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Abstra
tWe study a random walk pinning model, where 
onditioned on a simple random walk Y on Z
da
ting as a random medium, the path measure of a se
ond independent simple random walk X upto time t is Gibbs transformed with Hamiltonian −Lt(X,Y ), where Lt(X,Y ) is the 
ollision lo
altime between X and Y up to time t. This model arises naturally in various 
ontexts, in
luding thestudy of the paraboli
 Anderson model with moving 
atalysts, the paraboli
 Anderson model withBrownian noise, and the dire
ted polymer model. It falls in the same framework as the pinning and
opolymer models, and exhibits a lo
alization-delo
alization transition as the inverse temperature βvaries. We show that in dimensions d = 1, 2, the annealed and quen
hed 
riti
al values of β are both0, while in dimensions d ≥ 4, the quen
hed 
riti
al value of β is stri
tly larger than the annealed
riti
al value (whi
h is positive). This implies the existen
e of 
ertain intermediate regimes for theparaboli
 Anderson model with Brownian noise and the dire
ted polymer model. For d ≥ 5, the sameresult has re
ently been established by Birkner, Greven and den Hollander [BGdH08℄ via a quen
hedlarge deviation prin
iple. Our proof is based on a fra
tional moment method used re
ently by Derrida,Gia
omin, La
oin and Toninelli [DGLT07℄ to establish the non-
oin
iden
e of annealed and quen
hed
riti
al points for the pinning model in the disorder-relevant regime. The 
riti
al 
ase d = 3 remainsopen.1 Introdu
tion and main result1.1 The model and main resultsWe �rst de�ne the 
ontinuous time version of the random walk pinning model, whi
h more pre
isely, 
ouldbe 
alled the random walk pinned to random walk model. Let X and Y be two independent 
ontinuoustime simple random walks on Z

d with jump rates 1 and ρ ≥ 0 respe
tively. Let µt denote the lawof (Xs)0≤s≤t. For β ∈ R, whi
h plays the role of the inverse temperature (if β > 0), and for a �xedrealization of Y a
ting as a random medium, we de�ne a Gibbs transformation of the path measure µt.Namely, we de�ne a new path measure µβ
t,Y on (Xs)0≤s≤t whi
h is absolutely 
ontinuous w.r.t. µt withRadon-Nikodym derivative
dµβ

t,Y

dµt
(X) =

eβLt(X,Y )

Zβ
t,Y

, (1.1)where Lt(X,Y ) =
∫ t
0 1{Xs=Ys}ds is the 
ollision lo
al time between X and Y up to time t, and

Zβ
t,Y = E

X
0

[

eβLt(X,Y )
] (1.2)is the quen
hed partition fun
tion whi
h makes µβ

t,Y a probability measure, where E
X
x [·] denotes expe
ta-tion w.r.t. X starting from x ∈ Z

d. The quen
hed free energy of the model is de�ned by
F (β, ρ) = lim

t→∞
1

t
logZβ

t,Y . (1.3)We will show below that the limit exists and is non-random. As a disordered system, it is also naturalto 
onsider the annealed partition fun
tion E
Y
0 [Zβ

t,Y ] and the annealed free energy
Fann(β, ρ) = lim

t→∞
1

t
log E

Y
0 [Zβ

t,Y ]. (1.4)Note that E
Y
0 [Zβ

t,Y ] = E
X−Y
0 [eβLt(X−Y,0)] is also the partition fun
tion of a homogeneous pinning model(see e.g. Gia
omin [G07℄), namely a random walk pinning model where the random walk X − Y (withjump rate 1 + ρ) is pinned to the site 0 instead of to a random traje
tory.1



To de�ne the dis
rete time version of the random walk pinning model, let X,Y be dis
rete time simplerandom walks on Z
d. The Gibbs transformed path measure µ̂β

N,Y , N ∈ N, 
an be de�ned similarly asin (1.1), where we repla
e Lt(X,Y ) by LN (X,Y ) =
∑N

i=1 1{Xi=Yi}. We then de�ne Ẑβ
N,Y , F̂ (β), µ̂β

N,ann,
F̂ann(β) similarly for the dis
rete time model as for the 
ontinuous time model. Note that the free energies
F̂ (β) and F̂ann(β) now only depend on β sin
e there are no more jump rates to adjust. To keep thingssimple, we fo
us only on X and Y being simple random walks in this paper. However, we expe
t mu
h ofthe same results to hold and the proofs to be adaptable for general random walks, and we will 
ommenton possible adaptations when appropriate.Our �rst result is the existen
e of the quen
hed free energies F (β, ρ) and F̂ (β). Existen
e of the annealedfree energies Fann(β, ρ) and Fann(β) is well known (see e.g. Chapter 2 in [G07℄). Before stating the result,we �rst introdu
e a two-parameter family of 
onstrained partition fun
tions for the random walk pinningmodel, where apart from a shift in time for the disorder Y , the random walk X is subje
t to the 
onstraint
Xt = Yt in (1.1). In 
ontinuous time setting, for 0 < s < t <∞, de�ne

Zβ,pin
[s,t],Y = E

X
Ys

[

exp

{

β

∫ t−s

0
1{Xu=Ys+u}du

}

1{Xt−s=Yt}

]

. (1.5)For 0 ≤ m < n < ∞ with m,n ∈ N0, we de�ne Ẑβ,pin
[m,n],Y analogously for the dis
rete time model. Forsimpli
ity, we will denote Zβ,pin

[0,t],Y by Zβ,pin
t,Y , and Ẑβ,pin

[0,N ],Y by Ẑβ,pin
N,Y .Theorem 1.1 [Existen
e of quen
hed free energy℄For any β ∈ R and ρ ≥ 0, there exists a non-random 
onstant F (β, ρ) su
h that

F (β, ρ) = lim
t→∞

1

t
logZβ

t,Y = lim
t→∞

1

t
logZβ,pin

t,Y , (1.6)where the 
onvergen
e are a.s. and in L1 w.r.t. Y . Furthermore, we have the representation
F (β, ρ) = sup

t>0

1

t
E

Y
0

[

logZβ,pin
t,Y

]

. (1.7)Analogous statements hold for the dis
rete time model.Corollary 1.1 [Existen
e of 
riti
al points℄There exist 0 ≤ βann
c ≤ βc depending on ρ ≥ 0 su
h that: Fann(β, ρ) = 0 if β < βann

c and Fann(β, ρ) > 0if β > βann
c ; F (β, ρ) = 0 if β < βc and F (β, ρ) > 0 if β > βc. Analogous statements hold for the dis
retetime model with annealed and quen
hed 
riti
al points β̂ann

c and β̂c respe
tively.Remark. See (5.5) and (4.4) for the exa
t values of βann
c and β̂ann

c .Remark. As in the pinning model (see e.g. [G07℄), βc marks the transition between a lo
alized and adelo
alized phase: when β < βc and F (β, ρ) = 0, Lt(X,Y ) is typi
ally of order o(t) w.r.t. µβ
t,Y for t large;when β > βc and F (β, ρ) > 0, Lt(X,Y ) is typi
ally of order t w.r.t. µβ

t,Y for t large. Similarly, βann
c marksthe transition between the lo
alized and delo
alized phase for the annealed homogeneous pinning model.One question of fundamental interest in the study of disordered systems is to determine when is thedisorder strong enough to shift the 
riti
al point of the model, i.e., when is βann

c < βc? For the pinningmodel, this question has re
ently been essentially fully resolved independently by Derrida, Gia
omin,La
oin and Toninelli [DGLT07℄, and Alexander and Zygouras [AZ08℄. For the random walk pinningmodel, our main result is the following.Theorem 1.2 [Annealed vs quen
hed 
riti
al points℄In dimensions d = 1 and 2, we have βann
c = βc = β̂ann

c = β̂c = 0. In dimensions d ≥ 4, we have
0 < βann

c < βc for ea
h ρ > 0 and 0 < β̂ann
c < β̂c. For d ≥ 5, there exists a > 0 s.t. βc − βann

c ≥ aρ forall ρ ∈ [0, 1]. For d = 4 and for ea
h δ > 0, there exists aδ > 0 s.t. βc − βann
c ≥ aδρ

1+δ for all ρ ∈ [0, 1].2



For purposes relevant to appli
ations for the paraboli
 Anderson model with Brownian noise and thedire
ted polymer model, in d ≥ 4, we prove instead a stronger version of Theorem 1.2. De�ne
β∗c = sup

{

β ∈ R : sup
t>0

Zβ
t,Y <∞ a.s. w.r.t. Y }. (1.8)De�ne β̂∗c for the dis
rete time model analogously. Clearly β∗c ≤ βc and β̂∗c ≤ β̂c. We haveTheorem 1.3 [Non-
oin
iden
e of 
riti
al points strengthened℄For d ≥ 4, we have βann

c < β∗c for ea
h ρ > 0 and β̂ann
c < β̂∗c . For d ≥ 5, there exists a > 0 s.t.

β∗c −βann
c ≥ aρ for all ρ ∈ [0, 1]. For d = 4 and for ea
h δ > 0, there exists aδ > 0 s.t. β∗c −βann

c ≥ aδρ
1+δfor all ρ ∈ [0, 1].Remark. Theorem 1.3 for d ≥ 5 (without bounds on the gap) has re
ently been established by Birkner,Greven, and den Hollander [BGdH08℄ as an appli
ation of a quen
hed large deviation prin
iple for renewalpro
esses in random s
enery. Our aim here is to give an alternative proof based on adaptations of thefra
tional moment method used re
ently by Derrida et al [DGLT07℄ in the pinning model 
ontext, andto extend to the d = 4 
ase. Loosely speaking, be
ause P(Xn = Yn) ∼ Cn−d/2 = Cn−1−α by the lo
al
entral limit theorem, d ≥ 5 
orresponds to the 
ase α > 1 in [DGLT07℄; d = 4 
orresponds to the 
ase

α = 1, whi
h was not 
overed in [DGLT07℄, but in
luded in [AZ08℄; while d = 3 
orresponds to themarginal 
ase α = 1/2, whi
h remains open from both [DGLT07℄ and [AZ08℄ for the pinning model, andremains open for our model as well.Remark. It is an interesting open question whether β∗c = βc, i.e., whether the quen
hed partitionfun
tion Zβ
t,Y is uniformly bounded in t a.s. w.r.t. Y in the entire delo
alized phase. As 
ommuni
atedto us by F.L.Toninelli, this question also remains open for the pinning and the 
opolymer models.Theorem 1.3 for the 
ontinuous time model 
on�rms Conje
ture 1.8 of Greven and den Hollander [GdH07℄(for d ≥ 4) that the paraboli
 Anderson model with Brownian noise 
ould admit an equilibrium measurewith an in�nite se
ond moment. Theorem 1.3 for the dis
rete time model 
an be used to disprove a
onje
ture of Garel and Monthus [GM06℄ that for the dire
ted polymer model in random environment,the transition from weak to strong disorder o

urs at βann

c . See Se
. 1.4 for more details. For somespe
ial environments in spe
ial dimensions, this 
onje
ture has already been disproved by Camanes andCarmona [CC07℄. In Se
tion 1.4, we will show that the results of Derrida et al [DGLT07℄ on the pinningmodel 
an also be used to disprove the Garel-Monthus 
onje
ture in d ≥ 4. The reader 
an also 
onsultSe
tion 1.5 of [BGdH08℄ for more detailed expositions on the impli
ation of Theorem 1.3 for the variousmodels mentioned above.In the remainder of the introdu
tion, we point out a 
onne
tion between the random walk pinning modeland the paraboli
 Anderson model with a single moving 
atalyst, and how does the random walk pinningmodel �t in the same framework as the pinning and 
opolymer models. Lastly, we will introdu
e aninhomogeneous random walk pinning model whi
h generalizes both the pinning and the random walkpinning model.1.2 Paraboli
 Anderson model with a single moving 
atalystAs for the 
ontinuous time random walk pinning model, let Y be a 
ontinuous time simple random walkon Z
d with jump rate ρ ≥ 0. The paraboli
 Anderson model with a single moving 
atalyst is the solutionof the following Cau
hy problem for the heat equation in a time-dependent random potential

∂

∂t
u(t, x) = ∆u(t, x) + βδYt(x)u(t, x),

u(0, x) = 1,
x ∈ Z

d, t ≥ 0, (1.9)where β ∈ R and ∆f(x) = 1
2d

∑

‖y−x‖=1(f(y) − f(x)) is the dis
rete Lapla
ian on Z
d. Heuristi
ally,the time-dependent potential βδYt(x) 
an be interpreted as a single 
atalyst with strength β moving as3



Y , u(t, x) is then simply the expe
ted number of parti
les alive at position x at time t for a bran
hingparti
le system, where initially one parti
le starts from ea
h site of Z
d, and independently, ea
h parti
lemoves on Z

d as a simple random walk, and whenever the parti
le is at the same lo
ation as the 
atalyst
Y , it splits into two parti
les with rate β if β > 0 and is killed with rate −β if β < 0. For furthermotivations and a survey on the paraboli
 Anderson model, see e.g. Gärtner and König [GK05℄.Quantities of spe
ial interest in the study of the paraboli
 Anderson model are the quen
hed and annealed
p-th moment Lyapunov exponents.

λ0 = lim
t→∞

1

t
log u(t, 0), λp = lim

t→∞
1

t
log E

Y
0 [u(t, 0)p]. (1.10)The annealed p-th moment Lyapunov exponents for p ∈ N have been studied by Gärtner and Heydenrei
hin [GH06℄. Here we show thatTheorem 1.4 [Existen
e of quen
hed Lyapunov exponent℄For any β ∈ R and ρ ≥ 0, there exists a non-random 
onstant λ0 = λ0(β, ρ) su
h that for all x ∈ Z

d,
λ0 = lim

t→∞
1

t
log u(t, x) a.s. and in L1 w.r.t. Y . (1.11)Furthermore, λ0(β, ρ) = F (β, ρ), where F (β, ρ) is as in (1.6).Indeed, the solution of (1.9) admits the Feynman-Ka
 representation

u(t, x) = E
X
x

[

exp

{

β

∫ t

0
1{Xt−s=Ys}ds

}]

, (1.12)where X is a simple random walk on Z
d with jump rate 1 and X0 = x. Ex
ept for the time reversal of Xin (1.12), u(t, x) has the same representation as that for Zβ

t,Y . The same proof as for Theorem 1.1 thenapplies, whi
h gives rise to the same representation for λ0 as for F (β, ρ) in (1.7) due to the fa
t that thevariational expression in (1.7) is invariant w.r.t. time reversal for X.1.3 Relation to pinning and 
opolymer modelsWe now explain in what sense does the random walk pinning model belong to the same framework asthe pinning and the 
opolymer models. For simpli
ity, we will examine the dis
rete time random walkpinning model with a path measure asso
iated with the partition fun
tion Ẑβ,pin
[0,N ],Y , 
.f. (1.5).The pinning and 
opolymer models are both Gibbs transformation of a renewal pro
ess. More pre
isely,let σ = (σ0 = 0, σ1, σ2, · · · ) be a renewal pro
ess on N0, where the inter-arrival times (σi − σi−1)i∈N arei.i.d. N ∪ {∞}-valued random variables with distribution P(σ1 = i) = K(i) for some probability kernel

K on N ∪ {∞}. Let (ωi)i∈N be i.i.d. real-valued random variables with E[ω1] = 0 and E[eλω1 ] < ∞ forall λ ∈ R. Let h ∈ R and β ≥ 0. Then for a �xed N ∈ N, the �nite volume Gibbs weight for a givenrealization of the renewal sequen
e σ for both models are of the form
W (σ) =











m
∏

i=1

w
(

β, h, (ωj)σi−1<j≤σi

) if N = σm for some m ≥ 1,

0 otherwise, (1.13)where
w
(

β, h, (ωj)0<j≤n

)

=











eβωn+h pinning model,
eβ

Pn
j=1(ωj+h) + e−β

Pn
j=1(ωj+h)

2

opolymer model. (1.14)See [G07℄ for more on the pinning and 
opolymer models. For the dis
rete time random walk pinningmodel, we 
an write

Ẑβ,pin
N,Y = E

X
0

[

eβLN (X,Y )1{XN=YN}
]

=

N
∑

m=1

∑

σ0=0<σ1<···<σm=N

m
∏

i=1

(

eβP
X
0 (τθσi−1Y = σi − σi−1)

)

, (1.15)4



where θnY = (Yn+i − Yn)i∈N0 denotes a shift in Y , and τY = τY (X) = min{i ≥ 1 : Xi = Yi}. Let usdenote K(i) = E
Y
0

[

P
X
0 (τY = i)

]

= P
X−Y
0 (τ0 = i), then K with K(∞) = P

X−Y
0 (τ0 = ∞) is the returntime distribution of a renewal pro
ess on N0. Let ∆i = Yi − Yi−1. We 
an then rewrite (1.15) as

Ẑβ,pin
N,Y =

N
∑

m=1

∑

σ0=0<σ1<···<σm=N

m
∏

i=1

(

K(σi − σi−1) w
(

β, (∆j)σi−1<j≤σi

)

)

, (1.16)where
w
(

β, (∆i)0<i≤n

)

=
eβP

X
0 (τY = n)

K(n)
, Yi =

i
∑

j=1

∆j. (1.17)In view of (1.16) and (1.17), we see that the random walk pinning model asso
iated with Ẑβ,pin
[0,N ],Y is also aGibbs transformation of a renewal pro
ess with inter-arrival law K, ex
ept that the disorder (∆i)i∈N takevalues in Z

d and the Gibbs weight fa
tor w(·) for ea
h renewal gap has a more 
ompli
ated dependen
e onthe disorder than for the pinning and 
opolymer models. Nevertheless, this simple observation motivatesus to try to adapt the fra
tional moment method from the pinning model to our 
ontext. In the a
tualproof, we will use an alternative representation for Ẑβ,pin
[0,N ],Y , as well as for Zβ,pin

[0,t],Y , whi
h admits a simplerform for the weight fa
tor w(·) than (1.17). See (4.3) and (5.3). We will see later on that despite theentirely di�erent nature of the disorder, the random walk pinning model turns out to be a 
lose analogueof the pinning model. Lastly we note that the fra
tional moment method has re
ently been su

essfullyapplied also to the 
opolymer model, see Bodineau, Gia
omin, La
oin and Toninelli [BGLT08℄ andToninelli [T08℄.1.4 An inhomogeneous random walk pinning modelAnother 
ommon feature between the pinning and the random walk pinning model is that, for bothmodels, the annealed partition fun
tion is that of a homogeneous pinning model. A further intriguinginterplay between the two models is that we 
an de�ne an inhomogeneous random walk pinning model,from whi
h both models 
an be obtained by partial annealing. More pre
isely, let X and Y be dis
retetime simple random walks on Z
d, let (ωi)i∈N be i.i.d. real-valued random variables with E[ω1] = 0,and M(λ) = log E[eλω1 ] is well-de�ned for all λ ≥ 0. Let h ∈ R and β ≥ 0. Then the dis
rete timeinhomogeneous random walk pinning model is the Gibbs transformation of the path measure µN of Xup to time N with Radon-Nikodym derivative

dµβ,h
N,Y,ω

dµN
(X) =

exp
{
∑N

i=1(βωi + h)1{Xi=Yi}
}

Zβ,h
N,Y,ω

, (1.18)where Zβ,h
N,Y,ω = E

X
0 [exp

{
∑N

i=1(βωi+h)1{Xi=Yi}
}

] is the partition fun
tion, and we now have two sour
esof disorder: the lo
ation of pinning as given by Y , and the strength of pinning as given by βωi +h. Notethat under annealing w.r.t. Y ,
E

Y
0 [Zβ,h

N,Y,ω] = E
X−Y
0

[

exp
{

N
∑

i=1

(βωi + h)1{(X−Y )i=0}
}

] (1.19)is the partition fun
tion of a pinning model (without boundary 
onstraint (X − Y )N = 0), where theunderlying renewal pro
ess is given by the return times of X−Y to 0. On the other hand, under annealingw.r.t. ω,
E

ω[Zβ,h
N,Y,ω] = E

X
0

[

e(M(β)+h)LN (X,Y )
]is the partition fun
tion of a random walk pinning model with parameter M(β) + h.The 
ontinuous time version of the inhomogeneous random walk pinning model 
an be de�ned similarlywith partition fun
tion

Zβ,h
t,Y,B = E

X
0

[

exp
{

β

∫ t

0
1{Xs=Ys}dBs + ht

}]

,5



where Bs is a standard Brownian motion.The dis
rete time inhomogeneous random walk pinning model �rst appeared impli
itly in Birkner [B04℄in the study of the dire
ted polymer model (the 
ontinuous time analogue 
an be found in Greven and denHollander [GdH07℄). Given a simple random walk X on Z
d, λ ≥ 0, i.i.d. real-valued random variables

(ω(n, x))n∈N,x∈Zd with M(λ′) = log E[eλ
′ω(1,1)] well-de�ned for all λ′ ≥ 0, the (normalized) partitionfun
tion of the dire
ted polymer model is given by

Zλ
N,ω = E

X
0

[

e
PN

i=1{λω(i,Xi)−M(λ)}].Note that (Zλ
N,ω)N∈N is a positive martingale. The 
riti
al point of the model 
an be de�ned by

λc = sup{λ ≥ 0 : (Zλ
N,ω)N∈N is uniformly integrable} = sup{λ ≥ 0 : limN→∞ Zλ

N,ω > 0 a.s.}(see, e.g., [CSY04℄ for an overview). The Garel-Monthus 
onje
ture [GM06℄ asserts that λc = λ2 :=

sup{λ ≥ 0 : supN∈N E[(Zλ
N,ω)2] < ∞}. On the other hand, Birkner [B04℄ showed that if Y is anindependent 
opy of X, and (ω̃(n, x))n∈N,x∈Zd is an independent 
opy of (ω(n, x))n∈N,x∈Zd , then thesize-biased law of Zλ

N,ω is the same as that of
Z̃λ

N,ω,ω̃,Y = E
X
0

[

exp
{

N
∑

i=1

(

1{Xi 6=Yi}(λω(i,Xi) −M(λ)) + 1{Xi=Yi}(2λω̃(i,Xi) − 2M(λ))
)}]

. (1.20)Namely, E[f(Z̃λ
N,ω,ω̃,Y )] = E[Zλ

N,ωf(Zλ
N,ω)] for all bounded f : R+ → R. The uniform integrability of

(Zλ
N,ω)N∈N is then equivalent to the uniform tightness of the laws of (Zλ

N,ω,ω̃,Y )N∈N. If we integrate outthe disorder ω in (1.20), then
E[Z̃λ

N,ω,ω̃,Y |ω̃, Y ] = E
X
0

[

e
PN

i=1(2λω̃(i,Xi)−2M(λ))1{Xi=Yi}
] (1.21)is pre
isely the partition fun
tion of the inhomogeneous random walk pinning model. Further integratingout ω̃ gives the partition fun
tion of a random walk pinning model with parameter β̂(λ) = M(2λ)−2M(λ),

E[Z̃λ
N,ω,ω̃,Y |Y ] = E

X
0

[

e
PN

i=1(M(2λ)−2M(λ))1{Xi=Yi}
]

.Sin
e E[(Zλ
N,ω)2] = E[Z̃λ

N,ω,ω̃,Y ], β̂(λ2) = β̂ann
c with β̂ann

c being the annealed 
riti
al point as in Theorem1.3. Sin
e for non-degenerate ω, β̂(λ) is stri
tly in
reasing in λ, Theorem 1.3 implies that in d ≥ 4, thereexists λ′ > λ2 su
h that E[Z̃λ′

N,ω,ω̃,Y |Y ] is uniformly bounded in N a.s. w.r.t. Y . Therefore the law of
(Z̃λ′

N,ω,ω̃,Y )N∈N is uniformly tight, and hen
e λc ≥ λ′ > λ2, whi
h disproves the 
onje
ture of Garel andMonthus [GM06℄.Finally, we point out that based on (1.20), the results of Derrida et al [DGLT07℄ for the pinning model
an also be used to disprove the Garel-Monthus 
onje
ture in d ≥ 4: In (1.21), 
onditioned on Y ,
(ω̃(i, Yi))1≤i≤N are i.i.d. Therefore if we �x an i.i.d. sequen
e (ω̄i)i∈N equally distributed with ω̃(1, 1),then E[Z̃λ

N,ω,ω̃,Y |ω̃, Y ] is equally distributed with
E

X
0 [e

PN
i=1(2λω̄i−2M(λ))1{Xi=Yi} ].Integrating out Y then gives the partition of a pinning model,

Zβ,h
N,ω̄ = E

X−Y
0 [e

PN
i=1(2λω̄i−2M(λ))1{(X−Y )i=0} ] (1.22)with parameters β(λ) = 2λ, h(λ) = −M(2λ) (
.f. (1.19)), and underlying renewal pro
ess K(n) =

P
X−Y
0 (τ0 = n) where τ0 is the �rst return time of X − Y to 0. It is easy to 
he
k that the 
riti
al 
urvefor the annealed pinning model is given by hann

c (β) = −M(β) − log P
X−Y
0 (τ0 < ∞). By the de�nitionof λ2, (β(λ2), h(λ2)) lies on this annealed 
riti
al 
urve. Sin
e in d ≥ 4, K(n) ∼ cn−

d
2 has tail exponent

α = d
2 − 1 ≥ 1, it follows from Derrida et al [DGLT07℄ that there exists a 
ontinuous 
urve h∗(β)stri
tly above hann

c (β), su
h that for all h ≤ h∗(β), Zβ,h
N,ω̄ is a.s. uniformly bounded in N . Therefore we6




an 
hoose λ′ > λ2 su
h that −M(2λ′) ≤ h∗(2λ′), and hen
e Z2λ′,−M(2λ′)
N,ω̄ is a.s. uniformly bounded in

N . By the same reasoning as before, this implies the uniform tightness of (Z̃λ′

N,ω,ω̃,Y )N∈N, and hen
e
λc ≥ λ′ > λ2. Lastly, we remark that in [DGLT07℄, only the 
onstrained version of the partition fun
tion
Zβ,h

N,ω̄ is 
onsidered, i.e., the 
onstraint 1{XN=YN} is inserted in (1.22). However, the proof there 
an beeasily adapted to the non-
onstrained version, as 
an be seen later in our analysis of the random walkpinning model.1.5 OutlineThe rest of the paper is organized as follows. In Se
tion 2, we prove Theorem 1.1, Corollary 1.1, andTheorem 1.4. In Se
tion 3, we prove Theorem 1.2 for d = 1, 2. In Se
tion 4, we prove Theorem 1.3 in thedis
rete time 
ase. Lastly in Se
tion 5, we prove Theorem 1.3 in the 
ontinuous time 
ase. The proof ofTheorem 1.3 does not rely on the existen
e of the quen
hed free energies. Readers interested in how thefra
tional moment method is applied in this 
ontext 
an go dire
tly to Se
tions 4 and 5.2 Existen
e of the quen
hed free energyIn this se
tion, we prove Theorems 1.1, 1.4 and Corollary 1.1.Proof of Theorem 1.1. We only prove the 
ontinuous time 
ase. The dis
rete time 
ase is simpler.First note that |t−1 logZβ
t,Y | ≤ |β| uniformly in t > 0 and Y . Therefore |t−1 logZβ

t,Y | is uniformlyintegrable w.r.t. Y for t > 0. By similar reasoning, it is not hard to verify also uniform integrability for
|t−1 logZβ,pin

t,Y | w.r.t. Y for t large despite the 
onstraint 1{Xt=Yt} in Zβ,pin
t,Y . Therefore it su�
es to verifythe a.s. 
onvergen
e in (1.6), and the L1 
onvergen
e follows by uniform integrability.Restri
ting to integer times m,n, 
learly (− logZβ,pin

[m,n],Y )0≤m<n satis�es the 
onditions of the subadditiveergodi
 theorem (see e.g. Se
. 6.6 in Durrett [D96℄). Therefore there exists F pin ∈ R su
h that a.s. w.r.t.
Y ,

F pin = lim
n→∞

1

n
logZβ,pin

n,Y = sup
n∈N

1

n
E

Y
0

[

logZβ,pin
n,Y

]

. (2.1)First we extend the 
onvergen
e in (2.1) to t → ∞, rather than just along the integers. We need two
rude estimates.Proposition 2.1 Let (Xt)t≥0 be a 
ontinuous time random walk on Z
d with jump rate 1. Let ‖·‖1 denote

L1 norm in Z
d. Then

(i) There exists C > 0 su
h that a.s. ‖Xt‖1 < C
√
t log log t for all t su�
iently large.

(ii) P
X
0 (Xt = x) ≥ C(1 + t)−

d
2 (2d)−‖x‖1 uniformly for all t > 0 and x ∈ Z

d with ‖x‖1 ≤ t/2.Proof. Part (i) is a 
onsequen
e of the law of the iterated logarithm. Part (ii) follows by for
ing X tovisit x after exa
tly ‖x‖1 number of jumps, and then return to x at time t. The fa
tor (1 + t)−
d
2 arisesfrom the lo
al 
entral limit theorem.Note that for t ≥ 1, by super-additivity, we have

1

t

(

logZβ,pin

⌊t−t2/3⌋,Y + logZβ,pin

[⌊t−t2/3⌋,t],Y

)

≤ 1

t
logZβ,pin

t,Y ≤ 1

t

(

logZβ,pin

⌊t+t2/3⌋,Y − logZβ,pin

[t,⌊t+t2/3⌋],Y

)

. (2.2)By (2.1), a.s. F pin = lim
t→∞

t−1 logZβ,pin

⌊t−t2/3⌋,Y = lim
t→∞

t−1 logZβ,pin

⌊t+t2/3⌋,Y . On the other hand,
Zβ,pin

[⌊t−t2/3⌋,t],Y ≤ e|β|(t−⌊t−t2/3⌋)
P

X
0

(

Xt−⌊t−t2/3⌋ = Yt − Y⌊t−t2/3⌋
)

,

Zβ,pin

[⌊t−t2/3⌋,t],Y ≥ e−|β|(t−⌊t−t2/3⌋)
P

X
0

(

Xt−⌊t−t2/3⌋ = Yt − Y⌊t−t2/3⌋
)

.
(2.3)7



By Proposition 2.1, for t su�
iently large, ‖Yt − Y⌊t−t2/3⌋‖1 ≤ 2C
√
t log log t < (t−⌊t−t2/3⌋)

2 , and hen
e
P

X
0

(

Xt−⌊t−t2/3⌋ = Yt − Y⌊t−t2/3⌋
)

≥ C
(

1 + t− ⌊t− t2/3⌋
)−d/2

(2d)−2C
√

t log log t,from whi
h we obtain lim
t→∞

t−1| logZβ,pin

[⌊t−t2/3⌋,t],Y | = 0. Similarly, lim
t→∞

t−1| logZβ,pin

[t,⌊t+t2/3⌋],Y | = 0. Thisestablishes the a.s. 
onvergen
e in (2.1) for t→ ∞ instead of n→ ∞ for n ∈ N.We now prove that a.s. F pin = lim
t→∞

t−1 logZβ
t,Y . Clearly Zβ

t,Y >Z
β,pin
t,Y . For an upper bound, note that

Zβ
t,Y ≤ e|β|t

3/4
Zβ

t−t3/4,Y
. (2.4)We 
laim that for t su�
iently large,

E
X
0

[

e
βL

t−t3/4 (X,Y )
1{‖X

t−t3/4‖1≤t2/3}
]

≥ E
X
0

[

e
βL

t−t3/4 (X,Y )
1{‖X

t−t3/4‖1>t2/3}
]

. (2.5)By Proposition 2.1, for t su�
iently large, we have sup0≤s≤t ‖Ys‖1 ≤ C
√
t log log t. De�ne re
ursivelystopping times σ1 = 0, and for n ∈ N,

τn = inf{s ∈ (σn, t− t3/4] : ‖Xs‖1 ≥ t2/3/2},
σn+1 = inf{s ∈ (τn, t− t3/4] : ‖Xs‖1 ≤ C

√

t log log t},
(2.6)where we set σn, τn to t− t3/4 if the in�mum is taken over an empty set. Then

E
X
0

[

e
βL

t−t3/4 (X,Y )
1{‖X

t−t3/4‖1>t2/3}
]

=

∞
∑

n=1

E
X
0

[

eβLτn (X,Y )1{τn<σn+1=t−t3/4,‖X
t−t3/4‖1>t2/3}

]

=
∞
∑

n=1

E
X
0

[

eβLτn (X,Y )1{τn<t−t3/4} P
X
0

(

σn+1 = t− t3/4, ‖Xt−t3/4‖1 > t2/3
∣

∣Xτn

)

]

≤
∞
∑

n=1

E
X
0

[

eβLτn (X,Y )1{τn<t−t3/4} P
X
0

(

σn+1 = t− t3/4, ‖Xt−t3/4‖1 ≤ t2/3
∣

∣Xτn

)

]

≤ E
X
0

[

e
βL

t−t3/4 (X,Y )
1{‖X

t−t3/4‖1≤t2/3}
]

, (2.7)where in the �rst inequality we used the fa
t that t2/3/2 >>
√
t log log t >>

√
t for t large. This provesthe 
laim (2.5). By Proposition 2.1, we have P

X
0 (Xt = Yt|Xt−t3/4 = x) ≥ C(1 + t3/4)−d/2(2d)−2t2/3uniformly for ‖x‖1 ≤ t2/3. Hen
e

Zβ,pin
t,Y ≥ C(1 + t3/4)−d/2(2d)−2t2/3

e−|β|t3/4
E

X
0

[

e
βL

t−t3/4(X,Y )
1{‖X

t−t3/4‖1≤t2/3}
]

.Combined with (2.4) and (2.5), we �nd
Zβ

t,Y ≤ 2C−1(1 + t3/4)d/2(2d)2t2/3
e2|β|t

3/4
Zβ,pin

t,Y .Sin
e Zβ
t,Y > Zβ,pin

t,Y , (1.6) follows with F (β, ρ) = F pin.Lastly, (1.7) holds be
ause (2.1) is valid with F pin = F (β, ρ) if we take the limit in (2.1) along nt, n ∈ N,for any �xed t > 0.Proof of Corollary 1.1. From the theory for homogeneous pinning models (see e.g. Chapter 2 of [G07℄),it is known that βann
c exists, and βann

c = 0 if the renewal pro
ess underlying the pinning model is re
urrent(i.e., the random walk X − Y is re
urrent), and βann
c > 0 if the random walk X − Y is transient. Thestatement βann

c ≤ βc follows from
F (β, ρ) = lim

t→∞
t−1

E
Y
0

[

logZβ
t,Y

]

≤ lim
t→∞

t−1 log E
Y
0 [Zβ

t,Y ] = Fann(β, ρ)8



by the L1 
onvergen
e in Theorem 1.1 and Jensen's inequality. The statement βc ≥ 0 follows from thefa
t that for β < 0, F (β, ρ) = 0. Indeed, for β < 0, Zβ
t,Y ≤ 1, while

logZβ
t,Y = log E

X
0

[

eβLt(X,Y )
]

≥ βE
X
0 [Lt(X,Y )] ≥ β

∫ t

0

C

(1 + s)d/2
ds = o(t),where we used the lo
al 
entral limit theorem that P

X
0 (Xt = x) ≤ C(1 + t)−d/2 uniformly in t > 0 and

x ∈ Z
d. The existen
e and �niteness of βc then follows from (1.7) and the monotoni
ity of F (β, ρ) in β.The proof for the dis
rete time model is identi
al.Proof of Theorem 1.4. The di�eren
e between the Feynman-Ka
 representation of u(t, x) in (1.12)and the representation for Zβ

t,Y in (1.2) is: (1) time-reversal for X; (2) in (1.12), X starts at x insteadof on Y . The same proof as for Theorem 1.1 shows that lim
t→∞

t−1u(t, Yt) = F (β, ρ) a.s. w.r.t. Y where
F (β, ρ) is as in (1.7). To 
ompare u(t, x) with u(t, Yt), note that

u(t, x) ≥ P
X
0

(

Xt2/3 = Yt−t2/3 − x
)

e−|β|t2/3
u
(

t− t2/3, Yt−t2/3

)

, (2.8)whi
h a.s. gives the 
orre
t lower bound on the exponential s
ale as t → ∞. For the upper bound,note that if β ≤ 0, then u(t, x) ≤ 1, whi
h su�
es by Corollary 1.1. If β > 0, then for any ǫ > 0,a.s. we 
an �nd Tǫ,Y su�
iently large s.t. t−1 log u(t, Yt) ≤ F (β, ρ) + ǫ for all t ≥ Tǫ,Y . In (1.12), let
τ = inf{s ∈ [0, t] : Xs = Yt−s} with τ = t if the set is empty. Then for all t > Tǫ,Y and x ∈ Z

d, we have
u(t, x) ≤ P

X
x (τ ≥ t− Tǫ,Y )eβTǫ,Y + E

X
x

[

u(t− τ, Yt−τ )1{τ<t−Tǫ,Y }
]

≤ eβTǫ,Y + e(F (β,ρ)+ǫ)t. (2.9)Sin
e ǫ > 0 
an be arbitrarily small, a.s. this provides the 
orre
t upper bound for u(t, x) on the exponen-tial s
ale as t → ∞. The L1 
onvergen
e in (1.11) follows from the uniform boundedness of | log u(t, x)|in t, x and Y .3 Coin
iden
e of 
riti
al points in d = 1 and 2Proof of Theorem 1.2 for d = 1 and 2. We only deal with the 
ontinuous time 
ase. The dis
retetime 
ase is simpler. As pointed out in the proof of Corollary 1.1, be
ause the random walk X − Y isre
urrent in d = 1 and 2, βann
c = 0. By (1.7), to show βc = 0, it su�
es to show that for any β > 0, thereexists t > 0 su
h that E

Y
0 [logZβ,pin

t,Y ] > 0. We 
an write
E

Y
0

[

logZβ,pin
t,Y

]

= E
Y
0

[

log P
X
0 (Xt = Yt)

]

+ E
Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]

]

. (3.1)We �rst we estimate E
Y
0

[

log P
X
0 (Xt = Yt)

]

=
∑

x∈Zd pρt(x) log pt(x), where pt(x) denotes the transitionprobability of a jump rate 1 
ontinuous time simple random walk on Z
d. We then �nd lower bounds forthe se
ond term in (3.1) for d = 1 and d = 2.Lemma 3.1 For all ρ ≥ 0, we have

lim
t→∞

∑

x∈Zd pρt(x) log pt(x)

log t
= −d

2
. (3.2)Proof. By the lo
al 
entral limit theorem, pt(x) ≤ C(1 + t)−

d
2 uniformly for t > 0 and x ∈ Z

d. Hen
e
lim sup

t→∞

∑

x∈Z
pρt(x) log pt(x)

log t
≤ −d

2
. (3.3)9



For a mat
hing lower bound, we need lower bounds for pt(x) for all x ∈ Z
d. Note that if p(1)

t (·) denotesthe transition probability kernel of a rate 1 simple random walk on Z, then pt(x) = Πd
i=1p

(1)
t/d(xi), and

∑

x∈Zd pρt(x) log pt(x) = d
∑

x∈Z
p
(1)
ρt/d(x) log p

(1)
t/d(x). Hen
e it su�
es to show

lim inf
t→∞

∑

x∈Z
p
(1)
ρt (x) log p

(1)
t (x)

log t
≥ −1

2
. (3.4)For 0 < ǫ << 1 << A < ∞, we have the following estimates. There exist C1, C2, C3, T > 0 depending on

ǫ and A, su
h that
p
(1)
t (x) ≥ C1t

− 1
2 e−

C2x2

t ∀ t ≥ T, |x| ≤ ǫt, (3.5)
p
(1)
t (x) ≥ e−C3t ∀ t ≥ T, ǫt < |x| < At, (3.6)
p
(1)
t (x) ≥ e−2|x| log |x| ∀ t ≥ T, At ≤ |x|. (3.7)To derive (3.4) from (3.5)�(3.7), we partition the sum ∑

x∈Z
into ∑|x|≤ǫt, ∑ǫt<|x|<At, and ∑|x|≥At with

ǫ << ρ << A. By (3.5),
∑

|x|≤ǫt

p
(1)
ρt (x) log p

(1)
t (x) ≥

∑

|x|≤ǫt

p
(1)
ρt (x) log

(

C1t
− 1

2 e−
C2x2

t

)

≥ − log t

2
− | logC1| −

C2

t

∑

x∈Z

x2p
(1)
ρt (x) = − log t

2
− | logC1| − C2ρ. (3.8)By (3.6) and the Markov inequality,

∑

ǫt<|x|<At

p
(1)
ρt (x) log p

(1)
t (x) ≥ −C3t

∑

|x|>ǫt

p
(1)
ρt (x) ≥ −C3t

∑

x∈Z
x2p

(1)
ρt (x)

ǫ2t2
= −C3ρ

ǫ2
. (3.9)And by (3.7), for t su�
iently large, we have

∑

|x|≥At

p
(1)
ρt (x) log p

(1)
t (x) ≥ −2

∑

|x|≥At

p
(1)
ρt (x)|x| log |x| ≥ −2

∑

|x|≥At

p
(1)
ρt (x)

|x|2
At

log(At)

≥ −2ρ

A
log(At). (3.10)Combining (3.8)�(3.10), we obtain the lower bound

lim inf
t→∞

∑

x∈Z
p
(1)
ρt (x) log p

(1)
t (x)

log t
≥ −1

2
− 2ρ

A
. (3.11)Sin
e A 
an be 
hosen arbitrarily large, (3.4) follows.We now verify (3.5)�(3.7). Let Pn(x) denote the probability that a dis
rete time simple random walkstarting from 0 visits x at time n. Then for x and n having the same parity, by Stirling's formula,

Pn(x) =
1

2n

n!
(

n+x
2

)

!
(

n−x
2

)

!
=

(1 + o(1))
√

2πn
(

n
e

)n

2n
√

2π
(

n+x
2

) (

n+x
2e

)
n+x

2

√

2π
(

n−x
2

) (

n−x
2e

)
n−x

2

= (1 + o(1))

√

2n

π(n2 − x2)
e−(n+x

2 ) log(1+ x
n )−(n−x

2 ) log(1− x
n)

= (1 + o(1))

√

2n

π(n2 − x2)
e
−x2

2n
+o

“

x2

n2

”

n
. (3.12)Hen
e for n su�
iently large and |x|/n su�
iently small, we have

Pn(x) ≥ Cn−
1
2 e−

x2

n . (3.13)10



If Nt denotes a Poisson random variable with mean t, then (3.5) follows from (3.13) and the observationthat Nt/t → 1 in probability with |P(Nt is odd) − P(Nt is even)| → 0 as t→ ∞.For (3.6), note that for |x| < At, by (3.13),
p
(1)
t (x) ≥

∑

At/ǫ≤n≤2At/ǫ
n≡x mod 2

P(Nt = n)Pn(x) ≥ C

√

ǫ

2At
e−

ǫx2

At P
(

At/ǫ ≤ Nt ≤ 2At/ǫ, Nt ≡ x mod 2
)

≥ C

√

ǫ

2At
e−ǫAte−C′t ≥ e−C3t, (3.14)where we used the fa
t that Nt/t satis�es a large deviation prin
iple with a �nite rate fun
tion on [0,∞).For |x| ≥ At, we 
an bound p

(1)
t (x) from below by requiring that the random walk makes exa
tly |x|jumps in the time interval [0, 1] so that the random walk is at x at time 1, and at time t the randomwalk returns to x. Thus, by the lo
al 
entral limit theorem, for t large,

p
(1)
t (x) ≥ 1

e|x|! 2
−|x|C

t
= (1 + o(1))

e−1+|x|−|x| log |x|
√

2π|x|
2−|x|C

t
. (3.15)It is then 
lear that (3.7) holds.Remark. We point out that, for general mean zero �nite varian
e random walks, the estimates (3.5)�(3.7) 
an still be established by adapting the proof here and de
omposing the random walk transitionkernel to extra
t a simple random walk part.Remark. The analogue of Lemma 3.1 also holds for dis
rete time simple random walks. The proof issimilar and omitted.Lower bound for E

Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]] for d = 1:By Jensen's inequality,
E

Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]

]

≥ E
Y
0

[

E
X
0

[

βLt(X,Y )
∣

∣Xt = Yt

]]

=β

∫ t

0
E

Y
0

[

ps(Ys)p(t−s)(Yt − Ys)

pt(Yt)

]

ds.By Donsker's invarian
e prin
iple, there exists α > 0 s.t. P
Y
0 (sups∈[0,t] |Ys| ≤

√
t) ≥ α for all t > 0. On theother hand, if sups∈[0,t] |Ys| ≤

√
t, then by the lo
al 
entral limit theorem, ps(Ys)∧ pt−s(Yt − Ys) ≥ C/

√
tfor all s ∈ [t/3, 2t/3] for some C independent of Y and t > 1, while pt(Yt) ≤ C ′/

√
t. Therefore

E
Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]

]

≥ αβ

∫ 2t/3

t/3

C√
t

C√
t

C′√
t

ds = C ′√t (3.16)for some C ′ > 0 independent of t. In view of (3.1) and Lemma 3.1, this proves that E
Y
0 [logZβ,pin

t,Y ] > 0for t large, and hen
e βc = 0 for d = 1.Lower bound for E
Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]] for d = 2:Sin
e in d = 2, Lt(X,Y ) is typi
ally of order log t, the argument above for d = 1 fails for d = 2. Instead,we apply an a.s. limit theorem for Lt(X,Y )/ log t 
onditioned on Y . More pre
isely, by Theorem 1.2 ofGärtner and Sun [GS07℄, a.s. w.r.t. Y , Lt(X,Y )/ log t 
onditioned on Y 
onverges in distribution to anexponential random variable with mean 1/π(1+ρ). We only need to bypass the 
onditioning on Xt = Yt.Let µt/ log t denote the law of (Xs)0≤s≤t/ log t, and let µ(t,y)
t/ log t denote the law of (Xs)0≤s≤t/ log t 
onditionedon Xt = y. Then µt/ log t and µ(t,y)

t/ log t are equivalent with density
dµ

(t,y)
t/ log t

dµt/ log t

(

X
)

=
pt−t/ log t(y −Xt/ log t)

pt(y)
=

t

t− t/ log t

e
−

‖y−Xt/ log t‖
2

t−t/ log t + o(1)

e−
‖y‖2

t + o(1)
, (3.17)11



where we applied the lo
al 
entral limit theorem. Sin
e ‖Xt/ log t‖/
√
t→ 0 in probability as t→ ∞, it is
lear that in total variational distan
e,

sup
‖y‖≤

√
t

∥

∥µ
(t,y)
t/ log t − µt/ log t

∥

∥

TV
−→
t→∞

0. (3.18)We 
an thus remove the 
onditioning at the 
ost of redu
ing the time interval from t to t/ log t.Fix A > 0. Let
GA

t/ log t =
{

Y : µt/ log t

(

Lt/ log t(X,Y ) ≥ A log t
)

≥ e−αA
}

. (3.19)By Theorem 1.2 of [GS07℄, if we 
hoose α > π(κ+ ρ), then P
Y
0 (GA

t/ log t) → 1 as t→ ∞. We now write
E

Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣

∣
Xt = Yt

]]

≥ E
Y
0

[

1{‖Yt‖≤
√

t, Y ∈GA
t/ log t

} log E
X
0

[

eβLt/ log t(X,Y )
∣

∣

∣
Xt = Yt

]]

≥ E
Y
0

[

1{‖Yt‖≤
√

t, Y ∈GA
t/ log t

}

(

βA log t+ log µ
(t,Yt)
t/ log t

(

Lt/ log t(X,Y ) ≥ A log t
)

)]

≥ βAP
Y
0 (‖Yt‖ ≤

√
t, Y ∈ GA

t/ log t) log t

+ E
Y
0

[

1{‖Yt‖≤
√

t, Y ∈GA
t/ log t

} log
(

µt/ log t

(

Lt/ log t(X,Y ) ≥ A log t
)

+ o(1)
)]

.

≥ (C − o(1))(βA log t+ log(e−αA + o(1)), (3.20)where C = inft>0 P
Y
0 (‖Yt‖ ≤

√
t) is positive and independent of A. Sin
e A 
an be 
hosen arbitrarilylarge, in view of (3.1) and Lemma 3.1, this proves that E

Y
0 [logZβ,pin

t,Y ] > 0 for t large, and hen
e βc = 0for d = 2.4 Gap between 
riti
al points: dis
rete time4.1 Proof of Theorem 1.3 in dis
rete time: d ≥ 5Our proof is based on adaptations of the fra
tional moment method used re
ently by Derrida, Gia
omin,La
oin and Toninelli [DGLT07℄ to show the non-
oin
iden
e of annealed and quen
hed 
riti
al pointsfor the pinning model in the disorder-relevant regime. Two ingredients are needed for the adaptation.First, a suitable representation for the partition fun
tion Ẑβ
N,Y and its 
onstrained 
ounterpart Ẑβ,pin

N,Y ina similar form as in (1.16), ex
ept with a Gibbs weight fa
tor w(·) that has a simpler dependen
e on thedisorder (∆i)i∈N = (Yi+1 − Yi)i∈N than in (1.17). Se
ond, a suitable 
hange of measure for the disorder
Y when estimating fra
tional moments E

Y
0 [(Ẑβ,pin

N,Y )γ ] for N on the order of the 
orrelation length of theannealed model.We split the proof into three parts: representation for Ẑβ
N,Y and Ẑβ,pin

N,Y ; fra
tional moment method; 
hangeof measure. To simplify notation, C,C1, C
′, et
, will denote generi
 
onstants whose pre
ise values may
hange from pla
e to pla
e.Representation for Ẑβ

N,Y and Ẑβ,pin
N,Y . The representation we now derive was already used in [BGdH08℄.It is based on binomial expansion for (1+eβ−1)LN (X,Y ). Let pX

n (·), resp. pX−Y
n (·), be the n-step transitionprobability kernel of X, resp. X−Y . Let GX−Y =

∑∞
n=1 p

X−Y
n (0), K(n) = pX−Y

n (0)/GX−Y , z′ = eβ −1,
12



z = z′GX−Y , and Žz
N,Y = Ẑβ

N,Y . Then
Žz

N,Y = E
X
0

[

(1 + z′)LN (X,Y )
]

= E
X
0

[

1 +

N
∑

m=1

∑

σ0=0<σ1<···<σm≤N

(z′)m
m
∏

i=1

1{Xσi=Yσi}
]

= 1 +
N
∑

m=1

∑

σ0=0<σ1<···<σm≤N

(z′)m
m
∏

i=1

pX
σi−σi−1

(Yσi − Yσi−1)

= 1 +
N
∑

m=1

∑

σ0=0<σ1<···<σm≤N

m
∏

i=1

K(σi − σi−1)w
(

z, σi − σi−1, Yσi − Yσi−1

)

, (4.1)where
w(z, σi − σi−1, Yσi − Yσi−1) = zpX

σi−σi−1
(Yσi − Yσi−1)/p

X−Y
σi−σi−1

(0). (4.2)If we denote Žz,pin
N,Y = z′

1+z′ Ẑ
β,pin
N,Y , then similarly,

Žz,pin
N,Y = E

X
0

[

(1 + z′)LN−1(X,Y )z′1{XN =YN}
]

=

N
∑

m=1

∑

σ0=0<σ1<···<σm=N

m
∏

i=1

K(σi − σi−1)w
(

z, σi − σi−1, Yσi − Yσi−1

)

. (4.3)Note that (4.3) 
asts Žz,pin
N,Y in the same form as (1.16), ex
ept now K(n) equals pX−Y

n (0)/GX−Y insteadof P
X−Y (τ0 = n), and w has a simpler dependen
e on the disorder (∆j)σi−1<j≤σi (i.e. only on σi − σi−1and ∑σi

j=σi−1+1 ∆j) than in (1.17). Be
ause K is the return time distribution of a re
urrent renewalpro
ess σ on N0, and E
Y
0 [w(z, σi − σi−1, Yσi − Yσi−1)] = z, the 
riti
al point for the annealed modelasso
iated with Žz,pin

N,Y is zann
c = 1, or equivalently, 1 = zann

c = (eβ̂
ann
c − 1)GX−Y so that

β̂ann
c = log

(

1 +
1

GX−Y

)

. (4.4)Fra
tional moment method. We now re
all the fra
tional moment method used by Derrida et al in[DGLT07℄. Due to the 
ommon framework between pinning models and the random walk pinning modelas pointed out in Se
tion 1.3, the basi
 strategy 
arries over without 
hange. The only model dependentpart of the argument lies in estimating E
Y
0 [(Žz,pin

N,Y )γ ], γ ∈ (0, 1), for N on the order of the 
orrelationlength of the annealed model, where a 
hange of measure argument for the disorder needs to be adapted.In terms of the new variables z = (eβ − 1)GX−Y and Žz
N,Y , Theorem 1.3 redu
es to showing that forsome z > zann

c = 1, supN∈N0
Žz

N,Y < ∞ a.s. w.r.t. Y . Sin
e for z > 1, Žz
N,Y is a.s. in
reasing in N , itsu�
es to show that for some z > 1 and γ ∈ (0, 1),

sup
N∈N0

E
Y
0

[(

Žz
N,Y

)γ]
<∞. (4.5)The basi
 idea is to suitably group terms in the expansion for Žz

N,Y in (4.1) and then apply the fra
tionalmoment inequality
(

n
∑

i=1

|ai|
)γ

≤
n
∑

i=1

|ai|γ , γ ∈ (0, 1). (4.6)However, the e�e
tiveness of (4.6) depends 
ru
ially on how Žz
N,Y is de
omposed. In [DGLT07℄, Derridaet al studied analogues of the 
onstrained partition fun
tion Žz,pin

N,Y , and their 
lever 
hoi
e is to groupterms in (4.3) a

ording to the starting and the ending position of the gap in the renewal sequen
e σstraddling a �xed position L ∈ N. Namely,
Žz,pin

N,Y =

L−1
∑

i=0

N−L
∑

j=0

Žz,pin
i,Y K(N − j − i)w(z,N − j − i, YN−j − Yi)Ž

z,pin
j,θN−jY ,13



where θnY = (Yn+i −Yn)i∈N0 denotes a shift in Y . For Žz
N,Y , we 
an perform a similar grouping of termsin (4.1) and get

Žz
N,Y = Žz

L−1,Y +
L−1
∑

i=0

N−L
∑

j=0

Žz,pin
i,Y K(N − j − i)w(z,N − j − i, YN−j − Yi)Ž

z
j,θN−jY . (4.7)Fix γ ∈ (0, 1). Denote Ǎz

N = E
Y
0

[

(Žz
N,Y )γ

] and Ǎz,pin
N = E

Y
0

[

(Žz,pin
N,Y )γ

]. Sin
e
K(N − j − i)w(z,N − j − i, YN−j − Yi) =

zpX
N−j−i(YN−j − Yi)

GX−Y
≤ C(N − j − i)−

d
2for some C > 0 independent of i, j, N , Y and z ∈ [1, 2] by the lo
al 
entral limit theorem, applying (4.6)to (4.7) and taking expe
tation w.r.t. Y gives

Ǎz
N ≤ Ǎz

L−1 + C
L−1
∑

i=0

Ǎz,pin
i

N−L
∑

j=0

(N − j − i)−
dγ
2 Ǎz

j ≤ Ǎz
L−1 + C

(

L−1
∑

i=0

Ǎz,pin
i

(L− i)
dγ
2
−1

)

max
0≤j≤N−L

Ǎz
j . (4.8)If for some 
hoi
e of z > 1 and L ∈ N,̺̌

= C

(

L−1
∑

i=0

Ǎz,pin
i

(L− i)
dγ
2
−1

)

< 1, (4.9)then iterating (4.8) 
learly implies that Ǎz
N is uniformly bounded in N , and hen
e (4.5).By Jensen's inequality, Ǎz,pin

N ≤ E
Y
0 [Žz,pin

N,Y ]γ . It is 
lear from (4.3) and (4.2) that E
Y
0 [Žz,pin

N,Y ] is thepartition fun
tion of a homogeneous pinning model with 
riti
al point zann
c = 1. Hen
e F̌ann(z) =

lim
N→∞

N−1 log E
Y
0 [Žz,pin

N,Y ] exists, and F̌ann(z) = F̂ann(β) with z = (eβ − 1)GX−Y . Sin
e d ≥ 5, K(·) has�nite �rst moment, and hen
e by Theorem 2.1 of [G07℄, F̌ann(z) ∼ C(z − 1) for some C > 0 as z ↓ 1.Sin
e (EY
0 [Žz,pin

n,Y ])n∈N is super-multipli
ative, E
Y
0 [Žz,pin

N,Y ] ≤ eNF̌ann(z) ≤ eCN(z−1) for all N ∈ N. So if we
hoose
L = L(z) =

1

z − 1
, (4.10)where we abused notation and assumed L to be an integer for simpli
ity, then sup1≤i≤L Ǎ

z,pin
i ≤ C forsome C > 0 independent of z. Therefore

ˇ̺≤
L−R
∑

i=0

C

(L− i)
dγ
2
−1

+

L−1
∑

i=L−R+1

CǍz,pin
i

(L− i)
dγ
2
−1

≤ CR2− dγ
2 + C max

L−R≤i≤L
Ǎz,pin

i . (4.11)For d ≥ 5, we 
an 
hoose γ < 1 
lose to 1 su
h that the �rst term on the RHS of (4.11) 
an be madearbitrarily small (uniformly in z) by 
hoosing R large. To show ˇ̺< 1 for some z > 1, it then su�
es toshow that
lim
z↓1

max
L−R≤N≤L

Ǎz,pin
N = 0, (4.12)where R ∈ N is large and �xed, and L = 1

z−1 . This summarizes the model independent part of thefra
tional moment method as used in [DGLT07℄.Change of measure. The basi
 idea in [DGLT07℄ to prove (4.12) is to apply a 
hange of measure tothe disorder so that the 
ost of 
hanging the measure is small, yet under the new disorder, the annealedpartition fun
tion for a system of size L is small. For the pinning model, the 
hoi
e of 
hanging themeasure in [DGLT07℄ is to make the disorder more repulsive, i.e., tilt the measure of ωi in (1.14) bya fa
tor e−λωi for some λ > 0. In our setting, it turns out that for the 
ontinuous time model, theappropriate 
hange of measure is to in
rease the jump rate of the random walk Y . For the dis
rete timemodel, the analogue is to in
rease the varian
e of the random walk in
rement ea
h step without 
hangingthe support of the random walk transition kernel. However, among nearest-neighbor random walks on Z
d,14



the varian
e of simple random walk is already maximal. To over
ome this di�
ulty, we 
hange measurefor Y two steps at a time. More pre
isely, for h ∈ (0, 1
2d ), let (Y h

n )n∈N0 be a pro
ess on Z
d with Y0 = 0and transition probabilities

P
(

Y h
n+1 − Y h

n = ei
∣

∣(Y h
k )0≤k≤n

)

=



























1

2d
if n is even, or n is odd and ei 6= ±(Y h

n − Y h
n−1),

1 + h

2d
if n is odd, and ei = Y h

n − Y h
n−1,

1 − h

2d
if n is odd, and ei = −(Y h

n − Y h
n−1),

(4.13)for ea
h of the 2d unit ve
tors ei ∈ Z
d. Note that P(Y h

2 = 2ei) = P(Y2 = 2ei) + h
4d2 for ea
h unit ve
tor

ei ∈ Z
d, P(Y h

2 = 0) = P(Y2 = 0) − h
2d , and P(Y h

2 = x) = P(Y2 = x) for all other x ∈ Z
d. Thus Y h

2 haslarger varian
es than Y2. Clearly up to any time N ∈ N, the distribution of Y and Y h are equivalent.Let f(N,Y ) denote the Radon-Nikodym derivative of the law of (Y h
i )0≤i≤N w.r.t. (Yi)0≤i≤N . Then

Ǎz,pin
N = E

Y h

0

[

f(N,Y h)−1
(

Žz,pin
N,Y h

)γ] ≤ E
Y h

0

[

f(N,Y h)−
1

1−γ
]1−γ

E
Y h

0

[

Žz,pin
N,Y h

]γ

= E
Y
0

[

f(N,Y )
− γ

1−γ
]1−γ

E
Y h

0

[

Žz,pin
N,Y h

]γ
. (4.14)Sin
e (Y2n+1 − Y2n, Y2n+2 − Y2n)n∈N0 are i.i.d. and the distribution of Y h

2n+1 − Y h
2n 
onditioned on Y h

2n isthe same as a simple random walk, we have
E

Y
0

[

f(N,Y )
− γ

1−γ
]

= E
Y
0

[

f(2, Y )
− γ

1−γ
]⌊N

2 ⌋ =
(

1 − 1

d
+

(1 + h)−
γ

1−γ

2d
+

(1 − h)−
γ

1−γ

2d

)⌊N
2 ⌋ ≤ e

γh2N

2d(1−γ)2for h su�
iently small. Therefore if we 
hoose h = 1√
L
, then the �rst fa
tor in (4.14) is uniformly boundedfor L−R ≤ N ≤ L, and to prove (4.12), it only remains to estimate E

Y h

0 [Žz,pin
N,Y h ] for h = 1√

L
=

√
z − 1.By (4.3), we have

E
Y h

0

[

Žz,pin
N,Y h ] =

N
∑

m=1

( z

GX−Y

)m ∑

σ0=0<σ1<···<σm=N

E
Y h

0

[

m
∏

i=1

pX
σi−σi−1

(Y h
σi

− Y h
σi−1

)
]

. (4.15)Note that when σi−1 is even, by the properties of Y h, we have
E

Y h

0

[

pX
σi−σi−1

(Y h
σi

− Y h
σi−1

)
∣

∣(Y h
j )0≤j≤σi−1

]

= E
Y h

0

[

pX
σi−σi−1

(Y h
σi−σi−1

)
]

.Similarly when σi−1 is odd, by symmetry and translation invarian
e, we have
E

Y h

0

[

pX
σi−σi−1

(Y h
σi

− Y h
σi−1

)
∣

∣(Y h
j )0≤j≤σi−1

]

= E
Y h

0

[

pX
σi−σi−1

(Y h
σi−σi−1+1 − Y h

1 )
∣

∣Y h
1 = e1

]

,whi
h is a 
onstant independent of (Y h
j )0≤j≤σi−1 . Thus in (4.15), we 
an su

essively 
ondition w.r.t.

(Y h
j )0≤j≤σn , (Y h

j )0≤j≤σn−1 , . . ., (Y h
j )0≤j≤σ1 . To write the result in a more 
ompa
t form, let us denote

Kh,even(n) =
E

Y h

0 [pX
n (Y h

n )]

Gh,even
where Gh,even =

∞
∑

n=1

E
Y h

0 [pX
n (Y h

n )],

Kh,odd(n) =
E

Y h

0 [pX
n (Y h

n+1 − Y h
1 )|Y h

1 = e1]

Gh,odd
where Gh,odd =

∞
∑

n=1

E
Y h

0 [pX
n (Y h

n+1 − Y h
1 )|Y h

1 = e1].Let Kh(i, j) = Kh,even(j − i) when i is even, and Kh(i, j) = Kh,odd(j − i) when i is odd. Let ι =

{0, ι1, ι2, · · · } be a renewal pro
ess on N0 with parity-dependent inter-arrival law Kh(·, ·), and denoteexpe
tation w.r.t. ι by E
Kh[·]. Then (4.15) redu
es to

E
Y h

0

[

Žz,pin
N,Y h

]

= E
Kh

[( z

GX−Y

)|ι∩[1,N ]|
G

|ιe∩[1,N ]|
h,even G

|ιo∩[1,N ]|
h,odd 1{N∈ι}

]

≤ E
Kh

[(z(Gh,even ∨Gh,odd)

GX−Y

)|ι∩[1,N ]|]
,15



where ιe and ιo denote respe
tively the even and odd subsets of ι. In d ≥ 5, by the lo
al 
entral limittheorem, it is easy to see that there exists an inter-arrival probability distribution K∗(·) on N with �nite�rst moment, su
h that K∗ sto
hasti
ally dominates both Kh,even(·) and Kh,odd(·) for h su�
iently small,i.e.,∑i≥nK∗(i) ≥
∑

i≥nKh,even(i) and∑i≥nK∗(i) ≥
∑

i≥nKh,odd(i) for all n ∈ N and h ∈ [0, 1
2 ]. Re
allour 
hoi
e h = 1√

L
=

√
z − 1. We will show that

z
(

Gh,even ∨Gh,odd

)

GX−Y
= 1 − c

√
z − 1 + o(

√
z − 1) (4.16)for some c > 0. Then for all z > 1 su�
iently 
lose to 1,

E
Y h

0

[

Žz,pin
N,Y h

]

≤ E
K∗
[(

1 − c
√
z − 1 + o(

√
z − 1)

)|ι∗∩[1,N ]|]
, (4.17)where ι∗ is a renewal pro
ess with inter-arrival law K∗ and is independent of z. By the law of largenumbers, a.s. w.r.t. ι∗,

lim
n→∞

N−1|ι∗ ∩ [1,N ]| =
1

∑

i∈N
iK∗(i)

> 0,and hen
e
lim
z↓1

max
(z−1)−1−R≤N≤(z−1)−1

(

1 − c
√
z − 1 + o(

√
z − 1)

)|ι∗∩[1,N ]|
= 0.Thus

lim
z↓1

max
L−R≤N≤L

E
Y h

0

[

Žz,pin
N,Y h

]

= 0, L =
1

z − 1
, h =

√
z − 1, (4.18)whi
h together with (4.14) implies (4.12).It only remains to verify (4.16). For k = (k1, · · · , kd) ∈ R

d, we have
φ(k) := E

X
0 [eik·X1 ] =

1

d

d
∑

i=1

cos ki,

ψ(k) := E
Y h

0 [eik·Y
h
2 ] = φ(k)2 − h

d2

d
∑

i=1

sin2 ki,

ϕ(k) := E
Y h

0 [eik·(Y
h
2 −Y h

1 ) |Y h
1 = e1] = φ(k) + i

h

d
sin k1.

(4.19)
Sin
e X and Y h are independent, (Y h

2n − Y h
2n−2)n∈N are i.i.d., Y h

2n+1 − Y h
2n is independent of (Y h

j )0≤j≤2nand is distributed as X1, while 
onditioned on Y h
1 = e1, Y h

2 − Y h
1 is independent of (Y h

j − Y h
2 )j≥2, weobtain by Fourier inversion

GX−Y =
1

(2π)d

∫

[−π,π]d

(

φ(k)2 + φ(k)4 + · · ·
)

dk =
1

(2π)d

∫

[−π,π]d

φ(k)2

1 − φ(k)2
dk, (4.20)

Gh,even =
1

(2π)d

∫

[−π,π]d

(

φ(k)2 + φ(k)2ψ(k) + φ(k)4ψ(k) + φ(k)4ψ(k)2 + · · ·
)

dk

=
1

(2π)d

∫

[−π,π]d

φ(k)2(1 + ψ(k))

1 − φ(k)2ψ(k)
dk, (4.21)

Gh,odd =
1

(2π)d

∫

[−π,π]d

(

ϕ(k)φ(k) + ϕ(k)φ(k)3 + ϕ(k)φ(k)3ψ(k) + ϕ(k)φ(k)5ψ(k) + · · ·
)

dk

=
1

(2π)d

∫

[−π,π]d

ϕ(k)φ(k)(1 + φ(k)2)

1 − φ(k)2ψ(k)
dk =

1

(2π)d

∫

[−π,π]d

φ(k)2(1 + φ(k)2)

1 − φ(k)2ψ(k)
dk, (4.22)where in (4.22) we have used the formula for ϕ(k) and the fa
t that φ(k) and ψ(k) are even fun
tionswhile sin k1 is odd. Sin
e ψ(k) < φ(k)2 and φ(k), ψ(k) ∈ [−1, 1], we have Gh,even < Gh,odd, while

GX−Y −Gh,odd =
1

(2π)d

∫

[−π,π]d

( φ(k)2

1 − φ(k)2
− φ(k)2(1 + φ(k)2)

1 − φ(k)2ψ(k)

)

dk,

=
h

(2π)d d2

∫

[−π,π]d

φ(k)4
∑d

i=1 sin2 ki

(1 − φ(k)2)(1 − φ(k)2ψ(k))
dk, (4.23)16



whi
h implies (4.16) sin
e h =
√
z − 1.Remark. Equation (4.16) reveals the 
lose resemblan
e between the random walk pinning model andthe pinning model (
ompare (4.17) here with (4.12) in [DGLT07℄)). In both 
ases, after 
hanging themeasure, we end up 
omparing with a homogeneous pinning model of size N with weight fa
tor e−c/

√
Nfor ea
h renewal return. The fa
tor c/√N partly explains why α = 1/2, resp. d = 3, is the 
riti
al 
asefor the pinning, resp. random walk pinning model.Remark. For general random walks, we 
an try to 
hange measure for Y one-step at a time. Morepre
isely, let S = {y ∈ Z

d : pY
1 (y) > 0}. Then for any A,B ⊂ S with A ∩ B = ∅, for any transitionprobability kernels pA

1 (·) and pB
1 (·) with support resp. A and B, and for h ∈ R su�
iently 
lose to 0, we
an 
hange measure for Y by repla
ing pY

1 (·) with pY h

1 (x) = pY
1 (x) + h(pA

1 (x) − pB
1 (x)). In (4.14), theestimate involving the density f(N,Y ) is similar, while the estimate for E

Y h

0 [Žz,pin
N,Y h ] redu
es to estimating

GX−Y −GX−Y h
=

1

(2π)d

∫

[−π,π]d

( 1

1 − φX(k)φY (k)
− 1

1 − φX(k)φY h(k)

)

dk

=
h

(2π)d

∫

[−π,π]d

φX(φB − φA)
(

1 − φXφY

)(

1 − φXφY h

)dk,where φX(k) =
∑

x e
ik·xpX

1 (x), φX(k) = φX(−k), and φY (k), φA(k) and φB(k) are de�ned similarly.Note that in d ≥ 4, ∫ ∣∣φX(φB−φA)

(1−φXφY )2

∣

∣dk < ∞. Therefore based on Taylor expansion in h, all 
al
ulations
arry through as long as Q :=
∫ φX(φB−φA)

(1−φXφY )2
dk 6= 0 and h is 
hosen to have the same sign. When X and

Y are simple random walks, we have Q = 0 for any 
hoi
e of A, B, pA
1 and pB

1 due to symmetry. Onthe other hand, if S 
ontains enough points so as to break symmetry, then it is reasonable to expe
t theexisten
e of A, B, pA
1 and pB

1 whi
h give Q 6= 0. However, it is not obvious how to formulate a moreexpli
it 
riterion.4.2 Proof of Theorem 1.3 in dis
rete time: d = 4For d = 4, in the representation (4.1), we have K(n) = pX−Y
n (0)/GX−Y ∼ Cn−2 whi
h has in�nite �rstmoment. Thus d = 4 
orresponds to the 
ase α = 1 in [DGLT07℄ for the pinning model. In [DGLT07℄,the 
ase α = 1 was left out. However, as we will show below, there is no di�
ulty in extending thefra
tional moment method to the d = 4 
ase, and we expe
t the same to be true for the α = 1 
ase forthe pinning model.As in d ≥ 5, it su�
es to verify (4.9). What di�ers in d = 4 is that ∑∞

i=R i
1− dγ

2 =
∑∞

i=R i
1−2γ = ∞ forany γ ∈ (0, 1) and R ∈ N. Hen
e a more 
areful estimate of ˇ̺ than in (4.11) is needed. By Theorem 2.1of [G07℄ and super-multipli
ativity of (EY

0 [Žz,pin
n,Y ])n∈N, we have E

Y
0 [Žz,pin

N,Y ] ≤ eCN(z−1) for some C > 0uniformly in z > 1 su�
iently 
lose to 1 and N ∈ N. Therefore the same 
hoi
e L = (z−1)−1 as in d ≥ 5ensures that sup1≤i≤L Ǎ
z,pin
i ≤ C <∞ uniformly for z > 1 
lose to 1. Fix ǫ > 0 small, then let γ ∈ (0, 1)su
h that 2γ − 1 > 1 − ǫ. Analogous to (4.11), we have

ˇ̺≤
L1−ǫ
∑

i=0

C

(L− i)2γ−1
+

L−1
∑

i=L1−ǫ

CǍz,pin
i

(L− i)2γ−1
≤ CL1−ǫ

(L− L1−ǫ)2γ−1
+ CL2−2γ max

L1−ǫ≤i≤L
Ǎz,pin

i . (4.24)Therefore to show ˇ̺< 1 for some z > 1, it su�
es to show that with L = (z − 1)−1,
lim
z↓1

L2−2γ max
L1−ǫ≤N≤L

Ǎz,pin
N = 0. (4.25)Tra
ing through the arguments for d ≥ 5, we see that analogous to (4.17), for h = 1/

√
L =

√
z − 1,uniformly for L1−ǫ ≤ N ≤ L and z > 1 su�
iently 
lose to 1, we have

Ǎz,pin
N ≤ CE

Y h

0 [Žz,pin
N,Y h ]γ ≤ CE

K∗
[

exp
{

−c
√
z − 1

∣

∣ι∗ ∩ [1, (z − 1)ǫ−1]
∣

∣

}]γ
, (4.26)17



where ι∗ is a renewal pro
ess on N0 with inter-arrival probability distribution K∗ satisfying the propertythat K∗(n) ∼ Cn−2 for some C > 0. Set M = (z − 1)ǫ−1. Then
0 ≤ lim

z↓1
L2−2γ max

L1−ǫ≤N≤L
Ǎz,pin

N ≤ lim
M→∞

CM
2−2γ
1−ǫ E

K∗

[

exp
{

−cM− 1
2(1−ǫ)

∣

∣ι∗ ∩ [1,M ]
∣

∣

}]γ
= 0,where we applied Proposition A.1 with δ1 = 1

2(1−ǫ) and 1 − δ2 = 2−2γ
γ(1−ǫ) , whi
h satisfy the 
ondition

0 < δ1 < δ2 < 1 if ǫ > 0 is small, and γ ∈ (0, 1) is then 
hosen su�
iently 
lose to 1.5 Gap between 
riti
al points: 
ontinuous time5.1 Proof of Theorem 1.3 in 
ontinuous time: d ≥ 5As in dis
rete time, we split the proof into three parts: representation for Zβ
t,Y and Zβ,pin

t,Y ; fra
tionalmoment method; 
hange of measure. Compared to the dis
rete time 
ase, the main 
ompli
ation here isto suitably dis
retize time so that the fra
tional moment inequality (4.6) 
an be applied. The 
hange ofmeasure argument however be
omes mu
h simpler.Representation for Zβ
t,Y and Zβ,pin

t,Y . We now Taylor expand eβLt(X,Y ). Let ps(·) be the transitionprobability kernel of a rate 1 
ontinuous time simple random walk on Z
d. Let G1+ρ =

∫∞
0 p(1+ρ)s(0)ds,

K1+ρ(s) = p(1+ρ)s(0)/G1+ρ, β̄ = βG1+ρ, and Z̄ β̄
t,Y = Zβ

t,Y . Then
Z̄ β̄

t,Y = E
X
0

[

1 +

∞
∑

m=1

βm

m!

(

∫ t

0
1{Xs=Ys}ds

)m
]

= E
X
0



1 +
∞
∑

m=1

βm

∫

· · ·
∫

0<s1···<sm<t

1{Xs1=Ys1 ,··· ,Xsm=Ysm}ds1 · · · dsm





= 1 +
∞
∑

m=1

βm

∫

· · ·
∫

0<s1···<sm<t

ps1(Ys1)ps2−s1(Ys2 − Ys1) · · · psm−sm−1(Ysm − Ysm−1)ds1 · · · dsm

= 1 +

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<t

m
∏

i=1

(

K1+ρ(si − si−1)w(β̄, si − si−1, Ysi − Ysi−1)
)

ds1 · · · dsm, (5.1)where
w(β̄, si − si−1, Ysi − Ysi−1) =

β̄ psi−si−1(Ysi − Ysi−1)

p(1+ρ)(si−si−1)(0)
. (5.2)If we denote Z̄ β̄,pin

t,Y = βZβ,pin
t,Y , then similarly,

Z̄ β̄,pin
t,Y = K1+ρ(t)w(β̄, t, Yt)+

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<sm+1=t

m+1
∏

i=1

K1+ρ(si−si−1)w(β̄, si−si−1, Ysi−Ysi−1)ds1 · · · dsm. (5.3)Note that (5.3) 
asts Z̄ β̄,pin
t,Y in the same form as (4.3), ex
ept that the underlying renewal pro
ess is in
ontinuous time with return time distribution K1+ρ(s)ds. Sin
e

E
Y
0 [w(β̄, si − si−1, Ysi − Ysi−1)] = β̄, (5.4)and K1+ρ(·) de�nes a re
urrent renewal pro
ess on [0,∞), E

Y
0 [Z̄ β̄,pin

t,Y ] is the partition fun
tion of ahomogeneous pinning model (in 
ontinuous time) with 
riti
al point β̄ann
c = 1, or equivalently,

βann
c =

β̄ann
c

G1+ρ
=

1

G1+ρ
. (5.5)18



Fra
tional moment method. Analogous to (4.7), for �xed L ∈ N, we have the de
omposition
Z̄ β̄

t,Y = Z̄ β̄
L,Y +

∫∫

0≤u<L<v≤t

K1+ρ(v − u)w(β̄, v − u, Yv − Yu)Z̄ β̄,pin
u,Y Z̄ β̄

t−v,θvY (1 + δ0(u))dudv, (5.6)where θvY = (Yv+s − Yv)s≥0 denotes a shift in Y , δ0(u) is the delta fun
tion at 0, and Z̄ β̄,pin
0,Y = 1. In the
ontinuous setting, the analogue of (4.6), (

∫

|a(x)|dx)γ ≤
∫

|a(x)|γdx for γ ∈ (0, 1), is false in general.Therefore we need to dis
retize the integrals in (5.6). In order to obtain uniform 
ontrol for the integrandin (5.6) on intervals, it turns out to be more suitable to study the following quantities in pla
e of Z̄ β̄
t,Yand Z̄ β̄,pin

t,Y .
Z̄ β̄,1

t,Y = 1 +

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<t

m
∏

i=1

K1+ρ(si − si−1)

m
∏

i=2

w(β̄, si − si−1, Ysi − Ysi−1)ds1 · · · dsm,

Z̄ β̄,pin1
t,Y = K1+ρ(t) +

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<sm+1=t

m+1
∏

i=1

K1+ρ(si−si−1)

m+1
∏

i=2

w(β̄, si−si−1, Ysi−Ysi−1)ds1 · · · dsm,

Z̄ β̄,pin2
t,Y = K1+ρ(t) +

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<sm+1=t

m+1
∏

i=1

K1+ρ(si−si−1)
m
∏

i=2

w(β̄, si−si−1, Ysi−Ysi−1)ds1 · · · dsm,

(5.7)
where ∏m

i=2w = 1 if m = 1. Note that Z̄ β̄,1
t,Y di�ers from Z̄ β̄

t,Y in that the fa
tor w(β̄, s1, Ys1) in (5.1)has been omitted, while Z̄ β̄,pin1
t,Y (resp. Z̄ β̄,pin2

t,Y ) di�ers from Z̄ β̄,pin
t,Y in that the fa
tors w(β̄, t, Yt) and

w(β̄, s1, Ys1) (resp. as well as w(β̄, t− sm, Yt − Ysm)) in (5.3) have been omitted. Omitting these randomfa
tors will provide �exibility in adjusting the lengths of the renewal gaps (si − si−1)i∈N.Note that
w(β̄, v − u, Yv − Yu) =

β̄ pv−u(Yv − Yu)

p(1+ρ)(v−u)(0)
≤ β̄ pv−u(0)

p(1+ρ)(v−u)(0)
≤ C (5.8)for some C ∈ (1,∞) independent of v − u ≥ 0 and β̄ ∈ [1, 2], whi
h is furthermore uniformly boundedfor ρ ∈ [0, 1]. Therefore

Z̄ β̄
t,Y ≤ CZ̄ β̄,1

t,Y . (5.9)By the monotoni
ity of Zβ
t,Y = Z̄ β̄

t,Y in t, to show β < β∗c (i.e., supt≥0 Z
β
t,Y < ∞ a.s. w.r.t. Y ), it su�
esto show that for β̄ = βG1+ρ, there exists γ ∈ (0, 1) su
h that

sup
t≥0

E
Y
0

[(

Z̄ β̄,1
t,Y

)γ]
<∞. (5.10)Note that Z̄ β̄,1

t,Y is in
reasing in t for every Y , therefore we may assume t ∈ N. Similar to (5.6), we have
Z̄ β̄,1

t,Y = Z̄ β̄,1
L,Y +

∫ t

L
K1+ρ(v)Z̄

β̄
t−v,θvY dv +

∫∫

0<u<L<v<t

K1+ρ(v − u)w(β̄, v − u, Yv − Yu)Z̄ β̄,pin1
u,Y Z̄ β̄

t−v,θvY dudv

= Z̄ β̄,1
L,Y +

t−1
∑

j=L

j+1
∫

j

K1+ρ(v)Z̄
β̄
t−v,θvY dv (5.11)

+

L−1
∑

i=0

t−1
∑

j=L

∫∫

i<u<i+1
j<v<j+1

K1+ρ(v − u)w(β̄, v − u, Yv − Yu)Z̄ β̄,pin1
u,Y Z̄ β̄

t−v,θvY dudv.We will establish uniform estimates on the integrand for ea
h integral in (5.11) by bounding Z̄ β̄
t−v,θvY interms of Z̄ β̄,1

t−j−1,θj+1Y and bounding Z̄ β̄,pin1
u,Y in terms of Z̄ β̄,pin2

i,Y .19



We �rst make a few observations whi
h will 
ome in handy. Note that for all s ∈ [0, 1] and all realizationsof Y ,
Z̄ β̄

s,Y = Zβ
s,Y = E

X
0 [eβLs(X,Y )] ≤ eβ ,

Z̄ β̄,pin
s,Y = βZβ,pin

s,Y = β E
X
0 [eβLs(X,Y )1{Xs=Ys}] ≤ βeβ.

(5.12)Next note that
Cρ = sup

u≥0
0≤s≤1

K1+ρ(u)

K1+ρ(u+ s)
<∞, (5.13)whi
h is uniformly bounded for ρ ∈ [0, 1].If v ∈ (j, j + 1) for some L ≤ j ≤ t− 1, then by the same de
omposition as (5.6) with s1, s2, j + 1 nowplaying the roles of u, v, L and by the observations above, we have

Z̄ β̄
t−v,θvY =Z̄ β̄

j+1−v,θvY +

∫∫

v≤s1<j+1
j+1<s2<t

K1+ρ(s2 − s1)w(β̄, s2−s1, Ys2−Ys1)Z̄
β̄,pin
s1−v,θvY Z̄

β̄
t−s2,θs2Y (1+δv(s1))ds1ds2

≤C + C

∫ t

j+1
K1+ρ(s2 − j − 1)Z̄ β̄

t−s2,θs2Y ds2 = CZ̄ β̄,1
t−j−1,θj+1Y , (5.14)where C <∞ is independent of t, v, Y , β̄ ∈ [1, 2], and furthermore is uniformly bounded for ρ ∈ [0, 1].If u ∈ (i, i + 1) for some 0 ≤ i ≤ L− 1, then by a similar de
omposition as above, we have

Z̄ β̄,pin1
u,Y =

∫

i<s2≤u

K1+ρ(s2)Z̄
β̄,pin
u−s2,θs2Y (1 + δu(s2))ds2

+

∫∫

0<s1<i<s2≤u

K1+ρ(s2 − s1)w(β̄, s2 − s1, Ys2 − Ys1)Z̄
β̄,pin1
s1,Y Z̄ β̄,pin

u−s2,θs2Y (1 + δu(s2))ds1ds2

≤ CK1+ρ(i) + C

∫

0<s1<i

K1+ρ(i− s1)Z̄
β̄,pin1
s1,Y ds1 = CZ̄ β̄,pin2

i,Y . (5.15)Substituting the bounds (5.8), (5.13)�(5.15) into (5.11) gives
Z̄ β̄,1

t,Y ≤ Z̄ β̄,1
L,Y + C ′

t−1
∑

j=L

K1+ρ(j + 1)Z̄ β̄,1
t−j−1,θj+1Y + C ′

L−1
∑

i=0

t−1
∑

j=L

K1+ρ(j + 1 − i)Z̄ β̄,pin2
i,Y Z̄ β̄,1

t−j−1,θj+1Y

≤ Z̄ β̄,1
L,Y + C

L−1
∑

i=0

t−1
∑

j=L

K1+ρ(j + 1 − i)Z̄ β̄,pin2
i,Y Z̄ β̄,1

t−j−1,θj+1Y , (5.16)where C <∞ is independent of t, Y , β̄ ∈ [1, 2], and 
an be 
hosen uniformly for ρ ∈ [0, 1].Fix γ ∈ (0, 1) su
h that dγ
2 > 2 for d ≥ 5. Denote Āβ̄,1

t = E
Y
0

[(

Z̄ β̄,1
t,Y

)γ] and Āβ̄,pin2
t = E

Y
0

[(

Z̄ β̄,pin2
t,Y

)γ].Then the same 
al
ulations as those leading to (4.8) yields
Āβ̄,1

t ≤ Āβ̄,1
L + ̺ sup

0≤j≤t−L
Āβ̄,1

j with ̺ = C

(

L−1
∑

i=0

Āβ̄,pin2
i

(L− i)
dγ
2
−1

)

, (5.17)where C < ∞ is independent of t and β̄ ∈ [1, 2], and 
an be 
hosen uniformly for ρ ∈ [0, 1]. As in thedis
rete time 
ase, we aim to show ̺ < 1.Note that Āβ̄,pin2
s ≤ E

Y
0 [Z̄ β̄,pin2

s,Y ]γ ≤ E
Y
0 [Z̄ β̄,pin

s,Y ]γ ≤ E
Y
0 [Z̄ β̄

s,Y ]γ by Jensen and (5.4), where we see from (5.1)that E
Y
0 [Z̄ β̄

s,Y ] is the partition fun
tion of a 
ontinuous time homogeneous pinning model with return timedistribution K1+ρ(·) and 
riti
al point β̄ann
c = 1. For d ≥ 5, it is easy to verify (by law of large numbersand elementary large deviation estimates for the number of returns of the renewal pro
ess before time s)that
E

Y
0 [Z̄ β̄

s,Y ] ≤ CeC(β̄−1)s (5.18)20



for some C ∈ (0,∞) independent of s ≥ 0 and β̄ ∈ [1, 2], and is furthermore uniformly bounded for
ρ ∈ [0, 1]. As in the dis
rete time 
ase, we 
hoose

L = (β̄ − 1)−1. (5.19)In view of (5.10) and (5.17), and by the same arguments as those leading to (4.12) in the dis
rete time
ase, to show β∗c > βann
c for any ρ > 0, it su�
es to show that

lim
β̄↓1

sup
L−R≤t≤L

Āβ̄,pin2
t = 0, (5.20)where R ∈ N is large and �xed and 
an be 
hosen uniformly for ρ ∈ [0, 1]. On the other hand, showing

β∗c − βann
c ≥ aρ (5.21)for some a > 0 and all ρ ∈ [0, 1] redu
es to showing that: (1) the 
onvergen
e in (5.20) is in fa
t uniformfor ρ ∈ [ρ0, 1] for any 0 < ρ0 ≤ 1, whi
h implies that infρ∈[ρ0,1](β̄

∗
c − 1) > 0 where β̄∗c = G1+ρβ

∗
c , andhen
e infρ∈[ρ0,1](β

∗
c − βann

c ) > 0; (2) for β̄ = 1 + aρ with a > 0 su�
iently small, L = (β̄ − 1)−1, and
R ∈ N large and independent of ρ ∈ [0, 1],

lim sup
ρ↓0

sup
L−R≤t≤L

Āβ̄,pin2
t < 1, (5.22)whi
h implies that for some ρ0 ∈ (0, 1], β̄∗c − 1 = G1+ρ(β
∗
c − βann

c ) ≥ aρ for all ρ ∈ [0, ρ0].Change of measure. We now prove (5.20) and (5.22), where the 
onvergen
e in (5.20) will be shownto be uniform in ρ ∈ [ρ0, 1] for any 0 < ρ0 ≤ 1. Here, the appropriate 
hange of measure for the disorder
Y is simply to in
rease the jump rate of the random walk Y . Let Y ρ+h be a simple random walk on Z

dwith jump rate ρ+ h for some h > 0, then the path measures (Ys)0≤s≤t and (Y ρ+h
s )0≤s≤t are equivalent,and the Radon-Nikodym derivative of the law of (Y ρ+h

s )0≤s≤t w.r.t. that of (Ys)0≤s≤t is given by
f(t, Y ) = e−ht(1 + hρ−1)Nt(Y ),where Nt(Y ) is the number of jumps of Y in [0, t]. Then as in (4.14),

Āβ̄,pin2
t = E

Y ρ+h

0

[

f(t, Y ρ+h)−1
(

Z̄ β̄,pin2
t,Y ρ+h

)γ] ≤ E
Y
0

[

f(t, Y )
− γ

1−γ ]1−γ
E

Y ρ+h

0

[

Z̄ β̄,pin2
t,Y ρ+h

]γ
. (5.23)Note that

E
Y
0

[

f(t, Y )
− γ

1−γ ] = e
γht
1−γ E

Y
0

[

(1 + hρ−1)
− γNt

1−γ
]

= e
γht
1−γ

∞
∑

n=0

e−ρt (ρt)
n

n!
(1 + hρ−1)

− γn
1−γ

= exp

{

(

ρ(1 + hρ−1)−
γ

1−γ − ρ+
γh

1 − γ

)

t

}

≤ exp

{

γh2t

2ρ(1 − γ)2

}

, (5.24)where se
ond order Taylor expansion in h in the exponent provides a true upper bound. For L−R ≤ t ≤ L,if we 
hoose h =
√

ρ√
L
, then the �rst term in (5.23) is bounded and independent of ρ, β̄ and t. Thus itonly remains to estimate E

Y ρ+h

0

[

Z̄ β̄,pin2
t,Y ρ+h

].First note that E
Y ρ+h

0

[

Z̄ β̄,pin2
t,Y ρ+h

]

≤ CE
Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

] for some C > 0 independent of ρ ≥ 0, β̄ ∈ [1, 2] and
t ≥ 0, be
ause ea
h term in the expansion for Z̄ β̄,pin

t,Y in (5.3) di�ers from the 
orresponding term in (5.7)for Z̄ β̄,pin2
t,Y by at most two fa
tors of w, and E

Y ρ+h

0 [w(β̄, v − u, Yv − Yu)] =
β̄ p(1+ρ+h)(v−u)(0)

p(1+ρ)(v−u)(0)
≥ C for some

C > 0 independent of ρ ≥ 0, h ∈ [0, 1], β̄ ∈ [1, 2] and v − u ≥ 0. Re
all G1+ρ =
∫∞
0 p(1+ρ)s(0)ds,

E
Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

]

=

(

β̄

G1+ρ

)

p(1+ρ+h)t(0) +

∞
∑

m=1

∫

· · ·
∫

0=s0<s1···<sm<sm+1=t

(

β̄

G1+ρ

)m+1 m+1
∏

i=1

p(1+ρ+h)(si−si−1)(0) ds1 · · · dsm

=
(1 + ρ)β̄

1 + ρ+ h
K1+ρ+h(t) +

∫

· · ·
∫

0=s0<s1···<sm<sm+1=t

(

(1 + ρ)β̄

1 + ρ+ h

)m+1 m+1
∏

i=1

K1+ρ+h(si − si−1) ds1 · · · dsm, (5.25)21



where K1+ρ+h(s) = p(1+ρ+h)s(0)/G1+ρ+h with G1+ρ+h =
∫∞
0 p(1+ρ+h)s(0)ds =

(1+ρ)G1+ρ

1+ρ+h .Denote β̄′ = (1+ρ)β̄
1+ρ+h . Let σρ+h = (0, σρ+h

1 , σρ+h
2 , · · · ) be a renewal sequen
e on [0,∞) with inter-arrivallaw K1+ρ+h(·), and let E

K1+ρ+h[·] denote expe
tation w.r.t. σρ+h. Then in view of (5.25),
E

K1+ρ+h

[

(β̄′)1+|σρ+h∩[0,t]| 1{σρ+h∩[t,t+1] 6=∅}
]

≥ inf
u≥0,

0≤s≤1

K1+ρ+h(u+ s)

K1+ρ+h(u)
E

Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

]

.Re
all the de�nition of C1+ρ from (5.13), we then have
E

Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

]

≤ Cρ+hE
K1+ρ+h

[

(β̄′)1+|σρ+h∩[0,t]|
]

. (5.26)Now to prove (5.22), we re
all that L = (β̄ − 1)−1 and hen
e h =
√

ρ√
L

=
√

ρ(β̄ − 1). Therefore thereexists β̄0 > 1 su�
iently small su
h that for all ρ > 0 and β̄ ∈ [1, β̄0],
β̄′ =

(1 + ρ)β̄

1 + ρ+ h
≤ (1 + β̄ − 1)

(

1 −
√

ρ(β̄ − 1)

2(1 + ρ)

)

. (5.27)First note that by our 
hoi
e β̄ = 1 + aρ, we have β̄′ ≤ 1 − ρ
√
a/8 for all ρ ∈ [0, 1] if 0 < a < 1/64.Next note that Cρ+h is uniformly bounded for ρ ∈ [0, 1] and β̄ ∈ [1, 2]. For d ≥ 5, by the lo
al 
entrallimit theorem, there exists an inter-arrival probability distribution K∗ on (0,∞) with �nite �rst moment

m =
∫∞
0 sK∗(s)ds, su
h that K∗ sto
hasti
ally dominates K1+ρ+h for all h ∈ [0, 1] and ρ ∈ [0, 1]. Namely,

∫∞
t K∗(s)ds ≥

∫∞
t K1+ρ+h(s)ds for all t ≥ 0, h ∈ [0, 1] and ρ ∈ [0, 1]. Combining the above observations,we have

lim sup
ρ↓0

sup
L−R≤t≤L

Āβ̄,pin2
t ≤C lim sup

ρ↓0
sup

L−R≤t≤L
E

Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

]

≤C lim sup
ρ↓0

E
K∗ [(1 − ρ

√
a/8)|ι

∗∩[0,L−R]|], (5.28)where ι∗ is a renewal pro
ess on [0,∞) with return time distribution K∗. By the law of large numbers,a.s. w.r.t. ι∗,
lim
ρ↓0

(1 − ρ
√
a/8)|ι

∗∩[0,L−R]| = lim
ρ↓0

exp

{

−ρ
√
a

8
· (aρ)−1 −R

m

}

= exp

{

− 1

8m
√
a

}

,whi
h 
an be made arbitrarily small if a > 0 is 
hosen su�
iently small. Inequality (5.22) then followsby applying the dominated 
onvergen
e theorem in (5.28).The proof of (5.20) for any ρ > 0 and the uniform 
onvergen
e in (5.20) for ρ ∈ [ρ0, 1] for any ρ0 ∈ (0, 1]follows by similar arguments. It su�
es to observe that β̄′ ≤ 1 − C
√

β̄ − 1 for some C > 0 uniformly in
ρ ∈ [ρ0, 1] and β̄ > 1 su�
iently small. This 
on
ludes the proof of Theorem 1.3.5.2 Proof of Theorem 1.3 in 
ontinuous time: d = 4As in d ≥ 5, proving Theorem 1.3 redu
es to proving ̺ < 1 (see (5.17)) for appropriate 
hoi
es of β̄and L depending on the di�usion 
onstant ρ. Sin
e E

Y
0 [Z̄ β̄

t,Y ] is the partition fun
tion of a homogeneouspinning model with parameter β̄ ≥ 1 and return time distribution K1+ρ(t) ∼ Ct−2, by 
omparing
K1+ρ with a return time distribution K ′ whi
h is sto
hasti
ally smaller than K1+ρ and has �nite �rstmoment, we see that (5.18) also holds in d = 4. Therefore setting L = (β̄ − 1)−1 as in d ≥ 5, we have
sup0≤t≤L Ā

β̄,pin2
t ≤ C <∞, and analogous to (4.24), we have

̺ ≤
L1−ǫ
∑

i=0

C

(L− i)2γ−1
+

L−1
∑

i=L1−ǫ

CĀβ̄,pin2
i

(L− i)2γ−1
≤ CL1−ǫ

(L− L1−ǫ)2γ−1
+ CL2−2γ sup

L1−ǫ≤t≤L

Āβ̄,pin2
t , (5.29)
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where ǫ > 0, γ ∈ (0, 1) is 
hosen so that 2γ − 1 > 1 − ǫ, and C ∈ (0,∞) is independent of β̄ ∈ [1, 2] andis furthermore uniformly bounded for ρ ∈ [0, 1]. Therefore, to show β∗c > βann
c for any ρ > 0, it su�
esto show

lim
β̄↓1

L2−2γ sup
L1−ǫ≤t≤L

Āβ̄,pin2
t = 0. (5.30)On the other hand, to show that for any δ > 0, there exists aδ > 0 su
h that

β∗c − βann
c ≥ aδρ

1+δ ∀ ρ ∈ [0, 1], (5.31)it su�
es to show that: (1) the 
onvergen
e in (5.30) is uniform for ρ ∈ [ρ0, 1] for any 0 < ρ0 ≤ 1, whi
himplies that infρ∈[ρ0,1](β
∗
c − βann

c ) > 0; (2) for β̄ = 1 + ρ1+δ and L = (β̄ − 1)−1 = ρ−1−δ,
lim
ρ↓0

L2−2γ sup
L1−ǫ≤t≤L

Āβ̄,pin2
t = 0, (5.32)whi
h implies that for some ρ0 ∈ (0, 1], β̄∗c − 1 = G1+ρ(β
∗
c − βann

c ) ≥ ρ1+δ for all ρ ∈ [0, ρ0].Pro
eeding exa
tly as in the d ≥ 5 
ase, we note that (5.26) still holds in d = 4. By the 
hoi
e
h =

√
ρ√
L

= ρ1+δ/2, there exists ρ1 ∈ (0, 1) su
h that
β̄′ =

(1 + ρ)β̄

1 + ρ+ h
=

(1 + ρ)(1 + ρ1+δ)

1 + ρ+ ρ1+δ/2
≤ 1 − ρ1+δ/2/2 ≤ e−ρ1+δ/2/2 ∀ ρ ∈ [0, ρ1]. (5.33)If we 
hoose K∗ to be a return time distribution with ∫∞

0 K∗(s)ds = 1 and K∗(s) ∼ Cs−2 su
h that K∗sto
hasti
ally dominates K1+ρ+h for all ρ, h ∈ [0, 1], and let ι∗ be a renewal pro
ess on [0,∞) with returntime distribution K∗, then
0 ≤ lim

ρ↓0
L2−2γ sup

L1−ǫ≤t≤L

Āβ̄,pin2
t ≤ C lim

ρ↓0
ρ−(1+δ)(2−2γ)

E
K∗

[

exp

{

−1

2
ρ1+δ/2

∣

∣ι∗ ∩ [0, ρ−(1+δ)(1−ǫ)]
∣

∣

}]γ

= C lim
M→∞

M
2−2γ
1−ǫ E

K∗

[

exp

{

−1

2
M

− 1+δ/2
(1+δ)(1−ǫ)

∣

∣ι∗ ∩ [0,M ]|
}]γ

= 0where we applied Proposition A.1 with δ1 = 1+δ/2
(1+δ)(1−ǫ) and 1 − δ2 = 2−2γ

γ(1−ǫ) , whi
h satisfy the 
ondition
0 < δ1 < δ2 < 1 if ǫ > 0 is small and γ is then 
hosen su�
iently 
lose to 1. This proves (5.32).The proof of (5.30) for any ρ > 0 and the uniform 
onvergen
e therein for ρ ∈ [ρ0, 1] for any ρ0 ∈ (0, 1]follows by similar arguments. It su�
es to note that for ea
h ρ > 0, there exists C > 0 and β̄0 > 1 su
hthat β̄′ ≤ 1−C

√

β̄ − 1 for all β̄ ∈ [1, β̄0]. Furthermore, C and β̄0 
an be 
hosen uniformly for ρ ∈ [ρ0, 1]for any ρ0 > 0. The rest of the proof pro
eeds exa
tly as for d = 4 in the dis
rete time 
ase.A A renewal pro
ess estimateThe following proposition 
omplements Proposition A.2 in [DGLT07℄ for the 
ase α = 1.Proposition A.1 Let ι∗ = {ι0 = 0, ι1, · · · } be a renewal pro
ess on N0 with inter-arrival probabilitydistribution K∗ satisfying ∑n∈N
K∗(n) = 1 and K∗(n) ∼ Cn−2 as n → ∞. Then for any c > 0 and

0 < δ1 < δ2 < 1, we have
lim

N→∞
N1−δ2E

K∗

[

exp
{

−cN−δ1
∣

∣ι∗ ∩ [0,N ]
∣

∣

}]

= 0. (A.1)The same result holds if ι∗ is a renewal pro
ess on [0,∞) with inter-arrival distribution K∗ satisfying
∫∞
0 K∗(s)ds = 1 and K∗(s) ∼ Cs−2 as s→ ∞. 23



Proof. Let δ3 ∈ (δ1, δ2). Note that
E

K∗

[

exp
{

−cN−δ1
∣

∣ι∗ ∩ [0, N ]
∣

∣

}]

≤ P

(

0 ≤ |ι∗ ∩ [0,N ]| < N δ3
)

+ e−cnNδ3−δ1
. (A.2)Let (Ui)i∈N be i.i.d. random variables with distribution K∗. By our assumption on K∗, for ea
h α ∈ (0, 1),we 
an �nd a 
onstant Cα > 0 and i.i.d. stable subordinators (Vi)i∈N with exponent α, i.e., P(V1 > 0) = 1and V1

law
=
∑n

i=1 Vi/n
1/α, su
h that P(U1 > s) ≤ P(V1 + Cα > s) for all s > 0. Therefore, for α ∈ (δ3, 1),

P

(

0 ≤ |ι∗ ∩ [0, N ]| < N δ3
)

= P





Nδ3
∑

n=1

Un > N





≤ P





Nδ3
∑

n=1

(Vn + Cα) > N



 = P





Nδ3
∑

n=1

Vn > N − CαN
δ3



 = P

(

V1 > N1−δ3/α − CαN
δ3(1−1/α)

)

≤ CN δ3−α, (A.3)where we used the fa
t that P(V1 > x) ∼ Cx−α as x→ ∞. It is easy to see that (A.1) follows from (A.2)and (A.3) if we 
hoose α ∈ (0, 1) su
h that 1 − δ2 + δ3 − α < 0. The 
ase when ι∗ is a renewal pro
esson [0,∞) 
an be treated identi
ally.A
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