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AbstratLet Λ be a �nite measure on the unit interval. A Λ-Fleming-Viot proess is a probabilitymeasure valued Markov proess whih is dual to a oalesent with multiple ollisions (Λ-oalesent) in analogy to the duality known for the lassial Fleming Viot proess andKingman's oalesent, where Λ is the Dira measure in 0.We expliitly onstrut a dual proess of the oalesent with simultaneous multiple olli-sions (Ξ-oalesent) with mutation, the Ξ-Fleming-Viot proess with mutation, and providea representation based on the empirial measure of an exhangeable partile system along thelines of Donnelly and Kurtz (1999). We establish pathwise onvergene of the approximatingsystems to the limiting Ξ-Fleming-Viot proess with mutation. An alternative onstrutionof the semigroup based on the Hille-Yosida theorem is provided and various types of dualityof the proesses are disussed.In the last part of the paper a populations is onsidered whih undergoes reurrentbottleneks. In this senario, non-trivial Ξ-Fleming-Viot proesses naturally arise as limitingmodels.1 Introdution and main results1.1 MotivationOne of the fundamental aims of mathematial population genetis is the onstrution of pop-ulation models in order to desribe and to analyse ertain phenomena whih are of interestfor biologial appliations. Usually these models are onstruted suh that they desribe theevolution of the population under onsideration forwards in time. A lassial and widely usedmodel of this kind is the Wright-Fisher di�usion, whih an be used for large populations toapproximate the evolution of the fration of individuals arrying a partiular allele. On theother hand it is often quite helpful to look from the present bak into the past and to trae bakthe anestry of a sample of n individuals, genes or partiles. In many situations, the Kingmanoalesent [K82a, K82b℄ turns out to be an appropriate tool to approximate the anestry of asample taken from a large population. It is well known that the Wright-Fisher di�usion is dualto the blok ounting proess of the Kingman oalesent. More general, the Fleming-Viot pro-ess [FV79℄, a measure-valued extension of the Wright-Fisher di�usion, is dual to the Kingmanoalesent. Suh and similar duality results are quite ommon in partiular in the physis litera-ture on interating partile systems [L85℄ and in the more theoretial literature on mathematialpopulation genetis [DK96, DK99, EK95, M99, M01℄. Donnelly and Kurtz [DK96℄ establisheda so-alled lookdown onstrution and used this onstrution to show that the Fleming-Viotproess is dual to the Kingman oalesent. This onstrution and orresponding duality resultshave been extended [DK99, BLG03, BLG05, BLG06℄ to the Λ-Fleming-Viot proess, whih is themeasure-valued dual of a oalesent proess allowing for multiple ollisions of anestral lineages.For more information on oalesent proesses with multiple ollisions, so-alled Λ-oalesents,we refer to Pitman [P99℄ and Sagitov [S99℄.There exists a broader lass of oalesent proesses [MS01, S00, S03℄ in whih many multipleollisions an our with positive probability simultaneously at the same time. These proesses1



an be haraterized by a measure Ξ on an in�nite simplex and are hene alled Ξ-oalesents.It is natural to further extend the above onstrutions and results to this full lass of oalesentproesses and, in partiular, to provide onstrutions of the dual proesses, alled Ξ-Fleming-Viot proesses. Although suh extensions have been brie�y indiated in [DK99℄ and [BLG03℄,these extensions have not been arried out in detail yet. Ξ-oalesents have also reently beenapplied to study population geneti problems, see [TV08, SW08℄.The motivation to present this paper is hene manifold. We expliitly onstrut the Ξ-Fleming-Viot proess and provide a representation via empirial measures of an exhangeable partilesystem in the spirit of Donnelly and Kurtz [DK96, DK99℄. We furthermore establish orre-sponding onvergene results and pathwise duality to the Ξ-oalesent. We also provide analternative, more lassial funtional-analyti onstrution of the Ξ-Fleming-Viot proess basedon the Hille-Yosida theorem and present representations for the generator of the Ξ-Fleming-Viotproess. Our approahes inlude neutral mutations. The results give insights into the pathwisestruture of the Ξ-Fleming-Viot proess and its dual Ξ-oalesents. Examples and situationsare presented in whih ertain Ξ-Fleming-Viot proesses and their dual Ξ-oalesents ournaturally.1.2 Moran models with (oasionally) large familiesConsider a population of �xed size N ∈ N := {1, 2, . . .} and assume that eah individual isof a ertain type, where the spae E of possible types is assumed to be ompat and Polish.Furthermore assume that for eah vetor k = (k1, k2, . . .) of integers satisfying k1 ≥ k2 ≥ · · · ≥ 0and ∑∞
i=1 ki ≤ N a non-negative real quantity rN (k) ≥ 0 is given. The population is assumedto evolve in ontinuous time as follows. Given a vetor k = (k1, . . . , km, 0, 0, . . .), where k1 ≥

· · · ≥ km ≥ 1 and k1 + · · · + km ≤ N , with rate rN (k) we hoose randomly m groups of sizes
k1, . . . , km from the present population. Inside eah of these m groups we furthermore hooserandomly a `parent' whih fores all individuals in its group to hange their type to the type ofthat parent. We say that a k-reprodution event ours with rate rN (k). The lassial Moranmodel orresponds to rN (2, 0, 0, . . .) = N .Exept for the fat that these models are formulated in ontinuous time, they essentially oin-ide with the lass of neutral exhangeable population models with non-overlapping generationsintrodued by Cannings [C74, C75℄. Starting with the seminal work of Kingman [K82a, K82b℄,the genealogy of samples taken from suh populations is well understood, in partiular for thesituation when the total population size N tends to in�nity.1.3 Genealogies and exhangeable oalesentsFor neutral population models of large, but �xed population size and �nite-variane reprodutionmehanism, Kingman [K82a℄ showed that the genealogy of a �nite sample of size n an beapproximately desribed by the so alled n-oalesent (Π

δ0,(n)
t )t≥0. The n-oalesent is a time-homogeneous Markov proess taking values in Pn, the set of partitions of {1, . . . , n}. If i and

j are in the same blok of the partition Π
δ0,(n)
t , then they have a ommon anestor at time tago. Π

δ0,(n)
0 is the partition of {1, . . . , n} into singleton bloks. The transitions are then givenas follows: If there are b bloks at present, then eah pair of bloks merges with rate 1, thusthe overall rate of seeing a merging event is (b

2

). Note that only binary mergers are allowed andthat at some random time, all individuals will have a (most reent) ommon anestor.Kingman [K82a℄ also showed that there exists a PN-valued Markov proess (Πδ0
t )t≥0, where PN2



denotes the set of partitions of N. This proess, the so-alled Kingman oalesent, is haraterisedby the fat that for eah n the restrition of (Πδ0
t )t≥0 to the �rst n natural numbers is the n-oalesent. The proess an be onstruted by an appliation of the standard Kolmogoro�extension theorem, sine the restrition of every n-oalesent to {1, . . . ,m}, where 1 ≤ m ≤ n,is an m-oalesent.Whereas the Kingman oalesent allows only for binary mergers, the idea of a time-homogeneous

PN-valued Markov proess that evolves by the oalesene of bloks was extended by Pitman[P99℄ and Sagitov [S99℄ to oalesents where multiple bloks are allowed to merge at the sametime, so-alled Λ-oalesents, whih arise as the limiting genealogy of populations where thevariane of the o�spring distribution diverges as the population size tends to in�nity. Möhleand Sagitov [MS01℄ and Shweinsberg [S00℄ introdued the even larger lass of oalesents withsimultaneous multiple ollisions, also alled exhangeable oalesents or Ξ-oalesents, whihdesribe the genealogies of populations allowing for large family sizes.Shweinsberg [S00℄ showed that any exhangeable oalesent (ΠΞ
t )t≥0 is haraterised by a �nitemeasure Ξ on the in�nite simplex

∆ := {ζ = (ζ1, ζ2, . . .) : ζ1 ≥ ζ2 ≥ · · · ≥ 0,
∑∞

i=1ζi ≤ 1}.Throughout the paper, for ζ ∈ ∆, the notation |ζ| :=
∑∞

i=1 ζi and (ζ, ζ) :=
∑∞

i=1 ζ
2
i will beused for onveniene. Note that Möhle and Sagitov [MS01℄ provide an alternative (though some-what less intuitive) haraterisation of the Ξ-oalesent based on a sequene of �nite symmetrimeasures (Fr)r∈N. Coalesent proesses with multiple ollisions (Λ-oalesents) our if themeasure Ξ is onentrated on the subset of all points ζ ∈ ∆ satisfying ζi = 0 for all i ≥ 2. TheKingman-oalesent orresponds to the ase Ξ = δ0. It is onvenient to deompose the measure

Ξ into a `Kingman part' and a `simultaneous multiple ollision part', that is, Ξ = aδ0 + Ξ0 with
a := Ξ({0}) ∈ [0,∞) and Ξ0({0}) = 0. The transition rates of the Ξ-oalesent ΠΞ are given asfollows. Suppose there are urrently b bloks. Exatly ∑r

i=1 ki bloks ollide into r new bloks,eah ontaining k1, . . . , kr ≥ 2 original bloks, and s single bloks remain unhanged, suh thatthe ondition ∑r
i=1 ki + s = b holds. The order of k1, . . . , kr does not matter. The rate at whihthe above ollision happens is then given as (Shweinsberg [S00, Theorem 2℄)

λb;k1,...,kr;s = a1{r=1,k1=2} +

∫

∆

s∑

l=0

(
s

l

)
(1 − |ζ|)s−l

∑

i1 6=···6=ir+l

ζk1
i1

· · · ζkr

ir
ζir+1 · · · ζir+l

Ξ0(dζ)

(ζ, ζ)
.(1.1)An intuitive explanation of (1.1) is given below in terms of Shweinsberg's [S00℄ Poisson proessonstrution of the Ξ-oalesent. If Ξ(∆) 6= 0, then without loss of generality it an be assumedthat Ξ is a probability measure, as remarked after Eq. (12) of [S00℄. Otherwise simply divideeah rate by the total mass Ξ(∆) of Ξ.1.4 Poisson proess onstrution of the Ξ-oalesentIt is onvenient to give an expliit onstrution of the Ξ-oalesent in terms of Poisson proesses.Indeed, Shweinsberg [S00, Setion 3℄ shows that the Ξ-oalesent an be onstruted from afamily of Poisson proesses {NK

i,j}i,j∈N,i<j and a Poisson point proess MΞ0 on R+×∆× [0, 1]N.The proesses NK
ij have rate a = Ξ({0}) eah and govern the binary mergers of the oalesent.The proess MΞ0 has intensity measure

dt ⊗
Ξ0(dζ)

(ζ, ζ)
⊗ (1[0,1](t)dt)

⊗N. (1.2)3



These proesses an be used to onstrut the Ξ-oalesent as follows: Assume that before thetime tm the proess Π is in a state {B1, B2, . . .}. If tm is a point of inrease of one of the proesses
NK

i,j (and there are at least i∨ j bloks), then we merge the orresponding bloks Bi and Bj intoa single blok (and renumber). This mehanism orresponds to the Kingman-omponent of theoalesent.The non-Kingman ollisions are governed by the points
(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .)) (1.3)of the Poisson proess MΞ0 . ζm denotes the respetive asymptoti family sizes in the multiplemerger event at time tm and the um are �uniform oins�, determining the bloks partiipatingin the respetive merger groups; see (2.2) or [S00, Setion 3℄ for details.1.5 Ξ-Fleming-Viot proessesAn in many senses dual approah to population genetis is to view a population of �nite sizeas a vetor of types (Y N
1 , . . . , Y N

N ) with values in EN or as an empirial measure of that vetor
1
N

∑N
i=1 δY N

i
and look at the evolution under mutation and resampling forwards in time. WhenNtends to in�nity one obtains the Fleming-Viot proess [FV79℄. This proess has been extended toinorporate other important biologial phenomena and has found wide appliations, see [EK93℄for a survey.Donnelly and Kurtz [DK96℄ embedded an E∞-valued partile system into the lassial Fleming-Viot proess, via a lever lookdown onstrution, and showed that it is dual to the Kingman-oalesent. This onstrution and the duality has been extended to the so-alled Λ-Fleming-Viotproess, dual to the Λ-oalesents, and investigated by several authors, see, e.g., [DK99, BBC05,BLG03, BLG05, BLG06℄, or [BB07℄ for an overview.Let f ∈ Cb(E

p), µ ∈ M1(E) and Gf (µ) := 〈f, µ⊗p〉. The generator of the Λ-Fleming-Viotproess without mutation has the form (see [BBC05, Equation (1.11)℄)
LΛGf (µ) =

∑

J⊂{1,...,p},|J |≥2

λp;|J |;p−|J |

∫ (
f(xJ) − f(x)

)
µ⊗p(dx), (1.4)where

(xJ)i =

{
xmin(J) if i ∈ J ,
xi otherwise. (1.5)Note that (1.4) inludes the generator of the lassial Fleming-Viot proess (without mutation)if the summation is restrited to sets J satisfying |J | = 2.Our aim in this paper is to present the modi�ed lookdown onstrution for a measure-valuedproess that we will all the Ξ-Fleming-Viot proess with mutation, or the (Ξ, B)-Fleming-Viotproess. The symbol B stands here for an operator desribing the mutation proess. We willestablish its duality to the Ξ-oalesent with mutation. The modi�ed lookdown onstrutionwill also enable us to establish some path properties of the (Ξ, B)-Fleming-Viot proess.1.6 A modi�ed lookdown onstrution of the (Ξ, B)-Fleming-Viot proessConsider a population desribed by a vetor Y N (t) = (Y N

1 (t), . . . , Y N
N (t)) with values in EN ,where Y N

i (t) is the type of individual i at time t. The evolution of this population (forwards in4



time) has two omponents, namely reprodution and mutation. During its lifetime, eah partileundergoes mutation aording to the bounded linear mutation operator
Bf(x) = r

∫

E
(f(y) − f(x))q(x, dy), (1.6)where f is a bounded funtion on E, q(x, dy) is a Feller transition funtion on E × B(E), and

r ≥ 0 is the global mutation rate.The resampling of the population is governed by the Poisson point proess MΞ0 , whih wasintrodued as a driving proess for the Ξ-oalesent. In partiular, the resampling events allowfor the simultaneous ourrene of one or more large families. The resampling proedure isdesribed in detail in Setion 2. An important fat is that this resampling is made suh that itretains exhangeability of the population vetor.In Setion 2, we introdue another partile system XN = (XN
1 , . . . ,X

N
N ) again with values in

EN . Eah partile mutates aording to the same generator (1.6) as before. For the resamplingevent, we will use the same driving Poisson point proess MΞ0 , but we will use the modi�edlookdown onstrution of Donnelly and Kurtz introdued in [DK99℄, suitably adapted to oursenario. This (Ξ, B)-lookdown proess will be introdued in Setion 2.2. It is ruial that theresampling events retain exhangeability of the population vetor and that the proess {XN (t)}has the same empirial measure ∑N
i=1 δXN

i (t) as the proess {Y N (t)}.The onstrution of the resampling events allows us to pass to the limit as N tends to in�nityand obtain an E∞-valued partile system X = (X1,X2, . . .). Sine this partile system is alsoexhangeable, this proedure enables us to aess the almost sure limit of the empirial measureas N tends to in�nity by the De Finetti Theorem (whih is not possible for the Y N ).1.7 ResultsLet f1, f2, . . . ∈ D(E) be funtions that separate points of M1(E) in the sense that ∫
fk dµ =∫

fk dν for all k ∈ N implies that µ = ν. Suh sequenes exists, see, e.g. Setion 1 (Lemma 1.1in partiular) of [DK96℄. We use the metri d on M1(E) de�ned via
d(µ, ν) :=

∑

k

1

2k

∣∣∣
∫
fk dµ−

∫
fk dν

∣∣∣ µ, ν ∈ M1(E) (1.7)and metrise the topology of loally uniform onvergene on DM1(E)[0,∞) by
dp(µ, ν) =

∫ ∞

0
e−td

(
µ(t), ν(t)

)
dt. (1.8)Theorem 1.1. The M1(E)-valued proess (Zt)t≥0, de�ned in terms of the ordered partilesystem X = (X1,X2, . . . ) by

Zt := lim
n→∞

Zn
t = lim

n→∞

1

n

n∑

i=1

δXi(t), t ≥ 0,is alled the Ξ-Fleming-Viot proess with mutation operator B or simply the (Ξ, B)-Fleming-Viot proess. Moreover, the empirial proesses (Zn
t )t≥0 onverge almost surely on the path spae

DM1(E)([0,∞)) to the àdlàg proess (Zt)t≥0.Sine the empirial measures of XN and Y N are idential, we arrive at the following orollary.5



Corollary 1.2. De�ne, for eah n,̃
Zn

t :=
1

n

n∑

i=1

δYi(t), t ≥ 0,the empirial proess of the n-th unordered partile system, and assume that Z̃n
0 → Z0 weaklyas n → ∞. Then, (Z̃n

t )t≥0 onverges weakly on the path spae DM1(E)([0,∞)) to the (Ξ, B)-Fleming-Viot proess (Zt)t≥0.The Markov proess (Zt)t≥0 is haraterized by its generator as follows.Proposition 1.3. The (Ξ, B)-Fleming-Viot proess (Zt)t≥0 is a strong Markov proess. Itsgenerator, denoted by L, ats on test funtions of the form
Gf (µ) :=

∫

En

f(x1, . . . , xn)µ⊗n(dx1, . . . , dxn), µ ∈ M1(E), (1.9)where f : En → R is bounded and measurable, via
LGf (µ) := Laδ0Gf (µ) + LΞ0Gf (µ) + LBGf (µ), (1.10)where

Laδ0Gf (µ) := a
∑

1≤i<j≤n

∫

En

(
f(x1,.., xi,.., xi,.., xn) − f(x1,.., xi,.., xj ,.., xn)

)
µ⊗n(dx), (1.11)

LΞ0Gf (µ) :=

∫

∆

∫

EN

[
Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)
−Gf (µ)

]
µ⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
, (1.12)

LBGf (µ) := r
n∑

i=1

∫

En

Bi(f(x1, . . . , xn))µ⊗n(dx), (1.13)and Bif is the mutation operator B, de�ned in (1.6), ating on the i-th oordinate of f .Remark 1.4. 1) In [DK99℄, Donnelly & Kurtz established a onstrution and pathwise dualityfor the Λ-Fleming-Viot proess. In some sense, their paper works under the general assumption�allow simultaneous and/or multiple births and deaths, but we assume that all the births thathappen simultaneously ome from the same parent� (p. 166), even though they very brie�yin Setion 2.5 mention a possible extension to senarios with simultaneous multiple births tomultiple parents. In essene, the present paper onverts these ideas into theorems.2) Note that in a similar diretion, Bertoin & Le Gall remark brie�y on p. 277 of [BLG03℄ howtheir onstrution of the Λ-Fleming-Viot proess via �ows of bridges an be extended to thesimultaneous multiple merger ontext (but leave details to the interested reader). We are notfollowing this approah, as it is hard to ombine with a general type spae and general mutationproess.3) The Ξ-Fleming-Viot proess has reently been independently onstruted by Taylor andVéber (personal ommuniation, 2008) via Bertoin and Le Gall's �ow of bridges (see [BLG03℄)and Kurtz and Rodriguez' Poisson representation of measure-valued branhing proesses (see[KR08℄). In this ontext we refer to Taylor and Véber [TV08℄ for a larger study of struturedpopulations, in whih Ξ-oalesents appear under ertain limiting senarios.4) Note that the modi�ed lookdown onstrution of the Λ-Fleming-Viot proess ontains allinformation available about the genealogy of the proess and therefore also provides a pathwiseembedding of the Λ-oalesent measure tree onsidered by Greven, Pfa�elhuber and Winter[GPW07℄. A similar statement holds for the Ξ-oalesent.6



The rest of the paper is organised as follows: In Setion 2 we use the Poisson point proess
MΞ0 to introdue the �nite unordered (Ξ, B)-Moran model Y N and the �nite ordered (Ξ, B)-lookdown model XN . It is shown that the ordered model is onstruted in suh a way that wean let N tend to in�nity and obtain a well de�ned limit. We will also show that the reorderingpreserves the exhangeability property, whih will be ruial for the proof in Setion 3. In thissetion, we will introdue the empirial measures of the proess Y N and XN , show that they areidential and onverge to a limiting proess having nie path properties, whih is the statementof Theorem 1.1.Setion 4.2 will be onerned with the generator of the Ξ0-Fleming-Viot proess. We will give twoalternative representations and show that it generates a strongly ontinuous Feller semigroup.Furthermore, we will show that the proess onstruted in Setion 3 solves the martingaleproblem for this generator.One representation of the generator will then be used in Setion 5 to establish a funtionalduality between the Ξ-oalesent and the Ξ-Fleming-Viot proess on the genealogial level. Dueto the Poissonian onstrution, this duality an also be extended to a �pathwise� duality. Wewill also give a funtion-valued dual, whih inorporates mutation.In Setion 6, we look at two examples: The �rst example is onerned with a population modelwith reurrent bottleneks. Here, a partiular Ξ-oalesent, whih is a subordination of King-man's oalesent, arises as a natural limit of the genealogial proess. The seond exampledisusses the Poisson-Dirihlet-oalesent and obtains expliit expressions for some quantities ofinterest.2 Exhangeable E∞-valued partile systems2.1 The anonial (Ξ, B)-Moran modelWe an use the Poisson proess from Setion 1.4 governing the Ξ-oalesent to desribe a orre-sponding forward population model in a anonial way, simply reversing the onstrution of theoalesent by interpreting the merging events as birth events.Consider the points

(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .)) (2.1)of MΞ0 de�ned by (1.2). The tm denote the times of reprodution events. De�ne
g(ζ, u) =

{
min{j | ζ1 + . . .+ ζj ≥ u} if u ≤

∑
i∈N

ζi,

∞ else. (2.2)At time tm, the N partiles are grouped aording to the values g(ζm, uml), l = 1, . . . ,N asfollows: For eah k ∈ N, all partiles l ∈ {1, . . . ,N} with g(ζm, uml) = k form a family. Amongeah non-trivial family we uniformly pik a `parent' and hange the others' types aordingly.Note that although the jump times (tm) may be dense in R+, the ondition
∫

∆

∑

i

ζ2
i

Ξ0(dζ)

(ζ, ζ)
= Ξ(∆) <∞guarantees that in a �nite population, in eah �nite time interval only �nitely many non-trivialreprodution events our. As above, eah partile follows an independent mutation proess,aording to (1.6), inbetween reprodutive events.7



We desribe the population orresponding to the N -partile (Ξ, B)-Moran model at time t by avetor
Y N (t) := (Y N

1 (t), . . . , Y N
N (t)) ∈ EN . (2.3)Remark 2.1. Note that this model is ompletely symmetri, thus, for eah t, the populationvetor Y N (t) is exhangeable if Y N (0) is exhangeable.2.2 The ordered model and exhangeabilityWe now de�ne an ordered population model with the same family size distribution, extending theideas of Donnelly and Kurtz [DK99℄ in an obvious way. This time eah partile will be attaheda �level� from {1, 2, . . . } in suh a way that we obtain a nested oupling of approximating (Ξ, B)-Moran models as N tends to in�nity. It will be ruial to show that this ordered model retainsinitial exhangeability, so that the limit as N → ∞ of the empirial measures of the partilesystems, at eah �xed time, exists by De Finetti's theorem.We will refer to this model as the the (Ξ, B)-lookdown-model. If the population size is N , itwill be desribed at time t by the vetor

XN (t) := (XN
1 (t), . . . ,XN

N (t))T ∈ EN . (2.4)The dynamis works as in the (Ξ, B)-Moran model above, inluding the distribution of familysizes and the mutation proesses for eah partile.In eah reprodution step, for eah family, a �parental� partile will be hosen, that then super-imposes its type upon its family. This time, however, the parental partile will not be hosenuniformly among the members of eah family (as in the (Ξ, B)-Moran model). Instead, theparental partile will always be the partile with the lowest level among the members of a family(hene eah family member �looks down� to their relative with the lowest level). The attahmentof types to levels is then rearranged as follows (see Figure 1 for an illustration):a) All parental partiles of all families (inluding the trivial ones) will retain their type andlevel.b) All levels of members of families will assume the type of their respetive parental partile.) All levels whih are still vaant will assume the pre-reprodution types of non-parentalpartiles retaining their initial order. One all N levels are �lled, the remaining types willbe lost.In this way, the dynamis of a partile, at level l, say, will only depend on the dynamis ofthe partiles with lower levels. This onsisteny property allows to onstrut all approximatingpartile systems, as well as their limit as N → ∞, on the same probability spae.Exhangeability of the modi�ed (Ξ, B)-lookdown model is ruial in order to pass to the DeFinetti limit of the assoiated empirial partile systems. For eah N , we will show that if X(0)is exhangeable, then X is exhangeable at �xed times and at stopping times. The proof willrely on an expliit onstrution of uniform random permutations Θ(t) whih maps XN to Y N .Theorem 2.2. If the initial distribution of the population vetor (XN
1 (0), . . . ,XN

N (0)) in the
(Ξ, B)-lookdown-model is exhangeable, then (XN

1 (t), . . . ,XN
N (t)) is exhangeable for eah t ≥ 0.8



(a) Parental partiles retaintype and level. (b) Family members opytype of parental partile. () Remaining partiles re-tain their order and surpluspartiles get killed.Figure 1: An illustration of the reprodution mehanism in the (Ξ, B)-lookdown model. Thepartiles at levels 2 and 5 belong to the �star� family, whereas the partiles at levels 3, 6 and 8belong to the �triangle� family. The partiles on the remaining levels belong to no family.For the rest of this setion, we omit the supersript N for the population models in an attemptnot to get lost in notation.The proof of Theorem 2.2 follows that of Thm. 3.2 in [DK99℄. We will onstrut a oupling viaa permutation-valued proess Θ(t) suh that
(Y1(t), . . . , YN (t)) = (XΘ1(t)(t), . . . ,XΘN (t)(t)) (2.5)and Θ(t) is uniformly distributed on all permutations of {1, . . . ,N} for eah t and independentof the empirial proess up to time t and the �demographi information� in the model (see (2.15)for a preise de�nition).It su�es to onstrut the skeleton hain (θm)m∈N0 of Θ. As a guide through the followingnotation, we have found it useful to oasionally remember that Θ(t) (and its skeleton hain) isbuilt to the following aim:

Θ maps a position of an individual in the vetor Y ((Ξ, B)-Moran-model) to thelevel of the orresponding individual in the ordered vetor X((Ξ, B)-lookdown-model).Notation and ingredients For N > 0 let SN denote the olletion of all permutations of
{1, . . . , N}, let PN = P({1, . . . , N}), the set of all subsets of {1, . . . ,N}, and let PN,k ⊂ PN bethe subolletion of subsets with ardinality k. For a set M , M(i) will denote the ith largestelement in M .At time m (for the skeleton hain) let cm the total number of hildren. Let am be the numberof families and cim the number of hildren born to family i, hene

am∑

i=1

cim = cm. (2.6)9



Note that we allow cim = 0 for some, but not all i. These are the trivial families where only theparental partile is below level N and all potential hildren are above. Furthermore, we need tokeep trak of these �one-member families� in order to math the rates of our model to those ofthe Ξ-oalesent later on.Let θ0 be uniformly distributed over SN . For eah m ∈ N, pik (independently, and independentof θ0)
• Φm a random set, uniformly hosen from PN,cm+am ,
•

(
φ1

m, . . . , φ
am
m

) a random (ordered) partition of Φm, suh that eah φi
m has size cim + 1,

• σi
m, i = 1, . . . , am random permutations, eah σi

m uniformly distributed over Sci
m+1, inde-pendently of Φm and the φi

m.Denote
• µi

m := minφi
m, i ∈ {1, . . . , am}, and

• write ∆m for the set of the highest cm integers from {1, . . . ,N}\
⋃am

i=1 µ
i
m.Proeeding indutively we assume that θm−1 has already been de�ned. We then onstrut θmas follows: Let

• νi
m := θ−1

m−1(µ
i
m),

• ψm := θ−1
m−1(∆m), and

• a random ordered �partition� (
ψ1

m, . . . , ψ
am
m

) of ψm suh that |ψi
m| = cim, hosen indepen-dently of everything else.In view of our intended appliation of θm to transfer from the Moran model to the lookdownmodel, we will later on interpet these quantities as follows: In them-th event, µi

m will be the levelof the parental partile of family i in the lookdown-model, and νi
m will be the orresponding indexin the (unordered) Moran model. ∆m will speify the levels in the lookdown-model at whihindividuals die. We do not just pik the highest cm levels, beause we wish to retain parentalpartiles. ψm will be the orresponding indies in the Moran model. (

φ1
m, . . . , φ

am
m

) desribesthe family deomposition (inluding the respetive parents) in this event in the lookdown model,and ψi
m are the indies of the hildren in the i-th family in the Moran model. Thus, θm willmap φi
m to ψi

m ∪ {νi
m} (in a partiular order).Finally, de�ne θm as follows: Put Ψm := {ν1

m, . . . , ν
am
m } ∪ ψm. On Ψm,

θm(νi
m) := φi

m(σi
m(1)), i = 1, . . . , am, (2.7)and

θm(ψi
m(j)) := φi

m(σi
m(j + 1)) ∀j ∈ {1, . . . , cim} (2.8)for eah i ∈ {1, . . . , am} with cim 6= 0. On {1, . . . ,N}\Ψm let θm be the mapping onto

{1, . . . , N}\Φm with the same order as θm−1 restrited to {1, . . . ,N}\Ψm, that is, whenever
θm−1(i) < θm−1(j) for some i, j ∈ {1, . . . ,N}\Ψm, then θm(i) < θm(j) should also hold.10



(a) Initial permuta-tion θm−1

(b) The families areadded () The ompletedpermutation in Ex-ample 2.3Figure 2: The onstrution of the new permutation from the old permutation arried out inExample 2.3Example 2.3. We onsider a realisation of the m-th event of a population of size N = 8, asillustrated in Figure 1. There are am = 2 families (depited by �triangle� and �star�, respetively).The �rst family φ1
m = {3, 6, 8} has size c1m +1 = 3, the seond, φ2

m = {2, 5}, has size c2m +1 = 2.Hene, the set of levels involved in this birth event is Φm = {2, 3, 5, 6, 8}, and µ1
m = 3, µ2

m = 2are the levels of the parental partiles. Sine there is no parental partile among the highestthree levels, the partiles at levels ∆m = {6, 7, 8} �die�.Now let us assume that θm−1 is as given in Figure 2(a). Thus, ν1
m = 4, ν2

m = 1, ψm = {3, 5, 7}.The set of indies ψm of individuals in the Moran model who will get replaed by o�spring in thisevent is partitioned aording to the family sizes, for example let ψ1
m = {3, 7} and ψ2

m = {5}.We onstrut θm as follows: Let σ1
m =

(
1 2 3
3 1 2

) and σ2
m =

(
1 2
2 1

). For the restrition of θm to
Ψm = {1, 3, 4, 5, 7}, we read from (2.7) that θm(4) = φ1

m(3) = 8, θm(1) = φ2
m(2) = 5 andfrom (2.8) that θm(3) = θm(ψ1

m(1)) = φ1
m(σ1

m(1 + 1)) = φ1
m(1) = 3, θm(7) = θm(ψ1

m(2)) =
φ1

m(σ1
m(2 + 1)) = φ1

m(2) = 6 and θm(5) = θm(ψ2
m(1)) = φ2

m(σ2
m(1 + 1)) = φ2

m(1) = 2. This leadsto the partial permutation whih is given in Figure 2(b).Restrited to the omplementary set {2, 6, 8}, θm is a mapping onto {1, 4, 7} with the same orderas θm−1 restrited to {2, 6, 8}. The resulting permutation θm is given in Figure 2(). �For notational onveniene, let
χm := (ν1

m, ψ
1
m, . . . , ν

am
m , ψam

m ), (2.9)whih summarises the ombinatorial information generated in the m-th step (namely, the familystruture we would observe in the Moran model).Lemma 2.4. For eah m, χ1, . . . , χm, θm are independent. Furthermore θm is uniformly dis-tributed over SN and
Υm :=

am⋃

i=1

{νi
m} ∪ ψi

m (2.10)is uniformly distributed over PN,cm+am , and eah χm is, given Υm, uniformly distributed on allordered partitions of Υm with family sizes onsistent with the cim.Proof. We prove the statement by indution. Denoting Fm = σ(θk, χk : 0 ≤ k ≤ m), we have
E[f(θm, χm) | Fm−1] = E[f(θm, χm) | θm−1], (2.11)sine θm and χm are only based on θm−1 and additional independent random struture.11



This implies, for any hoie of f : Sn → R and hk : ∪N
n=1

(
{1, . . . ,N} × P({1, . . . ,N})

)n
→ R,

E

[
f(θm)

m∏

k=1

hk(χk)

]
= E

[
E[f(θm)hm(χm) | Fm−1]

m−1∏

k=1

hk(χk)

]

= E

[
E[f(θm)hm(χm) | θm−1]

m−1∏

k=1

hk(χk)

]

= E[f(θm)hm(χm)]

m−1∏

k=1

E[hk(χk)]where we used (2.11) in the seond and the indution hypothesis in the third equality. It remainsto show that θm and χm are independent and have the orret distributions.
θm−1 is uniformly distributed by the indution hypothesis and independent of the distributionsof the parental-levels µi

m and the �death-levels� ∆m by onstrution. It is immediate from theonstrution that Φm and Υm are uniformly distributed over PN,cm+am and the family struture
χm is uniformly distributed among all admissible on�gurations.Furthermore, onditioning on χm and Φm, θm is uniformly distributed over all permutations thatmap Υm onto Φm. This follows from the fat that Φm is uniform on PN,cm+am and that this setis uniformly divided into the families φi

m. Sine uniform and independent permutations σi
m areused for the onstrution of θm and the non-partiipating levels remain uniformly distributed,

θm is uniform under these onditions.Finally, onditioning on χm does not alter the fat that Φm is uniformly distributed over
PN,cm+am . This implies that given χm, θm is also uniformly distributed over SN . Sine

L(θm|χm) = unif(SN ) = L(θm), (2.12)
θm and χm are independent of eah other.Proof of Theorem 2.2. Suppose a realization X of theN -partile (Ξ, B)-lookdown-model is givenand let {tm} denote the times at whih the birth events our. The families involved in the
m-th birth event are denoted by φi

m. Note that by de�nition of the lookdown-dynamis, the�ingredients� Φm, cm, am, c
i
m, µ

i
m,∆m introdued earlier an be obtained from this, and that theirjoint distributions is as disussed above.Moreover, let the initial permutation θ0 be independent of X and uniformly distributed on

SN . Let σi
m be independent of all other random variables and uniformly distributed on Sci

m+1,
1 ≤ i ≤ am, m ∈ N.De�ne θm as above, and

Θ(t) := θm for tm ≤ t < tm+1. (2.13)Observe that, by Lemma 2.4,
(Y1(t), . . . , YN (t)) := (XΘ1(t)(t), . . . ,XΘN (t)(t)) (2.14)is a version of the (Ξ, B)-Moran-model. Note that �one-member families� are in this onstrutionsimply treated as non-partiipating individuals in the (Ξ, B)-Moran-model.12



Y (t) depends only on Y (0), {χm}tm≤t and the the evolution of the type proesses between birthand death events, so Θ(t), and hene Θ(t)−1 is independent of
Gt := σ

(
(Y1(s), . . . , YN (s)) : s ≤ t

)
∨ σ(χm : m ∈ N) (2.15)due to Lemma 2.4. Therefore, we see from

(X1(t), . . . ,XN (t)) = (YΘ−1
1 (t)(t), . . . , YΘ−1

N
(t)(t)) (2.16)that (X1(t), . . . ,XN (t)) is exhangeable.Corollary 2.5. Starting from the same exhangeable initial ondition, the laws of the empirialproesses of the (Ξ, B)-Moran-model and the (Ξ, B)-lookdown-model oinide.The exhangeability property does not only hold for �xed times, but also for stopping times.Theorem 2.6. Suppose that the initial population vetors Y N (0) in the (Ξ, B)-Moran-modeland XN (0) in the (Ξ, B)-lookdown-model have the same exhangeable distribution, and let τ be astopping time with respet to {Gt}t≥0 given by (2.15). Then (XN

1 (τ), . . . ,XN
N (τ)) is exhangeable.Proof. We show that Θ(τ) is independent of the σ-algebra Gτ (the τ -past) and uniformly dis-tributed over SN .First, assume that τ takes only ountable many values {tk}k∈N. Let A ∈ Gτ and h : SN → R+,then

E

(
h
(
Θ(τd)

)1A

)
= E

( ∞∑

k=1

h
(
Θ(tk)

)1A∩{τd=tk}

)

=

∞∑

k=1

(
Eh

(
Θ(tk)

))(
E1A∩{τd=tk}

)

=

∫
h(Θ)U(dΘ)

∞∑

k=1

E1A∩{τd=tk}

=

∫
h(Θ)U(dΘ) E1A,

(2.17)
where U denotes the uniform distribution on SN . For the seond equality holds observe that for�xed tk, Θ(tk) is independent ofGtk in the proof of Theorem 2.2.By approximating an arbitrary stopping time from above by a sequene of disrete stoppingtimes, we see that (2.17) holds in the general ase as well. Now, exhangeability of (XN

1 (τ), . . . ,XN
N (τ))follows as in the proof of Theorem 2.2.Remark 2.7. One an also de�ne a variant of the (Ξ, B)-lookdown model whih is more in thespirit of the `lassial' lookdown onstrution from [DK96℄, where, instead of a)�) on page 8, ata jump time eah partile simply opies the type of that member of the family it belongs to withthe lowest level (and no types get shifted upwards). This variant, whih is (up to a renaming oflevels by the points of a Poisson proess on R) also the one suggested by adapting [KR08℄ to the`simultaneous multiple merger'-senario, has been onsidered by Taylor & Véber (2008, personalommuniation). The same results as above hold for this variant, with only minor modi�ationsof the proofs. Note that the �avour of the lookdown proess desribed above is easily adaptableto a set-up with time-varying total population size, whih is not obvious for the other variant.13



2.3 The limiting populationWe now onstrut the limiting E∞-valued partile system X = (X1,X2, . . .) by formulating astohasti di�erential equation for eah level l. These exist for eah level and are well de�ned,sine the equation for level l needs only information about lower levels.The generator (1.6) of a pure jump proess an be written in the form
Bf(x) = r

∫ 1

0

(
f(m(x, u)) − f(x)

)
du,where r is the global mutation rate and m : E × [0, 1] → E transforms a uniformly distributedrandom variable on [0, 1] into the jump distribution q(x, dy) of the proess. The random timesand uniform �oins� for the mutation proess at eah level l are given by a Poisson point proess

NMut
l on R+ × [0, 1] with intensity measure rdt⊗ du.As in Setion 2.1, denote by

(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .))the points of the Poisson point proess MΞ0 and reall the de�nition (2.2) of the �olour� funtion
g. Based on this, de�ne

Ll
J(t) :=

∑

m : tm≤t

∏

j∈J

1{g(ζm,umj)<∞}

∏

j∈{1,...,l}\J

1{g(ζm,mmj)=∞}, (2.18)for J ⊂ {1, . . . , l} with |J | ≥ 2 . Ll
J(t) ounts how many times, among the levels in {1, . . . , l},exatly those in J were involved in a birth event up to time t. Moreover, let

Ll
J,k(t) :=

∑

m : tm≤t

∏

j∈J

1{g(ζm,umj)=k}

∏

j∈{1,...,l}\J

1{g(ζm,umj)6=k}. (2.19)
Ll

J,k(t) ounts how many times, among the levels in {1, . . . , l}, exatly those in J were involvedin a birth event up to time t and additionally assumed �olour� k.To speify the new levels of the individuals not partiipating in a ertain birth event, we onstruta funtion Jm as follows:Denote by µk
m := min{l ∈ N | g(ζm, uml) = k} the level of the parental partile of familynumber k and by Mm := {µk

m}k∈N the set of all levels of parental partiles involved in the m-thbirth event. Furthermore Um := {l ∈ N | g(ζm, uml) = ∞} denotes the set of the levels notpartiipating in the birth event m. De�ne the mapping
Jm : Um → N\Mm (2.20)that maps the i-th largest element of the set Um to the i-th largest element of the set N\Mmfor all i.The (in�nite) vetor desribing the types in the (Ξ, B)-lookdown-model is de�ned as the (unique)strong solution of the following system of stohasti di�erential equations. The lowest individualon level 1 just evolves aording to mutation:

X1(t) :=

∫

[0,t]×[0,1]
m(X1(s−), u) −X1(s−) dNMut

1 (s, u) (2.21)14



The individuals above level one an look down during birth events: For l ≥ 2,
Xl(t) :=Xl(0) +

∫

[0,t]×[0,1]
m(Xl(s−), u) −Xl(s−) dNMut

l (s, u)

+
∑

1≤i<l

∫ t

0
(Xi(s−) −Xl(s−))dNK

il (s)

+
∑

1≤i<j<l

∫ t

0
(Xl−1(s−) −Xl(s−))dNK

ij (s)

+
∑

k∈N

∑

K⊂{1,...,l},l∈K

∫ t

0
(Xmin(K)(s−) −Xl(s−))dLl

K,k(s)

+
∑

K⊂{1,...,l},l /∈K

∫ t

0
(XJm(l)(s−)) −Xl(s−))dLl

K(s).

(2.22)
The seond and third line desribe the �Kingman events�, where only pairs of individuals areinvolved. The �rst part opies the type from level i when l looks down to this level, beause itis involved in a birth event and the parental partile is at level i. The seond part handles theevent that the parental partile plaes a hild on a level below l. In this ase, l has to opy thetype from the level l − 1, sine the new individual is inserted at some level below l and pushesall partiles above that level one level up.The fourth and �fth line desribe the hange of types for a birth event with large families ina similar way. If the partile at level l is involved in the family k, it opies the type from theparental partile whih resides at the lowest level of the family. If level l is not involved in anyfamily, then Jm(l) (≤ l) gives the level from where the type is opied (whih omes from shiftingpartiles not involved in the lookdown event upwards).Sine the equation for Xl involves only X1, . . . ,Xl and �nitely many Poisson proesses, it im-mediate that there exists a unique strong solution of (2.21)�(2.22).These stohasti di�erential equations determine an in�nitely large population vetor

X(t) := (X1(t),X2(t), . . .) (2.23)in a onsistent way, and for eah N ∈ N, the dynamis of (X1, . . . ,XN ) is idential to thatde�ned in Setion 2.2. In partiular, we see from Theorem 2.2 that for eah t ≥ 0, X(t) isexhangeable and the empirial distribution
Z(t) := lim

l→∞
Z l(t) := lim

l→∞

1

l

l∑

i=1

δXi(t) exists a.s. (2.24)Let F be the set of bounded measureable funtions ϕ : [0,∞) × [0, 1]N × [0, 1]∞ → R suh that
ϕ(t, ζ,u) does not depend on u, and put

Ht := σ

((
Z(s) : s ≤ t

)
,
(∫

ϕdMΞ0 : ϕ ∈ F
))

. (2.25)Corollary 2.8. Let τ be a stopping time with respet to {Ht}. Then
X(τ) = (X1(τ),X2(τ), . . .) (2.26)is exhangeable. 15



Proof. We laim that for t ≥ 0, A ∈ Ht with P(A) > 0 and n ∈ N ,
(X1(t), . . . ,Xn(t)) is exhangeable under P(·|A). (2.27)Observe that, taking A = {τ = tk}, (2.27) immediately implies the result for disrete stoppingtimes τ , from whih the general ase an be dedued by approximation as in the proof ofTheorem 2.6.Obviously, (2.27) is equivalent to

P
(
A ∩ {(X1(t), . . . ,Xn(t)) ∈ C}

)
= P

(
A ∩ {(Xσ(1)(t), . . . ,Xσ(n)(t)) ∈ C}

)
∀C ⊂ En, σ ∈ Sn.(2.28)As the set of As from Ht satisfying (2.28) is a Dynkin system, it su�es to verify (2.28) forevents of the form

A =
{
Z(s1) ∈ B1, . . . , Z(sk) ∈ Bk

}
∩H ′ (2.29)where H ′ ∈ σ

( ∫
ϕdMΞ0 : ϕ ∈ F

), k ∈ N, s1 < · · · sk ≤ t, and eah Bi ∈ B(si), and B(si) is a
∩-stable generator of BM1(E) with the property that P(Z(si) ∈ ∂B

′) = 0 for all B′ ∈ B(si).For A as given in (2.29), ε > 0 and n ∈ N, σ ∈ Sn, C ⊂ En appearing in (2.28), by (2.24) thereexists l (l ≫ n) suh that
Al :=

{
Z l(s1) ∈ B1, . . . , Z

l(sk) ∈ Bk

}
∩H ′satis�es P(A\Al ∪Al\A) ≤ ε. By the arguments given in the proof of Theorem 2.6, (2.28) holdswith A replaed by Al. Finally, take ε→ 0 to onlude.3 Pathwise onvergene: Proof of Theorem 1.1Reall the empirial proesses Z l, and their limit Z, from (2.24). Obviously, for eah l ∈ N, theproess {Z l(t), t ≥ 0} has àdlàg paths. To verify the orresponding property for Z, we introduethe following auxiliary (Lévy) proess U , derived from Poisson point proess MΞ0 whih governsthe large family birth events of the population X: If {

(tm, ζm,um)
} are the points of the proess

MΞ0 , we de�ne
U(t) :=

∑

tm≤t

( ∑

i

ζi
)2

=
∑

tm≤t

v2
m, (3.1)i.e., the jumps of U are the squared total frations of the population whih are replaed in largebirth events. The generator of U is given by

Df(u) =

∫ 1

0
(f(u+ v2) − f(u))ν(dv), (3.2)where the measure

ν(dζ) :=
1

(ζ, ζ)
Ξ({ζ ∈ ∆|

∞∑

i=1

ζi ∈ dζ}) (3.3)governs the jumps.We need the following version of Lemma A.2 from [DK99℄.
16



Lemma 3.1. a) Let e1, e2, . . . be exhangeable and suppose there exists a onstant K suh that
|ei| ≤ K a.s. De�ne

Mk =
1

k

k∑

i=1

ei (3.4)and let M∞ be the a.s. limit of (Mk), whose existene is guaranteed by the de Finetti Theorem.Let ε > 0. Then there exists η1 > 0 depending only on K and ε, suh that, for l < n ∈ N∪{∞},
P{|Mn −Ml| ≥ ε} ≤ 2e−η1(K,ε)l. (3.5)b) Let (ei(t))t∈[0,1] be entred martingales suh that maxi∈N supt∈[0,1] |ei(t)| ≤ K a.s. and (e1(1), e2(1), . . . )is exhangeable. Put

Mk(t) :=
1

k

k∑

i=1

ei(t).Let ε > 0. Then there exists η2 > 0 depending only on K and ε, suh that, for l ∈ N

P{ sup
t∈[0,1]

|Mk(t)| ≥ ε} ≤ 2e−η2(K,ε)l. (3.6)Proof. The proof ob part a) is a straightforward extension of that of Lemma A.2 from [DK99℄,whih employs the fat that an in�nite exhangeable sequene is onditonally i.i.d. together withstandard arguments based on the moment generating funtion.For part b) observe that by Doobs submartingale inequality,
P

{
sup

0≤u<1
|Mk(t)| ≥ ε

}
≤ inf

λ>0

1

eελ
Eeλ|Mk(1)| ≤ inf

λ>0

1

eελ
E exp

(λ
k

k∑

i=1

|ei(1)|
)
, (3.7)then proeed as in part a).The following lemma provides the tehnial ore of the argument and replaes Lemmas 3.4 and3.5 in [DK99℄.Lemma 3.2. In the setting of Theorem 1.1, for all c, T, ǫ > 0 and f ∈ D(B) (the domain of themutation generator) there exists a sequene δl suh that ∑∞

l=1 δl <∞ and
P

{
sup

0≤t≤T

∣∣〈f, Z(t)〉 − 〈f, Z l(t)〉
∣∣ ≥ 11ǫ, U(T ) ≤ c

}
≤ δl. (3.8)Proof. By Lemma 3.1 and the exhangeability properties of X, we have

P

{∣∣〈f, Z(α)〉 − 〈f, Z l(α)〉
∣∣ ≥ ǫ

}
≤ 2e−ηl, (3.9)if α is a stopping time with respet to {H̃t}t≥0 :=

{
σ(U(s) : s ≥ 0) ∨ σ(Z(s) : 0 ≤ s ≤ t)

}
t≥0(observe that H̃t ⊂ Ht, where Ht is de�ned in (2.25)).Now �x l and ǫ. De�ne the {H̃t}-stopping times

α1 = inf

{
t : U(t) >

1

l4

}
∧

1

l4
(3.10)17



and
αo+1 := inf

{
t : U(t) > U(αo) +

1

l4

}
∧

(
αo +

1

l4

)
, o = 1, 2, . . . , (3.11)whih yield a deomposition of the interval [0, T ]. Note that on the event {

U(T ) ≤ c
} thereexist at most

ol := 2(c+ T )l4 (3.12)suh αo, i.e., we have
P
{
αol

< T,U(αol
) < c

}
= 0. (3.13)We de�ne a seond kind of {H̃t}-stopping times depending on αk via

α̃o := inf{t > αo : |〈f, Z(t)〉 − 〈f, Z(αo)〉| ≥ 6ǫ}. (3.14)We see from (3.9) that
Ho := |〈f, Z(αo)〉 − 〈f, Z l(αo)〉| ∨ |〈f, Z(α̃o)〉 − 〈f, Z l(α̃o)〉| (3.15)satis�es

P

{
sup
o≤ol

Ho ≥ ε
}
≤

ol∑

o=1

P {Ho ≥ ε} ≤ 8(c + T )l4e−ηl. (3.16)It remains to estimate the variation of Z l and Z inbetween the stopping times αo. For u ∈
[αo, αo+1) let βjo(u) denote the smallest index of a desendant of Xj(αo), let the stopping time
γjo be the time when the smallest desendant of Xj(αo) is shifted above the level l. Put

X̃j(u) =

{
Xβjo(u)(u) if u < γjo,

Xβjo(γjo−)(γjo−) if u ≥ γjo.Observe that
〈f, Z l(u)〉 − 〈f, Z l(αo)〉 = 〈f, Z l(u)〉 −

1

l

l∑

j=1

f(X̃j(u)) +
1

l

l∑

j=1

(
f(X̃j(u)) − f(X̃j(αo))

)
.(3.17)It will be useful to treat the two parts of the sum separately. De�ne

K1 := max
o≤ol

sup
u∈[αo,αo+1)

∣∣∣∣〈f, Z
l(u)〉 −

1

l

l∑

j=1

f(X̃j(u))

∣∣∣∣and
K2 := max

o≤ol

sup
u∈[αo,αo+1)

∣∣∣∣
1

l

l∑

j=1

(
f(X̃j(u)) − f(X̃j(αo))

)∣∣∣∣.Note that the law of K2 depends only on the mutation mehanism, sine X̃j(u) follows the lineof the individual X̃j(αo) = Xj(αo) and thus only evolves independently aording to a mutationproess with generator B.Begin with K1 and note that for u ∈ [αo, αo+1),
〈f, Z l(u)〉 −

1

l

l∑

j=1

f(X̃j(u) =
1

l

( l∑

j=1

f(Xj(u)) −
l∑

j=1

f(X̃j(u))
)
≤

2‖f‖

l
N l[αo, αo+1) (3.18)18



holds, where N l[αo, αo+1) is the total number of births ourring in the time interval [αo, αo+1)with index less than or equal to l. To see this note that at time αo the two sums in the seondexpression anel. A birth event in the interval [αo, αo+1) means that one type is removed fromthe seond sum and another one is added, thus the expression an be altered by up to 2||f ||/l.There are two mehanisms whih an inrease N l[αo, αo+1). It an either inrease during a largebirth event given by a �jump� of MΞ0 or during a small birth event whih is given by one of the�Kingman-related� Poisson-Proesses NK
ij .We �rst onsider large birth events. Let (vi) be the jumps of U in the interval [αo, αo+1), andondition on this on�guration for the rest of this paragraph. At the time of the m-th jump, aBinomial(l, vm)-distributed number of levels ≤ l partiipates in this event, hene km, the totalnumber of hildren below level l in the m-th birth event, satis�es
km ≤ (bm − 1)+,where bm is Binomial(l, vm)-distributed. Note that we an subtrat 1 from the binomial randomvariable, sine at least one of the levels partiipating in the birth event must be a mother. Thissubtration will be ruial later on.By elementary alulations with Binomial distributions, involving fourth moments, similar to[DK99, p. 186℄, we an estimate

P

{∑

m

km > ǫl
}
≤ P

{ ∑

m

(bm − 1)+ > ǫl
}
≤
C1

l6
(3.19)for some 0 < C1 <∞.As we mentioned before, N l[αo, αo+1) and thus K1 an also be inreased by the Kingman partof the birth proess, but only if the parental partile and its o�spring are plaed below level l.The number of times this happens in the interval [αo, αo+1) is stohastially dominated by aPoisson distributed random variable R with parameter ( l

2

)
l−4 sine the length of the interval isbounded by l−4. So, the probability that 2‖f‖

l N l[αo, αo+1) exeeds 2ǫ due to this mehanism isbounded by the probability that R exeeds lǫ
‖f‖ . By elementary estimates on the tails of Poissonrandom variables, we have

P

{
R >

lǫ

‖f‖

}
≤ e−η1l, (3.20)for some κ > 0 and l large enough.Combining (3.19) and (3.20), we obtain

P
{
K1 > 2ǫ

}
= P

{
max
o≤ol

sup
u∈[αo,αo+1)

∣∣〈f, Z l(u)〉 −
1

l

l∑

j=1

f(X̃j(u))
∣∣ > 2ǫ

}

≤ ol

(C1

l6
+ e−η1l

)
,

(3.21)for l large enough. This ontrols the inrements of 〈f, Z l〉 in the intervals [αo, αo+1).We now onsider K2. Observe that
1

l

l∑

j=1

(f(X̃j(u)) − f(X̃j(αo))) =
1

l

l∑

j=1

(
f(X̃j(u)) − f(X̃j(αo)) −

∫ u

αo

Bf(X̃j(s))ds

)

+
1

l

l∑

j=1

∫ u

αo

Bf(X̃j(s))ds, (3.22)19



and that, for u ≥ αo and eah o,
Mlo(u ∧ αo+1) :=

1

l

l∑

j=1

(
f(X̃j(u ∧ αo+1)) − f(X̃j(αo)) −

∫ u∧αo+1

αo

Bf(X̃j(s))ds

) (3.23)is a martingale. For l so large that l−4‖Bf‖ ≤ ε, we have
P
{
K2 ≥ 2ε

}
≤

ol−1∑

o=0

P

{
sup

αo≤u<αo+1

|Mlo(u) +
1

l

l∑

j=1

∫ u

αo

Bf(X̃j(s))ds| ≥ 2ε
}

≤

ol−1∑

o=0

P

{
sup

αo≤u<αo+1

|Mlo(u)| + l−4‖Bf‖ ≥ 2ε
}

≤

ol−1∑

o=0

P

{
sup

αo≤u<αo+1

|Mlo(u)| ≥ ε
}
.

(3.24)
We now need to bound eah summand. Using the notation

Mlo(u) =
1

l

l∑

j=1

ej(u),where
ej(u) := f(X̃j(αo+1 ∧ u)) − f(X̃j(αo)) −

∫ αo+1∧u

αo

Bf(X̃j(s))ds, u ∈ [0, 1], (3.25)eah (ei(u)) is a martingale with E ej(u) = 0, |ej(u)| ≤ 2‖f‖ + 1
l4
‖Bf‖ =: K a.s. and the ej(u)are exhangeable. We obtain from Lemma 3.1

P

{
sup

αo≤u<αo+1

|Mlo(u)| ≥ ε
}
≤ 2e−η2l, (3.26)for some η2 > 0.Combining this result with equation (3.24), we arrive at

P
{
K2 ≥ 2ε

}
≤ olC2e

−η2l. (3.27)Now observe that if maxo≤ol
Ho < ǫ, K1 < 2ǫ and K2 < 2ǫ, then α̃o ≥ αo+1. This an easily beseen by ontradition. Indeed, if we assume that α̃o < αo+1 this would imply

|〈f, Z(αo)〉 − 〈f, Z(α̃o)〉| ≥ 6ǫ, (3.28)aording to (3.14). But on the other hand we know that
|〈f, Z(αo)〉 − 〈f, Z l(αo)〉| < ǫ and |〈f, Z(α̃o)〉 − 〈f, Z l(α̃o)〉| < ǫ ∀o (3.29)due to our bound on Ho. Sine the distane between 〈f, Z〉 and 〈f, Z l〉 was at most ǫ atthe beginning of the interval and 〈f, Z l〉 an only have moved by at most 4ǫ on the event

{K1 ≤ 2ǫ} ∩ {K2 ≤ 2ǫ} ∩ {maxo≤ol
Ho ≤ ǫ},

|〈f, Z(αo)〉 − 〈f, Z l(α̃o)〉| < 5ǫ (3.30)20



must hold if α̃o ≤ αo+1. But equation (3.28) states that, 〈f, Z(α̃o)〉 is more than 6ǫ away fromits starting point, so this ontradits that it an only be ǫ away from 〈f, Z l(α̃o)〉 whih is ensuredby our ondition on Ho. Thus α̃o has to be greater than αo+1 whih in turn implies that
sup

αo≤u<αo+1

{∣∣〈f, Z(u)〉 − 〈f, Z(αo)〉
∣∣
}
≤ 6ǫ (3.31)holds on the event {K1 ≤ 2ǫ} ∩ {K2 ≤ 2ǫ} ∩ {maxo≤ol

Ho ≤ ǫ}.Putting observation (3.31), the bound (3.27) and the bound (3.21) together, we �nally obtain
P

{
sup

0≤t≤T

∣∣〈f, Z(t)〉 − 〈f, Z l(t)〉
∣∣ ≥ 11ǫ, U(T ) ≤ c

}
≤ δl (3.32)with

δl := 8(c+ T )l4e−ηl + olC1l
−6 + ole

−η1l + olC2e
−η2l (3.33)whih is the statement of the lemma sine due to equation (3.12) ol ∼ l4 holds and therefore the

δl are summable.Proof of Theorem 1.1. Almost sure onvergene of Z l to Z with respet to the metri (1.8)follows diretly from Lemma 3.2 and the Borel-Cantelli Lemma, ompleting the proof of Theo-rem 1.1.4 The Hille-Yosida approahIn this setion we provide two alternative representations of the Ξ0-Fleming-Viot generator,leading to the distributional duality to the Ξ-oalesent disussed in Setion 5, and we showthat they generate a Markov semigroup on M1(E), hene leading to a lassial onstrution ofthe Ξ0-Fleming-Viot proess as a Markov proess.4.1 Two representations of the Ξ0-Fleming-Viot generatorReall that if the type spae E is a ompat Polish spae (whih is assumed in this paper), thenthe set M1(E) of all probability measures on E, equipped with the weak topology, is again aPolish spae. We brie�y reall the notation from Setion 1. For f : En → R bounded andmeasurable onsider the test funtion
Gf (µ) :=

∫

En

f(x1, . . . , xn)µ⊗n(dx1, . . . , dxn), µ ∈ M1(E). (4.1)The linear operator LΞ0 was de�ned via
LΞ0Gf (µ) =

∫

∆

∫

EN

[
Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)
−Gf (µ)

]
µ⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
. (4.2)This operator is the Ξ0-Fleming-Viot generator from Proposition 1.3. The following representa-tion will be useful to establish the duality with the Ξ0-oalesent. Note that if Ξ is onentratedon {ζ ∈ ∆ : ζi = 0 for all i ≥ 2}, i.e., if the orresponding oalesent is a Λ-oalesent, thenthis result has already been obtained by Bertoin and Le Gall [BLG03, Eqs. (16) and (17)℄.For onveniene, we will denote the transition rates by

λ(k1, . . . , kp) = λb;k1,...,kr;s, (4.3)21



where k1 ≥ · · · ≥ kr ≥ 2, p − r = s and kr+1 = . . . = kp = 1. Furthermore, de�ne for
p, n1, . . . , np ∈ N suh that n1 + · · · + np > p (⇔ not all ni = 1)

λ(n1, . . . , np) := λ(k1, . . . , kp), (4.4)where k1 ≥ · · · ≥ kp is the re-arrangement of n1, . . . , np in dereasing order.Lemma 4.1. The operator LΞ0 has the alternative representation
LΞ0Gf (µ) =

∑

π={A1,...,Ap}∈Pnnot all singletonsλ(|A1|, . . . , |Ap|)

∫

En

(
f
(
x[π]

)
− f(x)

)
µ⊗n(dx1, . . . , dxn), (4.5)where x[{A1, . . . , Ap}] ∈ En has entries

(x[{A1, . . . , Ap}])i := xminAj
if i ∈ Aj , i = 1, . . . , n.Remark 4.2. Note that (4.5) basially boils down to (1.4), if |Ai| = 1 for all but one Ai.Proof of Lemma 4.1. First note that for �xed ζ and x,

Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)

=
∑

φ:{1,...,n}→Z+

(1 − |ζ|)a(φ)
∏

j≤n :φ(j)>0

ζφ(j)

∫

Ea(φ)

f
(
η(φ,x,y)

)
µ⊗a(φ)(dy1, . . . , dya(φ)),(4.6)where a(φ) := #{1 ≤ j ≤ n : φ(j) = 0} and η(φ,x,y) ∈ En is given by

η(φ,x,y)j =

{
xφ(j) if φ(j) > 0,

yk if φ(j) = 0, where k = #{1 ≤ j′ ≤ j : φ(j′) = 0}.Identity (4.6) an be understood as follows: Expanding the n-fold produt of (1 − |ζ|)µ +∑∞
i=1 ζiδxi

, we put φ(j) = 0 if in the j-th fator, we use (1 − |ζ|)µ, and we put φ(j) = i if weuse ζiδxi
in the j-fator.Eah φ : {1, . . . , n} → Z+ is uniquely desribed by a partition π = {A1, . . . , Ap} ∈ Pn withlabels ℓ1, . . . , ℓp ∈ Z+ by de�ning j ∼φ j

′ if and only if φ(j) = φ(j′) > 0 and putting ℓi := φ(Ai),
i = 1, . . . , p. Note that for a given partition {A1, . . . , Ap}, any vetor (ℓ1, . . . , ℓp) ∈ Z

p
+ of labelswith the properties

ℓi = 0 ⇒ |Ai| = 1 and i 6= j, ℓi, ℓj 6= 0 ⇒ ℓi 6= ℓjis admissible. Thus we have
∫

EN

Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)
µ⊗N(dx)

=
∑

π={A1,...,Ap}∈Pn

∑

(ℓ1,...,ℓp)admissible(1 − |ζ|)#{1≤i≤p:ℓi=0}
p∏

i=1,
ℓi>0

ζ
|Ai|
ℓi

∫

En

f
(
x[π]

)
µ⊗n(dx). (4.7)Note that, for a given partition with p bloks, the integration appearing in the last line runs ef-fetively only over Ep. For further simpli�ation assume that the bloks A1, . . . , Ap of π =

{A1, . . . , Ap} ∈ Pn are enumerated aording to dereasing blok size, and write s(π) for22



the number of singleton bloks of the partition π = {A1, . . . , Ap}. Then, for a given π =
{A1, . . . , Ap} ∈ Pn, the last sum in (4.7) an be written as

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

∫

En

f
(
x[π]

)
µ⊗n(dx).Furthermore, for any ζ ∈ ∆ and n ∈ N,

1 =
((

1 − |ζ|
)

+
∑∞

i=1ζi

)n

=
∑

π={A1,...,Ap}∈Pn

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l
.This allows to re-express the inner integral in (4.5) as

∑

π={A1,...,Ap}∈Pn

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

∫

En

[f
(
x[π]

)
− f(x)]µ⊗n(dx)

=
∑

π={A1,...,Ap}∈Pnnot all singletons s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

×

∫

En

[f
(
x[π]

)
− f(x)]µ⊗n(dx),beause x[{{1}, . . . , {n}}] = x. Integrating this equation over ∆ with respet to the measure

(ζ, ζ)−1Ξ yields (4.5). Note that (see also [S03, p. 844℄)
∑

π={A1,...,Ap}∈Pnnot all singletons s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈Npairwise di�erentζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

≤
∑

π={A1,...,Ap}∈Pnnot all singletons ( ∞∑

i1=1

ζ2
i1

) s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

ip−s(π)+1,...,ip−s(π)+l∈N

ζip−s(π)+1
· · · ζip−s(π)+l

=
∑

π={A1,...,Ap}∈Pnnot all singletons (ζ, ζ)

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l|ζ|l = (|Pn| − 1) (ζ, ζ)to verify that there is no singularity near ζ = 0.4.2 Constrution of the Markov semigroup and proof of Proposition 1.3The following proposition ensures that there exists a Markov proess attahed to the Ξ0-Fleming-Viot generator.Proposition 4.3. The losure of {(Gf , L

Ξ0Gf ) : n ∈ N, f : En → R bounded and measurable}generates a Markov semigroup on M1(E). 23



Proof. We write G instead of Gf for onveniene. By the Hille-Yosida theorem (see, for example,[EK86, p. 165, Theorem 2.2℄) it is su�ient to verify that(i) the domain D is dense in C(M1(E)),(ii) the operator LΞ0 satis�es the positive maximum priniple, i.e., LΞ0G(µ) ≤ 0 for all G ∈ D,
µ ∈ M1(E) with supν∈M1(E)G(ν) = G(µ) ≥ 0, and that(iii) the range of λ− LΞ0 is dense in C(M1(E)) for some λ > 0.In order to verify (i) and (iii) we mimi the proof of Proposition 3.5 in [EK86℄ and onstruta suitable sequene D1,D2, . . . of �nite-dimensional subspaes of C(M1(E)) suh that D :=⋃

k∈N
Dk is dense in C(M1(E)) and LΞ0 : Dk → Dk for all k ∈ N as follows. For n ∈ N and

f : En → R bounded and measurable,
Df :=

〈
{G : G(µ) =

∫
f(x[π])µ⊗n(dx), π ∈ En}

〉is a �nite-dimensional subspae of C(M1(E)) and we see from (4.5) that LΞ0 : Df → Df . Foreah n ∈ N let {gnm : m ∈ N} ⊂ C(En) be dense, and let {fk : k ∈ N} be an enumeration of
{gnm : n,m ∈ N}. Then, Dk := Dfk

, k ∈ N, has the desired properties. Note that D :=
⋃

k∈N
Dkis dense in C(M1(E)) (Stone-Weierstrass), i.e. ondition (i) holds.We have (λ−LΞ0)(Dk) = Dk for all λ not belonging to the set of eigenvalues of LΞ0 |Dk

, i.e., forall but at most �nitely many λ > 0. Thus, (λ−LΞ0)(D) = (λ−LΞ0)(
⋃

k∈N
Dk) =

⋃
k∈N

Dk = Dis dense in C(M1(E)) for all but at most ountable many λ > 0. In partiular, ondition (iii) issatis�ed.Condition (ii) follows from the fat that the expression below the integrals in (1.12) satis�es
G((1 − |ζ|)µ+

∑∞
i=1 ζiδxi

) −G(µ) ≤ sup
ν∈M1(E)

G(ν) −G(µ) = G(µ) −G(µ) = 0for all x = (x1, x2, . . .) ∈ EN, ζ ∈ ∆, G ∈ D and µ ∈ M1(E) with supν∈M1(E)G(ν) = G(µ).Thus, the Hille-Yosida theorem ensures that the losure LΞ0 of LΞ0 on C(M1(E)) is single-valued and generates a strongly ontinuous, positive, ontration semigroup {Tt}t≥0 on M1(E).Note that from (iii) it follows that D is a ore for LΞ0 ([EK86, p. 166℄). The operator LΞ0maps onstant funtions to the zero funtion, i.e., LΞ0 is onservative. Thus, {Tt}t≥0 is a Fellersemigroup and orresponds to a Markov proess with sample paths in DM1(E)([0,∞)).Remark 4.4. i) If the �nite measure Ξ on ∆ allows for some mass a := Ξ({0}) at zero, then LΞ0has to be replaed by LΞ := LΞ0 +Laδ0 , where LΞ0 is de�ned as before and Laδ0 is the generatorof the lassial Fleming-Viot proess [FV79℄ given by (1.11). The existene of a Markov proess
Z = (Zt)t≥0 with generator LΞ an be dedued as in the proof of Proposition 4.3 via the Hille-Yosida theorem.ii) The onstrution of the Markov proess attahed to the 'full' generator L, inluding theKingman omponent (1.11) and the mutation omponent (1.13), works via the standard Trotterapproah.iii) Note that ∫

(LΞ)Gdδδx
= 0, x ∈ E, where δν ∈ M1(M1(E)) denotes the unit mass at

ν ∈ M1(E). Thus, see [EK86, p. 239, Proposition 9.2℄, the states δx, x ∈ E, are absorbing forthe Ξ-Fleming-Viot proess. 24



We now turn to the proof of Proposition 1.3. Indeed, we verify the followingClaim: The distribution of the measure valued Markov proess with generator L, as de�ned inRemark 4.4 ii), oinides with the distribution of the (Ξ, B)-Fleming Viot proess, as de�ned inTheorem 1.1.For simpliity, we onentrate on the ase when there is no mutation and no Kingman-omponent,thus we restrit our investigations to LΞ0 . It su�es to verify the following lemma.Lemma 4.5. Assume that there is no Kingman part and no mutation. Then the Ξ0-Fleming-Viot proess de�ned in Theorem 1.1 solves the martingale problem for the generator LΞ0 givenin (1.12).To prepare this, �x l and suppose we are at the m-th birth event. As in the previous setion,let {φ1
m, . . . , φ

am
m } denote the assignments of the levels to one of the am families. So φi

m ⊂
{1, . . . , l} and φi

m ∩ φi
m 6= ∅ for all i, j. Furthermore, we again denote by Φm :=

⋃am

i=1 φ
i
m allindividuals partiipating in the birth event. Note, that this an be a strit subset of {0, . . . , l},and {φ1

m, . . . , φ
am
m } holds all information about what is going on at the birth event. The funtion

g(ζ, u) is de�ned as in (2.2). We introdue a Poisson proess ounting the number of times aspei� birth event {φ1
m, . . . , φ

am
m } happens. With (tm, ζm,um) denoting the points of the Poissonpoint proess MΞ0 we de�ne

L{φ1
m,...,φam

m }(t) :=
∑

tm≤t

∑

b1,...,bam∈Ndistint am∏

i=1

∏

j∈φi
m

1{g(ζm,umj)=bi}

∏

j∈{1,...,l}\Φ

1{g(ζm,umj)=∞}. (4.8)To desribe the e�et of the birth event {φ1
m, . . . , φ

am
m } on the population vetor x ∈ El weintrodue the funtion T de�ned by

(
T{φ1

m,...,φam
m }(x)

)
i
:=

{
x

min(φj
m)

if k ∈ φj
m,

xJm(i) else (4.9)for all k ∈ {1, . . . , l}, where Jm is the funtion de�ned in (2.20) that holds the information onwhere the non-partiipating partiles should look down to.With this notation we an use equation (2.22) and the dependene between the Ll
J,k and Ll

J toshow that
X l(t) := X l(0) +

∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

∫ t

0

(
T{φ1

m,...,φam
m }

(
X l(s−)

)
−X l(s−)

)
dL{φ1

m,...,φam
m }(s) (4.10)desribes the evolution of the �rst l levels X l ∈ El, if we assume no mutation and no Kingmanpart. Note that for simpliity we use the notation X l = (X1, . . . ,Xl).Sine the L{φ1

m,...,φam
m }(t) are Poisson proesses derived from the Poisson point proess MΞ0 it isstraightforward to verify that their rates are given by

r
(
{φ1

m, . . . , φ
am
m }

)
:=

∑

i1,...,iamall distint ∫

∆
ζ

k1
m+1

i1
. . . ζ

kr
m+1

ir
ζir+1 . . . ζiam

(1 − |ζ|)(l−|Φ|) Ξ0(dζ)

(ζ, ζ)
, (4.11)where ki

m + 1 = |φi
m| as before and the sets are ordered, suh that k1

m ≥ . . . ≥ kr
m ≥ 1 and

kr+1
m = . . . = kam

m = 0 holds. Assume that at least k1
m ≥ 1 hold, beause otherwise T is theidentity. Note that under this assumption the integral in (4.11) is �nite (.f. [S00℄ or [S03℄).We now turn to the atual proof of the lemma.25



Proof of Lemma 4.5. We have to show that for eah funtion Gf ∈ D(LΞ0) of the form
Gf (µ) = 〈f, µ⊗l〉, (4.12)for µ ∈ P(E) and f : El → R bounded and measurable,

Gf (Z(t)) −Gf (Z(0)) −

∫ t

0
(LΞ0Gf )(Z(s)) ds (4.13)is a martingale with respet to the natural �ltration of the Poisson point proess MΞ0 given by

{Jt}t≥0 :=
{
σ
(
M

Ξ0

∣∣∣
[0,t]×∆×[0,1]N

)}
t≥0

. (4.14)Note that
E

[
f
(
X1(s), . . . ,Xl(s)

)∣∣∣Jt

]
= E

[〈
f, Z(s)⊗l

〉∣∣∣Jt

] (4.15)holds for all s, t ≥ 0, whih will be ruial in the following steps.We start by observing that for 0 ≤ w ≤ t, the representation (4.10) leads to
0 = E

[
f
(
X l(t)

)
− f

(
X l(w)

)

−
∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

∫ t

w

(
f
(
T{φ1

m,...,φam
m }

(
X l(s)

))
− f

(
X l(s)

))
r
(
{φ1

m, . . . , φ
am
m }

)
ds

∣∣∣Jw

]
, (4.16)sine this is a martingale.Using the de�nition of the rates (4.11) and the fat that due to exhangeability of X l, the ationof T{φ1

m,...,φam
m } and the [π] operation under the expetation is the same, we an now rewrite thelast term as

E

[∫ t

w

∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

r
(
{φ1

m, . . . , φ
am
m }

)
f
(
T{φ1

m,...,φam
m }

(
X l(s)

))
ds

∣∣∣∣∣Jw

]

= E

[∫ t

w

∑

π={A1,...,Ap}∈Pn

∑

(r1,...,rp)admissible ∫

∆
(1 − |ζ|)#{ri=0}

p∏

i=1,
ri>0

ζ |Ai|
ri

Ξ0(dζ)

(ζ, ζ)
f
((
X l(s)

)
[π]

)
ds

∣∣∣∣∣Jw

]

= E

[∫ t

w

∫

∆

∑

π={A1,...,Ap}∈Pn

∑

(r1,...,rp)admissible(1 − |ζ|)#{ri=0}
p∏

i=1,
ri>0

ζ |Ai|
ri

〈(f ◦ [π]), Z(s)⊗l〉
Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣∣Jw

]

= E

[∫ t

w

∫

∆

∫

EN

Gf

(
(1 − |ζ|)Z(s) +

∑∞
i=1 ζiδxi

)
Z(s)⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣∣Jw

]
, (4.17)sine the sum about the on�gurations {φ1

m, . . . , φ
am
m } and the distint indies i1, . . . , iam anbe rewritten as the sum about the partitions π and the admissible vetors (r1, . . . , rp). The lastequality holds due to equation (4.7).
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Combining equation (4.16) with equation (4.17) we see that
0 = E

[
f
(
X l(t)

)
− f

(
X l(w)

)

−

∫ t

w

∫

∆

∫

EN

Gf

(
(1 − |x|)Z(s) +

∑∞
i=1 ζiδxi

)
−Gf

(
Z(s)

)
Z(s)⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣∣Jw

]

= E

[
〈f, Z(t)⊗l〉 − 〈f, Z(w)⊗l〉 −

∫ t

0
(LΞ0Gf )(Z(s)) ds

∣∣∣∣∣Jw

]

= E

[
Gf

(
Z(t)

)
−Gf

(
Z(w)

)
−

∫ t

0
(LΞ0Gf )(Z(s)) ds

∣∣∣∣∣Jw

] (4.18)holds. Thus
Gf (Z(t)) −Gf (Z(0)) −

∫ t

0
(LΞ0Gf )(Z(s)) ds (4.19)is a martingale.5 Dualities5.1 Distributional duality vs. pathwise dualityWe �rst establish a distributional duality in the lassial sense of [L85℄. Indeed, (4.5) and resultsabout the lassial Fleming-Viot proess bring forth the following duality between a Ξ-oalesent

Π = (Πt)t≥0 and a Ξ-Fleming-Viot proess Z = (Zt)t≥0.Lemma 5.1 (Duality). For n ∈ N, f : En → R bounded and measurable, µ ∈ M1(E), π ∈ Enand t ≥ 0,
E

µ
[ ∫

En

f
(
x[π]

)
Z⊗n

t (dx)
]

= E
π
[ ∫

En

f
(
x[Π

(n)
t ]

)
µ⊗n(dx)

]
, (5.1)where Π

(n)
t is the restrition of Πt to En.To obtain a pathwise duality, we use the driving Poisson proesses of the modi�ed lookdown on-strution to onstrut realisation-wise a Ξ-oalesent embedded in the Ξ-Fleming-Viot proess.More expliitly, reall the Poisson proesses Ll

J and Ll
J,k from equation (2.18) and (2.19) inSetion 2.3 and the Poisson proess NK

ij de�ned in Setion 1.3. For eah t ≥ 0 and l = 1, 2, . . . ,let N l
t(s), 0 ≤ s ≤ t, be the level at time s of the anestor of the individual at level l at time t.In terms of the Ll

J and Ll
J,k, the proess N l

t(·) solves, for 0 ≤ s ≤ t,
27



N l
t(s) = l −

∑

1≤i<j<l

∫ t

s−
1{N l

t(u)>j} dN
K
ij (u)

−
∑

1≤i<j<l

∫ t

s−
(j − i)1{N l

t (u)=j} dN
K
ij (u)

−
∑

K⊂{1,...,l},l /∈K

∫ t

0
(N l

t(u) − Jm(l))dLl
K(u)

−
∑

k∈N

∑

K⊂{1,...,l},l∈K

∫ t

s−
(N l

t (u) − min(K))1{N l
t (u)∈K} dL

l
K,k(u), (5.2)where Jm(l) is de�ned by (2.20). Fix 0 ≤ T and, for t ≤ T , de�ne a partition ΠT

t of N suh that
k and l are in the same blok of ΠT

t if and only if N l
T (T − t) = Nk

T (T − t). Thus, k and l are inthe same blok if and only if the two levels k and l at time T have the same anestor at time
T − t. Then ([DK99℄, Setion 5),the proess (ΠT

t )0≤t≤T is a Ξ-oalesent run for time T . (5.3)Note that by employing a natural generalisation of the lookdown onstrution using drivingPoisson proesses on R and e.g. using T = 0 above, one an use the same onstrution to �ndan Ξ-oalesent with time set R+. We would like to emphasise that the lookdown onstrutionprovides a realisation-wise oupling of the type distribution proess (Zt)t≥0 and the oalesentdesribing the genealogy of a sample, thus extending (5.1), whih is merely a statement aboutone-dimensional distributions.5.2 The funtion-valued dual of the (Ξ, B)-Fleming-Viot proessThe duality between the Ξ-Fleming-Viot proess and the Ξ-oalesent established in Setion 5.1worked only on the genealogial level, the mutation was not taken into aount. However, it ispossible to de�ne a funtion-valued dual to the (Ξ, B)-Fleming-Viot proess suh that not onlythe genealogial struture, but also the mutation is part of the duality. This kind of duality iswell known for the lassial Fleming-Viot proess, see, e.g., Etheridge [E00, Chapter 1.12℄.First note, that due to Lemma 4.1 we an rewrite the generator of the (Ξ, B)-Fleming-Viotproess given by equation (1.10) to obtain
LGf (µ) :=

∑

1≤i<j≤n

∫

En

(
f(x1,.., xi,.., xi,.., xn) − f(x1,.., xi,.., xj ,.., xn)

)
µ⊗n(dx)

+
∑

π={A1,...,Ap}∈Pnnot all singletons λ(|A1|, . . . , |Ap|)

∫

En

(
f
(
x[π]

)
− f(x)

)
µ⊗n(dx),

+ r
n∑

i=1

∫

En

Bi(f(x1, . . . , xn))µ⊗n(dx). (5.4)We an now reinterpret the funtion Gf (µ) ating on measures as a funtion Gµ(f) ating onthe funtions Cb(E
n). This reinterpretation transfers the operator L ating on C(

M1(E)
) to anoperator L∗ ating on Cb

(
Cb(E

n)
). Let C :=

⋃∞
n=1 Cb(E

n). A C-valued Markov proess (ρt)t≥0solving the martingale problem for L∗ an then be onstruted as follows:28



• If ρt(x) ∈ Cb(E
n) and n ≥ 2, then the proess (ρt)t≥0 jumps to ρt

(
x[π]

) with rate
ξ(|A1|, . . . , |Ap|)+a1{∃!|Ai|=2;∀j 6=i:|Aj|=1}, for all π = {A1, . . . , Ap} ∈ Pn where |Aj | ≥ 1 forat least one j.

• If ρt ∈ Cb(E), that is it is a funtion of a single variable, then no further jumps our.
• Between jumps the proess evolves deterministially aording to the �heat �ow� generatedby the mutation operator (1.6), independently for eah oordinate.Note that this proess is not literally a oalesent, but has oalesent-like featuring.The duality relation between ρt and Zt immediately follows from (5.4) and an be written inintegrated form as

EZ0〈ρ0, Z
⊗n
t 〉 = Eρ0〈ρt, Z

⊗n
0 〉. (5.5)It an be used for example to show uniqueness of the martingale problem for L via the existeneof (ρt)t≥0 or to alulate the moments of the (Ξ, B)-Fleming-Viot proess.5.3 The dual of the blok ounting proessIn this setion, we speialise to the ase where the type spae E onsists of two types only,say E = {0, 1}. De�ne the real-valued proess Y = (Yt)t≥0 via Yt := Zt({1}), t ≥ 0. De�ne

g : M1(E) → [0, 1] via g(µ) := µ({1}). The generator A of Y is then given by Af(x) =
(LΞ(f ◦ g))(µ), f ∈ C2([0, 1]), where µ depends on y ∈ [0, 1] and an be hosen arbitrary, aslong as g(µ) = y. Thus,
Af(x) =

x(1 − x)

2
f ′′(x) +

∫

∆

∫

{0,1}N

(
f((1− |ζ|)x+

∑∞
i=1ζiyi)− f(x)

)
(B(1, x))⊗N(dy)

Ξ0(dζ)

(ζ, ζ)
,(5.6)

x ∈ [0, 1], f ∈ C2([0, 1]), where B(1, x) denotes the Bernoulli distribution with parameter x. For
x ∈ [0, 1] let V1(x), V2(x), . . . be a sequene of independent and identially B(1, x)-distributedrandom variables. Then,

Af(x) =
x(1 − x)

2
f ′′(x) +

∫

∆

∫

[0,1]

(
f((1 − |u|)x+ y) − f(x)

)
Q(u, x, dy)

Ξ0(du)

(u,u)
,where Q(u, x, .) denotes the distribution of ∑∞

i=1 uiVi(x). Hene the proess an be onsideredas a Wright-Fisher di�usion with jumps. In the situation where Ξ is onentrated on [0, 1]×{0}N ,i.e., when the underlying Ξ-oalesent is a Λ-oalesent, has been studied in [BLG05℄.Note that Af ≡ 0 for f(x) = x, so Y is a martingale. Furthermore, the boundary points 0 and
1 are obviously absorbing.In analogy to Lemma 5.1 it follows that Y is dual to the blok ounting proess D = (Dt)t≥0of the Ξ-oalesent with respet to the duality funtion H : [0, 1] × N → R, H(x, n) := xn (see,e.g., Liggett [L85℄), i.e.,

E
y[Y n

t ] = E
n[yDt ], n ∈ N, y ∈ [0, 1], t ≥ 0.Thus, the moments of the `forward' variable Yt an be omputed via the generating funtion ofthe `bakward' variable Dt and vie versa. The duality an be used to relate the aessibility ofthe boundaries of Y and the existene of an entrane law for D with D0+ = ∞. Note that bythe Markov property and the struture of the jump rates, we always have

P
∞(Dt = 1 eventually) ∈ {0, 1} (5.7)29



and either P
∞(

⋂
t≥0{Dt = ∞}) = 1 (if the probability in (5.7) equals 0) or limt→∞ P

∞(Dt =
1) = 1 (if the probability in (5.7) equals 1).Proposition 5.2. limt→∞ P

∞(Dt = 1) = 1 if and only if Y , the dual of its blok ountingproess, hits the boundary {0, 1} in �nite time almost surely, starting from any y ∈ (0, 1).Proof. Fix y ∈ (0, 1), T > 0. Construt (Zt) starting from yδ1 + (1 − y)δ0 and no mutations,
Bf ≡ 0, (and hene Y starting from y) by using the look-down onstrution from Setion 2.3:Let X1(0),X2(0), . . . be i.i.d. Bernoulli(y), independent of the driving Poisson proesses, andlet Xn(t), t > 0, n ∈ N, be the solution of (2.22). Let

D′
t := |{Nn

T (T − t) : n ∈ N}|,where Nn
T (s) solves (5.2). By (5.3), the law of (D′

t)0≤t≤T is that of the blok ounting proessof the (standard-)Ξ-oalesent run for time T . Then by onstrution (as there is no mutation),
Xn(T ) = XNn

T
(0)(0),implying

{D′
T = 1} ⊂ {YT ∈ {0, 1}} and {D′

T = ∞} ⊂ {0 < YT < 1} almost surely,whih easily yields the laim.This is related to the so-alled `oming down from in�nity'-property of the standard Ξ-oalesent(i.e., the property that starting from D0 = ∞, Dt < ∞ almost surely for all t > 0). Reall([S00℄, p. 39f) that a Ξ-oalesent may have in�nitely lasses for a positive amount of timeand then suddenly jump to �nitely many lasses, this an our if Ξ has positive mass on
∆f := {u = (u1, u2, . . .) ∈ ∆ : u1 + · · · + un = 1 for some n ∈ N}. On the other hand [S00,Lemma 31℄, if Ξ(∆f ) = 0, then the Ξ-oalesent either omes down from in�nity immediatelyor always has in�nitely many lasses. Combining this with Proposition 5.2 we obtainRemark 5.3. Assume that Ξ(∆f ) = 0. Then the Ξ-oalesent omes down from in�nity if andonly if the dual of its blok ounting proess hits the boundary {0, 1} in �nite time almost surely.In general, there seems to be no `simple' riterion to hek whether a Ξ-oalesent omes downfrom in�nity (see the disussion in Setion 5.5 of [S00℄). On the other side, there seems to bealso no `handy' riterion for aessibility of the boundary of a proess with jumps (and withvalues in [0, 1]), but at least Proposition 5.2 allows to transfer any progress from one side to theother and vie versa.We onlude this setion with a simple toy example for whih most quantities of interest, inpartiular the generator A, an be omputed expliitly.Example 5.4. Fix l ∈ N. If the measure Ξ is onentrated on ∆l := {ζ ∈ ∆ : ζ1 + · · ·+ ζl = 1},then (5.6) redues to

Af(x) =

∫

∆

∑

y1,...,yl∈{0,1}

xy1+···+yl(1 − x)l−(y1+···+yl)
(
f(

∑l
i=1 ζiyi) − f(x)

)Ξ(dζ)

(ζ, ζ)
.For example, assume that the measure Ξ assigns its total mass Ξ(∆) := 1/l to the single point

(1/l, . . . , 1/l, 0, 0, . . .) ∈ ∆l. Then,
Af(x) =

l∑

k=0

(
l

k

)
xk(1 − x)l−kf(k/l) − f(x) =

∫
(f(y/l) − f(x))B(l, x)(dy),30



where B(l, x) denotes the binomial distribution with parameters l and x. Note that the orre-sponding Ξ-oalesent never undergoes more than l multiple ollisions at one time. The rates(4.3) are
λ(k1, . . . , kp) =

∫

∆

∑

i1,...,ip∈Npairwise di�erentζk1
i1

· · · ζ
kp

ip

Ξ(dζ)

(ζ, ζ)
=

(l)p
ln
,where (l)p := l(l − 1) · · · (l − p + 1) and n := k1 + · · · + kp. The blok ounting proess D hasrates

gnp =
n!

p!

∑

m1,...,mp∈N

m1+···+mp=n

ξ(m1, . . . ,mp)

m1! · · ·mp!
= S(n, p)

(l)p
ln
, 1 ≤ p < n,where the S(n, p) denote the Stirling numbers of the seond kind. The total rates are gn =∑n−1

p=1 gnp = 1 − (l)n/l
n, n ∈ N. Note that the orresponding Ξ-oalesent stays in�nite for apositive amount of time (`Case 2' on top of [S00, p. 39℄ with Ξ2 ≡ 0). The dual of its blokounting proess hits the boundary in �nite time. �6 ExamplesThe �rst of the two examples in this setion presents a model, where the population size variessubstantially due to reurrent bottleneks. It is shown, that the Ξ-oalesent appears naturallyas the limiting genealogy of this model. In the seond example we present the Poisson-Dirihlet-oalesent by hoosing a partiular measure for Ξ whih is has a density with respet to themeasure of the Poisson-Dirihlet distribution. We provide expliit expressions for several quan-tities of interest.6.1 An example involving reurrent bottleneksConsider a population, say with non-overlapping generations, in whih the population size hasundergone oasional abrupt hanges in the past. Spei�ally, we assume that `typially', eahgeneration ontains N individuals, but at several instanes in the past, it has been substantiallysmaller for a ertain amount of time, and then the population has quikly re-grown to its typialsize N . This is related to the models onsidered by Jagers & Sagitov in [JS04℄, but we assumeoasional muh more radial hanges in population size than [JS04℄. Let us assume that thedemographi history is desribed by three sequenes of positive real numbers (si)i∈N, (li,N )i∈Nand (bi,N )i∈N, where 0 < bi,N ≤ 1 holds for all i, and the population size t generations beforethe present is given by G(t), where

G(t) =

{
bm,NN if N( ∑m−1

i=1 (si + li,N ) + sm

)
< t ≤ N

∑m
i=1(si + li,N ), m ∈ N,

N otherwise.Thus, bak in time the population stays at size N for some time siN . Then the size is reduedto bi,NN for the time li,NN . Thereafter it is again given by N , until the next bottlenekours after time si+1N . Note that for simpliity, we have assumed `instantaneous' re-growthafter eah bottlenek. Furthermore, we assume that the reprodution behaviour is given by thestandard Wright-Fisher dynamis, so eah individual hooses its parent uniformly at randomfrom the previous generation, independently of the other individuals. This is the ase in everygeneration, also during the bottlenek and at the transitions between the bottlenek and thetypial size. 31



We now want to keep trak of the genealogy of a sample of n individuals from the presentgeneration, and desribe its dynamis in the limit N → ∞. Denote by Π(N,n)(t) the anestralpartition of the sample t generations before the present.Lemma 6.1. Fix (si)i∈N and assume that bi,N → 0 and that li,N → 0 as N → ∞. Furthermoreassume that bi,NN → ∞ and that li,N/bi,N → γi > 0. Then
Π(N,n)(Nt) → Πδ0,(n)(Rt)weakly as N → ∞ on DPn([0,∞)), where Rt := t+

∑
i:s1+...+si≤t γi.Note that we assume li,N → 0 as N → ∞, so the duration of the bottlenek is negligible onthe timesale of the `normal' genealogy. We also assume bi,N → 0 but Nbi,N → ∞, i.e., inthe pre-limiting senario, the population size during a bottlenek should be tiny ompared tothe normal size, but still large in absolute numbers. The ratio li,N/bi,N is sometimes alled theseverity of the (i-th) bottlenek in the population geneti literature.Remark 6.2. Note that bottlenek events with γi = 0 beome invisible in the limit, whereas ina bottlenek with γi = +∞ the genealogy neessarily omes down to only one lineage (and thus,all geneti variability is erased).Sine we �xed the si and γi, the limiting proess desribed in Lemma 6.1 is not a homogeneousMarkov proess and thus does not �t literally into the lass of exhangeable oalesent proessesonsidered in this paper. Assume that the waiting intervals si are exponentially distributed,say with parameter β, and that the γi are independently drawn from a ertain law Lγ . Thus,in the pre-limiting N -partile model forwards in time, in eah generation there is a hane of

∼ β/N that a `bottlenek event' with a randomly hosen severity begins. In this situation, thegenealogy of an n-sample from the population at present is (approximately) desribed by
Πδ0,(n)(St), t ≥ 0, (6.1)where (St)t≥0 is a subordinator (in fat, a ompound Poisson proess with Lévy measure βLγand drift 1).Proposition 6.3. Let Nγ be the number of lineages at time γ > 0 in the standard Kingmanoalesent starting with N0 = ∞, and let Dj be the law of the re-ordering of a (j-dimensional)Dirihlet(1, . . . , 1) random vetor aording to dereasing size, padded with in�nitely many zeros.The proess de�ned in (6.1) is the Ξ-oalesent restrited to {1, . . . , n}, where

Ξ(dζ) = δ0(dζ) + (ζ, ζ)

∫

(0,∞)

∞∑

j=1

P(Nσ = j)Dj(dζ)βLγ(dσ).Proof. Reall that the number of families of the lassial Fleming-Viot proess without mutationafter σ time units is Nσ. Given Nσ = j, the distribution of the family sizes is a uniform partitionof [0, 1], hene Dirihlet(1, . . . , 1). Size-ordering thus leads to the above formula for Ξ.6.2 The Poisson-Dirihlet aseSagitov [S03℄ onsidered the Poisson-Dirihlet oalesent Π = (Πt)t≥0 with parameter θ > 0,where (by de�nition) the measure Ξ has density ζ 7→ (ζ, ζ) with respet to the Poisson-Dirihlet32



distribution PDθ with parameter θ > 0. As the measure PDθ is onentrated on the subset ∆∗of points of ∆ satisfying |ζ| = 1, the rates (4.3) redue to
λ(k1, . . . , kj) =

∫

∆∗

∑

i1,...,ij∈Npairwise di�erentζk1
i1

· · · ζ
kj

ij
PDθ(dζ).From the alulations of Kingman [K93℄ it follows that the Poisson-Dirihlet oalesent has rates

λ(k1, . . . , kj) =
θj

[θ]k

j∏

i=1

(ki − 1)!,

k1, . . . , kj ∈ N with k := k1 + · · · + kj > j, where [θ]k := θ(θ + 1) . . . (θ + k − 1).Möhle and Sagitov [MS01℄ haraterised exhangeable oalesents via a sequene (Fj)j∈N of sym-metri �nite measures. For eah j ∈ N, the measure Fj lives on the simplex ∆j := {(ζ1, . . . , ζj) ∈
[0, 1]j : ζ1 + · · · + ζj ≤ 1} and is uniquely determined via its moments

λ(k1, . . . , kj) =

∫

∆j

ζk1−2
1 · · · ζ

kj−2
j Fj(dζ1, . . . , dζj), k1, . . . , kj ≥ 2.For the Poisson-Dirihlet oalesent, an appliation of Liouville's integration formula shows thatthe measure Fj has density fj(ζ1, . . . , ζj) := θjζ1 · · · ζj(1 −

∑j
i=1 ζi)

θ−1 with respet to theLebesgue measure on ∆j.As Ξ is onentrated on ∆∗, it follows that
∫

∆

|ζ|

(ζ, ζ)
Ξ(dζ) =

∫

∆

1

(ζ, ζ)
Ξ(dζ) =

∫

∆∗

Πθ(dζ) = 1 < ∞. (6.2)By [S00, Proposition 29℄, the Poisson-Dirihlet oalesent is a jump-hold Markov proess withbounded transition rates and step funtion paths. By [S00, Proposition 30℄, for arbitrary but�xed t > 0, Πt does not have proper frequenies.The blok ounting proess D := (Dt)t≥0, where Dt := |Πt| denotes the number of bloks of Πt,is a dereasing proess with rates
gnk =

n!

k!

∑

n1,...,nk∈N

n1+···+nk=n

λ(n1, . . . , nk)

n1! · · · nk!
=

θk

[θ]n

n!

k!

∑

n1,...,nk∈N

n1+···+nk=n

1

n1 · · ·nk
=

θk

[θ]n
s(n, k),

k, n ∈ N with k < n, where the s(n, k) are the absolute Stirling numbers of the �rst kind. Thetotal rates are
gn :=

n−1∑

k=1

gnk = 1 −
θn

[θ]n
, n ∈ N.Note that gnk = P{Kn = k}, k < n, where Kn is a random variable taking values in {1, . . . , n}with distribution

P{Kn = k} =
θk

[θ]n
s(n, k), k ∈ {1, . . . , n}.We have

γn :=

n−1∑

k=1

(n− k)gnk =

n−1∑

k=1

(n− k)P{Kn = k} = n− EKn ≤ n.33



In partiular, ∑∞
n=2 γ

−1
n ≥

∑∞
n=2 1/n = ∞. Together with (6.2) and Ξ(∆f ) = 0, where ∆f :=

{ζ ∈ ∆ | ζ1 + · · · + ζn = 1 for some n}, it follows from [S00, Proposition 33℄ that the Poisson-Dirihlet oalesent stays in�nite.If we assume no mutation, then the generator LΞ (de�ned in Remark 4.4) of the orrespondingFleming-Viot proess redues to
LΞGf (µ) =

∫

∆∗

∫

EN

[
Gf

(∑∞
i=1 ζiδxi

)
−Gf (µ)

]
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