems, at ea
h �xed time, exists by De Finetti's theorem.We will refer to this model as the the (Ξ, B)-lookdown-model. If the population size is N , itwill be des
ribed at time t by the ve
tor

XN (t) := (XN
1 (t), . . . ,XN

N (t))T ∈ EN . (2.4)The dynami
s works as in the (Ξ, B)-Moran model above, in
luding the distribution of familysizes and the mutation pro
esses for ea
h parti
le.In ea
h reprodu
tion step, for ea
h family, a �parental� parti
le will be 
hosen, that then super-imposes its type upon its family. This time, however, the parental parti
le will not be 
hosenuniformly among the members of ea
h family (as in the (Ξ, B)-Moran model). Instead, theparental parti
le will always be the parti
le with the lowest level among the members of a family(hen
e ea
h family member �looks down� to their relative with the lowest level). The atta
hmentof types to levels is then rearranged as follows (see Figure 1 for an illustration):a) All parental parti
les of all families (in
luding the trivial ones) will retain their type andlevel.b) All levels of members of families will assume the type of their respe
tive parental parti
le.
) All levels whi
h are still va
ant will assume the pre-reprodu
tion types of non-parentalparti
les retaining their initial order. On
e all N levels are �lled, the remaining types willbe lost.In this way, the dynami
s of a parti
le, at level l, say, will only depend on the dynami
s ofthe parti
les with lower levels. This 
onsisten
y property allows to 
onstru
t all approximatingparti
le systems, as well as their limit as N → ∞, on the same probability spa
e.Ex
hangeability of the modi�ed (Ξ, B)-lookdown model is 
ru
ial in order to pass to the DeFinetti limit of the asso
iated empiri
al parti
le systems. For ea
h N , we will show that if X(0)is ex
hangeable, then X is ex
hangeable at �xed times and at stopping times. The proof willrely on an expli
it 
onstru
tion of uniform random permutations Θ(t) whi
h maps XN to Y N .Theorem 2.2. If the initial distribution of the population ve
tor (XN
1 (0), . . . ,XN

N (0)) in the
(Ξ, B)-lookdown-model is ex
hangeable, then (XN

1 (t), . . . ,XN
N (t)) is ex
hangeable for ea
h t ≥ 0.8



(a) Parental parti
les retaintype and level. (b) Family members 
opytype of parental parti
le. (
) Remaining parti
les re-tain their order and surplusparti
les get killed.Figure 1: An illustration of the reprodu
tion me
hanism in the (Ξ, B)-lookdown model. Theparti
les at levels 2 and 5 belong to the �star� family, whereas the parti
les at levels 3, 6 and 8belong to the �triangle� family. The parti
les on the remaining levels belong to no family.For the rest of this se
tion, we omit the supers
ript N for the population models in an attemptnot to get lost in notation.The proof of Theorem 2.2 follows that of Thm. 3.2 in [DK99℄. We will 
onstru
t a 
oupling viaa permutation-valued pro
ess Θ(t) su
h that
(Y1(t), . . . , YN (t)) = (XΘ1(t)(t), . . . ,XΘN (t)(t)) (2.5)and Θ(t) is uniformly distributed on all permutations of {1, . . . ,N} for ea
h t and independentof the empiri
al pro
ess up to time t and the �demographi
 information� in the model (see (2.15)for a pre
ise de�nition).It su�
es to 
onstru
t the skeleton 
hain (θm)m∈N0 of Θ. As a guide through the followingnotation, we have found it useful to o

asionally remember that Θ(t) (and its skeleton 
hain) isbuilt to the following aim:

Θ maps a position of an individual in the ve
tor Y ((Ξ, B)-Moran-model) to thelevel of the 
orresponding individual in the ordered ve
tor X((Ξ, B)-lookdown-model).Notation and ingredients For N > 0 let SN denote the 
olle
tion of all permutations of
{1, . . . , N}, let PN = P({1, . . . , N}), the set of all subsets of {1, . . . ,N}, and let PN,k ⊂ PN bethe sub
olle
tion of subsets with 
ardinality k. For a set M , M(i) will denote the ith largestelement in M .At time m (for the skeleton 
hain) let cm the total number of 
hildren. Let am be the numberof families and cim the number of 
hildren born to family i, hen
e

am∑

i=1

cim = cm. (2.6)9



Note that we allow cim = 0 for some, but not all i. These are the trivial families where only theparental parti
le is below level N and all potential 
hildren are above. Furthermore, we need tokeep tra
k of these �one-member families� in order to mat
h the rates of our model to those ofthe Ξ-
oales
ent later on.Let θ0 be uniformly distributed over SN . For ea
h m ∈ N, pi
k (independently, and independentof θ0)
• Φm a random set, uniformly 
hosen from PN,cm+am ,
•

(
φ1

m, . . . , φ
am
m

) a random (ordered) partition of Φm, su
h that ea
h φi
m has size cim + 1,

• σi
m, i = 1, . . . , am random permutations, ea
h σi

m uniformly distributed over Sci
m+1, inde-pendently of Φm and the φi

m.Denote
• µi

m := minφi
m, i ∈ {1, . . . , am}, and

• write ∆m for the set of the highest cm integers from {1, . . . ,N}\
⋃am

i=1 µ
i
m.Pro
eeding indu
tively we assume that θm−1 has already been de�ned. We then 
onstru
t θmas follows: Let

• νi
m := θ−1

m−1(µ
i
m),

• ψm := θ−1
m−1(∆m), and

• a random ordered �partition� (
ψ1

m, . . . , ψ
am
m

) of ψm su
h that |ψi
m| = cim, 
hosen indepen-dently of everything else.In view of our intended appli
ation of θm to transfer from the Moran model to the lookdownmodel, we will later on interpet these quantities as follows: In them-th event, µi

m will be the levelof the parental parti
le of family i in the lookdown-model, and νi
m will be the 
orresponding indexin the (unordered) Moran model. ∆m will spe
ify the levels in the lookdown-model at whi
hindividuals die. We do not just pi
k the highest cm levels, be
ause we wish to retain parentalparti
les. ψm will be the 
orresponding indi
es in the Moran model. (

φ1
m, . . . , φ

am
m

) des
ribesthe family de
omposition (in
luding the respe
tive parents) in this event in the lookdown model,and ψi
m are the indi
es of the 
hildren in the i-th family in the Moran model. Thus, θm willmap φi
m to ψi

m ∪ {νi
m} (in a parti
ular order).Finally, de�ne θm as follows: Put Ψm := {ν1

m, . . . , ν
am
m } ∪ ψm. On Ψm,

θm(νi
m) := φi

m(σi
m(1)), i = 1, . . . , am, (2.7)and

θm(ψi
m(j)) := φi

m(σi
m(j + 1)) ∀j ∈ {1, . . . , cim} (2.8)for ea
h i ∈ {1, . . . , am} with cim 6= 0. On {1, . . . ,N}\Ψm let θm be the mapping onto

{1, . . . , N}\Φm with the same order as θm−1 restri
ted to {1, . . . ,N}\Ψm, that is, whenever
θm−1(i) < θm−1(j) for some i, j ∈ {1, . . . ,N}\Ψm, then θm(i) < θm(j) should also hold.10



(a) Initial permuta-tion θm−1

(b) The families areadded (
) The 
ompletedpermutation in Ex-ample 2.3Figure 2: The 
onstru
tion of the new permutation from the old permutation 
arried out inExample 2.3Example 2.3. We 
onsider a realisation of the m-th event of a population of size N = 8, asillustrated in Figure 1. There are am = 2 families (depi
ted by �triangle� and �star�, respe
tively).The �rst family φ1
m = {3, 6, 8} has size c1m +1 = 3, the se
ond, φ2

m = {2, 5}, has size c2m +1 = 2.Hen
e, the set of levels involved in this birth event is Φm = {2, 3, 5, 6, 8}, and µ1
m = 3, µ2

m = 2are the levels of the parental parti
les. Sin
e there is no parental parti
le among the highestthree levels, the parti
les at levels ∆m = {6, 7, 8} �die�.Now let us assume that θm−1 is as given in Figure 2(a). Thus, ν1
m = 4, ν2

m = 1, ψm = {3, 5, 7}.The set of indi
es ψm of individuals in the Moran model who will get repla
ed by o�spring in thisevent is partitioned a

ording to the family sizes, for example let ψ1
m = {3, 7} and ψ2

m = {5}.We 
onstru
t θm as follows: Let σ1
m =

(
1 2 3
3 1 2

) and σ2
m =

(
1 2
2 1

). For the restri
tion of θm to
Ψm = {1, 3, 4, 5, 7}, we read from (2.7) that θm(4) = φ1

m(3) = 8, θm(1) = φ2
m(2) = 5 andfrom (2.8) that θm(3) = θm(ψ1

m(1)) = φ1
m(σ1

m(1 + 1)) = φ1
m(1) = 3, θm(7) = θm(ψ1

m(2)) =
φ1

m(σ1
m(2 + 1)) = φ1

m(2) = 6 and θm(5) = θm(ψ2
m(1)) = φ2

m(σ2
m(1 + 1)) = φ2

m(1) = 2. This leadsto the partial permutation whi
h is given in Figure 2(b).Restri
ted to the 
omplementary set {2, 6, 8}, θm is a mapping onto {1, 4, 7} with the same orderas θm−1 restri
ted to {2, 6, 8}. The resulting permutation θm is given in Figure 2(
). �For notational 
onvenien
e, let
χm := (ν1

m, ψ
1
m, . . . , ν

am
m , ψam

m ), (2.9)whi
h summarises the 
ombinatorial information generated in the m-th step (namely, the familystru
ture we would observe in the Moran model).Lemma 2.4. For ea
h m, χ1, . . . , χm, θm are independent. Furthermore θm is uniformly dis-tributed over SN and
Υm :=

am⋃

i=1

{νi
m} ∪ ψi

m (2.10)is uniformly distributed over PN,cm+am , and ea
h χm is, given Υm, uniformly distributed on allordered partitions of Υm with family sizes 
onsistent with the cim.Proof. We prove the statement by indu
tion. Denoting Fm = σ(θk, χk : 0 ≤ k ≤ m), we have
E[f(θm, χm) | Fm−1] = E[f(θm, χm) | θm−1], (2.11)sin
e θm and χm are only based on θm−1 and additional independent random stru
ture.11



This implies, for any 
hoi
e of f : Sn → R and hk : ∪N
n=1

(
{1, . . . ,N} × P({1, . . . ,N})

)n
→ R,

E

[
f(θm)

m∏

k=1

hk(χk)

]
= E

[
E[f(θm)hm(χm) | Fm−1]

m−1∏

k=1

hk(χk)

]

= E

[
E[f(θm)hm(χm) | θm−1]

m−1∏

k=1

hk(χk)

]

= E[f(θm)hm(χm)]

m−1∏

k=1

E[hk(χk)]where we used (2.11) in the se
ond and the indu
tion hypothesis in the third equality. It remainsto show that θm and χm are independent and have the 
orre
t distributions.
θm−1 is uniformly distributed by the indu
tion hypothesis and independent of the distributionsof the parental-levels µi

m and the �death-levels� ∆m by 
onstru
tion. It is immediate from the
onstru
tion that Φm and Υm are uniformly distributed over PN,cm+am and the family stru
ture
χm is uniformly distributed among all admissible 
on�gurations.Furthermore, 
onditioning on χm and Φm, θm is uniformly distributed over all permutations thatmap Υm onto Φm. This follows from the fa
t that Φm is uniform on PN,cm+am and that this setis uniformly divided into the families φi

m. Sin
e uniform and independent permutations σi
m areused for the 
onstru
tion of θm and the non-parti
ipating levels remain uniformly distributed,

θm is uniform under these 
onditions.Finally, 
onditioning on χm does not alter the fa
t that Φm is uniformly distributed over
PN,cm+am . This implies that given χm, θm is also uniformly distributed over SN . Sin
e

L(θm|χm) = unif(SN ) = L(θm), (2.12)
θm and χm are independent of ea
h other.Proof of Theorem 2.2. Suppose a realization X of theN -parti
le (Ξ, B)-lookdown-model is givenand let {tm} denote the times at whi
h the birth events o

ur. The families involved in the
m-th birth event are denoted by φi

m. Note that by de�nition of the lookdown-dynami
s, the�ingredients� Φm, cm, am, c
i
m, µ

i
m,∆m introdu
ed earlier 
an be obtained from this, and that theirjoint distributions is as dis
ussed above.Moreover, let the initial permutation θ0 be independent of X and uniformly distributed on

SN . Let σi
m be independent of all other random variables and uniformly distributed on Sci

m+1,
1 ≤ i ≤ am, m ∈ N.De�ne θm as above, and

Θ(t) := θm for tm ≤ t < tm+1. (2.13)Observe that, by Lemma 2.4,
(Y1(t), . . . , YN (t)) := (XΘ1(t)(t), . . . ,XΘN (t)(t)) (2.14)is a version of the (Ξ, B)-Moran-model. Note that �one-member families� are in this 
onstru
tionsimply treated as non-parti
ipating individuals in the (Ξ, B)-Moran-model.12



Y (t) depends only on Y (0), {χm}tm≤t and the the evolution of the type pro
esses between birthand death events, so Θ(t), and hen
e Θ(t)−1 is independent of
Gt := σ

(
(Y1(s), . . . , YN (s)) : s ≤ t

)
∨ σ(χm : m ∈ N) (2.15)due to Lemma 2.4. Therefore, we see from

(X1(t), . . . ,XN (t)) = (YΘ−1
1 (t)(t), . . . , YΘ−1

N
(t)(t)) (2.16)that (X1(t), . . . ,XN (t)) is ex
hangeable.Corollary 2.5. Starting from the same ex
hangeable initial 
ondition, the laws of the empiri
alpro
esses of the (Ξ, B)-Moran-model and the (Ξ, B)-lookdown-model 
oin
ide.The ex
hangeability property does not only hold for �xed times, but also for stopping times.Theorem 2.6. Suppose that the initial population ve
tors Y N (0) in the (Ξ, B)-Moran-modeland XN (0) in the (Ξ, B)-lookdown-model have the same ex
hangeable distribution, and let τ be astopping time with respe
t to {Gt}t≥0 given by (2.15). Then (XN

1 (τ), . . . ,XN
N (τ)) is ex
hangeable.Proof. We show that Θ(τ) is independent of the σ-algebra Gτ (the τ -past) and uniformly dis-tributed over SN .First, assume that τ takes only 
ountable many values {tk}k∈N. Let A ∈ Gτ and h : SN → R+,then

E

(
h
(
Θ(τd)

)1A

)
= E

( ∞∑

k=1

h
(
Θ(tk)

)1A∩{τd=tk}

)

=

∞∑

k=1

(
Eh

(
Θ(tk)

))(
E1A∩{τd=tk}

)

=

∫
h(Θ)U(dΘ)

∞∑

k=1

E1A∩{τd=tk}

=

∫
h(Θ)U(dΘ) E1A,

(2.17)
where U denotes the uniform distribution on SN . For the se
ond equality holds observe that for�xed tk, Θ(tk) is independent ofGtk in the proof of Theorem 2.2.By approximating an arbitrary stopping time from above by a sequen
e of dis
rete stoppingtimes, we see that (2.17) holds in the general 
ase as well. Now, ex
hangeability of (XN

1 (τ), . . . ,XN
N (τ))follows as in the proof of Theorem 2.2.Remark 2.7. One 
an also de�ne a variant of the (Ξ, B)-lookdown model whi
h is more in thespirit of the `
lassi
al' lookdown 
onstru
tion from [DK96℄, where, instead of a)�
) on page 8, ata jump time ea
h parti
le simply 
opies the type of that member of the family it belongs to withthe lowest level (and no types get shifted upwards). This variant, whi
h is (up to a renaming oflevels by the points of a Poisson pro
ess on R) also the one suggested by adapting [KR08℄ to the`simultaneous multiple merger'-s
enario, has been 
onsidered by Taylor & Véber (2008, personal
ommuni
ation). The same results as above hold for this variant, with only minor modi�
ationsof the proofs. Note that the �avour of the lookdown pro
ess des
ribed above is easily adaptableto a set-up with time-varying total population size, whi
h is not obvious for the other variant.13



2.3 The limiting populationWe now 
onstru
t the limiting E∞-valued parti
le system X = (X1,X2, . . .) by formulating asto
hasti
 di�erential equation for ea
h level l. These exist for ea
h level and are well de�ned,sin
e the equation for level l needs only information about lower levels.The generator (1.6) of a pure jump pro
ess 
an be written in the form
Bf(x) = r

∫ 1

0

(
f(m(x, u)) − f(x)

)
du,where r is the global mutation rate and m : E × [0, 1] → E transforms a uniformly distributedrandom variable on [0, 1] into the jump distribution q(x, dy) of the pro
ess. The random timesand uniform �
oins� for the mutation pro
ess at ea
h level l are given by a Poisson point pro
ess

NMut
l on R+ × [0, 1] with intensity measure rdt⊗ du.As in Se
tion 2.1, denote by

(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .))the points of the Poisson point pro
ess MΞ0 and re
all the de�nition (2.2) of the �
olour� fun
tion
g. Based on this, de�ne

Ll
J(t) :=

∑

m : tm≤t

∏

j∈J

1{g(ζm,umj)<∞}

∏

j∈{1,...,l}\J

1{g(ζm,mmj)=∞}, (2.18)for J ⊂ {1, . . . , l} with |J | ≥ 2 . Ll
J(t) 
ounts how many times, among the levels in {1, . . . , l},exa
tly those in J were involved in a birth event up to time t. Moreover, let

Ll
J,k(t) :=

∑

m : tm≤t

∏

j∈J

1{g(ζm,umj)=k}

∏

j∈{1,...,l}\J

1{g(ζm,umj)6=k}. (2.19)
Ll

J,k(t) 
ounts how many times, among the levels in {1, . . . , l}, exa
tly those in J were involvedin a birth event up to time t and additionally assumed �
olour� k.To spe
ify the new levels of the individuals not parti
ipating in a 
ertain birth event, we 
onstru
ta fun
tion Jm as follows:Denote by µk
m := min{l ∈ N | g(ζm, uml) = k} the level of the parental parti
le of familynumber k and by Mm := {µk

m}k∈N the set of all levels of parental parti
les involved in the m-thbirth event. Furthermore Um := {l ∈ N | g(ζm, uml) = ∞} denotes the set of the levels notparti
ipating in the birth event m. De�ne the mapping
Jm : Um → N\Mm (2.20)that maps the i-th largest element of the set Um to the i-th largest element of the set N\Mmfor all i.The (in�nite) ve
tor des
ribing the types in the (Ξ, B)-lookdown-model is de�ned as the (unique)strong solution of the following system of sto
hasti
 di�erential equations. The lowest individualon level 1 just evolves a

ording to mutation:

X1(t) :=

∫

[0,t]×[0,1]
m(X1(s−), u) −X1(s−) dNMut

1 (s, u) (2.21)14



The individuals above level one 
an look down during birth events: For l ≥ 2,
Xl(t) :=Xl(0) +

∫

[0,t]×[0,1]
m(Xl(s−), u) −Xl(s−) dNMut

l (s, u)

+
∑

1≤i<l

∫ t

0
(Xi(s−) −Xl(s−))dNK

il (s)

+
∑

1≤i<j<l

∫ t

0
(Xl−1(s−) −Xl(s−))dNK

ij (s)

+
∑

k∈N

∑

K⊂{1,...,l},l∈K

∫ t

0
(Xmin(K)(s−) −Xl(s−))dLl

K,k(s)

+
∑

K⊂{1,...,l},l /∈K

∫ t

0
(XJm(l)(s−)) −Xl(s−))dLl

K(s).

(2.22)
The se
ond and third line des
ribe the �Kingman events�, where only pairs of individuals areinvolved. The �rst part 
opies the type from level i when l looks down to this level, be
ause itis involved in a birth event and the parental parti
le is at level i. The se
ond part handles theevent that the parental parti
le pla
es a 
hild on a level below l. In this 
ase, l has to 
opy thetype from the level l − 1, sin
e the new individual is inserted at some level below l and pushesall parti
les above that level one level up.The fourth and �fth line des
ribe the 
hange of types for a birth event with large families ina similar way. If the parti
le at level l is involved in the family k, it 
opies the type from theparental parti
le whi
h resides at the lowest level of the family. If level l is not involved in anyfamily, then Jm(l) (≤ l) gives the level from where the type is 
opied (whi
h 
omes from shiftingparti
les not involved in the lookdown event upwards).Sin
e the equation for Xl involves only X1, . . . ,Xl and �nitely many Poisson pro
esses, it im-mediate that there exists a unique strong solution of (2.21)�(2.22).These sto
hasti
 di�erential equations determine an in�nitely large population ve
tor

X(t) := (X1(t),X2(t), . . .) (2.23)in a 
onsistent way, and for ea
h N ∈ N, the dynami
s of (X1, . . . ,XN ) is identi
al to thatde�ned in Se
tion 2.2. In parti
ular, we see from Theorem 2.2 that for ea
h t ≥ 0, X(t) isex
hangeable and the empiri
al distribution
Z(t) := lim

l→∞
Z l(t) := lim

l→∞

1

l

l∑

i=1

δXi(t) exists a.s. (2.24)Let F be the set of bounded measureable fun
tions ϕ : [0,∞) × [0, 1]N × [0, 1]∞ → R su
h that
ϕ(t, ζ,u) does not depend on u, and put

Ht := σ

((
Z(s) : s ≤ t

)
,
(∫

ϕdMΞ0 : ϕ ∈ F
))

. (2.25)Corollary 2.8. Let τ be a stopping time with respe
t to {Ht}. Then
X(τ) = (X1(τ),X2(τ), . . .) (2.26)is ex
hangeable. 15



Proof. We 
laim that for t ≥ 0, A ∈ Ht with P(A) > 0 and n ∈ N ,
(X1(t), . . . ,Xn(t)) is ex
hangeable under P(·|A). (2.27)Observe that, taking A = {τ = tk}, (2.27) immediately implies the result for dis
rete stoppingtimes τ , from whi
h the general 
ase 
an be dedu
ed by approximation as in the proof ofTheorem 2.6.Obviously, (2.27) is equivalent to

P
(
A ∩ {(X1(t), . . . ,Xn(t)) ∈ C}

)
= P

(
A ∩ {(Xσ(1)(t), . . . ,Xσ(n)(t)) ∈ C}

)
∀C ⊂ En, σ ∈ Sn.(2.28)As the set of As from Ht satisfying (2.28) is a Dynkin system, it su�
es to verify (2.28) forevents of the form

A =
{
Z(s1) ∈ B1, . . . , Z(sk) ∈ Bk

}
∩H ′ (2.29)where H ′ ∈ σ

( ∫
ϕdMΞ0 : ϕ ∈ F

), k ∈ N, s1 < · · · sk ≤ t, and ea
h Bi ∈ B(si), and B(si) is a
∩-stable generator of BM1(E) with the property that P(Z(si) ∈ ∂B

′) = 0 for all B′ ∈ B(si).For A as given in (2.29), ε > 0 and n ∈ N, σ ∈ Sn, C ⊂ En appearing in (2.28), by (2.24) thereexists l (l ≫ n) su
h that
Al :=

{
Z l(s1) ∈ B1, . . . , Z

l(sk) ∈ Bk

}
∩H ′satis�es P(A\Al ∪Al\A) ≤ ε. By the arguments given in the proof of Theorem 2.6, (2.28) holdswith A repla
ed by Al. Finally, take ε→ 0 to 
on
lude.3 Pathwise 
onvergen
e: Proof of Theorem 1.1Re
all the empiri
al pro
esses Z l, and their limit Z, from (2.24). Obviously, for ea
h l ∈ N, thepro
ess {Z l(t), t ≥ 0} has 
àdlàg paths. To verify the 
orresponding property for Z, we introdu
ethe following auxiliary (Lévy) pro
ess U , derived from Poisson point pro
ess MΞ0 whi
h governsthe large family birth events of the population X: If {

(tm, ζm,um)
} are the points of the pro
ess

MΞ0 , we de�ne
U(t) :=

∑

tm≤t

( ∑

i

ζi
)2

=
∑

tm≤t

v2
m, (3.1)i.e., the jumps of U are the squared total fra
tions of the population whi
h are repla
ed in largebirth events. The generator of U is given by

Df(u) =

∫ 1

0
(f(u+ v2) − f(u))ν(dv), (3.2)where the measure

ν(dζ) :=
1

(ζ, ζ)
Ξ({ζ ∈ ∆|

∞∑

i=1

ζi ∈ dζ}) (3.3)governs the jumps.We need the following version of Lemma A.2 from [DK99℄.
16



Lemma 3.1. a) Let e1, e2, . . . be ex
hangeable and suppose there exists a 
onstant K su
h that
|ei| ≤ K a.s. De�ne

Mk =
1

k

k∑

i=1

ei (3.4)and let M∞ be the a.s. limit of (Mk), whose existen
e is guaranteed by the de Finetti Theorem.Let ε > 0. Then there exists η1 > 0 depending only on K and ε, su
h that, for l < n ∈ N∪{∞},
P{|Mn −Ml| ≥ ε} ≤ 2e−η1(K,ε)l. (3.5)b) Let (ei(t))t∈[0,1] be 
entred martingales su
h that maxi∈N supt∈[0,1] |ei(t)| ≤ K a.s. and (e1(1), e2(1), . . . )is ex
hangeable. Put

Mk(t) :=
1

k

k∑

i=1

ei(t).Let ε > 0. Then there exists η2 > 0 depending only on K and ε, su
h that, for l ∈ N

P{ sup
t∈[0,1]

|Mk(t)| ≥ ε} ≤ 2e−η2(K,ε)l. (3.6)Proof. The proof ob part a) is a straightforward extension of that of Lemma A.2 from [DK99℄,whi
h employs the fa
t that an in�nite ex
hangeable sequen
e is 
onditonally i.i.d. together withstandard arguments based on the moment generating fun
tion.For part b) observe that by Doobs submartingale inequality,
P

{
sup

0≤u<1
|Mk(t)| ≥ ε

}
≤ inf

λ>0

1

eελ
Eeλ|Mk(1)| ≤ inf

λ>0

1

eελ
E exp

(λ
k

k∑

i=1

|ei(1)|
)
, (3.7)then pro
eed as in part a).The following lemma provides the te
hni
al 
ore of the argument and repla
es Lemmas 3.4 and3.5 in [DK99℄.Lemma 3.2. In the setting of Theorem 1.1, for all c, T, ǫ > 0 and f ∈ D(B) (the domain of themutation generator) there exists a sequen
e δl su
h that ∑∞

l=1 δl <∞ and
P

{
sup

0≤t≤T

∣∣〈f, Z(t)〉 − 〈f, Z l(t)〉
∣∣ ≥ 11ǫ, U(T ) ≤ c

}
≤ δl. (3.8)Proof. By Lemma 3.1 and the ex
hangeability properties of X, we have

P

{∣∣〈f, Z(α)〉 − 〈f, Z l(α)〉
∣∣ ≥ ǫ

}
≤ 2e−ηl, (3.9)if α is a stopping time with respe
t to {H̃t}t≥0 :=

{
σ(U(s) : s ≥ 0) ∨ σ(Z(s) : 0 ≤ s ≤ t)

}
t≥0(observe that H̃t ⊂ Ht, where Ht is de�ned in (2.25)).Now �x l and ǫ. De�ne the {H̃t}-stopping times

α1 = inf

{
t : U(t) >

1

l4

}
∧

1

l4
(3.10)17



and
αo+1 := inf

{
t : U(t) > U(αo) +

1

l4

}
∧

(
αo +

1

l4

)
, o = 1, 2, . . . , (3.11)whi
h yield a de
omposition of the interval [0, T ]. Note that on the event {

U(T ) ≤ c
} thereexist at most

ol := 2(c+ T )l4 (3.12)su
h αo, i.e., we have
P
{
αol

< T,U(αol
) < c

}
= 0. (3.13)We de�ne a se
ond kind of {H̃t}-stopping times depending on αk via

α̃o := inf{t > αo : |〈f, Z(t)〉 − 〈f, Z(αo)〉| ≥ 6ǫ}. (3.14)We see from (3.9) that
Ho := |〈f, Z(αo)〉 − 〈f, Z l(αo)〉| ∨ |〈f, Z(α̃o)〉 − 〈f, Z l(α̃o)〉| (3.15)satis�es

P

{
sup
o≤ol

Ho ≥ ε
}
≤

ol∑

o=1

P {Ho ≥ ε} ≤ 8(c + T )l4e−ηl. (3.16)It remains to estimate the variation of Z l and Z inbetween the stopping times αo. For u ∈
[αo, αo+1) let βjo(u) denote the smallest index of a des
endant of Xj(αo), let the stopping time
γjo be the time when the smallest des
endant of Xj(αo) is shifted above the level l. Put

X̃j(u) =

{
Xβjo(u)(u) if u < γjo,

Xβjo(γjo−)(γjo−) if u ≥ γjo.Observe that
〈f, Z l(u)〉 − 〈f, Z l(αo)〉 = 〈f, Z l(u)〉 −

1

l

l∑

j=1

f(X̃j(u)) +
1

l

l∑

j=1

(
f(X̃j(u)) − f(X̃j(αo))

)
.(3.17)It will be useful to treat the two parts of the sum separately. De�ne

K1 := max
o≤ol

sup
u∈[αo,αo+1)

∣∣∣∣〈f, Z
l(u)〉 −

1

l

l∑

j=1

f(X̃j(u))

∣∣∣∣and
K2 := max

o≤ol

sup
u∈[αo,αo+1)

∣∣∣∣
1

l

l∑

j=1

(
f(X̃j(u)) − f(X̃j(αo))

)∣∣∣∣.Note that the law of K2 depends only on the mutation me
hanism, sin
e X̃j(u) follows the lineof the individual X̃j(αo) = Xj(αo) and thus only evolves independently a

ording to a mutationpro
ess with generator B.Begin with K1 and note that for u ∈ [αo, αo+1),
〈f, Z l(u)〉 −

1

l

l∑

j=1

f(X̃j(u) =
1

l

( l∑

j=1

f(Xj(u)) −
l∑

j=1

f(X̃j(u))
)
≤

2‖f‖

l
N l[αo, αo+1) (3.18)18



holds, where N l[αo, αo+1) is the total number of births o

urring in the time interval [αo, αo+1)with index less than or equal to l. To see this note that at time αo the two sums in the se
ondexpression 
an
el. A birth event in the interval [αo, αo+1) means that one type is removed fromthe se
ond sum and another one is added, thus the expression 
an be altered by up to 2||f ||/l.There are two me
hanisms whi
h 
an in
rease N l[αo, αo+1). It 
an either in
rease during a largebirth event given by a �jump� of MΞ0 or during a small birth event whi
h is given by one of the�Kingman-related� Poisson-Pro
esses NK
ij .We �rst 
onsider large birth events. Let (vi) be the jumps of U in the interval [αo, αo+1), and
ondition on this 
on�guration for the rest of this paragraph. At the time of the m-th jump, aBinomial(l, vm)-distributed number of levels ≤ l parti
ipates in this event, hen
e km, the totalnumber of 
hildren below level l in the m-th birth event, satis�es
km ≤ (bm − 1)+,where bm is Binomial(l, vm)-distributed. Note that we 
an subtra
t 1 from the binomial randomvariable, sin
e at least one of the levels parti
ipating in the birth event must be a mother. Thissubtra
tion will be 
ru
ial later on.By elementary 
al
ulations with Binomial distributions, involving fourth moments, similar to[DK99, p. 186℄, we 
an estimate

P

{∑

m

km > ǫl
}
≤ P

{ ∑

m

(bm − 1)+ > ǫl
}
≤
C1

l6
(3.19)for some 0 < C1 <∞.As we mentioned before, N l[αo, αo+1) and thus K1 
an also be in
reased by the Kingman partof the birth pro
ess, but only if the parental parti
le and its o�spring are pla
ed below level l.The number of times this happens in the interval [αo, αo+1) is sto
hasti
ally dominated by aPoisson distributed random variable R with parameter ( l

2

)
l−4 sin
e the length of the interval isbounded by l−4. So, the probability that 2‖f‖

l N l[αo, αo+1) ex
eeds 2ǫ due to this me
hanism isbounded by the probability that R ex
eeds lǫ
‖f‖ . By elementary estimates on the tails of Poissonrandom variables, we have

P

{
R >

lǫ

‖f‖

}
≤ e−η1l, (3.20)for some κ > 0 and l large enough.Combining (3.19) and (3.20), we obtain

P
{
K1 > 2ǫ

}
= P

{
max
o≤ol

sup
u∈[αo,αo+1)

∣∣〈f, Z l(u)〉 −
1

l

l∑

j=1

f(X̃j(u))
∣∣ > 2ǫ

}

≤ ol

(C1

l6
+ e−η1l

)
,

(3.21)for l large enough. This 
ontrols the in
rements of 〈f, Z l〉 in the intervals [αo, αo+1).We now 
onsider K2. Observe that
1

l

l∑

j=1

(f(X̃j(u)) − f(X̃j(αo))) =
1

l

l∑

j=1

(
f(X̃j(u)) − f(X̃j(αo)) −

∫ u

αo

Bf(X̃j(s))ds

)

+
1

l

l∑

j=1

∫ u

αo

Bf(X̃j(s))ds, (3.22)19



and that, for u ≥ αo and ea
h o,
Mlo(u ∧ αo+1) :=

1

l

l∑

j=1

(
f(X̃j(u ∧ αo+1)) − f(X̃j(αo)) −

∫ u∧αo+1

αo

Bf(X̃j(s))ds

) (3.23)is a martingale. For l so large that l−4‖Bf‖ ≤ ε, we have
P
{
K2 ≥ 2ε

}
≤

ol−1∑

o=0

P

{
sup

αo≤u<αo+1

|Mlo(u) +
1

l

l∑

j=1

∫ u

αo

Bf(X̃j(s))ds| ≥ 2ε
}

≤

ol−1∑

o=0

P

{
sup

αo≤u<αo+1

|Mlo(u)| + l−4‖Bf‖ ≥ 2ε
}

≤

ol−1∑

o=0

P

{
sup

αo≤u<αo+1

|Mlo(u)| ≥ ε
}
.

(3.24)
We now need to bound ea
h summand. Using the notation

Mlo(u) =
1

l

l∑

j=1

ej(u),where
ej(u) := f(X̃j(αo+1 ∧ u)) − f(X̃j(αo)) −

∫ αo+1∧u

αo

Bf(X̃j(s))ds, u ∈ [0, 1], (3.25)ea
h (ei(u)) is a martingale with E ej(u) = 0, |ej(u)| ≤ 2‖f‖ + 1
l4
‖Bf‖ =: K a.s. and the ej(u)are ex
hangeable. We obtain from Lemma 3.1

P

{
sup

αo≤u<αo+1

|Mlo(u)| ≥ ε
}
≤ 2e−η2l, (3.26)for some η2 > 0.Combining this result with equation (3.24), we arrive at

P
{
K2 ≥ 2ε

}
≤ olC2e

−η2l. (3.27)Now observe that if maxo≤ol
Ho < ǫ, K1 < 2ǫ and K2 < 2ǫ, then α̃o ≥ αo+1. This 
an easily beseen by 
ontradi
tion. Indeed, if we assume that α̃o < αo+1 this would imply

|〈f, Z(αo)〉 − 〈f, Z(α̃o)〉| ≥ 6ǫ, (3.28)a

ording to (3.14). But on the other hand we know that
|〈f, Z(αo)〉 − 〈f, Z l(αo)〉| < ǫ and |〈f, Z(α̃o)〉 − 〈f, Z l(α̃o)〉| < ǫ ∀o (3.29)due to our bound on Ho. Sin
e the distan
e between 〈f, Z〉 and 〈f, Z l〉 was at most ǫ atthe beginning of the interval and 〈f, Z l〉 
an only have moved by at most 4ǫ on the event

{K1 ≤ 2ǫ} ∩ {K2 ≤ 2ǫ} ∩ {maxo≤ol
Ho ≤ ǫ},

|〈f, Z(αo)〉 − 〈f, Z l(α̃o)〉| < 5ǫ (3.30)20



must hold if α̃o ≤ αo+1. But equation (3.28) states that, 〈f, Z(α̃o)〉 is more than 6ǫ away fromits starting point, so this 
ontradi
ts that it 
an only be ǫ away from 〈f, Z l(α̃o)〉 whi
h is ensuredby our 
ondition on Ho. Thus α̃o has to be greater than αo+1 whi
h in turn implies that
sup

αo≤u<αo+1

{∣∣〈f, Z(u)〉 − 〈f, Z(αo)〉
∣∣
}
≤ 6ǫ (3.31)holds on the event {K1 ≤ 2ǫ} ∩ {K2 ≤ 2ǫ} ∩ {maxo≤ol

Ho ≤ ǫ}.Putting observation (3.31), the bound (3.27) and the bound (3.21) together, we �nally obtain
P

{
sup

0≤t≤T

∣∣〈f, Z(t)〉 − 〈f, Z l(t)〉
∣∣ ≥ 11ǫ, U(T ) ≤ c

}
≤ δl (3.32)with

δl := 8(c+ T )l4e−ηl + olC1l
−6 + ole

−η1l + olC2e
−η2l (3.33)whi
h is the statement of the lemma sin
e due to equation (3.12) ol ∼ l4 holds and therefore the

δl are summable.Proof of Theorem 1.1. Almost sure 
onvergen
e of Z l to Z with respe
t to the metri
 (1.8)follows dire
tly from Lemma 3.2 and the Borel-Cantelli Lemma, 
ompleting the proof of Theo-rem 1.1.4 The Hille-Yosida approa
hIn this se
tion we provide two alternative representations of the Ξ0-Fleming-Viot generator,leading to the distributional duality to the Ξ-
oales
ent dis
ussed in Se
tion 5, and we showthat they generate a Markov semigroup on M1(E), hen
e leading to a 
lassi
al 
onstru
tion ofthe Ξ0-Fleming-Viot pro
ess as a Markov pro
ess.4.1 Two representations of the Ξ0-Fleming-Viot generatorRe
all that if the type spa
e E is a 
ompa
t Polish spa
e (whi
h is assumed in this paper), thenthe set M1(E) of all probability measures on E, equipped with the weak topology, is again aPolish spa
e. We brie�y re
all the notation from Se
tion 1. For f : En → R bounded andmeasurable 
onsider the test fun
tion
Gf (µ) :=

∫

En

f(x1, . . . , xn)µ⊗n(dx1, . . . , dxn), µ ∈ M1(E). (4.1)The linear operator LΞ0 was de�ned via
LΞ0Gf (µ) =

∫

∆

∫

EN

[
Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)
−Gf (µ)

]
µ⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
. (4.2)This operator is the Ξ0-Fleming-Viot generator from Proposition 1.3. The following representa-tion will be useful to establish the duality with the Ξ0-
oales
ent. Note that if Ξ is 
on
entratedon {ζ ∈ ∆ : ζi = 0 for all i ≥ 2}, i.e., if the 
orresponding 
oales
ent is a Λ-
oales
ent, thenthis result has already been obtained by Bertoin and Le Gall [BLG03, Eqs. (16) and (17)℄.For 
onvenien
e, we will denote the transition rates by

λ(k1, . . . , kp) = λb;k1,...,kr;s, (4.3)21



where k1 ≥ · · · ≥ kr ≥ 2, p − r = s and kr+1 = . . . = kp = 1. Furthermore, de�ne for
p, n1, . . . , np ∈ N su
h that n1 + · · · + np > p (⇔ not all ni = 1)

λ(n1, . . . , np) := λ(k1, . . . , kp), (4.4)where k1 ≥ · · · ≥ kp is the re-arrangement of n1, . . . , np in de
reasing order.Lemma 4.1. The operator LΞ0 has the alternative representation
LΞ0Gf (µ) =

∑

π={A1,...,Ap}∈Pnnot all singletonsλ(|A1|, . . . , |Ap|)

∫

En

(
f
(
x[π]

)
− f(x)

)
µ⊗n(dx1, . . . , dxn), (4.5)where x[{A1, . . . , Ap}] ∈ En has entries

(x[{A1, . . . , Ap}])i := xminAj
if i ∈ Aj , i = 1, . . . , n.Remark 4.2. Note that (4.5) basi
ally boils down to (1.4), if |Ai| = 1 for all but one Ai.Proof of Lemma 4.1. First note that for �xed ζ and x,

Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)

=
∑

φ:{1,...,n}→Z+

(1 − |ζ|)a(φ)
∏

j≤n :φ(j)>0

ζφ(j)

∫

Ea(φ)

f
(
η(φ,x,y)

)
µ⊗a(φ)(dy1, . . . , dya(φ)),(4.6)where a(φ) := #{1 ≤ j ≤ n : φ(j) = 0} and η(φ,x,y) ∈ En is given by

η(φ,x,y)j =

{
xφ(j) if φ(j) > 0,

yk if φ(j) = 0, where k = #{1 ≤ j′ ≤ j : φ(j′) = 0}.Identity (4.6) 
an be understood as follows: Expanding the n-fold produ
t of (1 − |ζ|)µ +∑∞
i=1 ζiδxi

, we put φ(j) = 0 if in the j-th fa
tor, we use (1 − |ζ|)µ, and we put φ(j) = i if weuse ζiδxi
in the j-fa
tor.Ea
h φ : {1, . . . , n} → Z+ is uniquely des
ribed by a partition π = {A1, . . . , Ap} ∈ Pn withlabels ℓ1, . . . , ℓp ∈ Z+ by de�ning j ∼φ j

′ if and only if φ(j) = φ(j′) > 0 and putting ℓi := φ(Ai),
i = 1, . . . , p. Note that for a given partition {A1, . . . , Ap}, any ve
tor (ℓ1, . . . , ℓp) ∈ Z

p
+ of labelswith the properties

ℓi = 0 ⇒ |Ai| = 1 and i 6= j, ℓi, ℓj 6= 0 ⇒ ℓi 6= ℓjis admissible. Thus we have
∫

EN

Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)
µ⊗N(dx)

=
∑

π={A1,...,Ap}∈Pn

∑

(ℓ1,...,ℓp)admissible(1 − |ζ|)#{1≤i≤p:ℓi=0}
p∏

i=1,
ℓi>0

ζ
|Ai|
ℓi

∫

En

f
(
x[π]

)
µ⊗n(dx). (4.7)Note that, for a given partition with p blo
ks, the integration appearing in the last line runs ef-fe
tively only over Ep. For further simpli�
ation assume that the blo
ks A1, . . . , Ap of π =

{A1, . . . , Ap} ∈ Pn are enumerated a

ording to de
reasing blo
k size, and write s(π) for22



the number of singleton blo
ks of the partition π = {A1, . . . , Ap}. Then, for a given π =
{A1, . . . , Ap} ∈ Pn, the last sum in (4.7) 
an be written as

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

∫

En

f
(
x[π]

)
µ⊗n(dx).Furthermore, for any ζ ∈ ∆ and n ∈ N,

1 =
((

1 − |ζ|
)

+
∑∞

i=1ζi

)n

=
∑

π={A1,...,Ap}∈Pn

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l
.This allows to re-express the inner integral in (4.5) as

∑

π={A1,...,Ap}∈Pn

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

∫

En

[f
(
x[π]

)
− f(x)]µ⊗n(dx)

=
∑

π={A1,...,Ap}∈Pnnot all singletons s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

×

∫

En

[f
(
x[π]

)
− f(x)]µ⊗n(dx),be
ause x[{{1}, . . . , {n}}] = x. Integrating this equation over ∆ with respe
t to the measure

(ζ, ζ)−1Ξ yields (4.5). Note that (see also [S03, p. 844℄)
∑

π={A1,...,Ap}∈Pnnot all singletons s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

≤
∑

π={A1,...,Ap}∈Pnnot all singletons ( ∞∑

i1=1

ζ2
i1

) s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

ip−s(π)+1,...,ip−s(π)+l∈N

ζip−s(π)+1
· · · ζip−s(π)+l

=
∑

π={A1,...,Ap}∈Pnnot all singletons (ζ, ζ)

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l|ζ|l = (|Pn| − 1) (ζ, ζ)to verify that there is no singularity near ζ = 0.4.2 Constru
tion of the Markov semigroup and proof of Proposition 1.3The following proposition ensures that there exists a Markov pro
ess atta
hed to the Ξ0-Fleming-Viot generator.Proposition 4.3. The 
losure of {(Gf , L

Ξ0Gf ) : n ∈ N, f : En → R bounded and measurable}generates a Markov semigroup on M1(E). 23



Proof. We write G instead of Gf for 
onvenien
e. By the Hille-Yosida theorem (see, for example,[EK86, p. 165, Theorem 2.2℄) it is su�
ient to verify that(i) the domain D is dense in C(M1(E)),(ii) the operator LΞ0 satis�es the positive maximum prin
iple, i.e., LΞ0G(µ) ≤ 0 for all G ∈ D,
µ ∈ M1(E) with supν∈M1(E)G(ν) = G(µ) ≥ 0, and that(iii) the range of λ− LΞ0 is dense in C(M1(E)) for some λ > 0.In order to verify (i) and (iii) we mimi
 the proof of Proposition 3.5 in [EK86℄ and 
onstru
ta suitable sequen
e D1,D2, . . . of �nite-dimensional subspa
es of C(M1(E)) su
h that D :=⋃

k∈N
Dk is dense in C(M1(E)) and LΞ0 : Dk → Dk for all k ∈ N as follows. For n ∈ N and

f : En → R bounded and measurable,
Df :=

〈
{G : G(µ) =

∫
f(x[π])µ⊗n(dx), π ∈ En}

〉is a �nite-dimensional subspa
e of C(M1(E)) and we see from (4.5) that LΞ0 : Df → Df . Forea
h n ∈ N let {gnm : m ∈ N} ⊂ C(En) be dense, and let {fk : k ∈ N} be an enumeration of
{gnm : n,m ∈ N}. Then, Dk := Dfk

, k ∈ N, has the desired properties. Note that D :=
⋃

k∈N
Dkis dense in C(M1(E)) (Stone-Weierstrass), i.e. 
ondition (i) holds.We have (λ−LΞ0)(Dk) = Dk for all λ not belonging to the set of eigenvalues of LΞ0 |Dk

, i.e., forall but at most �nitely many λ > 0. Thus, (λ−LΞ0)(D) = (λ−LΞ0)(
⋃

k∈N
Dk) =

⋃
k∈N

Dk = Dis dense in C(M1(E)) for all but at most 
ountable many λ > 0. In parti
ular, 
ondition (iii) issatis�ed.Condition (ii) follows from the fa
t that the expression below the integrals in (1.12) satis�es
G((1 − |ζ|)µ+

∑∞
i=1 ζiδxi

) −G(µ) ≤ sup
ν∈M1(E)

G(ν) −G(µ) = G(µ) −G(µ) = 0for all x = (x1, x2, . . .) ∈ EN, ζ ∈ ∆, G ∈ D and µ ∈ M1(E) with supν∈M1(E)G(ν) = G(µ).Thus, the Hille-Yosida theorem ensures that the 
losure LΞ0 of LΞ0 on C(M1(E)) is single-valued and generates a strongly 
ontinuous, positive, 
ontra
tion semigroup {Tt}t≥0 on M1(E).Note that from (iii) it follows that D is a 
ore for LΞ0 ([EK86, p. 166℄). The operator LΞ0maps 
onstant fun
tions to the zero fun
tion, i.e., LΞ0 is 
onservative. Thus, {Tt}t≥0 is a Fellersemigroup and 
orresponds to a Markov pro
ess with sample paths in DM1(E)([0,∞)).Remark 4.4. i) If the �nite measure Ξ on ∆ allows for some mass a := Ξ({0}) at zero, then LΞ0has to be repla
ed by LΞ := LΞ0 +Laδ0 , where LΞ0 is de�ned as before and Laδ0 is the generatorof the 
lassi
al Fleming-Viot pro
ess [FV79℄ given by (1.11). The existen
e of a Markov pro
ess
Z = (Zt)t≥0 with generator LΞ 
an be dedu
ed as in the proof of Proposition 4.3 via the Hille-Yosida theorem.ii) The 
onstru
tion of the Markov pro
ess atta
hed to the 'full' generator L, in
luding theKingman 
omponent (1.11) and the mutation 
omponent (1.13), works via the standard Trotterapproa
h.iii) Note that ∫

(LΞ)Gdδδx
= 0, x ∈ E, where δν ∈ M1(M1(E)) denotes the unit mass at

ν ∈ M1(E). Thus, see [EK86, p. 239, Proposition 9.2℄, the states δx, x ∈ E, are absorbing forthe Ξ-Fleming-Viot pro
ess. 24



We now turn to the proof of Proposition 1.3. Indeed, we verify the followingClaim: The distribution of the measure valued Markov pro
ess with generator L, as de�ned inRemark 4.4 ii), 
oin
ides with the distribution of the (Ξ, B)-Fleming Viot pro
ess, as de�ned inTheorem 1.1.For simpli
ity, we 
on
entrate on the 
ase when there is no mutation and no Kingman-
omponent,thus we restri
t our investigations to LΞ0 . It su�
es to verify the following lemma.Lemma 4.5. Assume that there is no Kingman part and no mutation. Then the Ξ0-Fleming-Viot pro
ess de�ned in Theorem 1.1 solves the martingale problem for the generator LΞ0 givenin (1.12).To prepare this, �x l and suppose we are at the m-th birth event. As in the previous se
tion,let {φ1
m, . . . , φ

am
m } denote the assignments of the levels to one of the am families. So φi

m ⊂
{1, . . . , l} and φi

m ∩ φi
m 6= ∅ for all i, j. Furthermore, we again denote by Φm :=

⋃am

i=1 φ
i
m allindividuals parti
ipating in the birth event. Note, that this 
an be a stri
t subset of {0, . . . , l},and {φ1

m, . . . , φ
am
m } holds all information about what is going on at the birth event. The fun
tion

g(ζ, u) is de�ned as in (2.2). We introdu
e a Poisson pro
ess 
ounting the number of times aspe
i�
 birth event {φ1
m, . . . , φ

am
m } happens. With (tm, ζm,um) denoting the points of the Poissonpoint pro
ess MΞ0 we de�ne

L{φ1
m,...,φam

m }(t) :=
∑

tm≤t

∑

b1,...,bam∈Ndistin
t am∏

i=1

∏

j∈φi
m

1{g(ζm,umj)=bi}

∏

j∈{1,...,l}\Φ

1{g(ζm,umj)=∞}. (4.8)To des
ribe the e�e
t of the birth event {φ1
m, . . . , φ

am
m } on the population ve
tor x ∈ El weintrodu
e the fun
tion T de�ned by

(
T{φ1

m,...,φam
m }(x)

)
i
:=

{
x

min(φj
m)

if k ∈ φj
m,

xJm(i) else (4.9)for all k ∈ {1, . . . , l}, where Jm is the fun
tion de�ned in (2.20) that holds the information onwhere the non-parti
ipating parti
les should look down to.With this notation we 
an use equation (2.22) and the dependen
e between the Ll
J,k and Ll

J toshow that
X l(t) := X l(0) +

∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

∫ t

0

(
T{φ1

m,...,φam
m }

(
X l(s−)

)
−X l(s−)

)
dL{φ1

m,...,φam
m }(s) (4.10)des
ribes the evolution of the �rst l levels X l ∈ El, if we assume no mutation and no Kingmanpart. Note that for simpli
ity we use the notation X l = (X1, . . . ,Xl).Sin
e the L{φ1

m,...,φam
m }(t) are Poisson pro
esses derived from the Poisson point pro
ess MΞ0 it isstraightforward to verify that their rates are given by

r
(
{φ1

m, . . . , φ
am
m }

)
:=

∑

i1,...,iamall distin
t ∫

∆
ζ

k1
m+1

i1
. . . ζ

kr
m+1

ir
ζir+1 . . . ζiam

(1 − |ζ|)(l−|Φ|) Ξ0(dζ)

(ζ, ζ)
, (4.11)where ki

m + 1 = |φi
m| as before and the sets are ordered, su
h that k1

m ≥ . . . ≥ kr
m ≥ 1 and

kr+1
m = . . . = kam

m = 0 holds. Assume that at least k1
m ≥ 1 hold, be
ause otherwise T is theidentity. Note that under this assumption the integral in (4.11) is �nite (
.f. [S00℄ or [S03℄).We now turn to the a
tual proof of the lemma.25



Proof of Lemma 4.5. We have to show that for ea
h fun
tion Gf ∈ D(LΞ0) of the form
Gf (µ) = 〈f, µ⊗l〉, (4.12)for µ ∈ P(E) and f : El → R bounded and measurable,

Gf (Z(t)) −Gf (Z(0)) −

∫ t

0
(LΞ0Gf )(Z(s)) ds (4.13)is a martingale with respe
t to the natural �ltration of the Poisson point pro
ess MΞ0 given by

{Jt}t≥0 :=
{
σ
(
M

Ξ0

∣∣∣
[0,t]×∆×[0,1]N

)}
t≥0

. (4.14)Note that
E

[
f
(
X1(s), . . . ,Xl(s)

)∣∣∣Jt

]
= E

[〈
f, Z(s)⊗l

〉∣∣∣Jt

] (4.15)holds for all s, t ≥ 0, whi
h will be 
ru
ial in the following steps.We start by observing that for 0 ≤ w ≤ t, the representation (4.10) leads to
0 = E

[
f
(
X l(t)

)
− f

(
X l(w)

)

−
∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

∫ t

w

(
f
(
T{φ1

m,...,φam
m }

(
X l(s)

))
− f

(
X l(s)

))
r
(
{φ1

m, . . . , φ
am
m }

)
ds

∣∣∣Jw

]
, (4.16)sin
e this is a martingale.Using the de�nition of the rates (4.11) and the fa
t that due to ex
hangeability of X l, the a
tionof T{φ1

m,...,φam
m } and the [π] operation under the expe
tation is the same, we 
an now rewrite thelast term as

E

[∫ t

w

∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

r
(
{φ1

m, . . . , φ
am
m }

)
f
(
T{φ1

m,...,φam
m }

(
X l(s)

))
ds

∣∣∣∣∣Jw

]

= E

[∫ t

w

∑

π={A1,...,Ap}∈Pn

∑

(r1,...,rp)admissible ∫

∆
(1 − |ζ|)#{ri=0}

p∏

i=1,
ri>0

ζ |Ai|
ri

Ξ0(dζ)

(ζ, ζ)
f
((
X l(s)

)
[π]

)
ds

∣∣∣∣∣Jw

]

= E

[∫ t

w

∫

∆

∑

π={A1,...,Ap}∈Pn

∑

(r1,...,rp)admissible(1 − |ζ|)#{ri=0}
p∏

i=1,
ri>0

ζ |Ai|
ri

〈(f ◦ [π]), Z(s)⊗l〉
Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣∣Jw

]

= E

[∫ t

w

∫

∆

∫

EN

Gf

(
(1 − |ζ|)Z(s) +

∑∞
i=1 ζiδxi

)
Z(s)⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣∣Jw

]
, (4.17)sin
e the sum about the 
on�gurations {φ1

m, . . . , φ
am
m } and the distin
t indi
es i1, . . . , iam 
anbe rewritten as the sum about the partitions π and the admissible ve
tors (r1, . . . , rp). The lastequality holds due to equation (4.7).

26



Combining equation (4.16) with equation (4.17) we see that
0 = E

[
f
(
X l(t)

)
− f

(
X l(w)

)

−

∫ t

w

∫

∆

∫

EN

Gf

(
(1 − |x|)Z(s) +

∑∞
i=1 ζiδxi

)
−Gf

(
Z(s)

)
Z(s)⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣∣Jw

]

= E

[
〈f, Z(t)⊗l〉 − 〈f, Z(w)⊗l〉 −

∫ t

0
(LΞ0Gf )(Z(s)) ds

∣∣∣∣∣Jw

]

= E

[
Gf

(
Z(t)

)
−Gf

(
Z(w)

)
−

∫ t

0
(LΞ0Gf )(Z(s)) ds

∣∣∣∣∣Jw

] (4.18)holds. Thus
Gf (Z(t)) −Gf (Z(0)) −

∫ t

0
(LΞ0Gf )(Z(s)) ds (4.19)is a martingale.5 Dualities5.1 Distributional duality vs. pathwise dualityWe �rst establish a distributional duality in the 
lassi
al sense of [L85℄. Indeed, (4.5) and resultsabout the 
lassi
al Fleming-Viot pro
ess bring forth the following duality between a Ξ-
oales
ent

Π = (Πt)t≥0 and a Ξ-Fleming-Viot pro
ess Z = (Zt)t≥0.Lemma 5.1 (Duality). For n ∈ N, f : En → R bounded and measurable, µ ∈ M1(E), π ∈ Enand t ≥ 0,
E

µ
[ ∫

En

f
(
x[π]

)
Z⊗n

t (dx)
]

= E
π
[ ∫

En

f
(
x[Π

(n)
t ]

)
µ⊗n(dx)

]
, (5.1)where Π

(n)
t is the restri
tion of Πt to En.To obtain a pathwise duality, we use the driving Poisson pro
esses of the modi�ed lookdown 
on-stru
tion to 
onstru
t realisation-wise a Ξ-
oales
ent embedded in the Ξ-Fleming-Viot pro
ess.More expli
itly, re
all the Poisson pro
esses Ll

J and Ll
J,k from equation (2.18) and (2.19) inSe
tion 2.3 and the Poisson pro
ess NK

ij de�ned in Se
tion 1.3. For ea
h t ≥ 0 and l = 1, 2, . . . ,let N l
t(s), 0 ≤ s ≤ t, be the level at time s of the an
estor of the individual at level l at time t.In terms of the Ll

J and Ll
J,k, the pro
ess N l

t(·) solves, for 0 ≤ s ≤ t,
27



N l
t(s) = l −

∑

1≤i<j<l

∫ t

s−
1{N l

t(u)>j} dN
K
ij (u)

−
∑

1≤i<j<l

∫ t

s−
(j − i)1{N l

t (u)=j} dN
K
ij (u)

−
∑

K⊂{1,...,l},l /∈K

∫ t

0
(N l

t(u) − Jm(l))dLl
K(u)

−
∑

k∈N

∑

K⊂{1,...,l},l∈K

∫ t

s−
(N l

t (u) − min(K))1{N l
t (u)∈K} dL

l
K,k(u), (5.2)where Jm(l) is de�ned by (2.20). Fix 0 ≤ T and, for t ≤ T , de�ne a partition ΠT

t of N su
h that
k and l are in the same blo
k of ΠT

t if and only if N l
T (T − t) = Nk

T (T − t). Thus, k and l are inthe same blo
k if and only if the two levels k and l at time T have the same an
estor at time
T − t. Then ([DK99℄, Se
tion 5),the pro
ess (ΠT

t )0≤t≤T is a Ξ-
oales
ent run for time T . (5.3)Note that by employing a natural generalisation of the lookdown 
onstru
tion using drivingPoisson pro
esses on R and e.g. using T = 0 above, one 
an use the same 
onstru
tion to �ndan Ξ-
oales
ent with time set R+. We would like to emphasise that the lookdown 
onstru
tionprovides a realisation-wise 
oupling of the type distribution pro
ess (Zt)t≥0 and the 
oales
entdes
ribing the genealogy of a sample, thus extending (5.1), whi
h is merely a statement aboutone-dimensional distributions.5.2 The fun
tion-valued dual of the (Ξ, B)-Fleming-Viot pro
essThe duality between the Ξ-Fleming-Viot pro
ess and the Ξ-
oales
ent established in Se
tion 5.1worked only on the genealogi
al level, the mutation was not taken into a

ount. However, it ispossible to de�ne a fun
tion-valued dual to the (Ξ, B)-Fleming-Viot pro
ess su
h that not onlythe genealogi
al stru
ture, but also the mutation is part of the duality. This kind of duality iswell known for the 
lassi
al Fleming-Viot pro
ess, see, e.g., Etheridge [E00, Chapter 1.12℄.First note, that due to Lemma 4.1 we 
an rewrite the generator of the (Ξ, B)-Fleming-Viotpro
ess given by equation (1.10) to obtain
LGf (µ) :=

∑

1≤i<j≤n

∫

En

(
f(x1,.., xi,.., xi,.., xn) − f(x1,.., xi,.., xj ,.., xn)

)
µ⊗n(dx)

+
∑

π={A1,...,Ap}∈Pnnot all singletons λ(|A1|, . . . , |Ap|)

∫

En

(
f
(
x[π]

)
− f(x)

)
µ⊗n(dx),

+ r
n∑

i=1

∫

En

Bi(f(x1, . . . , xn))µ⊗n(dx). (5.4)We 
an now reinterpret the fun
tion Gf (µ) a
ting on measures as a fun
tion Gµ(f) a
ting onthe fun
tions Cb(E
n). This reinterpretation transfers the operator L a
ting on C(

M1(E)
) to anoperator L∗ a
ting on Cb

(
Cb(E

n)
). Let C :=

⋃∞
n=1 Cb(E

n). A C-valued Markov pro
ess (ρt)t≥0solving the martingale problem for L∗ 
an then be 
onstru
ted as follows:28



• If ρt(x) ∈ Cb(E
n) and n ≥ 2, then the pro
ess (ρt)t≥0 jumps to ρt

(
x[π]

) with rate
ξ(|A1|, . . . , |Ap|)+a1{∃!|Ai|=2;∀j 6=i:|Aj|=1}, for all π = {A1, . . . , Ap} ∈ Pn where |Aj | ≥ 1 forat least one j.

• If ρt ∈ Cb(E), that is it is a fun
tion of a single variable, then no further jumps o

ur.
• Between jumps the pro
ess evolves deterministi
ally a

ording to the �heat �ow� generatedby the mutation operator (1.6), independently for ea
h 
oordinate.Note that this pro
ess is not literally a 
oales
ent, but has 
oales
ent-like featuring.The duality relation between ρt and Zt immediately follows from (5.4) and 
an be written inintegrated form as

EZ0〈ρ0, Z
⊗n
t 〉 = Eρ0〈ρt, Z

⊗n
0 〉. (5.5)It 
an be used for example to show uniqueness of the martingale problem for L via the existen
eof (ρt)t≥0 or to 
al
ulate the moments of the (Ξ, B)-Fleming-Viot pro
ess.5.3 The dual of the blo
k 
ounting pro
essIn this se
tion, we spe
ialise to the 
ase where the type spa
e E 
onsists of two types only,say E = {0, 1}. De�ne the real-valued pro
ess Y = (Yt)t≥0 via Yt := Zt({1}), t ≥ 0. De�ne

g : M1(E) → [0, 1] via g(µ) := µ({1}). The generator A of Y is then given by Af(x) =
(LΞ(f ◦ g))(µ), f ∈ C2([0, 1]), where µ depends on y ∈ [0, 1] and 
an be 
hosen arbitrary, aslong as g(µ) = y. Thus,
Af(x) =

x(1 − x)

2
f ′′(x) +

∫

∆

∫

{0,1}N

(
f((1− |ζ|)x+

∑∞
i=1ζiyi)− f(x)

)
(B(1, x))⊗N(dy)

Ξ0(dζ)

(ζ, ζ)
,(5.6)

x ∈ [0, 1], f ∈ C2([0, 1]), where B(1, x) denotes the Bernoulli distribution with parameter x. For
x ∈ [0, 1] let V1(x), V2(x), . . . be a sequen
e of independent and identi
ally B(1, x)-distributedrandom variables. Then,

Af(x) =
x(1 − x)

2
f ′′(x) +

∫

∆

∫

[0,1]

(
f((1 − |u|)x+ y) − f(x)

)
Q(u, x, dy)

Ξ0(du)

(u,u)
,where Q(u, x, .) denotes the distribution of ∑∞

i=1 uiVi(x). Hen
e the pro
ess 
an be 
onsideredas a Wright-Fisher di�usion with jumps. In the situation where Ξ is 
on
entrated on [0, 1]×{0}N ,i.e., when the underlying Ξ-
oales
ent is a Λ-
oales
ent, has been studied in [BLG05℄.Note that Af ≡ 0 for f(x) = x, so Y is a martingale. Furthermore, the boundary points 0 and
1 are obviously absorbing.In analogy to Lemma 5.1 it follows that Y is dual to the blo
k 
ounting pro
ess D = (Dt)t≥0of the Ξ-
oales
ent with respe
t to the duality fun
tion H : [0, 1] × N → R, H(x, n) := xn (see,e.g., Liggett [L85℄), i.e.,

E
y[Y n

t ] = E
n[yDt ], n ∈ N, y ∈ [0, 1], t ≥ 0.Thus, the moments of the `forward' variable Yt 
an be 
omputed via the generating fun
tion ofthe `ba
kward' variable Dt and vi
e versa. The duality 
an be used to relate the a

essibility ofthe boundaries of Y and the existen
e of an entran
e law for D with D0+ = ∞. Note that bythe Markov property and the stru
ture of the jump rates, we always have

P
∞(Dt = 1 eventually) ∈ {0, 1} (5.7)29



and either P
∞(

⋂
t≥0{Dt = ∞}) = 1 (if the probability in (5.7) equals 0) or limt→∞ P

∞(Dt =
1) = 1 (if the probability in (5.7) equals 1).Proposition 5.2. limt→∞ P

∞(Dt = 1) = 1 if and only if Y , the dual of its blo
k 
ountingpro
ess, hits the boundary {0, 1} in �nite time almost surely, starting from any y ∈ (0, 1).Proof. Fix y ∈ (0, 1), T > 0. Constru
t (Zt) starting from yδ1 + (1 − y)δ0 and no mutations,
Bf ≡ 0, (and hen
e Y starting from y) by using the look-down 
onstru
tion from Se
tion 2.3:Let X1(0),X2(0), . . . be i.i.d. Bernoulli(y), independent of the driving Poisson pro
esses, andlet Xn(t), t > 0, n ∈ N, be the solution of (2.22). Let

D′
t := |{Nn

T (T − t) : n ∈ N}|,where Nn
T (s) solves (5.2). By (5.3), the law of (D′

t)0≤t≤T is that of the blo
k 
ounting pro
essof the (standard-)Ξ-
oales
ent run for time T . Then by 
onstru
tion (as there is no mutation),
Xn(T ) = XNn

T
(0)(0),implying

{D′
T = 1} ⊂ {YT ∈ {0, 1}} and {D′

T = ∞} ⊂ {0 < YT < 1} almost surely,whi
h easily yields the 
laim.This is related to the so-
alled `
oming down from in�nity'-property of the standard Ξ-
oales
ent(i.e., the property that starting from D0 = ∞, Dt < ∞ almost surely for all t > 0). Re
all([S00℄, p. 39f) that a Ξ-
oales
ent may have in�nitely 
lasses for a positive amount of timeand then suddenly jump to �nitely many 
lasses, this 
an o

ur if Ξ has positive mass on
∆f := {u = (u1, u2, . . .) ∈ ∆ : u1 + · · · + un = 1 for some n ∈ N}. On the other hand [S00,Lemma 31℄, if Ξ(∆f ) = 0, then the Ξ-
oales
ent either 
omes down from in�nity immediatelyor always has in�nitely many 
lasses. Combining this with Proposition 5.2 we obtainRemark 5.3. Assume that Ξ(∆f ) = 0. Then the Ξ-
oales
ent 
omes down from in�nity if andonly if the dual of its blo
k 
ounting pro
ess hits the boundary {0, 1} in �nite time almost surely.In general, there seems to be no `simple' 
riterion to 
he
k whether a Ξ-
oales
ent 
omes downfrom in�nity (see the dis
ussion in Se
tion 5.5 of [S00℄). On the other side, there seems to bealso no `handy' 
riterion for a

essibility of the boundary of a pro
ess with jumps (and withvalues in [0, 1]), but at least Proposition 5.2 allows to transfer any progress from one side to theother and vi
e versa.We 
on
lude this se
tion with a simple toy example for whi
h most quantities of interest, inparti
ular the generator A, 
an be 
omputed expli
itly.Example 5.4. Fix l ∈ N. If the measure Ξ is 
on
entrated on ∆l := {ζ ∈ ∆ : ζ1 + · · ·+ ζl = 1},then (5.6) redu
es to

Af(x) =

∫

∆

∑

y1,...,yl∈{0,1}

xy1+···+yl(1 − x)l−(y1+···+yl)
(
f(

∑l
i=1 ζiyi) − f(x)

)Ξ(dζ)

(ζ, ζ)
.For example, assume that the measure Ξ assigns its total mass Ξ(∆) := 1/l to the single point

(1/l, . . . , 1/l, 0, 0, . . .) ∈ ∆l. Then,
Af(x) =

l∑

k=0

(
l

k

)
xk(1 − x)l−kf(k/l) − f(x) =

∫
(f(y/l) − f(x))B(l, x)(dy),30



where B(l, x) denotes the binomial distribution with parameters l and x. Note that the 
orre-sponding Ξ-
oales
ent never undergoes more than l multiple 
ollisions at one time. The rates(4.3) are
λ(k1, . . . , kp) =

∫

∆

∑

i1,...,ip∈Npairwise di�erentζk1
i1

· · · ζ
kp

ip

Ξ(dζ)

(ζ, ζ)
=

(l)p
ln
,where (l)p := l(l − 1) · · · (l − p + 1) and n := k1 + · · · + kp. The blo
k 
ounting pro
ess D hasrates

gnp =
n!

p!

∑

m1,...,mp∈N

m1+···+mp=n

ξ(m1, . . . ,mp)

m1! · · ·mp!
= S(n, p)

(l)p
ln
, 1 ≤ p < n,where the S(n, p) denote the Stirling numbers of the se
ond kind. The total rates are gn =∑n−1

p=1 gnp = 1 − (l)n/l
n, n ∈ N. Note that the 
orresponding Ξ-
oales
ent stays in�nite for apositive amount of time (`Case 2' on top of [S00, p. 39℄ with Ξ2 ≡ 0). The dual of its blo
k
ounting pro
ess hits the boundary in �nite time. �6 ExamplesThe �rst of the two examples in this se
tion presents a model, where the population size variessubstantially due to re
urrent bottlene
ks. It is shown, that the Ξ-
oales
ent appears naturallyas the limiting genealogy of this model. In the se
ond example we present the Poisson-Diri
hlet-
oales
ent by 
hoosing a parti
ular measure for Ξ whi
h is has a density with respe
t to themeasure of the Poisson-Diri
hlet distribution. We provide expli
it expressions for several quan-tities of interest.6.1 An example involving re
urrent bottlene
ksConsider a population, say with non-overlapping generations, in whi
h the population size hasundergone o

asional abrupt 
hanges in the past. Spe
i�
ally, we assume that `typi
ally', ea
hgeneration 
ontains N individuals, but at several instan
es in the past, it has been substantiallysmaller for a 
ertain amount of time, and then the population has qui
kly re-grown to its typi
alsize N . This is related to the models 
onsidered by Jagers & Sagitov in [JS04℄, but we assumeo

asional mu
h more radi
al 
hanges in population size than [JS04℄. Let us assume that thedemographi
 history is des
ribed by three sequen
es of positive real numbers (si)i∈N, (li,N )i∈Nand (bi,N )i∈N, where 0 < bi,N ≤ 1 holds for all i, and the population size t generations beforethe present is given by G(t), where

G(t) =

{
bm,NN if N( ∑m−1

i=1 (si + li,N ) + sm

)
< t ≤ N

∑m
i=1(si + li,N ), m ∈ N,

N otherwise.Thus, ba
k in time the population stays at size N for some time siN . Then the size is redu
edto bi,NN for the time li,NN . Thereafter it is again given by N , until the next bottlene
ko

urs after time si+1N . Note that for simpli
ity, we have assumed `instantaneous' re-growthafter ea
h bottlene
k. Furthermore, we assume that the reprodu
tion behaviour is given by thestandard Wright-Fisher dynami
s, so ea
h individual 
hooses its parent uniformly at randomfrom the previous generation, independently of the other individuals. This is the 
ase in everygeneration, also during the bottlene
k and at the transitions between the bottlene
k and thetypi
al size. 31



We now want to keep tra
k of the genealogy of a sample of n individuals from the presentgeneration, and des
ribe its dynami
s in the limit N → ∞. Denote by Π(N,n)(t) the an
estralpartition of the sample t generations before the present.Lemma 6.1. Fix (si)i∈N and assume that bi,N → 0 and that li,N → 0 as N → ∞. Furthermoreassume that bi,NN → ∞ and that li,N/bi,N → γi > 0. Then
Π(N,n)(Nt) → Πδ0,(n)(Rt)weakly as N → ∞ on DPn([0,∞)), where Rt := t+

∑
i:s1+...+si≤t γi.Note that we assume li,N → 0 as N → ∞, so the duration of the bottlene
k is negligible onthe times
ale of the `normal' genealogy. We also assume bi,N → 0 but Nbi,N → ∞, i.e., inthe pre-limiting s
enario, the population size during a bottlene
k should be tiny 
ompared tothe normal size, but still large in absolute numbers. The ratio li,N/bi,N is sometimes 
alled theseverity of the (i-th) bottlene
k in the population geneti
 literature.Remark 6.2. Note that bottlene
k events with γi = 0 be
ome invisible in the limit, whereas ina bottlene
k with γi = +∞ the genealogy ne
essarily 
omes down to only one lineage (and thus,all geneti
 variability is erased).Sin
e we �xed the si and γi, the limiting pro
ess des
ribed in Lemma 6.1 is not a homogeneousMarkov pro
ess and thus does not �t literally into the 
lass of ex
hangeable 
oales
ent pro
esses
onsidered in this paper. Assume that the waiting intervals si are exponentially distributed,say with parameter β, and that the γi are independently drawn from a 
ertain law Lγ . Thus,in the pre-limiting N -parti
le model forwards in time, in ea
h generation there is a 
han
e of

∼ β/N that a `bottlene
k event' with a randomly 
hosen severity begins. In this situation, thegenealogy of an n-sample from the population at present is (approximately) des
ribed by
Πδ0,(n)(St), t ≥ 0, (6.1)where (St)t≥0 is a subordinator (in fa
t, a 
ompound Poisson pro
ess with Lévy measure βLγand drift 1).Proposition 6.3. Let Nγ be the number of lineages at time γ > 0 in the standard Kingman
oales
ent starting with N0 = ∞, and let Dj be the law of the re-ordering of a (j-dimensional)Diri
hlet(1, . . . , 1) random ve
tor a

ording to de
reasing size, padded with in�nitely many zeros.The pro
ess de�ned in (6.1) is the Ξ-
oales
ent restri
ted to {1, . . . , n}, where

Ξ(dζ) = δ0(dζ) + (ζ, ζ)

∫

(0,∞)

∞∑

j=1

P(Nσ = j)Dj(dζ)βLγ(dσ).Proof. Re
all that the number of families of the 
lassi
al Fleming-Viot pro
ess without mutationafter σ time units is Nσ. Given Nσ = j, the distribution of the family sizes is a uniform partitionof [0, 1], hen
e Diri
hlet(1, . . . , 1). Size-ordering thus leads to the above formula for Ξ.6.2 The Poisson-Diri
hlet 
aseSagitov [S03℄ 
onsidered the Poisson-Diri
hlet 
oales
ent Π = (Πt)t≥0 with parameter θ > 0,where (by de�nition) the measure Ξ has density ζ 7→ (ζ, ζ) with respe
t to the Poisson-Diri
hlet32



distribution PDθ with parameter θ > 0. As the measure PDθ is 
on
entrated on the subset ∆∗of points of ∆ satisfying |ζ| = 1, the rates (4.3) redu
e to
λ(k1, . . . , kj) =

∫

∆∗

∑

i1,...,ij∈Npairwise di�erentζk1
i1

· · · ζ
kj

ij
PDθ(dζ).From the 
al
ulations of Kingman [K93℄ it follows that the Poisson-Diri
hlet 
oales
ent has rates

λ(k1, . . . , kj) =
θj

[θ]k

j∏

i=1

(ki − 1)!,

k1, . . . , kj ∈ N with k := k1 + · · · + kj > j, where [θ]k := θ(θ + 1) . . . (θ + k − 1).Möhle and Sagitov [MS01℄ 
hara
terised ex
hangeable 
oales
ents via a sequen
e (Fj)j∈N of sym-metri
 �nite measures. For ea
h j ∈ N, the measure Fj lives on the simplex ∆j := {(ζ1, . . . , ζj) ∈
[0, 1]j : ζ1 + · · · + ζj ≤ 1} and is uniquely determined via its moments

λ(k1, . . . , kj) =

∫

∆j

ζk1−2
1 · · · ζ

kj−2
j Fj(dζ1, . . . , dζj), k1, . . . , kj ≥ 2.For the Poisson-Diri
hlet 
oales
ent, an appli
ation of Liouville's integration formula shows thatthe measure Fj has density fj(ζ1, . . . , ζj) := θjζ1 · · · ζj(1 −

∑j
i=1 ζi)

θ−1 with respe
t to theLebesgue measure on ∆j.As Ξ is 
on
entrated on ∆∗, it follows that
∫

∆

|ζ|

(ζ, ζ)
Ξ(dζ) =

∫

∆

1

(ζ, ζ)
Ξ(dζ) =

∫

∆∗

Πθ(dζ) = 1 < ∞. (6.2)By [S00, Proposition 29℄, the Poisson-Diri
hlet 
oales
ent is a jump-hold Markov pro
ess withbounded transition rates and step fun
tion paths. By [S00, Proposition 30℄, for arbitrary but�xed t > 0, Πt does not have proper frequen
ies.The blo
k 
ounting pro
ess D := (Dt)t≥0, where Dt := |Πt| denotes the number of blo
ks of Πt,is a de
reasing pro
ess with rates
gnk =

n!

k!

∑

n1,...,nk∈N

n1+···+nk=n

λ(n1, . . . , nk)

n1! · · · nk!
=

θk

[θ]n

n!

k!

∑

n1,...,nk∈N

n1+···+nk=n

1

n1 · · ·nk
=

θk

[θ]n
s(n, k),

k, n ∈ N with k < n, where the s(n, k) are the absolute Stirling numbers of the �rst kind. Thetotal rates are
gn :=

n−1∑

k=1

gnk = 1 −
θn

[θ]n
, n ∈ N.Note that gnk = P{Kn = k}, k < n, where Kn is a random variable taking values in {1, . . . , n}with distribution

P{Kn = k} =
θk

[θ]n
s(n, k), k ∈ {1, . . . , n}.We have

γn :=

n−1∑

k=1

(n− k)gnk =

n−1∑

k=1

(n− k)P{Kn = k} = n− EKn ≤ n.33



In parti
ular, ∑∞
n=2 γ

−1
n ≥

∑∞
n=2 1/n = ∞. Together with (6.2) and Ξ(∆f ) = 0, where ∆f :=

{ζ ∈ ∆ | ζ1 + · · · + ζn = 1 for some n}, it follows from [S00, Proposition 33℄ that the Poisson-Diri
hlet 
oales
ent stays in�nite.If we assume no mutation, then the generator LΞ (de�ned in Remark 4.4) of the 
orrespondingFleming-Viot pro
ess redu
es to
LΞGf (µ) =

∫

∆∗

∫

EN

[
Gf

(∑∞
i=1 ζiδxi

)
−Gf (µ)

]
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