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AbstratWe study a random walk pinning model, where onditioned on a simple random walk Y on Z
dating as a random medium, the path measure of a seond independent simple random walk X upto time t is Gibbs transformed with Hamiltonian −Lt(X,Y ), where Lt(X,Y ) is the ollision loaltime between X and Y up to time t. This model arises naturally in various ontexts, inluding thestudy of the paraboli Anderson model with moving atalysts, the paraboli Anderson model withBrownian noise, and the direted polymer model. It falls in the same framework as the pinning andopolymer models, and exhibits a loalization-deloalization transition as the inverse temperature βvaries. We show that in dimensions d = 1, 2, the annealed and quenhed ritial values of β are both0, while in dimensions d ≥ 4, the quenhed ritial value of β is stritly larger than the annealedritial value (whih is positive). This implies the existene of ertain intermediate regimes for theparaboli Anderson model with Brownian noise and the direted polymer model. For d ≥ 5, the sameresult has reently been established by Birkner, Greven and den Hollander [BGdH08℄ via a quenhedlarge deviation priniple. Our proof is based on a frational moment method used reently by Derrida,Giaomin, Laoin and Toninelli [DGLT07℄ to establish the non-oinidene of annealed and quenhedritial points for the pinning model in the disorder-relevant regime. The ritial ase d = 3 remainsopen.1 Introdution and main result1.1 The model and main resultsWe �rst de�ne the ontinuous time version of the random walk pinning model, whih more preisely, ouldbe alled the random walk pinned to random walk model. Let X and Y be two independent ontinuoustime simple random walks on Z

d with jump rates 1 and ρ ≥ 0 respetively. Let µt denote the lawof (Xs)0≤s≤t. For β ∈ R, whih plays the role of the inverse temperature (if β > 0), and for a �xedrealization of Y ating as a random medium, we de�ne a Gibbs transformation of the path measure µt.Namely, we de�ne a new path measure µβ
t,Y on (Xs)0≤s≤t whih is absolutely ontinuous w.r.t. µt withRadon-Nikodym derivative
dµβ

t,Y

dµt
(X) =

eβLt(X,Y )

Zβ
t,Y

, (1.1)where Lt(X,Y ) =
∫ t
0 1{Xs=Ys}ds is the ollision loal time between X and Y up to time t, and

Zβ
t,Y = E

X
0

[

eβLt(X,Y )
] (1.2)is the quenhed partition funtion whih makes µβ

t,Y a probability measure, where E
X
x [·] denotes expeta-tion w.r.t. X starting from x ∈ Z

d. The quenhed free energy of the model is de�ned by
F (β, ρ) = lim

t→∞
1

t
logZβ

t,Y . (1.3)We will show below that the limit exists and is non-random. As a disordered system, it is also naturalto onsider the annealed partition funtion E
Y
0 [Zβ

t,Y ] and the annealed free energy
Fann(β, ρ) = lim

t→∞
1

t
log E

Y
0 [Zβ

t,Y ]. (1.4)Note that E
Y
0 [Zβ

t,Y ] = E
X−Y
0 [eβLt(X−Y,0)] is also the partition funtion of a homogeneous pinning model(see e.g. Giaomin [G07℄), namely a random walk pinning model where the random walk X − Y (withjump rate 1 + ρ) is pinned to the site 0 instead of to a random trajetory.1



To de�ne the disrete time version of the random walk pinning model, let X,Y be disrete time simplerandom walks on Z
d. The Gibbs transformed path measure µ̂β

N,Y , N ∈ N, an be de�ned similarly asin (1.1), where we replae Lt(X,Y ) by LN (X,Y ) =
∑N

i=1 1{Xi=Yi}. We then de�ne Ẑβ
N,Y , F̂ (β), µ̂β

N,ann,
F̂ann(β) similarly for the disrete time model as for the ontinuous time model. Note that the free energies
F̂ (β) and F̂ann(β) now only depend on β sine there are no more jump rates to adjust. To keep thingssimple, we fous only on X and Y being simple random walks in this paper. However, we expet muh ofthe same results to hold and the proofs to be adaptable for general random walks, and we will ommenton possible adaptations when appropriate.Our �rst result is the existene of the quenhed free energies F (β, ρ) and F̂ (β). Existene of the annealedfree energies Fann(β, ρ) and Fann(β) is well known (see e.g. Chapter 2 in [G07℄). Before stating the result,we �rst introdue a two-parameter family of onstrained partition funtions for the random walk pinningmodel, where apart from a shift in time for the disorder Y , the random walk X is subjet to the onstraint
Xt = Yt in (1.1). In ontinuous time setting, for 0 < s < t <∞, de�ne

Zβ,pin
[s,t],Y = E

X
Ys

[

exp

{

β

∫ t−s

0
1{Xu=Ys+u}du

}

1{Xt−s=Yt}

]

. (1.5)For 0 ≤ m < n < ∞ with m,n ∈ N0, we de�ne Ẑβ,pin
[m,n],Y analogously for the disrete time model. Forsimpliity, we will denote Zβ,pin

[0,t],Y by Zβ,pin
t,Y , and Ẑβ,pin

[0,N ],Y by Ẑβ,pin
N,Y .Theorem 1.1 [Existene of quenhed free energy℄For any β ∈ R and ρ ≥ 0, there exists a non-random onstant F (β, ρ) suh that

F (β, ρ) = lim
t→∞

1

t
logZβ

t,Y = lim
t→∞

1

t
logZβ,pin

t,Y , (1.6)where the onvergene are a.s. and in L1 w.r.t. Y . Furthermore, we have the representation
F (β, ρ) = sup

t>0

1

t
E

Y
0

[

logZβ,pin
t,Y

]

. (1.7)Analogous statements hold for the disrete time model.Corollary 1.1 [Existene of ritial points℄There exist 0 ≤ βann
c ≤ βc depending on ρ ≥ 0 suh that: Fann(β, ρ) = 0 if β < βann

c and Fann(β, ρ) > 0if β > βann
c ; F (β, ρ) = 0 if β < βc and F (β, ρ) > 0 if β > βc. Analogous statements hold for the disretetime model with annealed and quenhed ritial points β̂ann

c and β̂c respetively.Remark. See (5.5) and (4.4) for the exat values of βann
c and β̂ann

c .Remark. As in the pinning model (see e.g. [G07℄), βc marks the transition between a loalized and adeloalized phase: when β < βc and F (β, ρ) = 0, Lt(X,Y ) is typially of order o(t) w.r.t. µβ
t,Y for t large;when β > βc and F (β, ρ) > 0, Lt(X,Y ) is typially of order t w.r.t. µβ

t,Y for t large. Similarly, βann
c marksthe transition between the loalized and deloalized phase for the annealed homogeneous pinning model.One question of fundamental interest in the study of disordered systems is to determine when is thedisorder strong enough to shift the ritial point of the model, i.e., when is βann

c < βc? For the pinningmodel, this question has reently been essentially fully resolved independently by Derrida, Giaomin,Laoin and Toninelli [DGLT07℄, and Alexander and Zygouras [AZ08℄. For the random walk pinningmodel, our main result is the following.Theorem 1.2 [Annealed vs quenhed ritial points℄In dimensions d = 1 and 2, we have βann
c = βc = β̂ann

c = β̂c = 0. In dimensions d ≥ 4, we have
0 < βann

c < βc for eah ρ > 0 and 0 < β̂ann
c < β̂c. For d ≥ 5, there exists a > 0 s.t. βc − βann

c ≥ aρ forall ρ ∈ [0, 1]. For d = 4 and for eah δ > 0, there exists aδ > 0 s.t. βc − βann
c ≥ aδρ

1+δ for all ρ ∈ [0, 1].2



For purposes relevant to appliations for the paraboli Anderson model with Brownian noise and thedireted polymer model, in d ≥ 4, we prove instead a stronger version of Theorem 1.2. De�ne
β∗c = sup

{

β ∈ R : sup
t>0

Zβ
t,Y <∞ a.s. w.r.t. Y }. (1.8)De�ne β̂∗c for the disrete time model analogously. Clearly β∗c ≤ βc and β̂∗c ≤ β̂c. We haveTheorem 1.3 [Non-oinidene of ritial points strengthened℄For d ≥ 4, we have βann

c < β∗c for eah ρ > 0 and β̂ann
c < β̂∗c . For d ≥ 5, there exists a > 0 s.t.

β∗c −βann
c ≥ aρ for all ρ ∈ [0, 1]. For d = 4 and for eah δ > 0, there exists aδ > 0 s.t. β∗c −βann

c ≥ aδρ
1+δfor all ρ ∈ [0, 1].Remark. Theorem 1.3 for d ≥ 5 (without bounds on the gap) has reently been established by Birkner,Greven, and den Hollander [BGdH08℄ as an appliation of a quenhed large deviation priniple for renewalproesses in random senery. Our aim here is to give an alternative proof based on adaptations of thefrational moment method used reently by Derrida et al [DGLT07℄ in the pinning model ontext, andto extend to the d = 4 ase. Loosely speaking, beause P(Xn = Yn) ∼ Cn−d/2 = Cn−1−α by the loalentral limit theorem, d ≥ 5 orresponds to the ase α > 1 in [DGLT07℄; d = 4 orresponds to the ase

α = 1, whih was not overed in [DGLT07℄, but inluded in [AZ08℄; while d = 3 orresponds to themarginal ase α = 1/2, whih remains open from both [DGLT07℄ and [AZ08℄ for the pinning model, andremains open for our model as well.Remark. It is an interesting open question whether β∗c = βc, i.e., whether the quenhed partitionfuntion Zβ
t,Y is uniformly bounded in t a.s. w.r.t. Y in the entire deloalized phase. As ommuniatedto us by F.L.Toninelli, this question also remains open for the pinning and the opolymer models.Theorem 1.3 for the ontinuous time model on�rms Conjeture 1.8 of Greven and den Hollander [GdH07℄(for d ≥ 4) that the paraboli Anderson model with Brownian noise ould admit an equilibrium measurewith an in�nite seond moment. Theorem 1.3 for the disrete time model an be used to disprove aonjeture of Garel and Monthus [GM06℄ that for the direted polymer model in random environment,the transition from weak to strong disorder ours at βann

c . See Se. 1.4 for more details. For somespeial environments in speial dimensions, this onjeture has already been disproved by Camanes andCarmona [CC07℄. In Setion 1.4, we will show that the results of Derrida et al [DGLT07℄ on the pinningmodel an also be used to disprove the Garel-Monthus onjeture in d ≥ 4. The reader an also onsultSetion 1.5 of [BGdH08℄ for more detailed expositions on the impliation of Theorem 1.3 for the variousmodels mentioned above.In the remainder of the introdution, we point out a onnetion between the random walk pinning modeland the paraboli Anderson model with a single moving atalyst, and how does the random walk pinningmodel �t in the same framework as the pinning and opolymer models. Lastly, we will introdue aninhomogeneous random walk pinning model whih generalizes both the pinning and the random walkpinning model.1.2 Paraboli Anderson model with a single moving atalystAs for the ontinuous time random walk pinning model, let Y be a ontinuous time simple random walkon Z
d with jump rate ρ ≥ 0. The paraboli Anderson model with a single moving atalyst is the solutionof the following Cauhy problem for the heat equation in a time-dependent random potential

∂

∂t
u(t, x) = ∆u(t, x) + βδYt(x)u(t, x),

u(0, x) = 1,
x ∈ Z

d, t ≥ 0, (1.9)where β ∈ R and ∆f(x) = 1
2d

∑

‖y−x‖=1(f(y) − f(x)) is the disrete Laplaian on Z
d. Heuristially,the time-dependent potential βδYt(x) an be interpreted as a single atalyst with strength β moving as3



Y , u(t, x) is then simply the expeted number of partiles alive at position x at time t for a branhingpartile system, where initially one partile starts from eah site of Z
d, and independently, eah partilemoves on Z

d as a simple random walk, and whenever the partile is at the same loation as the atalyst
Y , it splits into two partiles with rate β if β > 0 and is killed with rate −β if β < 0. For furthermotivations and a survey on the paraboli Anderson model, see e.g. Gärtner and König [GK05℄.Quantities of speial interest in the study of the paraboli Anderson model are the quenhed and annealed
p-th moment Lyapunov exponents.

λ0 = lim
t→∞

1

t
log u(t, 0), λp = lim

t→∞
1

t
log E

Y
0 [u(t, 0)p]. (1.10)The annealed p-th moment Lyapunov exponents for p ∈ N have been studied by Gärtner and Heydenreihin [GH06℄. Here we show thatTheorem 1.4 [Existene of quenhed Lyapunov exponent℄For any β ∈ R and ρ ≥ 0, there exists a non-random onstant λ0 = λ0(β, ρ) suh that for all x ∈ Z

d,
λ0 = lim

t→∞
1

t
log u(t, x) a.s. and in L1 w.r.t. Y . (1.11)Furthermore, λ0(β, ρ) = F (β, ρ), where F (β, ρ) is as in (1.6).Indeed, the solution of (1.9) admits the Feynman-Ka representation

u(t, x) = E
X
x

[

exp

{

β

∫ t

0
1{Xt−s=Ys}ds

}]

, (1.12)where X is a simple random walk on Z
d with jump rate 1 and X0 = x. Exept for the time reversal of Xin (1.12), u(t, x) has the same representation as that for Zβ

t,Y . The same proof as for Theorem 1.1 thenapplies, whih gives rise to the same representation for λ0 as for F (β, ρ) in (1.7) due to the fat that thevariational expression in (1.7) is invariant w.r.t. time reversal for X.1.3 Relation to pinning and opolymer modelsWe now explain in what sense does the random walk pinning model belong to the same framework asthe pinning and the opolymer models. For simpliity, we will examine the disrete time random walkpinning model with a path measure assoiated with the partition funtion Ẑβ,pin
[0,N ],Y , .f. (1.5).The pinning and opolymer models are both Gibbs transformation of a renewal proess. More preisely,let σ = (σ0 = 0, σ1, σ2, · · · ) be a renewal proess on N0, where the inter-arrival times (σi − σi−1)i∈N arei.i.d. N ∪ {∞}-valued random variables with distribution P(σ1 = i) = K(i) for some probability kernel

K on N ∪ {∞}. Let (ωi)i∈N be i.i.d. real-valued random variables with E[ω1] = 0 and E[eλω1 ] < ∞ forall λ ∈ R. Let h ∈ R and β ≥ 0. Then for a �xed N ∈ N, the �nite volume Gibbs weight for a givenrealization of the renewal sequene σ for both models are of the form
W (σ) =











m
∏

i=1

w
(

β, h, (ωj)σi−1<j≤σi

) if N = σm for some m ≥ 1,

0 otherwise, (1.13)where
w
(

β, h, (ωj)0<j≤n

)

=











eβωn+h pinning model,
eβ

Pn
j=1(ωj+h) + e−β

Pn
j=1(ωj+h)

2
opolymer model. (1.14)See [G07℄ for more on the pinning and opolymer models. For the disrete time random walk pinningmodel, we an write

Ẑβ,pin
N,Y = E

X
0

[

eβLN (X,Y )1{XN=YN}
]

=

N
∑

m=1

∑

σ0=0<σ1<···<σm=N

m
∏

i=1

(

eβP
X
0 (τθσi−1Y = σi − σi−1)

)

, (1.15)4



where θnY = (Yn+i − Yn)i∈N0 denotes a shift in Y , and τY = τY (X) = min{i ≥ 1 : Xi = Yi}. Let usdenote K(i) = E
Y
0

[

P
X
0 (τY = i)

]

= P
X−Y
0 (τ0 = i), then K with K(∞) = P

X−Y
0 (τ0 = ∞) is the returntime distribution of a renewal proess on N0. Let ∆i = Yi − Yi−1. We an then rewrite (1.15) as

Ẑβ,pin
N,Y =

N
∑

m=1

∑

σ0=0<σ1<···<σm=N

m
∏

i=1

(

K(σi − σi−1) w
(

β, (∆j)σi−1<j≤σi

)

)

, (1.16)where
w
(

β, (∆i)0<i≤n

)

=
eβP

X
0 (τY = n)

K(n)
, Yi =

i
∑

j=1

∆j. (1.17)In view of (1.16) and (1.17), we see that the random walk pinning model assoiated with Ẑβ,pin
[0,N ],Y is also aGibbs transformation of a renewal proess with inter-arrival law K, exept that the disorder (∆i)i∈N takevalues in Z

d and the Gibbs weight fator w(·) for eah renewal gap has a more ompliated dependene onthe disorder than for the pinning and opolymer models. Nevertheless, this simple observation motivatesus to try to adapt the frational moment method from the pinning model to our ontext. In the atualproof, we will use an alternative representation for Ẑβ,pin
[0,N ],Y , as well as for Zβ,pin

[0,t],Y , whih admits a simplerform for the weight fator w(·) than (1.17). See (4.3) and (5.3). We will see later on that despite theentirely di�erent nature of the disorder, the random walk pinning model turns out to be a lose analogueof the pinning model. Lastly we note that the frational moment method has reently been suessfullyapplied also to the opolymer model, see Bodineau, Giaomin, Laoin and Toninelli [BGLT08℄ andToninelli [T08℄.1.4 An inhomogeneous random walk pinning modelAnother ommon feature between the pinning and the random walk pinning model is that, for bothmodels, the annealed partition funtion is that of a homogeneous pinning model. A further intriguinginterplay between the two models is that we an de�ne an inhomogeneous random walk pinning model,from whih both models an be obtained by partial annealing. More preisely, let X and Y be disretetime simple random walks on Z
d, let (ωi)i∈N be i.i.d. real-valued random variables with E[ω1] = 0,and M(λ) = log E[eλω1 ] is well-de�ned for all λ ≥ 0. Let h ∈ R and β ≥ 0. Then the disrete timeinhomogeneous random walk pinning model is the Gibbs transformation of the path measure µN of Xup to time N with Radon-Nikodym derivative

dµβ,h
N,Y,ω

dµN
(X) =

exp
{
∑N

i=1(βωi + h)1{Xi=Yi}
}

Zβ,h
N,Y,ω

, (1.18)where Zβ,h
N,Y,ω = E

X
0 [exp

{
∑N

i=1(βωi+h)1{Xi=Yi}
}

] is the partition funtion, and we now have two souresof disorder: the loation of pinning as given by Y , and the strength of pinning as given by βωi +h. Notethat under annealing w.r.t. Y ,
E

Y
0 [Zβ,h

N,Y,ω] = E
X−Y
0

[

exp
{

N
∑

i=1

(βωi + h)1{(X−Y )i=0}
}

] (1.19)is the partition funtion of a pinning model (without boundary onstraint (X − Y )N = 0), where theunderlying renewal proess is given by the return times of X−Y to 0. On the other hand, under annealingw.r.t. ω,
E

ω[Zβ,h
N,Y,ω] = E

X
0

[

e(M(β)+h)LN (X,Y )
]is the partition funtion of a random walk pinning model with parameter M(β) + h.The ontinuous time version of the inhomogeneous random walk pinning model an be de�ned similarlywith partition funtion

Zβ,h
t,Y,B = E

X
0

[

exp
{

β

∫ t

0
1{Xs=Ys}dBs + ht

}]

,5



where Bs is a standard Brownian motion.The disrete time inhomogeneous random walk pinning model �rst appeared impliitly in Birkner [B04℄in the study of the direted polymer model (the ontinuous time analogue an be found in Greven and denHollander [GdH07℄). Given a simple random walk X on Z
d, λ ≥ 0, i.i.d. real-valued random variables

(ω(n, x))n∈N,x∈Zd with M(λ′) = log E[eλ
′ω(1,1)] well-de�ned for all λ′ ≥ 0, the (normalized) partitionfuntion of the direted polymer model is given by

Zλ
N,ω = E

X
0

[

e
PN

i=1{λω(i,Xi)−M(λ)}].Note that (Zλ
N,ω)N∈N is a positive martingale. The ritial point of the model an be de�ned by

λc = sup{λ ≥ 0 : (Zλ
N,ω)N∈N is uniformly integrable} = sup{λ ≥ 0 : limN→∞ Zλ

N,ω > 0 a.s.}(see, e.g., [CSY04℄ for an overview). The Garel-Monthus onjeture [GM06℄ asserts that λc = λ2 :=

sup{λ ≥ 0 : supN∈N E[(Zλ
N,ω)2] < ∞}. On the other hand, Birkner [B04℄ showed that if Y is anindependent opy of X, and (ω̃(n, x))n∈N,x∈Zd is an independent opy of (ω(n, x))n∈N,x∈Zd , then thesize-biased law of Zλ

N,ω is the same as that of
Z̃λ

N,ω,ω̃,Y = E
X
0

[

exp
{

N
∑

i=1

(

1{Xi 6=Yi}(λω(i,Xi) −M(λ)) + 1{Xi=Yi}(2λω̃(i,Xi) − 2M(λ))
)}]

. (1.20)Namely, E[f(Z̃λ
N,ω,ω̃,Y )] = E[Zλ

N,ωf(Zλ
N,ω)] for all bounded f : R+ → R. The uniform integrability of

(Zλ
N,ω)N∈N is then equivalent to the uniform tightness of the laws of (Zλ

N,ω,ω̃,Y )N∈N. If we integrate outthe disorder ω in (1.20), then
E[Z̃λ

N,ω,ω̃,Y |ω̃, Y ] = E
X
0

[

e
PN

i=1(2λω̃(i,Xi)−2M(λ))1{Xi=Yi}
] (1.21)is preisely the partition funtion of the inhomogeneous random walk pinning model. Further integratingout ω̃ gives the partition funtion of a random walk pinning model with parameter β̂(λ) = M(2λ)−2M(λ),

E[Z̃λ
N,ω,ω̃,Y |Y ] = E

X
0

[

e
PN

i=1(M(2λ)−2M(λ))1{Xi=Yi}
]

.Sine E[(Zλ
N,ω)2] = E[Z̃λ

N,ω,ω̃,Y ], β̂(λ2) = β̂ann
c with β̂ann

c being the annealed ritial point as in Theorem1.3. Sine for non-degenerate ω, β̂(λ) is stritly inreasing in λ, Theorem 1.3 implies that in d ≥ 4, thereexists λ′ > λ2 suh that E[Z̃λ′

N,ω,ω̃,Y |Y ] is uniformly bounded in N a.s. w.r.t. Y . Therefore the law of
(Z̃λ′

N,ω,ω̃,Y )N∈N is uniformly tight, and hene λc ≥ λ′ > λ2, whih disproves the onjeture of Garel andMonthus [GM06℄.Finally, we point out that based on (1.20), the results of Derrida et al [DGLT07℄ for the pinning modelan also be used to disprove the Garel-Monthus onjeture in d ≥ 4: In (1.21), onditioned on Y ,
(ω̃(i, Yi))1≤i≤N are i.i.d. Therefore if we �x an i.i.d. sequene (ω̄i)i∈N equally distributed with ω̃(1, 1),then E[Z̃λ

N,ω,ω̃,Y |ω̃, Y ] is equally distributed with
E

X
0 [e

PN
i=1(2λω̄i−2M(λ))1{Xi=Yi} ].Integrating out Y then gives the partition of a pinning model,

Zβ,h
N,ω̄ = E

X−Y
0 [e

PN
i=1(2λω̄i−2M(λ))1{(X−Y )i=0} ] (1.22)with parameters β(λ) = 2λ, h(λ) = −M(2λ) (.f. (1.19)), and underlying renewal proess K(n) =

P
X−Y
0 (τ0 = n) where τ0 is the �rst return time of X − Y to 0. It is easy to hek that the ritial urvefor the annealed pinning model is given by hann

c (β) = −M(β) − log P
X−Y
0 (τ0 < ∞). By the de�nitionof λ2, (β(λ2), h(λ2)) lies on this annealed ritial urve. Sine in d ≥ 4, K(n) ∼ cn−

d
2 has tail exponent

α = d
2 − 1 ≥ 1, it follows from Derrida et al [DGLT07℄ that there exists a ontinuous urve h∗(β)stritly above hann

c (β), suh that for all h ≤ h∗(β), Zβ,h
N,ω̄ is a.s. uniformly bounded in N . Therefore we6



an hoose λ′ > λ2 suh that −M(2λ′) ≤ h∗(2λ′), and hene Z2λ′,−M(2λ′)
N,ω̄ is a.s. uniformly bounded in

N . By the same reasoning as before, this implies the uniform tightness of (Z̃λ′

N,ω,ω̃,Y )N∈N, and hene
λc ≥ λ′ > λ2. Lastly, we remark that in [DGLT07℄, only the onstrained version of the partition funtion
Zβ,h

N,ω̄ is onsidered, i.e., the onstraint 1{XN=YN} is inserted in (1.22). However, the proof there an beeasily adapted to the non-onstrained version, as an be seen later in our analysis of the random walkpinning model.1.5 OutlineThe rest of the paper is organized as follows. In Setion 2, we prove Theorem 1.1, Corollary 1.1, andTheorem 1.4. In Setion 3, we prove Theorem 1.2 for d = 1, 2. In Setion 4, we prove Theorem 1.3 in thedisrete time ase. Lastly in Setion 5, we prove Theorem 1.3 in the ontinuous time ase. The proof ofTheorem 1.3 does not rely on the existene of the quenhed free energies. Readers interested in how thefrational moment method is applied in this ontext an go diretly to Setions 4 and 5.2 Existene of the quenhed free energyIn this setion, we prove Theorems 1.1, 1.4 and Corollary 1.1.Proof of Theorem 1.1. We only prove the ontinuous time ase. The disrete time ase is simpler.First note that |t−1 logZβ
t,Y | ≤ |β| uniformly in t > 0 and Y . Therefore |t−1 logZβ

t,Y | is uniformlyintegrable w.r.t. Y for t > 0. By similar reasoning, it is not hard to verify also uniform integrability for
|t−1 logZβ,pin

t,Y | w.r.t. Y for t large despite the onstraint 1{Xt=Yt} in Zβ,pin
t,Y . Therefore it su�es to verifythe a.s. onvergene in (1.6), and the L1 onvergene follows by uniform integrability.Restriting to integer times m,n, learly (− logZβ,pin

[m,n],Y )0≤m<n satis�es the onditions of the subadditiveergodi theorem (see e.g. Se. 6.6 in Durrett [D96℄). Therefore there exists F pin ∈ R suh that a.s. w.r.t.
Y ,

F pin = lim
n→∞

1

n
logZβ,pin

n,Y = sup
n∈N

1

n
E

Y
0

[

logZβ,pin
n,Y

]

. (2.1)First we extend the onvergene in (2.1) to t → ∞, rather than just along the integers. We need tworude estimates.Proposition 2.1 Let (Xt)t≥0 be a ontinuous time random walk on Z
d with jump rate 1. Let ‖·‖1 denote

L1 norm in Z
d. Then

(i) There exists C > 0 suh that a.s. ‖Xt‖1 < C
√
t log log t for all t su�iently large.

(ii) P
X
0 (Xt = x) ≥ C(1 + t)−

d
2 (2d)−‖x‖1 uniformly for all t > 0 and x ∈ Z

d with ‖x‖1 ≤ t/2.Proof. Part (i) is a onsequene of the law of the iterated logarithm. Part (ii) follows by foring X tovisit x after exatly ‖x‖1 number of jumps, and then return to x at time t. The fator (1 + t)−
d
2 arisesfrom the loal entral limit theorem.Note that for t ≥ 1, by super-additivity, we have

1

t

(

logZβ,pin

⌊t−t2/3⌋,Y + logZβ,pin

[⌊t−t2/3⌋,t],Y

)

≤ 1

t
logZβ,pin

t,Y ≤ 1

t

(

logZβ,pin

⌊t+t2/3⌋,Y − logZβ,pin

[t,⌊t+t2/3⌋],Y

)

. (2.2)By (2.1), a.s. F pin = lim
t→∞

t−1 logZβ,pin

⌊t−t2/3⌋,Y = lim
t→∞

t−1 logZβ,pin

⌊t+t2/3⌋,Y . On the other hand,
Zβ,pin

[⌊t−t2/3⌋,t],Y ≤ e|β|(t−⌊t−t2/3⌋)
P

X
0

(

Xt−⌊t−t2/3⌋ = Yt − Y⌊t−t2/3⌋
)

,

Zβ,pin

[⌊t−t2/3⌋,t],Y ≥ e−|β|(t−⌊t−t2/3⌋)
P

X
0

(

Xt−⌊t−t2/3⌋ = Yt − Y⌊t−t2/3⌋
)

.
(2.3)7



By Proposition 2.1, for t su�iently large, ‖Yt − Y⌊t−t2/3⌋‖1 ≤ 2C
√
t log log t < (t−⌊t−t2/3⌋)

2 , and hene
P

X
0

(

Xt−⌊t−t2/3⌋ = Yt − Y⌊t−t2/3⌋
)

≥ C
(

1 + t− ⌊t− t2/3⌋
)−d/2

(2d)−2C
√

t log log t,from whih we obtain lim
t→∞

t−1| logZβ,pin

[⌊t−t2/3⌋,t],Y | = 0. Similarly, lim
t→∞

t−1| logZβ,pin

[t,⌊t+t2/3⌋],Y | = 0. Thisestablishes the a.s. onvergene in (2.1) for t→ ∞ instead of n→ ∞ for n ∈ N.We now prove that a.s. F pin = lim
t→∞

t−1 logZβ
t,Y . Clearly Zβ

t,Y >Z
β,pin
t,Y . For an upper bound, note that

Zβ
t,Y ≤ e|β|t

3/4
Zβ

t−t3/4,Y
. (2.4)We laim that for t su�iently large,

E
X
0

[

e
βL

t−t3/4 (X,Y )
1{‖X

t−t3/4‖1≤t2/3}
]

≥ E
X
0

[

e
βL

t−t3/4 (X,Y )
1{‖X

t−t3/4‖1>t2/3}
]

. (2.5)By Proposition 2.1, for t su�iently large, we have sup0≤s≤t ‖Ys‖1 ≤ C
√
t log log t. De�ne reursivelystopping times σ1 = 0, and for n ∈ N,

τn = inf{s ∈ (σn, t− t3/4] : ‖Xs‖1 ≥ t2/3/2},
σn+1 = inf{s ∈ (τn, t− t3/4] : ‖Xs‖1 ≤ C

√

t log log t},
(2.6)where we set σn, τn to t− t3/4 if the in�mum is taken over an empty set. Then

E
X
0

[

e
βL

t−t3/4 (X,Y )
1{‖X

t−t3/4‖1>t2/3}
]

=

∞
∑

n=1

E
X
0

[

eβLτn (X,Y )1{τn<σn+1=t−t3/4,‖X
t−t3/4‖1>t2/3}

]

=
∞
∑

n=1

E
X
0

[

eβLτn (X,Y )1{τn<t−t3/4} P
X
0

(

σn+1 = t− t3/4, ‖Xt−t3/4‖1 > t2/3
∣

∣Xτn

)

]

≤
∞
∑

n=1

E
X
0

[

eβLτn (X,Y )1{τn<t−t3/4} P
X
0

(

σn+1 = t− t3/4, ‖Xt−t3/4‖1 ≤ t2/3
∣

∣Xτn

)

]

≤ E
X
0

[

e
βL

t−t3/4 (X,Y )
1{‖X

t−t3/4‖1≤t2/3}
]

, (2.7)where in the �rst inequality we used the fat that t2/3/2 >>
√
t log log t >>

√
t for t large. This provesthe laim (2.5). By Proposition 2.1, we have P

X
0 (Xt = Yt|Xt−t3/4 = x) ≥ C(1 + t3/4)−d/2(2d)−2t2/3uniformly for ‖x‖1 ≤ t2/3. Hene

Zβ,pin
t,Y ≥ C(1 + t3/4)−d/2(2d)−2t2/3

e−|β|t3/4
E

X
0

[

e
βL

t−t3/4(X,Y )
1{‖X

t−t3/4‖1≤t2/3}
]

.Combined with (2.4) and (2.5), we �nd
Zβ

t,Y ≤ 2C−1(1 + t3/4)d/2(2d)2t2/3
e2|β|t

3/4
Zβ,pin

t,Y .Sine Zβ
t,Y > Zβ,pin

t,Y , (1.6) follows with F (β, ρ) = F pin.Lastly, (1.7) holds beause (2.1) is valid with F pin = F (β, ρ) if we take the limit in (2.1) along nt, n ∈ N,for any �xed t > 0.Proof of Corollary 1.1. From the theory for homogeneous pinning models (see e.g. Chapter 2 of [G07℄),it is known that βann
c exists, and βann

c = 0 if the renewal proess underlying the pinning model is reurrent(i.e., the random walk X − Y is reurrent), and βann
c > 0 if the random walk X − Y is transient. Thestatement βann

c ≤ βc follows from
F (β, ρ) = lim

t→∞
t−1

E
Y
0

[

logZβ
t,Y

]

≤ lim
t→∞

t−1 log E
Y
0 [Zβ

t,Y ] = Fann(β, ρ)8



by the L1 onvergene in Theorem 1.1 and Jensen's inequality. The statement βc ≥ 0 follows from thefat that for β < 0, F (β, ρ) = 0. Indeed, for β < 0, Zβ
t,Y ≤ 1, while

logZβ
t,Y = log E

X
0

[

eβLt(X,Y )
]

≥ βE
X
0 [Lt(X,Y )] ≥ β

∫ t

0

C

(1 + s)d/2
ds = o(t),where we used the loal entral limit theorem that P

X
0 (Xt = x) ≤ C(1 + t)−d/2 uniformly in t > 0 and

x ∈ Z
d. The existene and �niteness of βc then follows from (1.7) and the monotoniity of F (β, ρ) in β.The proof for the disrete time model is idential.Proof of Theorem 1.4. The di�erene between the Feynman-Ka representation of u(t, x) in (1.12)and the representation for Zβ

t,Y in (1.2) is: (1) time-reversal for X; (2) in (1.12), X starts at x insteadof on Y . The same proof as for Theorem 1.1 shows that lim
t→∞

t−1u(t, Yt) = F (β, ρ) a.s. w.r.t. Y where
F (β, ρ) is as in (1.7). To ompare u(t, x) with u(t, Yt), note that

u(t, x) ≥ P
X
0

(

Xt2/3 = Yt−t2/3 − x
)

e−|β|t2/3
u
(

t− t2/3, Yt−t2/3

)

, (2.8)whih a.s. gives the orret lower bound on the exponential sale as t → ∞. For the upper bound,note that if β ≤ 0, then u(t, x) ≤ 1, whih su�es by Corollary 1.1. If β > 0, then for any ǫ > 0,a.s. we an �nd Tǫ,Y su�iently large s.t. t−1 log u(t, Yt) ≤ F (β, ρ) + ǫ for all t ≥ Tǫ,Y . In (1.12), let
τ = inf{s ∈ [0, t] : Xs = Yt−s} with τ = t if the set is empty. Then for all t > Tǫ,Y and x ∈ Z

d, we have
u(t, x) ≤ P

X
x (τ ≥ t− Tǫ,Y )eβTǫ,Y + E

X
x

[

u(t− τ, Yt−τ )1{τ<t−Tǫ,Y }
]

≤ eβTǫ,Y + e(F (β,ρ)+ǫ)t. (2.9)Sine ǫ > 0 an be arbitrarily small, a.s. this provides the orret upper bound for u(t, x) on the exponen-tial sale as t → ∞. The L1 onvergene in (1.11) follows from the uniform boundedness of | log u(t, x)|in t, x and Y .3 Coinidene of ritial points in d = 1 and 2Proof of Theorem 1.2 for d = 1 and 2. We only deal with the ontinuous time ase. The disretetime ase is simpler. As pointed out in the proof of Corollary 1.1, beause the random walk X − Y isreurrent in d = 1 and 2, βann
c = 0. By (1.7), to show βc = 0, it su�es to show that for any β > 0, thereexists t > 0 suh that E

Y
0 [logZβ,pin

t,Y ] > 0. We an write
E

Y
0

[

logZβ,pin
t,Y

]

= E
Y
0

[

log P
X
0 (Xt = Yt)

]

+ E
Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]

]

. (3.1)We �rst we estimate E
Y
0

[

log P
X
0 (Xt = Yt)

]

=
∑

x∈Zd pρt(x) log pt(x), where pt(x) denotes the transitionprobability of a jump rate 1 ontinuous time simple random walk on Z
d. We then �nd lower bounds forthe seond term in (3.1) for d = 1 and d = 2.Lemma 3.1 For all ρ ≥ 0, we have

lim
t→∞

∑

x∈Zd pρt(x) log pt(x)

log t
= −d

2
. (3.2)Proof. By the loal entral limit theorem, pt(x) ≤ C(1 + t)−

d
2 uniformly for t > 0 and x ∈ Z

d. Hene
lim sup

t→∞

∑

x∈Z
pρt(x) log pt(x)

log t
≤ −d

2
. (3.3)9



For a mathing lower bound, we need lower bounds for pt(x) for all x ∈ Z
d. Note that if p(1)

t (·) denotesthe transition probability kernel of a rate 1 simple random walk on Z, then pt(x) = Πd
i=1p

(1)
t/d(xi), and

∑

x∈Zd pρt(x) log pt(x) = d
∑

x∈Z
p
(1)
ρt/d(x) log p

(1)
t/d(x). Hene it su�es to show

lim inf
t→∞

∑

x∈Z
p
(1)
ρt (x) log p

(1)
t (x)

log t
≥ −1

2
. (3.4)For 0 < ǫ << 1 << A < ∞, we have the following estimates. There exist C1, C2, C3, T > 0 depending on

ǫ and A, suh that
p
(1)
t (x) ≥ C1t

− 1
2 e−

C2x2

t ∀ t ≥ T, |x| ≤ ǫt, (3.5)
p
(1)
t (x) ≥ e−C3t ∀ t ≥ T, ǫt < |x| < At, (3.6)
p
(1)
t (x) ≥ e−2|x| log |x| ∀ t ≥ T, At ≤ |x|. (3.7)To derive (3.4) from (3.5)�(3.7), we partition the sum ∑

x∈Z
into ∑|x|≤ǫt, ∑ǫt<|x|<At, and ∑|x|≥At with

ǫ << ρ << A. By (3.5),
∑

|x|≤ǫt

p
(1)
ρt (x) log p

(1)
t (x) ≥

∑

|x|≤ǫt

p
(1)
ρt (x) log

(

C1t
− 1

2 e−
C2x2

t

)

≥ − log t

2
− | logC1| −

C2

t

∑

x∈Z

x2p
(1)
ρt (x) = − log t

2
− | logC1| − C2ρ. (3.8)By (3.6) and the Markov inequality,

∑

ǫt<|x|<At

p
(1)
ρt (x) log p

(1)
t (x) ≥ −C3t

∑

|x|>ǫt

p
(1)
ρt (x) ≥ −C3t

∑

x∈Z
x2p

(1)
ρt (x)

ǫ2t2
= −C3ρ

ǫ2
. (3.9)And by (3.7), for t su�iently large, we have

∑

|x|≥At

p
(1)
ρt (x) log p

(1)
t (x) ≥ −2

∑

|x|≥At

p
(1)
ρt (x)|x| log |x| ≥ −2

∑

|x|≥At

p
(1)
ρt (x)

|x|2
At

log(At)

≥ −2ρ

A
log(At). (3.10)Combining (3.8)�(3.10), we obtain the lower bound

lim inf
t→∞

∑

x∈Z
p
(1)
ρt (x) log p

(1)
t (x)

log t
≥ −1

2
− 2ρ

A
. (3.11)Sine A an be hosen arbitrarily large, (3.4) follows.We now verify (3.5)�(3.7). Let Pn(x) denote the probability that a disrete time simple random walkstarting from 0 visits x at time n. Then for x and n having the same parity, by Stirling's formula,

Pn(x) =
1

2n

n!
(

n+x
2

)

!
(

n−x
2

)

!
=

(1 + o(1))
√

2πn
(

n
e

)n

2n
√

2π
(

n+x
2

) (

n+x
2e

)
n+x

2

√

2π
(

n−x
2

) (

n−x
2e

)
n−x

2

= (1 + o(1))

√

2n

π(n2 − x2)
e−(n+x

2 ) log(1+ x
n )−(n−x

2 ) log(1− x
n)

= (1 + o(1))

√

2n

π(n2 − x2)
e
−x2

2n
+o

“

x2

n2

”

n
. (3.12)Hene for n su�iently large and |x|/n su�iently small, we have

Pn(x) ≥ Cn−
1
2 e−

x2

n . (3.13)10



If Nt denotes a Poisson random variable with mean t, then (3.5) follows from (3.13) and the observationthat Nt/t → 1 in probability with |P(Nt is odd) − P(Nt is even)| → 0 as t→ ∞.For (3.6), note that for |x| < At, by (3.13),
p
(1)
t (x) ≥

∑

At/ǫ≤n≤2At/ǫ
n≡x mod 2

P(Nt = n)Pn(x) ≥ C

√

ǫ

2At
e−

ǫx2

At P
(

At/ǫ ≤ Nt ≤ 2At/ǫ, Nt ≡ x mod 2
)

≥ C

√

ǫ

2At
e−ǫAte−C′t ≥ e−C3t, (3.14)where we used the fat that Nt/t satis�es a large deviation priniple with a �nite rate funtion on [0,∞).For |x| ≥ At, we an bound p

(1)
t (x) from below by requiring that the random walk makes exatly |x|jumps in the time interval [0, 1] so that the random walk is at x at time 1, and at time t the randomwalk returns to x. Thus, by the loal entral limit theorem, for t large,

p
(1)
t (x) ≥ 1

e|x|! 2
−|x|C

t
= (1 + o(1))

e−1+|x|−|x| log |x|
√

2π|x|
2−|x|C

t
. (3.15)It is then lear that (3.7) holds.Remark. We point out that, for general mean zero �nite variane random walks, the estimates (3.5)�(3.7) an still be established by adapting the proof here and deomposing the random walk transitionkernel to extrat a simple random walk part.Remark. The analogue of Lemma 3.1 also holds for disrete time simple random walks. The proof issimilar and omitted.Lower bound for E

Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]] for d = 1:By Jensen's inequality,
E

Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]

]

≥ E
Y
0

[

E
X
0

[

βLt(X,Y )
∣

∣Xt = Yt

]]

=β

∫ t

0
E

Y
0

[

ps(Ys)p(t−s)(Yt − Ys)

pt(Yt)

]

ds.By Donsker's invariane priniple, there exists α > 0 s.t. P
Y
0 (sups∈[0,t] |Ys| ≤

√
t) ≥ α for all t > 0. On theother hand, if sups∈[0,t] |Ys| ≤

√
t, then by the loal entral limit theorem, ps(Ys)∧ pt−s(Yt − Ys) ≥ C/

√
tfor all s ∈ [t/3, 2t/3] for some C independent of Y and t > 1, while pt(Yt) ≤ C ′/

√
t. Therefore

E
Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]

]

≥ αβ

∫ 2t/3

t/3

C√
t

C√
t

C′√
t

ds = C ′√t (3.16)for some C ′ > 0 independent of t. In view of (3.1) and Lemma 3.1, this proves that E
Y
0 [logZβ,pin

t,Y ] > 0for t large, and hene βc = 0 for d = 1.Lower bound for E
Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣Xt = Yt

]] for d = 2:Sine in d = 2, Lt(X,Y ) is typially of order log t, the argument above for d = 1 fails for d = 2. Instead,we apply an a.s. limit theorem for Lt(X,Y )/ log t onditioned on Y . More preisely, by Theorem 1.2 ofGärtner and Sun [GS07℄, a.s. w.r.t. Y , Lt(X,Y )/ log t onditioned on Y onverges in distribution to anexponential random variable with mean 1/π(1+ρ). We only need to bypass the onditioning on Xt = Yt.Let µt/ log t denote the law of (Xs)0≤s≤t/ log t, and let µ(t,y)
t/ log t denote the law of (Xs)0≤s≤t/ log t onditionedon Xt = y. Then µt/ log t and µ(t,y)

t/ log t are equivalent with density
dµ

(t,y)
t/ log t

dµt/ log t

(

X
)

=
pt−t/ log t(y −Xt/ log t)

pt(y)
=

t

t− t/ log t

e
−

‖y−Xt/ log t‖
2

t−t/ log t + o(1)

e−
‖y‖2

t + o(1)
, (3.17)11



where we applied the loal entral limit theorem. Sine ‖Xt/ log t‖/
√
t→ 0 in probability as t→ ∞, it islear that in total variational distane,

sup
‖y‖≤

√
t

∥

∥µ
(t,y)
t/ log t − µt/ log t

∥

∥

TV
−→
t→∞

0. (3.18)We an thus remove the onditioning at the ost of reduing the time interval from t to t/ log t.Fix A > 0. Let
GA

t/ log t =
{

Y : µt/ log t

(

Lt/ log t(X,Y ) ≥ A log t
)

≥ e−αA
}

. (3.19)By Theorem 1.2 of [GS07℄, if we hoose α > π(κ+ ρ), then P
Y
0 (GA

t/ log t) → 1 as t→ ∞. We now write
E

Y
0

[

log E
X
0

[

eβLt(X,Y )
∣

∣

∣
Xt = Yt

]]

≥ E
Y
0

[

1{‖Yt‖≤
√

t, Y ∈GA
t/ log t

} log E
X
0

[

eβLt/ log t(X,Y )
∣

∣

∣
Xt = Yt

]]

≥ E
Y
0

[

1{‖Yt‖≤
√

t, Y ∈GA
t/ log t

}

(

βA log t+ log µ
(t,Yt)
t/ log t

(

Lt/ log t(X,Y ) ≥ A log t
)

)]

≥ βAP
Y
0 (‖Yt‖ ≤

√
t, Y ∈ GA

t/ log t) log t

+ E
Y
0

[

1{‖Yt‖≤
√

t, Y ∈GA
t/ log t

} log
(

µt/ log t

(

Lt/ log t(X,Y ) ≥ A log t
)

+ o(1)
)]

.

≥ (C − o(1))(βA log t+ log(e−αA + o(1)), (3.20)where C = inft>0 P
Y
0 (‖Yt‖ ≤

√
t) is positive and independent of A. Sine A an be hosen arbitrarilylarge, in view of (3.1) and Lemma 3.1, this proves that E

Y
0 [logZβ,pin

t,Y ] > 0 for t large, and hene βc = 0for d = 2.4 Gap between ritial points: disrete time4.1 Proof of Theorem 1.3 in disrete time: d ≥ 5Our proof is based on adaptations of the frational moment method used reently by Derrida, Giaomin,Laoin and Toninelli [DGLT07℄ to show the non-oinidene of annealed and quenhed ritial pointsfor the pinning model in the disorder-relevant regime. Two ingredients are needed for the adaptation.First, a suitable representation for the partition funtion Ẑβ
N,Y and its onstrained ounterpart Ẑβ,pin

N,Y ina similar form as in (1.16), exept with a Gibbs weight fator w(·) that has a simpler dependene on thedisorder (∆i)i∈N = (Yi+1 − Yi)i∈N than in (1.17). Seond, a suitable hange of measure for the disorder
Y when estimating frational moments E

Y
0 [(Ẑβ,pin

N,Y )γ ] for N on the order of the orrelation length of theannealed model.We split the proof into three parts: representation for Ẑβ
N,Y and Ẑβ,pin

N,Y ; frational moment method; hangeof measure. To simplify notation, C,C1, C
′, et, will denote generi onstants whose preise values mayhange from plae to plae.Representation for Ẑβ

N,Y and Ẑβ,pin
N,Y . The representation we now derive was already used in [BGdH08℄.It is based on binomial expansion for (1+eβ−1)LN (X,Y ). Let pX

n (·), resp. pX−Y
n (·), be the n-step transitionprobability kernel of X, resp. X−Y . Let GX−Y =

∑∞
n=1 p

X−Y
n (0), K(n) = pX−Y

n (0)/GX−Y , z′ = eβ −1,
12



z = z′GX−Y , and Žz
N,Y = Ẑβ

N,Y . Then
Žz

N,Y = E
X
0

[

(1 + z′)LN (X,Y )
]

= E
X
0

[

1 +

N
∑

m=1

∑

σ0=0<σ1<···<σm≤N

(z′)m
m
∏

i=1

1{Xσi=Yσi}
]

= 1 +
N
∑

m=1

∑

σ0=0<σ1<···<σm≤N

(z′)m
m
∏

i=1

pX
σi−σi−1

(Yσi − Yσi−1)

= 1 +
N
∑

m=1

∑

σ0=0<σ1<···<σm≤N

m
∏

i=1

K(σi − σi−1)w
(

z, σi − σi−1, Yσi − Yσi−1

)

, (4.1)where
w(z, σi − σi−1, Yσi − Yσi−1) = zpX

σi−σi−1
(Yσi − Yσi−1)/p

X−Y
σi−σi−1

(0). (4.2)If we denote Žz,pin
N,Y = z′

1+z′ Ẑ
β,pin
N,Y , then similarly,

Žz,pin
N,Y = E

X
0

[

(1 + z′)LN−1(X,Y )z′1{XN =YN}
]

=

N
∑

m=1

∑

σ0=0<σ1<···<σm=N

m
∏

i=1

K(σi − σi−1)w
(

z, σi − σi−1, Yσi − Yσi−1

)

. (4.3)Note that (4.3) asts Žz,pin
N,Y in the same form as (1.16), exept now K(n) equals pX−Y

n (0)/GX−Y insteadof P
X−Y (τ0 = n), and w has a simpler dependene on the disorder (∆j)σi−1<j≤σi (i.e. only on σi − σi−1and ∑σi

j=σi−1+1 ∆j) than in (1.17). Beause K is the return time distribution of a reurrent renewalproess σ on N0, and E
Y
0 [w(z, σi − σi−1, Yσi − Yσi−1)] = z, the ritial point for the annealed modelassoiated with Žz,pin

N,Y is zann
c = 1, or equivalently, 1 = zann

c = (eβ̂
ann
c − 1)GX−Y so that

β̂ann
c = log

(

1 +
1

GX−Y

)

. (4.4)Frational moment method. We now reall the frational moment method used by Derrida et al in[DGLT07℄. Due to the ommon framework between pinning models and the random walk pinning modelas pointed out in Setion 1.3, the basi strategy arries over without hange. The only model dependentpart of the argument lies in estimating E
Y
0 [(Žz,pin

N,Y )γ ], γ ∈ (0, 1), for N on the order of the orrelationlength of the annealed model, where a hange of measure argument for the disorder needs to be adapted.In terms of the new variables z = (eβ − 1)GX−Y and Žz
N,Y , Theorem 1.3 redues to showing that forsome z > zann

c = 1, supN∈N0
Žz

N,Y < ∞ a.s. w.r.t. Y . Sine for z > 1, Žz
N,Y is a.s. inreasing in N , itsu�es to show that for some z > 1 and γ ∈ (0, 1),

sup
N∈N0

E
Y
0

[(

Žz
N,Y

)γ]
<∞. (4.5)The basi idea is to suitably group terms in the expansion for Žz

N,Y in (4.1) and then apply the frationalmoment inequality
(

n
∑

i=1

|ai|
)γ

≤
n
∑

i=1

|ai|γ , γ ∈ (0, 1). (4.6)However, the e�etiveness of (4.6) depends ruially on how Žz
N,Y is deomposed. In [DGLT07℄, Derridaet al studied analogues of the onstrained partition funtion Žz,pin

N,Y , and their lever hoie is to groupterms in (4.3) aording to the starting and the ending position of the gap in the renewal sequene σstraddling a �xed position L ∈ N. Namely,
Žz,pin

N,Y =

L−1
∑

i=0

N−L
∑

j=0

Žz,pin
i,Y K(N − j − i)w(z,N − j − i, YN−j − Yi)Ž

z,pin
j,θN−jY ,13



where θnY = (Yn+i −Yn)i∈N0 denotes a shift in Y . For Žz
N,Y , we an perform a similar grouping of termsin (4.1) and get

Žz
N,Y = Žz

L−1,Y +
L−1
∑

i=0

N−L
∑

j=0

Žz,pin
i,Y K(N − j − i)w(z,N − j − i, YN−j − Yi)Ž

z
j,θN−jY . (4.7)Fix γ ∈ (0, 1). Denote Ǎz

N = E
Y
0

[

(Žz
N,Y )γ

] and Ǎz,pin
N = E

Y
0

[

(Žz,pin
N,Y )γ

]. Sine
K(N − j − i)w(z,N − j − i, YN−j − Yi) =

zpX
N−j−i(YN−j − Yi)

GX−Y
≤ C(N − j − i)−

d
2for some C > 0 independent of i, j, N , Y and z ∈ [1, 2] by the loal entral limit theorem, applying (4.6)to (4.7) and taking expetation w.r.t. Y gives

Ǎz
N ≤ Ǎz

L−1 + C
L−1
∑

i=0

Ǎz,pin
i

N−L
∑

j=0

(N − j − i)−
dγ
2 Ǎz

j ≤ Ǎz
L−1 + C

(

L−1
∑

i=0

Ǎz,pin
i

(L− i)
dγ
2
−1

)

max
0≤j≤N−L

Ǎz
j . (4.8)If for some hoie of z > 1 and L ∈ N,̺̌

= C

(

L−1
∑

i=0

Ǎz,pin
i

(L− i)
dγ
2
−1

)

< 1, (4.9)then iterating (4.8) learly implies that Ǎz
N is uniformly bounded in N , and hene (4.5).By Jensen's inequality, Ǎz,pin

N ≤ E
Y
0 [Žz,pin

N,Y ]γ . It is lear from (4.3) and (4.2) that E
Y
0 [Žz,pin

N,Y ] is thepartition funtion of a homogeneous pinning model with ritial point zann
c = 1. Hene F̌ann(z) =

lim
N→∞

N−1 log E
Y
0 [Žz,pin

N,Y ] exists, and F̌ann(z) = F̂ann(β) with z = (eβ − 1)GX−Y . Sine d ≥ 5, K(·) has�nite �rst moment, and hene by Theorem 2.1 of [G07℄, F̌ann(z) ∼ C(z − 1) for some C > 0 as z ↓ 1.Sine (EY
0 [Žz,pin

n,Y ])n∈N is super-multipliative, E
Y
0 [Žz,pin

N,Y ] ≤ eNF̌ann(z) ≤ eCN(z−1) for all N ∈ N. So if wehoose
L = L(z) =

1

z − 1
, (4.10)where we abused notation and assumed L to be an integer for simpliity, then sup1≤i≤L Ǎ

z,pin
i ≤ C forsome C > 0 independent of z. Therefore

ˇ̺≤
L−R
∑

i=0

C

(L− i)
dγ
2
−1

+

L−1
∑

i=L−R+1

CǍz,pin
i

(L− i)
dγ
2
−1

≤ CR2− dγ
2 + C max

L−R≤i≤L
Ǎz,pin

i . (4.11)For d ≥ 5, we an hoose γ < 1 lose to 1 suh that the �rst term on the RHS of (4.11) an be madearbitrarily small (uniformly in z) by hoosing R large. To show ˇ̺< 1 for some z > 1, it then su�es toshow that
lim
z↓1

max
L−R≤N≤L

Ǎz,pin
N = 0, (4.12)where R ∈ N is large and �xed, and L = 1

z−1 . This summarizes the model independent part of thefrational moment method as used in [DGLT07℄.Change of measure. The basi idea in [DGLT07℄ to prove (4.12) is to apply a hange of measure tothe disorder so that the ost of hanging the measure is small, yet under the new disorder, the annealedpartition funtion for a system of size L is small. For the pinning model, the hoie of hanging themeasure in [DGLT07℄ is to make the disorder more repulsive, i.e., tilt the measure of ωi in (1.14) bya fator e−λωi for some λ > 0. In our setting, it turns out that for the ontinuous time model, theappropriate hange of measure is to inrease the jump rate of the random walk Y . For the disrete timemodel, the analogue is to inrease the variane of the random walk inrement eah step without hangingthe support of the random walk transition kernel. However, among nearest-neighbor random walks on Z
d,14



the variane of simple random walk is already maximal. To overome this di�ulty, we hange measurefor Y two steps at a time. More preisely, for h ∈ (0, 1
2d ), let (Y h

n )n∈N0 be a proess on Z
d with Y0 = 0and transition probabilities

P
(

Y h
n+1 − Y h

n = ei
∣

∣(Y h
k )0≤k≤n

)

=



























1

2d
if n is even, or n is odd and ei 6= ±(Y h

n − Y h
n−1),

1 + h

2d
if n is odd, and ei = Y h

n − Y h
n−1,

1 − h

2d
if n is odd, and ei = −(Y h

n − Y h
n−1),

(4.13)for eah of the 2d unit vetors ei ∈ Z
d. Note that P(Y h

2 = 2ei) = P(Y2 = 2ei) + h
4d2 for eah unit vetor

ei ∈ Z
d, P(Y h

2 = 0) = P(Y2 = 0) − h
2d , and P(Y h

2 = x) = P(Y2 = x) for all other x ∈ Z
d. Thus Y h

2 haslarger varianes than Y2. Clearly up to any time N ∈ N, the distribution of Y and Y h are equivalent.Let f(N,Y ) denote the Radon-Nikodym derivative of the law of (Y h
i )0≤i≤N w.r.t. (Yi)0≤i≤N . Then

Ǎz,pin
N = E

Y h

0

[

f(N,Y h)−1
(

Žz,pin
N,Y h

)γ] ≤ E
Y h

0

[

f(N,Y h)−
1

1−γ
]1−γ

E
Y h

0

[

Žz,pin
N,Y h

]γ

= E
Y
0

[

f(N,Y )
− γ

1−γ
]1−γ

E
Y h

0

[

Žz,pin
N,Y h

]γ
. (4.14)Sine (Y2n+1 − Y2n, Y2n+2 − Y2n)n∈N0 are i.i.d. and the distribution of Y h

2n+1 − Y h
2n onditioned on Y h

2n isthe same as a simple random walk, we have
E

Y
0

[

f(N,Y )
− γ

1−γ
]

= E
Y
0

[

f(2, Y )
− γ

1−γ
]⌊N

2 ⌋ =
(

1 − 1

d
+

(1 + h)−
γ

1−γ

2d
+

(1 − h)−
γ

1−γ

2d

)⌊N
2 ⌋ ≤ e

γh2N

2d(1−γ)2for h su�iently small. Therefore if we hoose h = 1√
L
, then the �rst fator in (4.14) is uniformly boundedfor L−R ≤ N ≤ L, and to prove (4.12), it only remains to estimate E

Y h

0 [Žz,pin
N,Y h ] for h = 1√

L
=

√
z − 1.By (4.3), we have

E
Y h

0

[

Žz,pin
N,Y h ] =

N
∑

m=1

( z

GX−Y

)m ∑

σ0=0<σ1<···<σm=N

E
Y h

0

[

m
∏

i=1

pX
σi−σi−1

(Y h
σi

− Y h
σi−1

)
]

. (4.15)Note that when σi−1 is even, by the properties of Y h, we have
E

Y h

0

[

pX
σi−σi−1

(Y h
σi

− Y h
σi−1

)
∣

∣(Y h
j )0≤j≤σi−1

]

= E
Y h

0

[

pX
σi−σi−1

(Y h
σi−σi−1

)
]

.Similarly when σi−1 is odd, by symmetry and translation invariane, we have
E

Y h

0

[

pX
σi−σi−1

(Y h
σi

− Y h
σi−1

)
∣

∣(Y h
j )0≤j≤σi−1

]

= E
Y h

0

[

pX
σi−σi−1

(Y h
σi−σi−1+1 − Y h

1 )
∣

∣Y h
1 = e1

]

,whih is a onstant independent of (Y h
j )0≤j≤σi−1 . Thus in (4.15), we an suessively ondition w.r.t.

(Y h
j )0≤j≤σn , (Y h

j )0≤j≤σn−1 , . . ., (Y h
j )0≤j≤σ1 . To write the result in a more ompat form, let us denote

Kh,even(n) =
E

Y h

0 [pX
n (Y h

n )]

Gh,even
where Gh,even =

∞
∑

n=1

E
Y h

0 [pX
n (Y h

n )],

Kh,odd(n) =
E

Y h

0 [pX
n (Y h

n+1 − Y h
1 )|Y h

1 = e1]

Gh,odd
where Gh,odd =

∞
∑

n=1

E
Y h

0 [pX
n (Y h

n+1 − Y h
1 )|Y h

1 = e1].Let Kh(i, j) = Kh,even(j − i) when i is even, and Kh(i, j) = Kh,odd(j − i) when i is odd. Let ι =

{0, ι1, ι2, · · · } be a renewal proess on N0 with parity-dependent inter-arrival law Kh(·, ·), and denoteexpetation w.r.t. ι by E
Kh[·]. Then (4.15) redues to

E
Y h

0

[

Žz,pin
N,Y h

]

= E
Kh

[( z

GX−Y

)|ι∩[1,N ]|
G

|ιe∩[1,N ]|
h,even G

|ιo∩[1,N ]|
h,odd 1{N∈ι}

]

≤ E
Kh

[(z(Gh,even ∨Gh,odd)

GX−Y

)|ι∩[1,N ]|]
,15



where ιe and ιo denote respetively the even and odd subsets of ι. In d ≥ 5, by the loal entral limittheorem, it is easy to see that there exists an inter-arrival probability distribution K∗(·) on N with �nite�rst moment, suh that K∗ stohastially dominates both Kh,even(·) and Kh,odd(·) for h su�iently small,i.e.,∑i≥nK∗(i) ≥
∑

i≥nKh,even(i) and∑i≥nK∗(i) ≥
∑

i≥nKh,odd(i) for all n ∈ N and h ∈ [0, 1
2 ]. Reallour hoie h = 1√

L
=

√
z − 1. We will show that

z
(

Gh,even ∨Gh,odd

)

GX−Y
= 1 − c

√
z − 1 + o(

√
z − 1) (4.16)for some c > 0. Then for all z > 1 su�iently lose to 1,

E
Y h

0

[

Žz,pin
N,Y h

]

≤ E
K∗
[(

1 − c
√
z − 1 + o(

√
z − 1)

)|ι∗∩[1,N ]|]
, (4.17)where ι∗ is a renewal proess with inter-arrival law K∗ and is independent of z. By the law of largenumbers, a.s. w.r.t. ι∗,

lim
n→∞

N−1|ι∗ ∩ [1,N ]| =
1

∑

i∈N
iK∗(i)

> 0,and hene
lim
z↓1

max
(z−1)−1−R≤N≤(z−1)−1

(

1 − c
√
z − 1 + o(

√
z − 1)

)|ι∗∩[1,N ]|
= 0.Thus

lim
z↓1

max
L−R≤N≤L

E
Y h

0

[

Žz,pin
N,Y h

]

= 0, L =
1

z − 1
, h =

√
z − 1, (4.18)whih together with (4.14) implies (4.12).It only remains to verify (4.16). For k = (k1, · · · , kd) ∈ R

d, we have
φ(k) := E

X
0 [eik·X1 ] =

1

d

d
∑

i=1

cos ki,

ψ(k) := E
Y h

0 [eik·Y
h
2 ] = φ(k)2 − h

d2

d
∑

i=1

sin2 ki,

ϕ(k) := E
Y h

0 [eik·(Y
h
2 −Y h

1 ) |Y h
1 = e1] = φ(k) + i

h

d
sin k1.

(4.19)
Sine X and Y h are independent, (Y h

2n − Y h
2n−2)n∈N are i.i.d., Y h

2n+1 − Y h
2n is independent of (Y h

j )0≤j≤2nand is distributed as X1, while onditioned on Y h
1 = e1, Y h

2 − Y h
1 is independent of (Y h

j − Y h
2 )j≥2, weobtain by Fourier inversion

GX−Y =
1

(2π)d

∫

[−π,π]d

(

φ(k)2 + φ(k)4 + · · ·
)

dk =
1

(2π)d

∫

[−π,π]d

φ(k)2

1 − φ(k)2
dk, (4.20)

Gh,even =
1

(2π)d

∫

[−π,π]d

(

φ(k)2 + φ(k)2ψ(k) + φ(k)4ψ(k) + φ(k)4ψ(k)2 + · · ·
)

dk

=
1

(2π)d

∫

[−π,π]d

φ(k)2(1 + ψ(k))

1 − φ(k)2ψ(k)
dk, (4.21)

Gh,odd =
1

(2π)d

∫

[−π,π]d

(

ϕ(k)φ(k) + ϕ(k)φ(k)3 + ϕ(k)φ(k)3ψ(k) + ϕ(k)φ(k)5ψ(k) + · · ·
)

dk

=
1

(2π)d

∫

[−π,π]d

ϕ(k)φ(k)(1 + φ(k)2)

1 − φ(k)2ψ(k)
dk =

1

(2π)d

∫

[−π,π]d

φ(k)2(1 + φ(k)2)

1 − φ(k)2ψ(k)
dk, (4.22)where in (4.22) we have used the formula for ϕ(k) and the fat that φ(k) and ψ(k) are even funtionswhile sin k1 is odd. Sine ψ(k) < φ(k)2 and φ(k), ψ(k) ∈ [−1, 1], we have Gh,even < Gh,odd, while

GX−Y −Gh,odd =
1

(2π)d

∫

[−π,π]d

( φ(k)2

1 − φ(k)2
− φ(k)2(1 + φ(k)2)

1 − φ(k)2ψ(k)

)

dk,

=
h

(2π)d d2

∫

[−π,π]d

φ(k)4
∑d

i=1 sin2 ki

(1 − φ(k)2)(1 − φ(k)2ψ(k))
dk, (4.23)16



whih implies (4.16) sine h =
√
z − 1.Remark. Equation (4.16) reveals the lose resemblane between the random walk pinning model andthe pinning model (ompare (4.17) here with (4.12) in [DGLT07℄)). In both ases, after hanging themeasure, we end up omparing with a homogeneous pinning model of size N with weight fator e−c/

√
Nfor eah renewal return. The fator c/√N partly explains why α = 1/2, resp. d = 3, is the ritial asefor the pinning, resp. random walk pinning model.Remark. For general random walks, we an try to hange measure for Y one-step at a time. Morepreisely, let S = {y ∈ Z

d : pY
1 (y) > 0}. Then for any A,B ⊂ S with A ∩ B = ∅, for any transitionprobability kernels pA

1 (·) and pB
1 (·) with support resp. A and B, and for h ∈ R su�iently lose to 0, wean hange measure for Y by replaing pY

1 (·) with pY h

1 (x) = pY
1 (x) + h(pA

1 (x) − pB
1 (x)). In (4.14), theestimate involving the density f(N,Y ) is similar, while the estimate for E

Y h

0 [Žz,pin
N,Y h ] redues to estimating

GX−Y −GX−Y h
=

1

(2π)d

∫

[−π,π]d

( 1

1 − φX(k)φY (k)
− 1

1 − φX(k)φY h(k)

)

dk

=
h

(2π)d

∫

[−π,π]d

φX(φB − φA)
(

1 − φXφY

)(

1 − φXφY h

)dk,where φX(k) =
∑

x e
ik·xpX

1 (x), φX(k) = φX(−k), and φY (k), φA(k) and φB(k) are de�ned similarly.Note that in d ≥ 4, ∫ ∣∣φX(φB−φA)

(1−φXφY )2

∣

∣dk < ∞. Therefore based on Taylor expansion in h, all alulationsarry through as long as Q :=
∫ φX(φB−φA)

(1−φXφY )2
dk 6= 0 and h is hosen to have the same sign. When X and

Y are simple random walks, we have Q = 0 for any hoie of A, B, pA
1 and pB

1 due to symmetry. Onthe other hand, if S ontains enough points so as to break symmetry, then it is reasonable to expet theexistene of A, B, pA
1 and pB

1 whih give Q 6= 0. However, it is not obvious how to formulate a moreexpliit riterion.4.2 Proof of Theorem 1.3 in disrete time: d = 4For d = 4, in the representation (4.1), we have K(n) = pX−Y
n (0)/GX−Y ∼ Cn−2 whih has in�nite �rstmoment. Thus d = 4 orresponds to the ase α = 1 in [DGLT07℄ for the pinning model. In [DGLT07℄,the ase α = 1 was left out. However, as we will show below, there is no di�ulty in extending thefrational moment method to the d = 4 ase, and we expet the same to be true for the α = 1 ase forthe pinning model.As in d ≥ 5, it su�es to verify (4.9). What di�ers in d = 4 is that ∑∞

i=R i
1− dγ

2 =
∑∞

i=R i
1−2γ = ∞ forany γ ∈ (0, 1) and R ∈ N. Hene a more areful estimate of ˇ̺ than in (4.11) is needed. By Theorem 2.1of [G07℄ and super-multipliativity of (EY

0 [Žz,pin
n,Y ])n∈N, we have E

Y
0 [Žz,pin

N,Y ] ≤ eCN(z−1) for some C > 0uniformly in z > 1 su�iently lose to 1 and N ∈ N. Therefore the same hoie L = (z−1)−1 as in d ≥ 5ensures that sup1≤i≤L Ǎ
z,pin
i ≤ C <∞ uniformly for z > 1 lose to 1. Fix ǫ > 0 small, then let γ ∈ (0, 1)suh that 2γ − 1 > 1 − ǫ. Analogous to (4.11), we have

ˇ̺≤
L1−ǫ
∑

i=0

C

(L− i)2γ−1
+

L−1
∑

i=L1−ǫ

CǍz,pin
i

(L− i)2γ−1
≤ CL1−ǫ

(L− L1−ǫ)2γ−1
+ CL2−2γ max

L1−ǫ≤i≤L
Ǎz,pin

i . (4.24)Therefore to show ˇ̺< 1 for some z > 1, it su�es to show that with L = (z − 1)−1,
lim
z↓1

L2−2γ max
L1−ǫ≤N≤L

Ǎz,pin
N = 0. (4.25)Traing through the arguments for d ≥ 5, we see that analogous to (4.17), for h = 1/

√
L =

√
z − 1,uniformly for L1−ǫ ≤ N ≤ L and z > 1 su�iently lose to 1, we have

Ǎz,pin
N ≤ CE

Y h

0 [Žz,pin
N,Y h ]γ ≤ CE

K∗
[

exp
{

−c
√
z − 1

∣

∣ι∗ ∩ [1, (z − 1)ǫ−1]
∣

∣

}]γ
, (4.26)17



where ι∗ is a renewal proess on N0 with inter-arrival probability distribution K∗ satisfying the propertythat K∗(n) ∼ Cn−2 for some C > 0. Set M = (z − 1)ǫ−1. Then
0 ≤ lim

z↓1
L2−2γ max

L1−ǫ≤N≤L
Ǎz,pin

N ≤ lim
M→∞

CM
2−2γ
1−ǫ E

K∗

[

exp
{

−cM− 1
2(1−ǫ)

∣

∣ι∗ ∩ [1,M ]
∣

∣

}]γ
= 0,where we applied Proposition A.1 with δ1 = 1

2(1−ǫ) and 1 − δ2 = 2−2γ
γ(1−ǫ) , whih satisfy the ondition

0 < δ1 < δ2 < 1 if ǫ > 0 is small, and γ ∈ (0, 1) is then hosen su�iently lose to 1.5 Gap between ritial points: ontinuous time5.1 Proof of Theorem 1.3 in ontinuous time: d ≥ 5As in disrete time, we split the proof into three parts: representation for Zβ
t,Y and Zβ,pin

t,Y ; frationalmoment method; hange of measure. Compared to the disrete time ase, the main ompliation here isto suitably disretize time so that the frational moment inequality (4.6) an be applied. The hange ofmeasure argument however beomes muh simpler.Representation for Zβ
t,Y and Zβ,pin

t,Y . We now Taylor expand eβLt(X,Y ). Let ps(·) be the transitionprobability kernel of a rate 1 ontinuous time simple random walk on Z
d. Let G1+ρ =

∫∞
0 p(1+ρ)s(0)ds,

K1+ρ(s) = p(1+ρ)s(0)/G1+ρ, β̄ = βG1+ρ, and Z̄ β̄
t,Y = Zβ

t,Y . Then
Z̄ β̄

t,Y = E
X
0

[

1 +

∞
∑

m=1

βm

m!

(

∫ t

0
1{Xs=Ys}ds

)m
]

= E
X
0



1 +
∞
∑

m=1

βm

∫

· · ·
∫

0<s1···<sm<t

1{Xs1=Ys1 ,··· ,Xsm=Ysm}ds1 · · · dsm





= 1 +
∞
∑

m=1

βm

∫

· · ·
∫

0<s1···<sm<t

ps1(Ys1)ps2−s1(Ys2 − Ys1) · · · psm−sm−1(Ysm − Ysm−1)ds1 · · · dsm

= 1 +

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<t

m
∏

i=1

(

K1+ρ(si − si−1)w(β̄, si − si−1, Ysi − Ysi−1)
)

ds1 · · · dsm, (5.1)where
w(β̄, si − si−1, Ysi − Ysi−1) =

β̄ psi−si−1(Ysi − Ysi−1)

p(1+ρ)(si−si−1)(0)
. (5.2)If we denote Z̄ β̄,pin

t,Y = βZβ,pin
t,Y , then similarly,

Z̄ β̄,pin
t,Y = K1+ρ(t)w(β̄, t, Yt)+

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<sm+1=t

m+1
∏

i=1

K1+ρ(si−si−1)w(β̄, si−si−1, Ysi−Ysi−1)ds1 · · · dsm. (5.3)Note that (5.3) asts Z̄ β̄,pin
t,Y in the same form as (4.3), exept that the underlying renewal proess is inontinuous time with return time distribution K1+ρ(s)ds. Sine

E
Y
0 [w(β̄, si − si−1, Ysi − Ysi−1)] = β̄, (5.4)and K1+ρ(·) de�nes a reurrent renewal proess on [0,∞), E

Y
0 [Z̄ β̄,pin

t,Y ] is the partition funtion of ahomogeneous pinning model (in ontinuous time) with ritial point β̄ann
c = 1, or equivalently,

βann
c =

β̄ann
c

G1+ρ
=

1

G1+ρ
. (5.5)18



Frational moment method. Analogous to (4.7), for �xed L ∈ N, we have the deomposition
Z̄ β̄

t,Y = Z̄ β̄
L,Y +

∫∫

0≤u<L<v≤t

K1+ρ(v − u)w(β̄, v − u, Yv − Yu)Z̄ β̄,pin
u,Y Z̄ β̄

t−v,θvY (1 + δ0(u))dudv, (5.6)where θvY = (Yv+s − Yv)s≥0 denotes a shift in Y , δ0(u) is the delta funtion at 0, and Z̄ β̄,pin
0,Y = 1. In theontinuous setting, the analogue of (4.6), (

∫

|a(x)|dx)γ ≤
∫

|a(x)|γdx for γ ∈ (0, 1), is false in general.Therefore we need to disretize the integrals in (5.6). In order to obtain uniform ontrol for the integrandin (5.6) on intervals, it turns out to be more suitable to study the following quantities in plae of Z̄ β̄
t,Yand Z̄ β̄,pin

t,Y .
Z̄ β̄,1

t,Y = 1 +

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<t

m
∏

i=1

K1+ρ(si − si−1)

m
∏

i=2

w(β̄, si − si−1, Ysi − Ysi−1)ds1 · · · dsm,

Z̄ β̄,pin1
t,Y = K1+ρ(t) +

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<sm+1=t

m+1
∏

i=1

K1+ρ(si−si−1)

m+1
∏

i=2

w(β̄, si−si−1, Ysi−Ysi−1)ds1 · · · dsm,

Z̄ β̄,pin2
t,Y = K1+ρ(t) +

∞
∑

m=1

∫

· · ·
∫

s0=0<s1···<sm<sm+1=t

m+1
∏

i=1

K1+ρ(si−si−1)
m
∏

i=2

w(β̄, si−si−1, Ysi−Ysi−1)ds1 · · · dsm,

(5.7)
where ∏m

i=2w = 1 if m = 1. Note that Z̄ β̄,1
t,Y di�ers from Z̄ β̄

t,Y in that the fator w(β̄, s1, Ys1) in (5.1)has been omitted, while Z̄ β̄,pin1
t,Y (resp. Z̄ β̄,pin2

t,Y ) di�ers from Z̄ β̄,pin
t,Y in that the fators w(β̄, t, Yt) and

w(β̄, s1, Ys1) (resp. as well as w(β̄, t− sm, Yt − Ysm)) in (5.3) have been omitted. Omitting these randomfators will provide �exibility in adjusting the lengths of the renewal gaps (si − si−1)i∈N.Note that
w(β̄, v − u, Yv − Yu) =

β̄ pv−u(Yv − Yu)

p(1+ρ)(v−u)(0)
≤ β̄ pv−u(0)

p(1+ρ)(v−u)(0)
≤ C (5.8)for some C ∈ (1,∞) independent of v − u ≥ 0 and β̄ ∈ [1, 2], whih is furthermore uniformly boundedfor ρ ∈ [0, 1]. Therefore

Z̄ β̄
t,Y ≤ CZ̄ β̄,1

t,Y . (5.9)By the monotoniity of Zβ
t,Y = Z̄ β̄

t,Y in t, to show β < β∗c (i.e., supt≥0 Z
β
t,Y < ∞ a.s. w.r.t. Y ), it su�esto show that for β̄ = βG1+ρ, there exists γ ∈ (0, 1) suh that

sup
t≥0

E
Y
0

[(

Z̄ β̄,1
t,Y

)γ]
<∞. (5.10)Note that Z̄ β̄,1

t,Y is inreasing in t for every Y , therefore we may assume t ∈ N. Similar to (5.6), we have
Z̄ β̄,1

t,Y = Z̄ β̄,1
L,Y +

∫ t

L
K1+ρ(v)Z̄

β̄
t−v,θvY dv +

∫∫

0<u<L<v<t

K1+ρ(v − u)w(β̄, v − u, Yv − Yu)Z̄ β̄,pin1
u,Y Z̄ β̄

t−v,θvY dudv

= Z̄ β̄,1
L,Y +

t−1
∑

j=L

j+1
∫

j

K1+ρ(v)Z̄
β̄
t−v,θvY dv (5.11)

+

L−1
∑

i=0

t−1
∑

j=L

∫∫

i<u<i+1
j<v<j+1

K1+ρ(v − u)w(β̄, v − u, Yv − Yu)Z̄ β̄,pin1
u,Y Z̄ β̄

t−v,θvY dudv.We will establish uniform estimates on the integrand for eah integral in (5.11) by bounding Z̄ β̄
t−v,θvY interms of Z̄ β̄,1

t−j−1,θj+1Y and bounding Z̄ β̄,pin1
u,Y in terms of Z̄ β̄,pin2

i,Y .19



We �rst make a few observations whih will ome in handy. Note that for all s ∈ [0, 1] and all realizationsof Y ,
Z̄ β̄

s,Y = Zβ
s,Y = E

X
0 [eβLs(X,Y )] ≤ eβ ,

Z̄ β̄,pin
s,Y = βZβ,pin

s,Y = β E
X
0 [eβLs(X,Y )1{Xs=Ys}] ≤ βeβ.

(5.12)Next note that
Cρ = sup

u≥0
0≤s≤1

K1+ρ(u)

K1+ρ(u+ s)
<∞, (5.13)whih is uniformly bounded for ρ ∈ [0, 1].If v ∈ (j, j + 1) for some L ≤ j ≤ t− 1, then by the same deomposition as (5.6) with s1, s2, j + 1 nowplaying the roles of u, v, L and by the observations above, we have

Z̄ β̄
t−v,θvY =Z̄ β̄

j+1−v,θvY +

∫∫

v≤s1<j+1
j+1<s2<t

K1+ρ(s2 − s1)w(β̄, s2−s1, Ys2−Ys1)Z̄
β̄,pin
s1−v,θvY Z̄

β̄
t−s2,θs2Y (1+δv(s1))ds1ds2

≤C + C

∫ t

j+1
K1+ρ(s2 − j − 1)Z̄ β̄

t−s2,θs2Y ds2 = CZ̄ β̄,1
t−j−1,θj+1Y , (5.14)where C <∞ is independent of t, v, Y , β̄ ∈ [1, 2], and furthermore is uniformly bounded for ρ ∈ [0, 1].If u ∈ (i, i + 1) for some 0 ≤ i ≤ L− 1, then by a similar deomposition as above, we have

Z̄ β̄,pin1
u,Y =

∫

i<s2≤u

K1+ρ(s2)Z̄
β̄,pin
u−s2,θs2Y (1 + δu(s2))ds2

+

∫∫

0<s1<i<s2≤u

K1+ρ(s2 − s1)w(β̄, s2 − s1, Ys2 − Ys1)Z̄
β̄,pin1
s1,Y Z̄ β̄,pin

u−s2,θs2Y (1 + δu(s2))ds1ds2

≤ CK1+ρ(i) + C

∫

0<s1<i

K1+ρ(i− s1)Z̄
β̄,pin1
s1,Y ds1 = CZ̄ β̄,pin2

i,Y . (5.15)Substituting the bounds (5.8), (5.13)�(5.15) into (5.11) gives
Z̄ β̄,1

t,Y ≤ Z̄ β̄,1
L,Y + C ′

t−1
∑

j=L

K1+ρ(j + 1)Z̄ β̄,1
t−j−1,θj+1Y + C ′

L−1
∑

i=0

t−1
∑

j=L

K1+ρ(j + 1 − i)Z̄ β̄,pin2
i,Y Z̄ β̄,1

t−j−1,θj+1Y

≤ Z̄ β̄,1
L,Y + C

L−1
∑

i=0

t−1
∑

j=L

K1+ρ(j + 1 − i)Z̄ β̄,pin2
i,Y Z̄ β̄,1

t−j−1,θj+1Y , (5.16)where C <∞ is independent of t, Y , β̄ ∈ [1, 2], and an be hosen uniformly for ρ ∈ [0, 1].Fix γ ∈ (0, 1) suh that dγ
2 > 2 for d ≥ 5. Denote Āβ̄,1

t = E
Y
0

[(

Z̄ β̄,1
t,Y

)γ] and Āβ̄,pin2
t = E

Y
0

[(

Z̄ β̄,pin2
t,Y

)γ].Then the same alulations as those leading to (4.8) yields
Āβ̄,1

t ≤ Āβ̄,1
L + ̺ sup

0≤j≤t−L
Āβ̄,1

j with ̺ = C

(

L−1
∑

i=0

Āβ̄,pin2
i

(L− i)
dγ
2
−1

)

, (5.17)where C < ∞ is independent of t and β̄ ∈ [1, 2], and an be hosen uniformly for ρ ∈ [0, 1]. As in thedisrete time ase, we aim to show ̺ < 1.Note that Āβ̄,pin2
s ≤ E

Y
0 [Z̄ β̄,pin2

s,Y ]γ ≤ E
Y
0 [Z̄ β̄,pin

s,Y ]γ ≤ E
Y
0 [Z̄ β̄

s,Y ]γ by Jensen and (5.4), where we see from (5.1)that E
Y
0 [Z̄ β̄

s,Y ] is the partition funtion of a ontinuous time homogeneous pinning model with return timedistribution K1+ρ(·) and ritial point β̄ann
c = 1. For d ≥ 5, it is easy to verify (by law of large numbersand elementary large deviation estimates for the number of returns of the renewal proess before time s)that
E

Y
0 [Z̄ β̄

s,Y ] ≤ CeC(β̄−1)s (5.18)20



for some C ∈ (0,∞) independent of s ≥ 0 and β̄ ∈ [1, 2], and is furthermore uniformly bounded for
ρ ∈ [0, 1]. As in the disrete time ase, we hoose

L = (β̄ − 1)−1. (5.19)In view of (5.10) and (5.17), and by the same arguments as those leading to (4.12) in the disrete timease, to show β∗c > βann
c for any ρ > 0, it su�es to show that

lim
β̄↓1

sup
L−R≤t≤L

Āβ̄,pin2
t = 0, (5.20)where R ∈ N is large and �xed and an be hosen uniformly for ρ ∈ [0, 1]. On the other hand, showing

β∗c − βann
c ≥ aρ (5.21)for some a > 0 and all ρ ∈ [0, 1] redues to showing that: (1) the onvergene in (5.20) is in fat uniformfor ρ ∈ [ρ0, 1] for any 0 < ρ0 ≤ 1, whih implies that infρ∈[ρ0,1](β̄

∗
c − 1) > 0 where β̄∗c = G1+ρβ

∗
c , andhene infρ∈[ρ0,1](β

∗
c − βann

c ) > 0; (2) for β̄ = 1 + aρ with a > 0 su�iently small, L = (β̄ − 1)−1, and
R ∈ N large and independent of ρ ∈ [0, 1],

lim sup
ρ↓0

sup
L−R≤t≤L

Āβ̄,pin2
t < 1, (5.22)whih implies that for some ρ0 ∈ (0, 1], β̄∗c − 1 = G1+ρ(β
∗
c − βann

c ) ≥ aρ for all ρ ∈ [0, ρ0].Change of measure. We now prove (5.20) and (5.22), where the onvergene in (5.20) will be shownto be uniform in ρ ∈ [ρ0, 1] for any 0 < ρ0 ≤ 1. Here, the appropriate hange of measure for the disorder
Y is simply to inrease the jump rate of the random walk Y . Let Y ρ+h be a simple random walk on Z

dwith jump rate ρ+ h for some h > 0, then the path measures (Ys)0≤s≤t and (Y ρ+h
s )0≤s≤t are equivalent,and the Radon-Nikodym derivative of the law of (Y ρ+h

s )0≤s≤t w.r.t. that of (Ys)0≤s≤t is given by
f(t, Y ) = e−ht(1 + hρ−1)Nt(Y ),where Nt(Y ) is the number of jumps of Y in [0, t]. Then as in (4.14),

Āβ̄,pin2
t = E

Y ρ+h

0

[

f(t, Y ρ+h)−1
(

Z̄ β̄,pin2
t,Y ρ+h

)γ] ≤ E
Y
0

[

f(t, Y )
− γ

1−γ ]1−γ
E

Y ρ+h

0

[

Z̄ β̄,pin2
t,Y ρ+h

]γ
. (5.23)Note that

E
Y
0

[

f(t, Y )
− γ

1−γ ] = e
γht
1−γ E

Y
0

[

(1 + hρ−1)
− γNt

1−γ
]

= e
γht
1−γ

∞
∑

n=0

e−ρt (ρt)
n

n!
(1 + hρ−1)

− γn
1−γ

= exp

{

(

ρ(1 + hρ−1)−
γ

1−γ − ρ+
γh

1 − γ

)

t

}

≤ exp

{

γh2t

2ρ(1 − γ)2

}

, (5.24)where seond order Taylor expansion in h in the exponent provides a true upper bound. For L−R ≤ t ≤ L,if we hoose h =
√

ρ√
L
, then the �rst term in (5.23) is bounded and independent of ρ, β̄ and t. Thus itonly remains to estimate E

Y ρ+h

0

[

Z̄ β̄,pin2
t,Y ρ+h

].First note that E
Y ρ+h

0

[

Z̄ β̄,pin2
t,Y ρ+h

]

≤ CE
Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

] for some C > 0 independent of ρ ≥ 0, β̄ ∈ [1, 2] and
t ≥ 0, beause eah term in the expansion for Z̄ β̄,pin

t,Y in (5.3) di�ers from the orresponding term in (5.7)for Z̄ β̄,pin2
t,Y by at most two fators of w, and E

Y ρ+h

0 [w(β̄, v − u, Yv − Yu)] =
β̄ p(1+ρ+h)(v−u)(0)

p(1+ρ)(v−u)(0)
≥ C for some

C > 0 independent of ρ ≥ 0, h ∈ [0, 1], β̄ ∈ [1, 2] and v − u ≥ 0. Reall G1+ρ =
∫∞
0 p(1+ρ)s(0)ds,

E
Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

]

=

(

β̄

G1+ρ

)

p(1+ρ+h)t(0) +

∞
∑

m=1

∫

· · ·
∫

0=s0<s1···<sm<sm+1=t

(

β̄

G1+ρ

)m+1 m+1
∏

i=1

p(1+ρ+h)(si−si−1)(0) ds1 · · · dsm

=
(1 + ρ)β̄

1 + ρ+ h
K1+ρ+h(t) +

∫

· · ·
∫

0=s0<s1···<sm<sm+1=t

(

(1 + ρ)β̄

1 + ρ+ h

)m+1 m+1
∏

i=1

K1+ρ+h(si − si−1) ds1 · · · dsm, (5.25)21



where K1+ρ+h(s) = p(1+ρ+h)s(0)/G1+ρ+h with G1+ρ+h =
∫∞
0 p(1+ρ+h)s(0)ds =

(1+ρ)G1+ρ

1+ρ+h .Denote β̄′ = (1+ρ)β̄
1+ρ+h . Let σρ+h = (0, σρ+h

1 , σρ+h
2 , · · · ) be a renewal sequene on [0,∞) with inter-arrivallaw K1+ρ+h(·), and let E

K1+ρ+h[·] denote expetation w.r.t. σρ+h. Then in view of (5.25),
E

K1+ρ+h

[

(β̄′)1+|σρ+h∩[0,t]| 1{σρ+h∩[t,t+1] 6=∅}
]

≥ inf
u≥0,

0≤s≤1

K1+ρ+h(u+ s)

K1+ρ+h(u)
E

Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

]

.Reall the de�nition of C1+ρ from (5.13), we then have
E

Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

]

≤ Cρ+hE
K1+ρ+h

[

(β̄′)1+|σρ+h∩[0,t]|
]

. (5.26)Now to prove (5.22), we reall that L = (β̄ − 1)−1 and hene h =
√

ρ√
L

=
√

ρ(β̄ − 1). Therefore thereexists β̄0 > 1 su�iently small suh that for all ρ > 0 and β̄ ∈ [1, β̄0],
β̄′ =

(1 + ρ)β̄

1 + ρ+ h
≤ (1 + β̄ − 1)

(

1 −
√

ρ(β̄ − 1)

2(1 + ρ)

)

. (5.27)First note that by our hoie β̄ = 1 + aρ, we have β̄′ ≤ 1 − ρ
√
a/8 for all ρ ∈ [0, 1] if 0 < a < 1/64.Next note that Cρ+h is uniformly bounded for ρ ∈ [0, 1] and β̄ ∈ [1, 2]. For d ≥ 5, by the loal entrallimit theorem, there exists an inter-arrival probability distribution K∗ on (0,∞) with �nite �rst moment

m =
∫∞
0 sK∗(s)ds, suh that K∗ stohastially dominates K1+ρ+h for all h ∈ [0, 1] and ρ ∈ [0, 1]. Namely,

∫∞
t K∗(s)ds ≥

∫∞
t K1+ρ+h(s)ds for all t ≥ 0, h ∈ [0, 1] and ρ ∈ [0, 1]. Combining the above observations,we have

lim sup
ρ↓0

sup
L−R≤t≤L

Āβ̄,pin2
t ≤C lim sup

ρ↓0
sup

L−R≤t≤L
E

Y ρ+h

0

[

Z̄ β̄,pin
t,Y ρ+h

]

≤C lim sup
ρ↓0

E
K∗ [(1 − ρ

√
a/8)|ι

∗∩[0,L−R]|], (5.28)where ι∗ is a renewal proess on [0,∞) with return time distribution K∗. By the law of large numbers,a.s. w.r.t. ι∗,
lim
ρ↓0

(1 − ρ
√
a/8)|ι

∗∩[0,L−R]| = lim
ρ↓0

exp

{

−ρ
√
a

8
· (aρ)−1 −R

m

}

= exp

{

− 1

8m
√
a

}

,whih an be made arbitrarily small if a > 0 is hosen su�iently small. Inequality (5.22) then followsby applying the dominated onvergene theorem in (5.28).The proof of (5.20) for any ρ > 0 and the uniform onvergene in (5.20) for ρ ∈ [ρ0, 1] for any ρ0 ∈ (0, 1]follows by similar arguments. It su�es to observe that β̄′ ≤ 1 − C
√

β̄ − 1 for some C > 0 uniformly in
ρ ∈ [ρ0, 1] and β̄ > 1 su�iently small. This onludes the proof of Theorem 1.3.5.2 Proof of Theorem 1.3 in ontinuous time: d = 4As in d ≥ 5, proving Theorem 1.3 redues to proving ̺ < 1 (see (5.17)) for appropriate hoies of β̄and L depending on the di�usion onstant ρ. Sine E

Y
0 [Z̄ β̄

t,Y ] is the partition funtion of a homogeneouspinning model with parameter β̄ ≥ 1 and return time distribution K1+ρ(t) ∼ Ct−2, by omparing
K1+ρ with a return time distribution K ′ whih is stohastially smaller than K1+ρ and has �nite �rstmoment, we see that (5.18) also holds in d = 4. Therefore setting L = (β̄ − 1)−1 as in d ≥ 5, we have
sup0≤t≤L Ā

β̄,pin2
t ≤ C <∞, and analogous to (4.24), we have

̺ ≤
L1−ǫ
∑

i=0

C

(L− i)2γ−1
+

L−1
∑

i=L1−ǫ

CĀβ̄,pin2
i

(L− i)2γ−1
≤ CL1−ǫ

(L− L1−ǫ)2γ−1
+ CL2−2γ sup

L1−ǫ≤t≤L

Āβ̄,pin2
t , (5.29)
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where ǫ > 0, γ ∈ (0, 1) is hosen so that 2γ − 1 > 1 − ǫ, and C ∈ (0,∞) is independent of β̄ ∈ [1, 2] andis furthermore uniformly bounded for ρ ∈ [0, 1]. Therefore, to show β∗c > βann
c for any ρ > 0, it su�esto show

lim
β̄↓1

L2−2γ sup
L1−ǫ≤t≤L

Āβ̄,pin2
t = 0. (5.30)On the other hand, to show that for any δ > 0, there exists aδ > 0 suh that

β∗c − βann
c ≥ aδρ

1+δ ∀ ρ ∈ [0, 1], (5.31)it su�es to show that: (1) the onvergene in (5.30) is uniform for ρ ∈ [ρ0, 1] for any 0 < ρ0 ≤ 1, whihimplies that infρ∈[ρ0,1](β
∗
c − βann

c ) > 0; (2) for β̄ = 1 + ρ1+δ and L = (β̄ − 1)−1 = ρ−1−δ,
lim
ρ↓0

L2−2γ sup
L1−ǫ≤t≤L

Āβ̄,pin2
t = 0, (5.32)whih implies that for some ρ0 ∈ (0, 1], β̄∗c − 1 = G1+ρ(β
∗
c − βann

c ) ≥ ρ1+δ for all ρ ∈ [0, ρ0].Proeeding exatly as in the d ≥ 5 ase, we note that (5.26) still holds in d = 4. By the hoie
h =

√
ρ√
L

= ρ1+δ/2, there exists ρ1 ∈ (0, 1) suh that
β̄′ =

(1 + ρ)β̄

1 + ρ+ h
=

(1 + ρ)(1 + ρ1+δ)

1 + ρ+ ρ1+δ/2
≤ 1 − ρ1+δ/2/2 ≤ e−ρ1+δ/2/2 ∀ ρ ∈ [0, ρ1]. (5.33)If we hoose K∗ to be a return time distribution with ∫∞

0 K∗(s)ds = 1 and K∗(s) ∼ Cs−2 suh that K∗stohastially dominates K1+ρ+h for all ρ, h ∈ [0, 1], and let ι∗ be a renewal proess on [0,∞) with returntime distribution K∗, then
0 ≤ lim

ρ↓0
L2−2γ sup

L1−ǫ≤t≤L

Āβ̄,pin2
t ≤ C lim

ρ↓0
ρ−(1+δ)(2−2γ)

E
K∗

[

exp

{
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2
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∣
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}]γ

= C lim
M→∞

M
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1−ǫ E
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[

exp
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2
M

− 1+δ/2
(1+δ)(1−ǫ)

∣

∣ι∗ ∩ [0,M ]|
}]γ

= 0where we applied Proposition A.1 with δ1 = 1+δ/2
(1+δ)(1−ǫ) and 1 − δ2 = 2−2γ

γ(1−ǫ) , whih satisfy the ondition
0 < δ1 < δ2 < 1 if ǫ > 0 is small and γ is then hosen su�iently lose to 1. This proves (5.32).The proof of (5.30) for any ρ > 0 and the uniform onvergene therein for ρ ∈ [ρ0, 1] for any ρ0 ∈ (0, 1]follows by similar arguments. It su�es to note that for eah ρ > 0, there exists C > 0 and β̄0 > 1 suhthat β̄′ ≤ 1−C

√

β̄ − 1 for all β̄ ∈ [1, β̄0]. Furthermore, C and β̄0 an be hosen uniformly for ρ ∈ [ρ0, 1]for any ρ0 > 0. The rest of the proof proeeds exatly as for d = 4 in the disrete time ase.A A renewal proess estimateThe following proposition omplements Proposition A.2 in [DGLT07℄ for the ase α = 1.Proposition A.1 Let ι∗ = {ι0 = 0, ι1, · · · } be a renewal proess on N0 with inter-arrival probabilitydistribution K∗ satisfying ∑n∈N
K∗(n) = 1 and K∗(n) ∼ Cn−2 as n → ∞. Then for any c > 0 and

0 < δ1 < δ2 < 1, we have
lim

N→∞
N1−δ2E

K∗

[

exp
{

−cN−δ1
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∣ι∗ ∩ [0,N ]
∣

∣

}]

= 0. (A.1)The same result holds if ι∗ is a renewal proess on [0,∞) with inter-arrival distribution K∗ satisfying
∫∞
0 K∗(s)ds = 1 and K∗(s) ∼ Cs−2 as s→ ∞. 23



Proof. Let δ3 ∈ (δ1, δ2). Note that
E

K∗

[

exp
{

−cN−δ1
∣

∣ι∗ ∩ [0, N ]
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∣

}]

≤ P

(

0 ≤ |ι∗ ∩ [0,N ]| < N δ3
)

+ e−cnNδ3−δ1
. (A.2)Let (Ui)i∈N be i.i.d. random variables with distribution K∗. By our assumption on K∗, for eah α ∈ (0, 1),we an �nd a onstant Cα > 0 and i.i.d. stable subordinators (Vi)i∈N with exponent α, i.e., P(V1 > 0) = 1and V1

law
=
∑n

i=1 Vi/n
1/α, suh that P(U1 > s) ≤ P(V1 + Cα > s) for all s > 0. Therefore, for α ∈ (δ3, 1),
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 = P

(

V1 > N1−δ3/α − CαN
δ3(1−1/α)

)

≤ CN δ3−α, (A.3)where we used the fat that P(V1 > x) ∼ Cx−α as x→ ∞. It is easy to see that (A.1) follows from (A.2)and (A.3) if we hoose α ∈ (0, 1) suh that 1 − δ2 + δ3 − α < 0. The ase when ι∗ is a renewal proesson [0,∞) an be treated identially.Aknowledgment R.S. thanks Jürgen Gärtner and Thomas Mountford for helpful disussions on theparaboli Anderson model with moving atalysts. We thank F.L.Toninelli for interesting disussions.R.S. is supported by a postdotoral position in the DFG Forshergruppe 718 Analysis and Stohastis inComplex Physial Systems.Referenes[AZ08℄ K.S. Alexander, N. Zygouras. Quenhed and annealed ritial points in polymer pinning models(2008), arXiv:0805.1708v1 [math.PR℄.[B04℄ M. Birkner. A ondition for weak disorder for direted polymers in random environment, Eletron.Comm. Probab. 9 (2004), 22�25.[BGdH08℄ M. Birkner, A. Greven, F. den Hollander. Quenhed LDP for words in a letter sequene (2008),arXiv:0807.2611v1 [math.PR℄.[BGLT08℄ T. Bodineau, G. Giaomin, H. Laoin, F.L. Toninelli. Copolymers at seletive interfaes: newbounds on the phase diagram (2008), arXiv:0803.1766v1 [math.PR℄.[CC07℄ A. Camanes, P. Carmona. Direted polymers, ritial temperature and uniform integrability,preprint (2007).[CSY04℄ F. Comets, T. Shiga, N. Yoshida, Probabilisti analysis of direted polymers in a randomenvironment: a review. Stohasti analysis on large sale interating systems, 115�142, Adv. Stud.Pure Math. 39, Math. So. Japan, Tokyo (2004).[D96℄ R. Durrett. Probability: Theory and Examples, 2nd ed., Duxbury Press (1996).[DGLT07℄ B. Derrida, G. Giaomin, H. Laoin and F.L. Toninelli. Frational moment bounds and dis-order relevane for pinning models (2007), arXiv:0712.2515v1 [math.PR℄.[G07℄ G. Giaomin. Random Polymer Models, Imperial College Press, World Sienti� (2007).[GdH07℄ A. Greven and F. den Hollander. Phase transitions for the long-time behaviour of interatingdi�usions, Ann. Probab. 35 (2007), 1250-1306. 24



[GH06℄ J. Gärtner and M. Heydenreih. Annealed asymptotis for the paraboli Anderson model with amoving atalyst, Stohasti Proesses and their Appliations 116 (2006), 1511�1529.[GK05℄ J. Gärtner and W. König. The paraboli Anderson model, Interating Stohasti Systems, 153�179, Springer (2005).[GM06℄ T. Garel and C. Monthus. Freezing transitions of the direted polymer in a 1+d random medium:Loation of the ritial temperature and unusual ritial properties, Phys. Rev. E 74 (2006), 011101.[GS07℄ J. Gärtner and R. Sun. A quenhed limit theorem for the loal time of random walks on Z
2(2007), to appear in Stohasti Proess. Appl., arXiv:0711.4488v1 [math.PR℄.[T08℄ F.L. Toninelli. Coarse graining, frational moments and the ritial slope of random opolymers(2008), arXiv:0806.0365v1 [math.PR℄.

25


