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Abstract

We study a random walk pinning model, where conditioned on a simple random walk Y on Z?
acting as a random medium, the path measure of a second independent simple random walk X up
to time ¢ is Gibbs transformed with Hamiltonian —L;(X,Y), where L;(X,Y") is the collision local
time between X and Y up to time ¢. This model arises naturally in various contexts, including the
study of the parabolic Anderson model with moving catalysts, the parabolic Anderson model with
Brownian noise, and the directed polymer model. It falls in the same framework as the pinning and
copolymer models, and exhibits a localization-delocalization transition as the inverse temperature 3
varies. We show that in dimensions d = 1,2, the annealed and quenched critical values of § are both
0, while in dimensions d > 4, the quenched critical value of 3 is strictly larger than the annealed
critical value (which is positive). This implies the existence of certain intermediate regimes for the
parabolic Anderson model with Brownian noise and the directed polymer model. For d > 5, the same
result has recently been established by Birkner, Greven and den Hollander [BGAHO8] via a quenched
large deviation principle. Our proof is based on a fractional moment method used recently by Derrida,
Giacomin, Lacoin and Toninelli [DGLTO07] to establish the non-coincidence of annealed and quenched
critical points for the pinning model in the disorder-relevant regime. The critical case d = 3 remains
open.

1 Introduction and main result

1.1 The model and main results

We first define the continuous time version of the random walk pinning model, which more precisely, could
be called the random walk pinned to random walk model. Let X and Y be two independent continuous
time simple random walks on Z% with jump rates 1 and p > 0 respectively. Let p; denote the law
of (Xs)o<s<t. For f € R, which plays the role of the inverse temperature (if § > 0), and for a fixed
realization of Y acting as a random medium, we define a Gibbs transformation of the path measure p,.
Namely, we define a new path measure ,ufy on (Xs)o<s<+ which is absolutely continuous w.r.t. p; with
Radon-Nikodym derivative ’

d,uf,y GBLUXY)

(X : (1.1)
dpg ny
where Li(X,Y) = fg lix,—y,)ds is the collision local time between X and Y up to time ¢, and
Z0y =y [P0 (1.2)

is the quenched partition function which makes ,ufy a probability measure, where Ef[] denotes expecta-
tion w.r.t. X starting from = € Z%. The quenched free energy of the model is defined by

1
F(§,p) = Jim —log Z}). (1.3)

We will show below that the limit exists and is non-random. As a disordered system, it is also natural
to consider the annealed partition function E%/ [ny] and the annealed free energy

1
Fana(8,p) = Jim ~log EY [Zy]. (1.4)

Note that E%/[Ztﬁy] = EX Y [ePL(X=Y:0)] is also the partition function of a homogeneous pinning model
(see e.g. Giacomin |GO07|), namely a random walk pinning model where the random walk X —Y (with
jump rate 1 + p) is pinned to the site 0 instead of to a random trajectory.



To define the discrete time version of the random walk pinning model, let X,Y be discrete time simple
random walks on Z¢ The Gibbs transformed path measure ﬂ]’iﬂy, N € N, can be defined similarly as
n (1.1), where we replace Ly(X,Y) by Ly(X,Y) = Zi\il Lix,=y;}- We then define ZAfﬂy, F(ﬁ) ﬂﬁ,’ann,
Fann(ﬁ) similarly for the discrete time model as for the continuous time model. Note that the free energies
F(ﬁ) and Fann(ﬁ) now only depend on [ since there are no more jump rates to adjust. To keep things
simple, we focus only on X and Y being simple random walks in this paper. However, we expect much of
the same results to hold and the proofs to be adaptable for general random walks, and we will comment
on possible adaptations when appropriate.

Our first result is the existence of the quenched free energies F'(3, p) and F(ﬁ) Existence of the annealed
free energies Fann (G, p) and Fann (0) is well known (see e.g. Chapter 2 in [GOT7]). Before stating the result,
we first introduce a two-parameter family of constrained partition functions for the random walk pinning
model, where apart from a shift in time for the disorder Y, the random walk X is subject to the constraint
X; =Y, in (1.1). In continuous time setting, for 0 < s < t < oo, define

. t—s
Zihy = EX, [exp {5/0 1{Xu=Ys+u}du} 1{%:%}] : (1.5)
For 0 <m < n < oo with m,n € Ny, we define Zﬁ)’@p:}ly analogously for the discrete time model. For
simplicity, we will denote Z[%’f]if;/ by Zf ﬁ?in, and Z[%ﬁ\ifiy by Zﬁ,gﬁn

Theorem 1.1 [Existence of quenched free energy]
For any 8 € R and p > 0, there exists a non-random constant F(3, p) such that

. 8 . 8,pin
_ - - - : 1.
F(B.p) = lim —logZ,, = lim —log Z;3"™, (1.6)
where the convergence are a.s. and in LY w.r.t. Y. Furthermore, we have the representation
1 .
F(B,p) =sup - EY [log Zfi?m} ) (1.7)
t>0 1 ’
Analogous statements hold for the discrete time model.

Corollary 1.1 [Existence of critical points]

There exist 0 < 2" < . depending on p > 0 such that: Fun(5,p) =0 if B < 52" and Fan(5,p) > 0
if B> 2 F(B,p) =0if B < Be and F(B,p) > 0if B> (.. Analogous statements hold for the discrete
time model with annealed and quenched critical points ﬁgnn and BC respectively.

Remark. See (5.5) and (4.4) for the exact values of G2 and 2.

Remark. As in the pinning model (see e.g. [GOT]), . marks the transition between a localized and a
delocalized phase: when 3 < (. and F(3,p) = 0, Ly(X,Y") is typically of order o(t) w.r.t. ,ufy for t large;

when 3 > (. and F(3,p) > 0, Ly(X,Y) is typically of order ¢ w.r.t. ,ufy for ¢ large. Similarly, 52" marks
the transition between the localized and delocalized phase for the annealed homogeneous pinning model.

One question of fundamental interest in the study of disordered systems is to determine when is the
disorder strong enough to shift the critical point of the model, i.e., when is g2"" < 3.7 For the pinning
model, this question has recently been essentially fully resolved independently by Derrida, Giacomin,
Lacoin and Toninelli [DGLT07], and Alexander and Zygouras |[AZ08]. For the random walk pinning
model, our main result is the following.

Theorem 1.2 [Annealed vs quenched critical points|

In dimensions d = 1 and 2, we have 2™ = [, = ﬁgnn = ﬁc = 0. In dimensions d > 4, we have
0 < g™ < B for each p >0 and 0 < ﬁgnn < Bo. Ford > 5, there emists a > 0 s.t. B, — B > ap for
all p € [0,1]. For d =4 and for each § > 0, there exists as > 0 s.t. B — ™ > asp' ™ for all p € [0,1].



For purposes relevant to applications for the parabolic Anderson model with Brownian noise and the
directed polymer model, in d > 4, we prove instead a stronger version of Theorem 1.2. Define

B = sup {ﬁ € R:sup Ztﬁy < 00 a.8. w.r.t. Y}. (1.8)
t>0

Define B(’f for the discrete time model analogously. Clearly 57 < . and B: < BC. We have

Theorem 1.3 [Non-coincidence of critical points strengthened]
For d > 4, we have 2™ < (% for each p > 0 and B < B%. For d > 5, there exists a > 0 s.t.
B — B2 > ap for all p € [0,1]. For d = 4 and for each § > 0, there exists as > 0 s.t. 5 — 2 > gzp*+°

for all p € 10, 1].

Remark. Theorem 1.3 for d > 5 (without bounds on the gap) has recently been established by Birkner,
Greven, and den Hollander [BGAHO08] as an application of a quenched large deviation principle for renewal
processes in random scenery. Our aim here is to give an alternative proof based on adaptations of the
fractional moment method used recently by Derrida et al [DGLT07] in the pinning model context, and
to extend to the d = 4 case. Loosely speaking, because P(X,, = Y,,) ~ Cn~%2 = Cn=1=% by the local
central limit theorem, d > 5 corresponds to the case a > 1 in [DGLTO07|; d = 4 corresponds to the case
a = 1, which was not covered in [DGLT07], but included in |[AZ08]; while d = 3 corresponds to the
marginal case « = 1/2, which remains open from both [DGLT07] and [AZ08] for the pinning model, and
remains open for our model as well.

Remark. It is an interesting open question whether 3 = [, i.e., whether the quenched partition
function Ztﬁy is uniformly bounded in t a.s. w.r.t. Y in the entire delocalized phase. As communicated
to us by F.L.Toninelli, this question also remains open for the pinning and the copolymer models.

Theorem 1.3 for the continuous time model confirms Conjecture 1.8 of Greven and den Hollander [GAHO7]
(for d > 4) that the parabolic Anderson model with Brownian noise could admit an equilibrium measure
with an infinite second moment. Theorem 1.3 for the discrete time model can be used to disprove a
conjecture of Garel and Monthus [GMO06| that for the directed polymer model in random environment,
the transition from weak to strong disorder occurs at S3"". See Sec. 1.4 for more details. For some
special environments in special dimensions, this conjecture has already been disproved by Camanes and
Carmona [CC07|. In Section 1.4, we will show that the results of Derrida et al [DGLT07] on the pinning
model can also be used to disprove the Garel-Monthus conjecture in d > 4. The reader can also consult
Section 1.5 of [BGAHO8| for more detailed expositions on the implication of Theorem 1.3 for the various
models mentioned above.

In the remainder of the introduction, we point out a connection between the random walk pinning model
and the parabolic Anderson model with a single moving catalyst, and how does the random walk pinning
model fit in the same framework as the pinning and copolymer models. Lastly, we will introduce an
imhomogeneous random walk pinning model which generalizes both the pinning and the random walk
pinning model.

1.2 Parabolic Anderson model with a single moving catalyst

As for the continuous time random walk pinning model, let Y be a continuous time simple random walk
on Z% with jump rate p > 0. The parabolic Anderson model with a single moving catalyst is the solution
of the following Cauchy problem for the heat equation in a time-dependent random potential

d
EU( )
u(0, z)

Au(t7 iL‘) + ﬁéYt ($) u(tv $)7
1,

t,
* zeZd t>0, (1.9)

where 8 € R and Af(z) = 5 2 ly—alj=1(f(y) = f(z)) is the discrete Laplacian on Z%. Heuristically,
the time-dependent potential $dy,(z) can be interpreted as a single catalyst with strength 5 moving as



Y, u(t,z) is then simply the expected number of particles alive at position z at time ¢ for a branching
particle system, where initially one particle starts from each site of Z?, and independently, each particle
moves on Z% as a simple random walk, and whenever the particle is at the same location as the catalyst
Y, it splits into two particles with rate S if § > 0 and is killed with rate —0 if 3 < 0. For further
motivations and a survey on the parabolic Anderson model, see e.g. Gartner and Konig [GKO05].

Quantities of special interest in the study of the parabolic Anderson model are the quenched and annealed
p-th moment Lyapunov exponents.

1 1
Ao = Jim ~logu(t,0), A= lim ZlogE(’f[u(t,O)p]. (1.10)

The annealed p-th moment Lyapunov exponents for p € N have been studied by Gértner and Heydenreich
in [GHO6]. Here we show that

Theorem 1.4 [Existence of quenched Lyapunov exponent]
For any B € R and p > 0, there exists a non-random constant \g = \o(f3, p) such that for all x € 79,

1
Ao = tlim Zlogu(t,x) a.s. and in L' w.rt. Y. (1.11)
— 00
Furthermore, X\o(B, p) = F (B, p), where F(53,p) is as in (1.6).

Indeed, the solution of (1.9) admits the Feynman-Kac representation

t
u(t,z) = Ef [exp {ﬁ/o 1{th:ys}dsH , (1.12)

where X is a simple random walk on Z¢ with jump rate 1 and X = x. Except for the time reversal of X
in (1.12), u(t,z) has the same representation as that for ny. The same proof as for Theorem 1.1 then
applies, which gives rise to the same representation for Ay as for F(B,p) in (1.7) due to the fact that the
variational expression in (1.7) is invariant w.r.t. time reversal for X.

1.3 Relation to pinning and copolymer models

We now explain in what sense does the random walk pinning model belong to the same framework as
the pinning and the copolymer models. For simplicity, we will examine the discrete time random walk

pinning model with a path measure associated with the partition function ZAgZI])\if?’w ctf. (1.5).

The pinning and copolymer models are both Gibbs transformation of a renewal process. More precisely,
let 0 = (09 = 0,01,09,---) be a renewal process on Ny, where the inter-arrival times (o; — 0;_1);en are
i.i.d. NU {oo}-valued random variables with distribution P(o; = i) = K (i) for some probability kernel
K on NU {oo}. Let (w;)ien be i.i.d. real-valued random variables with E[wi] = 0 and E[e’] < oo for
all A € R. Let h € R and 8 > 0. Then for a fixed N € N| the finite volume Gibbs weight for a given
realization of the renewal sequence o for both models are of the form

w(B,h, (Wj)o; <j<o;) if N = oy, for some m > 1,
W(o) = };[1 (B ledowrcase) (1.13)

0 otherwise,

where
ePwnth pinning model,

w(ﬁa ha (wj)0<j§n) = eﬁ Z?:1(Wj+h) + 6_’8 Z?:1(Wj+h) (].].4)
5 copolymer model.

See [G07] for more on the pinning and copolymer models. For the discrete time random walk pinning

model, we can write

m

N
Zzﬁ\f,};in = Eé( [EBLN(X7Y)1{XN=YN}] - Z Z H (eﬁpé{(m"ifly - Ui_l))’ (1.15)

m=109=0<01<--<opm=N i=1

4



where 0,Y = (Y1i — Yn)ien, denotes a shift in Y, and 7y = 7y(X) = min{i > 1 : X; = Y;}. Let us
denote K(i) = B} [Py (ry =1)] = Py Y (19 = i), then K with K(co) = P5 Y (19 = 00) is the return
time distribution of a renewal process on Ny. Let A; =Y; — Y;_1. We can then rewrite (1.15) as

m

N
- Z Z H (K(O-Z - O-i—l) w(ﬁa (Aj)0¢71<j§0¢)), (116)

m=1op=0<01<---<om=N 1=1

where '
BpX - v
e Ty =n
w(ﬁa (Ai)0<i§n) = %, Y, = ZAJ‘ (1.17)
j=1
In view of (1.16) and (1.17), we see that the random walk pinning model associated with Z[% %I]IY is also a

Gibbs transformation of a renewal process with inter-arrival law K, except that the disorder (A;);en take
values in Z¢ and the Gibbs weight factor w(-) for each renewal gap has a more complicated dependence on
the disorder than for the pinning and copolymer models. Nevertheless, this simple observation motivates
us to try to adapt the fractional moment method from the pinning model to our context. In the actual
proof, we will use an alternative representation for Z[% 113\17TY’ as well as for Z[% f]”;/, which admits a simpler
form for the weight factor w(:) than (1.17). See (4.3) and (5.3). We will see later on that despite the
entirely different nature of the disorder, the random walk pinning model turns out to be a close analogue
of the pinning model. Lastly we note that the fractional moment method has recently been successfully
applied also to the copolymer model, see Bodineau, Giacomin, Lacoin and Toninelli [BGLT08] and

Toninelli [T08].

1.4 An inhomogeneous random walk pinning model

Another common feature between the pinning and the random walk pinning model is that, for both
models, the annealed partition function is that of a homogeneous pinning model. A further intriguing
interplay between the two models is that we can define an inhomogeneous random walk pinning model,
from which both models can be obtained by partial annealing. More precisely, let X and Y be discrete
time simple random walks on Z% let (w;)ieny be i.i.d. real-valued random variables with Ew;] = 0,
and M()\) = logE[e*1] is well-defined for all A > 0. Let h € R and 8 > 0. Then the discrete time
inhomogeneous random walk pinning model is the Gibbs transformation of the path measure uy of X
up to time N with Radon-Nikodym derivative

dNN YW(X) exp { Zz 1 (Bwi + h)l{xl_y}}

dun Zﬁ,};w

(1.18)

where Zl%filﬁw = E¢f [exp { Zfil(ﬁwi—l—h)l{xi:yi}}] is the partition function, and we now have two sources
of disorder: the location of pinning as given by Y, and the strength of pinning as given by Sw; + h. Note
that under annealing w.r.t. Y,

N
By 1235 ) =B Y [exp{z (Bwi + h)1(x_y), 0}}] (1.19)
i=1

is the partition function of a pinning model (without boundary constraint (X — Y )y = 0), where the
underlying renewal process is given by the return times of X —Y to 0. On the other hand, under annealing
w.r.t. w,

R~ [Z]ﬁ\f};/w] By [e(M(ﬁ)—l-h)LN(X,Y)}

is the partition function of a random walk pinning model with parameter M (3) + h.

The continuous time version of the inhomogeneous random walk pinning model can be defined similarly
with partition function

Zﬁ hB = EX [exp {ﬁ/ot 1{Xs:Y3}st + ht}] ’

5



where By is a standard Brownian motion.

The discrete time inhomogeneous random walk pinning model first appeared implicitly in Birkner |B04]
in the study of the directed polymer model (the continuous time analogue can be found in Greven and den
Hollander [GdHO07]). Given a simple random walk X on Z4 A > 0, i.i.d. real-valued random variables
(W(n, T))penzezde With M(XN) = log E[e}“(:1)] well-defined for all \' > 0, the (normalized) partition
function of the directed polymer model is given by

Z = EX [eXi DX =M}
Note that (Z])\\[w)NEN is a positive martingale. The critical point of the model can be defined by
Ae =sup{A >0: (Zf\\/,w)NeN is uniformly integrable} = sup{\ > 0 : limy_ Zf\‘ﬂw >0 as.}

(see, e.g., |CSY04| for an overview). The Garel-Monthus conjecture [GMO6] asserts that A\, = Ao :=
sup{\ > 0 : supyenyE[(Z% )% < oo}. On the other hand, Birkner [B04] showed that if Y is an
independent copy of X, and (@(n,))nenzezd is an independent copy of (w(n,)),enzezd, then the
size-biased law of ZJ){W is the same as that of

N
Doy = | exp { D" (1pvy Owli, Xi) = MOV) + 1px,vy (2000, X0) — 2MV) ) || (1:20)
i=1
Namely, E[f(ZN , oy)] = E[Z3  f(Z% )] for all bounded f : Ry — R. The uniform integrability of
(Z])\‘/,W)NEN is then equivalent to the uniform tightness of the laws of (Z?/,w@,y)NeN- If we integrate out
the disorder w in (1.20), then

E[Z3 1oy, Y] = B [eZim @OEX)-2M )L =vy) (1.21)

is precisely the partition function of the inhomogeneous random walk pinning model. Further integrating
out @ gives the partition function of a random walk pinning model with parameter S(A) = M (2X\)—2M (X),

IE[Z;},MQ’YW] = EY [eZiI\Ll(M(2>\)—2M()\))1{Xizyi}]‘

Since E[(ZX )] = E[ZN 5.y B(X2) = B*™ with 3™ heing the annealed critical point as in Theorem
1.3. Since for non-degenerate w, B()\) is strictly increasing in A, Theorem 1.3 implies that in d > 4, there
exists N > Ay such that E[Z3 _ - y|Y] is uniformly bounded in N as. w.r.t. Y. Therefore the law of

(Z])\‘;wd y)Nen is uniformly tight, and hence A > A’ > Ao, which disproves the conjecture of Garel and
Monthus [GMO6].

Finally, we point out that based on (1.20), the results of Derrida et al [DGLTO07| for the pinning model
can also be used to disprove the Garel-Monthus conjecture in d > 4: In (1.21), conditioned on Y,
(0(4,Y5))1<i<n are i.id. Therefore if we fix an ii.d. sequence (@;);en equally distributed with ©(1,1),
then E[Z}, 5 y|@, Y] is equally distributed with

Eé( [622\]:1(2>‘Di_2M(>‘))1{Xi:Yi}]‘

Integrating out Y then gives the partition of a pinning model,

250 = BY Y[R oM O oxy=01] (1.22)

with parameters S(A) = 2X, h(\) = —M(2)) (c.f. (1.19)), and underlying renewal process K(n) =
]P’OX_Y(TO = n) where 79 is the first return time of X —Y to 0. It is easy to check that the critical curve
for the annealed pinning model is given by h2™(3) = —M(B) — log Py~ (10 < o0). By the definition
of A2, (B(A2),h(A2)) lies on this annealed critical curve. Since in d > 4, K(n) ~ cn~% has tail exponent
a = % —1 > 1, it follows from Derrida et al [DGLTO07| that there exists a continuous curve h*((3)
strictly above h2™*([3), such that for all b < h*(3), Zﬁ,g is a.s. uniformly bounded in N. Therefore we

6



can choose N > A9 such that —M(2\') < h*(2)'), and hence ijv)‘;_M@)‘l) is a.s. uniformly bounded in

N. By the same reasoning as before, this implies the uniform tightness of (Z])\‘;w@y)NeN, and hence
Ae > N > Ag. Lastly, we remark that in [DGLT07], only the constrained version of the partition function
Zﬁ,’g is considered, i.e., the constraint 1¢x, —y,y s inserted in (1.22). However, the proof there can be
easily adapted to the non-constrained version, as can be seen later in our analysis of the random walk
pinning model.

1.5 Outline

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.1, Corollary 1.1, and
Theorem 1.4. In Section 3, we prove Theorem 1.2 for d = 1,2. In Section 4, we prove Theorem 1.3 in the
discrete time case. Lastly in Section 5, we prove Theorem 1.3 in the continuous time case. The proof of
Theorem 1.3 does not rely on the existence of the quenched free energies. Readers interested in how the
fractional moment method is applied in this context can go directly to Sections 4 and 5.

2 Existence of the quenched free energy

In this section, we prove Theorems 1.1, 1.4 and Corollary 1.1.

Proof of Theorem 1.1. We only prove the continuous time case. The discrete time case is simpler.
First note that [t~!log Ztﬁyl < |B| uniformly in ¢ > 0 and Y. Therefore [t~!log Ztﬁy\ is uniformly
integrable w.r.t. Y for ¢ > 0. By similar reasoning, it is not hard to verify also uniform ’integrability for
[t~'log Zf$1n| w.r.t. Y for ¢ large despite the constraint 1¢x,_y;} in Zfﬁin. Therefore it suffices to verify
the a.s. convergence in (1.6), and the L' convergence follows by uniform integrability.

B;pin
[m7n}7Y .
ergodic theorem (see e.g. Sec. 6.6 in Durrett [D96]). Therefore there exists F'P™ € R such that a.s. w.r.t.

Y

Restricting to integer times m,n, clearly (—log Z Jo<m<n satisfies the conditions of the subadditive

Y

, 1 : 1 .
FPIM — Jim = log Z7P™ = sup —EY [log Z°7P™]. 2.1
i~ log 2,3 = sup g [log 7, ] (21)

First we extend the convergence in (2.1) to ¢ — oo, rather than just along the integers. We need two
crude estimates.

Proposition 2.1 Let (X;);>0 be a continuous time random walk on Z% with jump rate 1. Let ||-||1 denote
L' norm in Z¢. Then

(2) There exists C > 0 such that a.s. | X¢||1 < Cy/tloglogt for all t sufficiently large.

d
2

(i1) PE(Xy =x) > C(1+t)"2(2d)~ 1= uniformly for all t > 0 and = € Z with ||z|, < t/2.

Proof. Part (i) is a consequence of the law of the iterated logarithm. Part (ii) follows by forcing X to

visit x after exactly ||z||; number of jumps, and then return to = at time ¢. The factor (1 + t)_% arises
from the local central limit theorem. |

Note that for ¢ > 1, by super-additivity, we have

1 3,pin 3,pin 1 Bpin _ 1 3,pin 3,pin
t (k’g 2=y Tlog 2 [Lt—ﬂ/%tw) SqlsZy <5 <1°g vy ~ 1082 [t,Lt+t2/3Jw) - 22)
in _ 13 -1 B,pin _ -1 3,pin
By (2.1), a.s. FP" = tliglot log Z|_t—t2/3J,Y = tliglot log Z|_t+t2/3J,Y' On the other hand,
B,pi t—[t—t%/3]) pX _
T I N C VRIS (R PR R (2.3)
pi Z18I(t— 1t —g2/3 :

ﬁff?2/3J,t],Y > e Pl Py (Xt—Lt—t2/3J =Y _YLt—t2/3J)'



By Proposition 2.1, for ¢ sufficiently large, [|Y; — Y28 Ik <2CVtloglogt < “_Ugﬂ, and hence

]P’g( (Xt— [t—2/3] = Y — YLt—t2/3J) > C(l +t—|t— 152/3”_[1/2(261)_20v tloglogt

B,pin |
[[t=2/3],t]Y

establishes the a.s. convergence in (2.1) for ¢ — oo instead of n — oo for n € N.

from which we obtain tlim t~Ylog Z = 0. Similarly, tlim t~ Y log ZPpin | = 0. This
— 00 — 00

[t,[t4+t2/3]]Y
We now prove that a.s. FP" = tlim t~!log Ztﬁy. Clearly Ztﬁy > Ztﬁi,pin. For an upper bound, note that
—00 ’ ’ ’

5 t3/4 8
Zpy <70 jay (2.4)
We claim that for ¢ sufficiently large,

EOX |:65Lt7t3/4(X7Y) eﬁLt7t3/4(X7Y)

X
1{||Xt,t3/4||1St2/3}} > By [ LOx, apalh>e2rsy] - (2.5)

By Proposition 2.1, for ¢ sufficiently large, we have supg<,<; [|Ysl[1 < Cv/tloglogt. Define recursively
stopping times o1 = 0, and for n € N,

T, = inf{s € (op,t — t3/4] X[l > t2/3/2}7

(2.6)
Oni1 = inf{s € (1, t — 7] : | X, |, < C\/tloglogt},
where we set o, 7, to t — t3/4 if the infimum is taken over an empty set. Then
8L (X,Y) =
X 32X, _ X [ BL. (XY
Eg [6 e/t 1{||Xt7t3/4||1>t2/3}] = ZEO [e ( )1{m<an+1=t—t3/4,||Xt,t3/4||1>t2/3}]
n=1
[e.9]
= DES [P g B (0w =t = 8 Xl > #51X,)]
n=1
[e.e]
< ) Eg [eﬁLT"(X’Y)l{Tn«_ﬁM}]P’é( (Onr1 =t =1 X, sl < t2/3|XTn)]
n=1
X [ _BL, 3/4(X)Y)
< B[ Lix, b)) (2.7)

where in the first inequality we used the fact that t2/3/2 >> /tloglogt >> /t for t large. This proves
the claim (2.5). By Proposition 2.1, we have P (X; = Yi|X, ;54 = 2) > O(1 + £3/4)=d/2(9q)=2*°
uniformly for ||z||; < t*3. Hence

i — _9¢2/3 _ 3/4 L XY
Zgi/pm > C(1+t3/4) d/2(2d) 2t e |8t EOX |:6'6 t7t3/4( )1{||Xt7t3/4||1§t2/3} )

Combined with (2.4) and (2.5), we find
ZEY < 20_1(1 4 t3/4)d/2(2d)2t2/3 e2|mt3/4Zf$in_

Since ny > Ztﬁi,pin, (1.6) follows with F(3, p) = FP.

Lastly, (1.7) holds because (2.1) is valid with FP" = F(f3, p) if we take the limit in (2.1) along nt, n € N,
for any fixed ¢ > 0. [ |

Proof of Corollary 1.1. From the theory for homogeneous pinning models (see e.g. Chapter 2 of [G07]),
it is known that 5™ exists, and 3" = 0 if the renewal process underlying the pinning model is recurrent
(i.e., the random walk X — Y is recurrent), and g3"* > 0 if the random walk X — Y is transient. The
statement B3 < G, follows from

F(B,p) = lim t"'Ef [log Zy] < lim ¢ log E§ [Z}'y] = Faun(5, )
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by the L' convergence in Theorem 1.1 and Jensen’s inequality. The statement 3, > 0 follows from the
fact that for § < 0, F(f3,p) = 0. Indeed, for 8 < 0, Ztﬁy < 1, while

t
C
log Z'\, = log B [*L+(XY)] > BES[L,(X,Y)] > 8 / ———=ds = o(t),
) o (1+s)¥
where we used the local central limit theorem that P5(X; = z) < C(1 + t)~%? uniformly in ¢ > 0 and
x € Z¢. The existence and finiteness of 3. then follows from (1.7) and the monotonicity of F (3, p) in 3.

The proof for the discrete time model is identical. [ |

Proof of Theorem 1.4. The difference between the Feynman-Kac representation of u(t,x) in (1.12)
and the representation for ny in (1.2) is: (1) time-reversal for X; (2) in (1.12), X starts at x instead

of on Y. The same proof as for Theorem 1.1 shows that tlim t~Yu(t,Y;) = F(B,p) a.s. wr.t. Y where
—00
F(B,p) is as in (1.7). To compare u(t,z) with u(t,Y;), note that

u(t,z) > BY (Xppss = Yy _poss — 2)e P u(t — £272,Y,_pps), (2.8)

which a.s. gives the correct lower bound on the exponential scale as ¢ — oco. For the upper bound,
note that if 5 < 0, then w(¢,2) < 1, which suffices by Corollary 1.1. If § > 0, then for any e > 0,
a.s. we can find 7T,y sufficiently large s.t. t~tlogu(t,Y;) < F(B,p) + € for all t > Tey. In (1.12), let
7 =inf{s € [0,#] : Xs = Y;_s} with 7 = ¢ if the set is empty. Then for all t > T,y and x € Z%, we have

u(t,o) <SPX(r >t —Ty)e Ty + BX [u(t — 7, Vi)l praor, ] < PTr 4 eF@AFIE - (2)

Since € > 0 can be arbitrarily small, a.s. this provides the correct upper bound for u(¢, z) on the exponen-
tial scale as t — oo. The L! convergence in (1.11) follows from the uniform boundedness of |logu(t, z)|
int, xand Y. [ |

3 Coincidence of critical points in d =1 and 2

Proof of Theorem 1.2 for d = 1 and 2. We only deal with the continuous time case. The discrete
time case is simpler. As pointed out in the proof of Corollary 1.1, because the random walk X — Y is
recurrent in d = 1 and 2, 52" = 0. By (1.7), to show 3. = 0, it suffices to show that for any 5 > 0, there

exists ¢t > 0 such that E} [log Ztﬁil/)m] > (0. We can write
EY [log 202"] = By [1og 3 (X = Y3)] +E} [log Bgf [¢" V)| x, = v7] . (3.1)

We first we estimate E} [log Py (X = Y;)] = 3, cz0 ppt(2) log py(2), where py(z) denotes the transition
probability of a jump rate 1 continuous time simple random walk on Z?. We then find lower bounds for
the second term in (3.1) for d =1 and d = 2.

Lemma 3.1 For all p > 0, we have

iy 2aezt Pot(@)logpe(z) - d (3.2)
t—00 logt 2’ '

Proof. By the local central limit theorem, p;(z) < C(1 + t)_% uniformly for t > 0 and = € Z?. Hence

lim sup Exezppt($) log p¢(x) < _gl

. 3.3
t—00 logt - 2 (3.3)



For a matching lower bound, we need lower bounds for p;(z) for all € Z%. Note that if pgl)( -) denotes

the transition probability kernel of a rate 1 simple random walk on Z, then p;(z) = L lpg/zl(:nl) and
1)

> zezd Ppt(x) log py(z) = deeZpSt}d(m) logpt/d(:n). Hence it suffices to show

1 1
. Zmengt) () log pi () 1
lim inf >
t—o0 logt -2

(3.4)

For 0 < e < 1 << A < o0, we have the following estimates. There exist Cq,Co, C3,T > 0 depending on
e and A, such that

(1) _1 _0279”2

pl@) = othe T Wiz T e <e, (3:5)
V(@) > e Vi>T, et < |z] < At (3.6)
pV(z) > e 2elloglal Vit>T, At < |af. (3.7)

To derive (3.4) from (3.5) (3.7), we partition the sum > 7 into - <oy Depcpaj<ar: and D21 4¢ With
e << p << A. By (3.5),

Coz?
S @) logp (@) > N pl (@) log (Crtze )
|| <et |z|<et
logt 02 1 logt
> R |log C1| — e Z 2P£>t)( ) T [log C1| — Cap. (3.8)
TEL
By (3.6) and the Markov inequality,
2,.(1)
1) 2wz T Pp (1) Cap
> o @logp (@) = ~Cht Y7 ply) (@) = ~Cut =R = 2O, (3.9)
et<|z|<At || >et
And by (3.7), for t sufficiently large, we have
T 2p
prt logpt ) > 2prt )|z|log || > 22 Pyt ( ’ ‘ > —Zlog(At). (3.10)
|z|> At |z|> At |z|> At log(At)
Combining (3.8)—(3.10), we obtain the lower bound
o Yeeary @logpM (@) 1 2p
lim inf > —— — —. (3.11)
t—o00 logt 2 A

Since A can be chosen arbitrarily large, (3.4) follows.

We now verify (3.5)—(3.7). Let P,(x) denote the probability that a discrete time simple random walk
starting from 0 visits x at time n. Then for  and n having the same parity, by Stirling’s formula,

Paa) = &= _ (1+o0(1)v2m (%)"
PEFNCTN o for (o) (32) T \for () () T
— (1+0(1)) mfi = 52 log(1+2)—(25%) log(1-2)
= (1+o(1)) 7T(n227ix2) e_;c_n"’o(%f)"_ (3.12)

Hence for n sufficiently large and |z|/n sufficiently small, we have

22

e . (3.13)

(M

P,(z) > Cn~

10



If N; denotes a Poisson random variable with mean ¢, then (3.5) follows from (3.13) and the observation
that N;/t — 1 in probability with |P(V; is odd) — P(V; is even)| — 0 as ¢t — oo.

For (3.6), note that for |z| < At, by (3.13),

612
pgl)(x) > Z P(Ny =n)P,(z) > C4/ ﬁe_WP(At/e < N; < 2AtJe, Ny =z mod 2)

At/e<n<2At/e
> C /ﬁe—sAte—clt Ze—()gt7 (3.14)

n=x mod 2
where we used the fact that NV; /¢ satisfies a large deviation principle with a finite rate function on [0, 00).

For |z| > At, we can bound pgl)(az) from below by requiring that the random walk makes exactly |z|

jumps in the time interval [0, 1] so that the random walk is at z at time 1, and at time ¢ the random
walk returns to x. Thus, by the local central limit theorem, for t large,

—l+|z[—|z|log | C
(1) L o wC _ e ~[al
z)> —2" M —=(1+40(1) ———2""1—. 3.15
W) 2 1T = (o) (3.15
It is then clear that (3.7) holds. |

Remark. We point out that, for general mean zero finite variance random walks, the estimates (3.5)—
(3.7) can still be established by adapting the proof here and decomposing the random walk transition
kernel to extract a simple random walk part.

Remark. The analogue of Lemma 3.1 also holds for discrete time simple random walks. The proof is
similar and omitted.

Lower bound for E%/ [log Eé( [eﬁLt(X’Y)|Xt = Yt]] for d = 1:

By Jensen’s inequality,

Ps(Ys)p(i—s) (Y — Ys)
pe(Y1)

By Donsker’s invariance principle, there exists o > 0 s.t. ]P%/(supse[aﬂ Y| < V/t) > aforallt > 0. On the

other hand, if sup,e(g 4 |Vs| < V/t, then by the local central limit theorem, ps(Ys) A pyr—s(Y; — Ys) > C/\/t
for all s € [t/3,2t/3] for some C independent of Y and ¢ > 1, while p;(Y;) < C'/\/t. Therefore

EY [log B [72XV)|X, = vi] | = BY [EY [BL(X, YV)|X: = Vi] ] =4 /0 B [

aot/3 £ C
EY [1og B [ePL XY x, = Yt]] > af . Y gs = C'VE (3.16)
Vit

for some C’ > 0 independent of t. In view of (3.1) and Lemma 3.1, this proves that E} [log Ztﬁil,)m] >0
for ¢ large, and hence 5. = 0 for d = 1.

Lower bound for E%/ [log Eé( [eﬁLf(XY) !Xt = Yt]] for d = 2:

Since in d = 2, Ly(X,Y) is typically of order logt, the argument above for d = 1 fails for d = 2. Instead,
we apply an a.s. limit theorem for L;(X,Y)/logt conditioned on Y. More precisely, by Theorem 1.2 of
Gértner and Sun [GS07|, a.s. w.r.t. Y, Ly(X,Y)/log ¢ conditioned on Y converges in distribution to an
exponential random variable with mean 1/7(1+ p). We only need to bypass the conditioning on X; = Y;.

Let ft/10g¢ denote the law of (Xs)o<s<t/10g¢, and let Mi?%o)gt

on Xy =y. Then /1544 and ,uS’y)

denote the law of (X;)o<s<t/10g¢ conditioned

are equivalent with density

logt
(t.y) _Iv=Xp 105017
d'u’t/logt X) = pt—t/logt(y - Xt/logt) _ t e =t/Tet — + 0(1) (3.17)
d g/ 10g t pe(y) t—t/logt e_\yTHz +o(1)
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where we applied the local central limit theorem. Since [|.X;, logt|l/V/t — 0 in probability as ¢t — oo, it is
clear that in total variational distance,

||yS||uIz/ H’ut/logt 1/ 1ogt oy =20 (3.18)

We can thus remove the conditioning at the cost of reducing the time interval from ¢ to ¢/ logt.

Fix A > 0. Let
Gt/logt = {Y : :u't/logt(Lt/logt(Xay) > Alogt) > e—aA}' (319)

By Theorem 1.2 of [GS07], if we choose a > m(k + p), then PY (G4

t/lo gt) — 1 as t — oo. We now write

B [log B[40 x, = v
> Ej [1{||Yt||<xf Yth/logt}logEOX [eﬁLt/logt(XX)‘Xt _ Yt”
- [ {NGI<VE YEGT 00} (ﬁAlOgt+10g“§7?2g)t(Lt/1ogt(X, Y) > Alogt))]
> BAPY (IVill < VE Y € G}y, ) logt
+ Eo [ {IvilI<vi, Yth/logt}lOg (,ut/logt(Lt/logt(X,Y) > Alogt) + 0(1))] _
> (C—o(1))(BAlogt +log(e ™ + o(1)), .

where C' = infy-o Py (||Y;]] < V1) is positive and independent of A. Since A can be chosen arbitrarily
large, in view of (3.1) and Lemma 3.1, this proves that E} [log ng}"“] > 0 for ¢ large, and hence 5. = 0
for d = 2. |

4 Gap between critical points: discrete time

4.1 Proof of Theorem 1.3 in discrete time: d > 5

Our proof is based on adaptations of the fractional moment method used recently by Derrida, Giacomin,
Lacoin and Toninelli [DGLT07| to show the non-coincidence of annealed and quenched critical points
for the pinning model in the disorder-relevant regime. Two ingredients are needed for the adaptation.
First, a suitable representation for the partition function Zﬁ NY and its constrained counterpart Zﬁ PN i
a similar form as in (1.16), except with a Gibbs weight factor w(-) that has a simpler dependence on the
disorder (A;)ien = (Yit1 — Yi)ien than in (1.17). Second, a suitable change of measure for the disorder
Y when estimating fractional moments EK[(ZJB\,%“)'Y] for N on the order of the correlation length of the
annealed model. 7

We split the proof into three parts: representation for Zf, y and Zf,";}n; fractional moment method; change
of measure. To simplify notation, C,Cq,C’, etc, will denote generic constants whose precise values may
change from place to place.

Representation for Zﬁ, y and Zﬁ,%ﬁn The representation we now derive was already used in [BGdHO08|.

It is based on binomial expansion for (1+e%—1)EN(XY)  Tet pX(4), resp. pX = Y( -), be the n-step transition
probability kernel of X, resp. X =Y. Let GX~Y =32 pX=Y(0), K(n) = pX=Y(0)/GX7Y, 2/ =€’ —1,
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2 =2GX~Y, and Zva’Y = ZJBVY Then

N m
Zoa  ((EROR B IR DENEED DI COL) | (RS
=1

m=1o0p=0<01 <"+ <om <N

N m
+ Z Z (Z,)m HpUXi—Uifl(YUi - Yoifl)

m=1o09=0<01 <+ <om <N =1

N
+ Z Z HK —0i-1) (z, ;i —0i—1, Yy, — YO’i—l)’ (4.1)

m=10p=0<01<-<om <N 1=1

where
’lU(Z, Oj — 0i—1, Yai - YU'ifl) = Zpii—oifl(ya'i - Uz 1)/p 0'z 1(0) (42)
If we denote Z]Z\;f;i/n = N%’}n, then similarly,

Zihn = EY [(1+z’)LN71<XvY>z’1{XN:YN}}

N

- Z Z HK i —oim)w(z,0, — 01, Ye, — Yo ). (4.3)

m=1op=0<01<---<om=N i=1

Note that (4.3) casts ij\;gi/n in the same form as (1.16), except now K (n) equals pX Y (0)/GX~Y instead
of PX=Y (19 = n), and w has a simpler dependence on the disorder (Aj)o; 1<j<o; (. only on oy — 0y
and Z;’;GFIH A;) than in (1.17). Because K is the return time distribution of a recurrent renewal
process o on Np, and E} [w(z,0; — 0i-1,Ys, — Ys,_,)] = 2, the critical point for the annealed model
associated with Z ’I;I/n is 28™ =1, or equivalently, 1 = 28" = (eﬁgnn —1)GX~Y 50 that

- 1
ﬂ?nn = ].Og <1 + W) . (44)

Fractional moment method. We now recall the fractional moment method used by Derrida et al in
[DGLTO07|. Due to the common framework between pinning models and the random walk pinning model
as pointed out in Section 1.3, the basic strategy carries over without change. The only model dependent
part of the argument lies in estimating E?;[(Zvjz\}%i/n)”], v € (0,1), for N on the order of the correlation
length of the annealed model, where a change of measure argument for the disorder needs to be adapted.

In terms of the new variables z = (¢? — 1)G*~ and Z]Z\hy, Theorem 1.3 reduces to showing that for

some z > zZ™ = 1, supyen, Z]Z\,Y < o0 a.s. w.r.t. Y. Since for z > 1, Z]"‘VY is a.s. increasing in N, it
suffices to show that for some z > 1 and v € (0, 1),

sup E%/[(vavy)ﬁ/] < 00. (4.5)
NeNy

The basic idea is to suitably group terms in the expansion for Z]Z\,Y in (4.1) and then apply the fractional

moment inequality
n n
¥
(Y lail) =l e @, (46)
i=1 i=1

However, the effectiveness of (4.6) depends crucially on how Z]'Z\,Y is decomposed. In [DGLT07], Derrida

et al studied analogues of the constrained partition function Z ’pm

and their clever choice is to group
terms in (4.3) according to the starting and the ending posmon of the gap in the renewal sequence o

straddling a fixed position L € N. Namely,

L—-1N-L
z,pin _ 7P1n . . . . > 2z,pin
Ny = § § Zzy N —j—iw(z,N—j—i,Yn_j— Yz‘)Zj,aijya
=0 7=0
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where 0,Y = (Y,4i — Y5 )ien, denotes a shift in Y. For vavy, we can perform a similar grouping of terms
in (4.1) and get

L-1N-L
Ty =Ziay+ >, Y, ZPNK(N —j —i)w(z,N = j —i, Yy = Yi) Zj gy v (4.7)
i=0 j5=0

Fix v € (0,1). Denote A%, = EY [(Z]Z\/,Yw] and Aj\’,pm =EY [(ZV]ZV’});,H)V] Since

zp])\(f—j—i(YN—j - i)
GX—Y

[M]isH

K(N —j—idw(z,N—j—4,Yn_j = Y) = <CO(N—j—i)”

for some C' > 0 independent of 7, j, N, Y and z € [1,2] by the local central limit theorem, applying (4.6)
to (4.7) and taking expectation w.r.t. Y gives

L-1 N—-L J L-1 A#pin
1y e j : iz, inj : . N9 Yz Az E i <
ANSAL—l—i_C Aip (N—j—Z) 2A] SAL—1+C< W) 0<‘1711{—}\)7{ LA . (48)
i=0 =0 i=0 (L — 1

If for some choice of z > 1 and L € N,

fb(

L—1 ,pm
(Z ) <1, (4.9)

=0 - Z
then iterating (4.8) clearly implies that A% is uniformly bounded in N, and hence (4.5).

By Jensen’s inequality, Az7pin < E(})/[vapin]«/_ It is clear from (4.3) and (4.2) that E%/[Zvjzv’%i,n] is the
partition function of a homogeneous pinning model with critical point 22" = 1. Hence Fann(z) =
lim N~ 1logEY[ij\;%l/n] exists, and Fuun(2) = Fapn(8) with z = (ef — )GX Y. Since d > 5, K(-) has

N—o0

finite first moment, and hence by Theorem 2.1 of [G07], Fann(2) ~ C(z — 1) for some C > 0 as z | 1.
Since (EY[Zi’g,m])neN is super-multiplicative, EY[ZZ’pm] < eNFamn(2) < ¢ONG=D) for all N € N. So if we
choose

L=L(z) = (4.10)

where we abused notation and assumed L to be an integer for simplicity, then sup;<,<, Af’pin < C for
some C' > 0 independent of z. Therefore

- L—1

CAz7p1n
Z + > SCR*™9 +C max APPM (4.11)
P R+1 Z) 7t L—R<i<L

fb<

For d > 5, we can choose v < 1 close to 1 such that the first term on the RHS of (4.11) can be made
arbitrarily small (uniformly in z) by choosing R large. To show ¢ < 1 for some z > 1, it then suffices to
show that
lim  max AP =0, (4.12)
z|1 L-R<N<ZL
where R € N is large and fixed, and L = ﬁ This summarizes the model independent part of the
fractional moment method as used in [DGLTO07].

Change of measure. The basic idea in [DGLT07] to prove (4.12) is to apply a change of measure to
the disorder so that the cost of changing the measure is small, yet under the new disorder, the annealed
partition function for a system of size L is small. For the pinning model, the choice of changing the
measure in [DGLTO07] is to make the disorder more repulsive, i.e., tilt the measure of w; in (1.14) by
a factor e i for some XA > 0. In our setting, it turns out that for the continuous time model, the
appropriate change of measure is to increase the jump rate of the random walk Y. For the discrete time
model, the analogue is to increase the variance of the random walk increment each step without changing
the support of the random walk transition kernel. However, among nearest-neighbor random walks on Z¢,
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the variance of simple random walk is already maximal. To overcome this difficulty, we change measure
for Y two steps at a time. More precisely, for h € (0, 21d) let (Y,"),en, be a process on Z¢ with Yy = 0
and transition probabilities

1
% if n is even, or n is odd and e; # £(Y,* — Y ),
h_ h 1+h oo h_yh
]P(Yn—l-l Y, |(Yk )nggn) = 2d ifnisodd, ande; =Y, =Y |, (4.13)
1—nh
57 if n is odd, and e; = —(V;? =Y ),

for each of the 2d unit vectors e; € Zd Note that P(YJ = 2¢;) = P(Ya = 2¢;) + gz for each unit vector
e; € Z%, P(YJ = 0) = P(Ys = 0) — 44, and P(YJ = z) = P(Ys = z) for all other x € 7% Thus Yy has
larger variances than Ys. Clearly up to any time N € N, the distribution of ¥ and Y are equivalent.
Let f(N,Y) denote the Radon-Nikodym derivative of the law of (Y{")o<i<ny w.r.t. (Y;)o<i<n. Then

A =B SN YD NEEA) S By ) TR 4

= EY[f(N,Y) ] "By (23] (4.14)

Since (Yan+1 — Yon, Yont2 — You )nen, are i.i.d. and the distribution of Y;:’L—l—l — Y conditioned on Y is
the same as a simple random walk, we have

B vy ] =B ey B o (o D T AT )H<ezz(’; a

for h sufficiently small. Therefore if we choose h = ﬁ, then the first factor in (4.14) is uniformly bounded

for L — R < N < L, and to prove (4.12), it only remains to estimate IE%/ [ ]\;I;I,I;L] for h = ﬁ =+vz—1

By (4.3), we have

N m
h h
B =Y (or) Y B [Iw . 02 -vE )] @)
m=1 o0=0<01<-<om=N =1

Note that when o;_; is even, by the properties of Y, we have

IEO [pcrl—crl 1(Yh Yc:: 1)‘(5/}h)0§j§0i—1j| IEO [pcn—cn 1(Y0}i—01 1)]

Similarly when o;_; is odd, by symmetry and translation invariance, we have

h h h h h h h h
EY [ O’l o 1(Y Yal 1)‘(}/] )Oﬁjﬁai—l] EY [ O’l o 1(Y0 —oi—1+1 Yl )‘Yl = 61]7
which is a constant independent of (Y Jo<j<o;_.- Thus in (4.15), we can successively condition w.r.t.
(th)ogjggn, (th)ogjggnfl, ce (th)ogjggl. To write the result in a more compact form, let us denote
EY [pX (v aa
Kh,ovon(n) = w where Gh,evcn = Z E%)/ [pi( (Ynh)]y
h,even n—1
B [pX (v, — YIIVP = ei] S
Kh Odd( ) "'féh ddl : where Gh,Odd - ZEY [ n (Yn—i-l Ylh)’YIh - 61].
© n=1

Let Kp(i,7) = Kpeven(j — 1) when i is even, and Kp(i,j) = Kpoda(j — %) when 4 is odd. Let ¢+ =
{0,¢1,t9,--} be a renewal process on Ny with parity-dependent inter-arrival law Kp(-,-), and denote
expectation w.r.t. ¢ by EX»[.]. Then (4.15) reduces to

B 1238m] =B (gmy) T GRGl  vey] < mR [(HCen t nanay MR,
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where t, and ¢, denote respectively the even and odd subsets of «. In d > 5, by the local central limit
theorem, it is easy to see that there exists an inter-arrival probability distribution K,(-) on N with finite
first moment, such that K, stochastically dominates both Kp even(-) and Kj oq4(-) for sufﬁciently small,
e, D s, Ka(i) > Y isn Kneven (i) and 375 Ki(i) > 3045, K oad(4) for all n € Noand h € [0, 3]. Recall
our choice h = T = +/z — 1. We will show that

z Gh7 V Gh7 dd
( eg;{_y odd) =l—-cvz—14o0(vVz—1) (4.16)
for some ¢ > 0. Then for all z > 1 sufficiently close to 1,
Ey' [Z350] <ES[(1— ez —1+o(vz— 1)) MM, (4.17)

where ¢* is a renewal process with inter-arrival law K, and is independent of z. By the law of large
numbers, a.s. w.r.t. o*,

1
lim N7 N[, N]|= =———— >0,
n—00 ZiEN ’LK*(Z)
and hence .
lim max (1—cvVz—140(Vz— 1))“ NN,
21 (2=1)"1—=R<N<(2—1)~1
Thus !
. Yhrozping _ _ _
].Zlﬁl L—II%E%SLEO [ZN,Yh] =0, L= P h=+vz—-1, (4.18)
which together with (4.14) implies (4.12).
It only remains to verify (4.16). For k = (ki,--- ,kq) € R?, we have
p(k) := Egf [eFX1] = Zcos ks,
" h & (4.19)
(k) = EY " [e*] = p(k)? - 7 ZSinz ki, '
i=1
o(k) == EY " [0 YD) | v = e)] = ¢(k) + z% sin ky .

Since X and Y are independent, (Y9}, — Y3 _5)nen are iid., YJ',, — YJ is 1ndependent of (Y] Mo<i<on
and is distributed as X;, while conditioned on Ylh = ey, Y2h — Ylh is independent of (Y [ Yzh)ngl we
obtain by Fourier inversion

A I CO G Ly /{_md%dk, (1.20)
Grosen = Toya |, (6069 + 90000 + 606 4(8) + 00000+ )

= o o S R a1
Groas = 753 /[} (eR)60k) + RO + (RN () + (KNSR 0(k) + --- )k

1= ¢(k)*9 (k) (2m) — o(k)*¢ (k)

where in (4.22) we have used the formula for ¢(k) and the fact that ¢(k) and ¥ (k) are even functions
while sin k; is odd. Since ¥(k) < ¢(k)? and ¢(k), (k) € [-1,1], we have G even < Gh.odd, While
1 2 2 1 2
xy [ (G ey,
[=m,m]?

—Ghodd = @) —

L—g(k)* 1= o(k)*(k)

N d(k)* S sin? k;
G /[_W aa (1= o(k)2)(1 — (k)20 (k) dk, (4.23)

1 p(k)p(k) (1 +¢(k)?*) 1 ¢(k)*(1 + o(k)%)
- /[_M]d dk = /[M]d dk, (4.22)
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which implies (4.16) since h = v/z — ]

Remark. Equation (4.16) reveals the close resemblance between the random walk pinning model and
the pinning model (compare (4.17) here with (4.12) in [DGLTO07])). In both cases, after changing the
measure, we end up comparing with a homogeneous pinning model of size N with weight factor e=c/VN
for each renewal return. The factor c/\/N partly explains why o = 1/2, resp. d = 3, is the critical case
for the pinning, resp. random walk pinning model.

Remark. For general random walks, we can try to change measure for Y one-step at a time. More
precisely, let S = {y € Z? : p} (y) > 0}. Then for any A, B C S with AN B = (), for any transition
probability kernels pf'(-) and pP(-) with support resp. A and B, and for h € R sufficiently close to 0, we
can change measure for Y by replacing pj (-) with pifh (z) = pY (x) + h(pi(z) —pP(z)). In (4.14), the

estimate involving the density f(N,Y’) is similar, while the estimate for E%/h [ZV]Z\;I;I,I;L] reduces to estimating

X— X-Yh 1 1 o 1
GG = Gy /[} Cormrrwr ik el
h ox (g — D) dk

[ ’

- (2m) 1—¢x¢y) (1 — ¢xdyn)
where ¢x (k) = > e**p(x), ox (k) = dx(—k), and ¢y (k), d4(k) and dg(k) are defined similarly.
Note that in d > 4, [ |M‘dk < 00. Therefore based on Taylor expansion in h, all calculations
carry through as long as Q) := de # 0 and h is chosen to have the same sign. When X and

Y are simple random walks, we have ) = 0 for any choice of A, B, p1 and pP due to symmetry. On
the other hand, if .S contains enough points so as to break symmetry, then it is reasonable to expect the
existence of A, B, p‘f‘ and pP which give Q@ # 0. However, it is not obvious how to formulate a more
explicit criterion.

4.2 Proof of Theorem 1.3 in discrete time: d =4

For d = 4, in the representation (4.1), we have K(n) = pxX Y (0)/G*~Y ~ Cn~2 which has infinite first
moment. Thus d = 4 corresponds to the case o = 1 in [DGLT07] for the pinning model. In [DGLTO07],
the case a = 1 was left out. However, as we will show below, there is no difficulty in extending the
fractional moment method to the d = 4 case, and we expect the same to be true for the o = 1 case for
the pinning model.

As in d > 5, it suffices to verify (4.9). What differs in d = 4 is that EioiRil_dTﬂ{ =257 = o for
any v € (0,1) and R € N. Hence a more careful estimate of ¢ than in (4.11) is needed. By Theorem 2.1
of [GO7] and super-multiplicativity of (EY[Z ’pm])neN, we have E(})/[Z]'Zv’%i,n] < eONGE=D for some C > 0
uniformly in z > 1 sufficiently close to 1 and N € N. Therefore the same choice L = (z—1)"t asind > 5
ensures that sup;«;«y, Af’pm < C < oo uniformly for z > 1 close to 1. Fix € > 0 small, then let v € (0,1)

such that 2y —1 > 1 —e. Analogous to (4.11), we have

Li—« L—-1

CAZP™ cL- - .
—2 z,pin
E T I 7 s P +CL ngg?gLAi . (4.24)

_Cc
(L —1)%-1

¢

=0 =L 1—¢

Therefore to show ¢ < 1 for some z > 1, it suffices to show that with L = (z — 1)~}

lim L?~? max Aj\’,pm =0. (4.25)
2|1 L1=¢<N<L

Tracing through the arguments for d > 5, we see that analogous to (4.17), for h = 1/vVL = /z — 1,
uniformly for L'=¢ < N < L and z > 1 sufficiently close to 1, we have
AP < CEY [ij\;l?;}l]“’ < CEX [exp {—cvVz— 1| N[, (z — 1)6_1]‘}?/, (4.26)
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where ¢* is a renewal process on Ny with inter-arrival probability distribution K, satisfying the property
that K.(n) ~ Cn=2 for some C' > 0. Set M = (z — 1)*"!. Then

o - __1 v
0 <limL?*™?" max AP < J\/}im Clef] X~ [eXp {—cM 21=9) |,* N [1,M]|}] =0,
—00

z]1 L1-<<N<L
where we applied Proposition A.1 with §; = m and 1 — d (I oL which satisty the condition
0 <9 <dy<1life>0issmall, and v € (0,1) is then chosen sufﬁmently close to 1. |

5 Gap between critical points: continuous time

5.1 Proof of Theorem 1.3 in continuous time: d > 5

As in discrete time, we split the proof into three parts: representation for Zﬁy and ng?m fractional
moment method; change of measure. Compared to the discrete time case, the main complication here is
to suitably discretize time so that the fractional moment inequality (4.6) can be applied. The change of
measure argument however becomes much simpler.

Representation for Zﬁy and Ztﬁﬁin. We now Taylor expand e?Lt(X:Y) - Tet ps(+) be the transition
probability kernel of a rate 1 continuous time simple random walk on Z%. Let Giyp = fooo p(1+p)8(0)ds,

Ki1p(8) = P49)s(0)/Grap, B = BG4y, and Z}y = 7}y Then

[ o m t m
7% = E 1+Z%(/0 1{stys}d8) ]
L m=1

o
- EOX 1 + Z ﬁm / o / 1{X51:Y317"'7X$m:Y5m}d81 e dsm

m=1

0<s1--<sm <t

= 1+ Z s / / Dsy (Ysl)psz 51 (Y82 - YS1) o 'ps'm_smfl(}/‘;'m - Ysmﬂ)dsl e dsm

0<s1 - <sm <t
m

= 1+ Z / / K1+p — si—1)w(B,8; — 8i—1,Ys; — Ys,_ 1)>d31 cedsm,  (5.1)

so =0<sq - <Sm<t

where

Bpsi—8i71 (}/:91 - 5/51'71)

'LU(/B, Si — Si—17}/:9i - X/Si, ) -
' P(a+p)(si—si-1)(0)

(5.2)

If we denote Ztﬁil,)m = ﬁzfg’i“, then similarly,

m—+1

Zfigin:KHp( (B,t,Yz) +Z/ /H Kiyp(si—sic)w(B, si—si—1, Ye;—Ys, | )ds1 -+ dsp,. (5.3)

s0= O<sl <Sm<Sm+1 t

Note that (5.3) casts Ztﬁi})m in the same form as (4.3), except that the underlying renewal process is in
continuous time with return time distribution K4 ,(s)ds. Since

Eg[w(ga Si — Si—1, Y:S, - }/81'71)] = B? (54)

and Kj4,(-) defines a recurrent renewal process on [0,00), EK[ZE?H] is the partition function of a
homogeneous pinning model (in continuous time) with critical point 3" = 1, or equivalently,

Bann 1

ann __ Mc _

o = = = .
Gitp  Giyp

(5.5)
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Fractional moment method. Analogous to (4.7), for fixed L € N, we have the decomposition

Zoy =270y + / Kiip(v — ww(Bov —u, Yy = V) ZP0RZ0 (14 8(u))dudv,  (5.6)

0<u< L<wv<t

where 0,Y = (Y,15 —Y,)s>0 denotes a shift in Y, dp(u) is the delta function at 0, and Zg’;?m = 1. In the
continuous setting, the analogue of (4.6), ([ |a(x)|dz)” < [ |a(z)|[?dx for v € (0,1), is false in general.
Therefore we need to discretize the integrals in (5.6). In order to obtain uniform control for the integrand

in (5.6) on intervals, it turns out to be more suitable to study the following quantities in place of Ztﬁy

~3,pin
and Zt’y .

B 0o m m
Zf&lz I+ Z // HK1+p(Sz' —5i-1) Hw(ﬁ,si —5i-1,Ys; — Y, )ds1 - dspy,
m=1 =1 i=2

s0=0<s1 - <sm<t
m+1 m+1

— . o —
Z7Em = K1+p(t)—|-Z/---/ I Kiip(si—sic) ][ w(B,si—si-1,Ye,~Ye,_)ds1 - dspm, (5.7)
m=1 i=1 i=2

SO:0<51"'<57n<5m+1:t

_ o0 m+1 m ~
Zf&flnz: Ki1,(t) +Z// H K1+p(8i—8i—1)Hw(ﬁ,Si—Si—l,Y;i—Ysi,l)dsl"'dé’m,
m—1 i=1 i=2

s0=0<s1 <sm<spy 1=t

where [[[",w = 1 if m = 1. Note that Zfi} differs from ZtBY in that the factor w(3, s1,Ys,) in (5.1)
has been omitted, while Ztﬁiﬁ)inl (resp. Ztﬁﬁinz) differs from Ztﬁiﬁ)in in that the factors w(3,t,Y;) and
w(B, s1,Ys,) (resp. as well as w(B,t — s,, Y; — Ys,,)) in (5.3) have been omitted. Omitting these random
factors will provide flexibility in adjusting the lengths of the renewal gaps (s; — si—1)ieN-

Note that N N
_ w—u(Yy — Yy v—u
w(Bov— Y, — v,) = 2Po=ul ) ¢ Preal0) (5.8)
P+p)(o—-u)(0) T P14p)(v—u)(0)

for some C' € (1,00) independent of v —u > 0 and 3 € [1,2], which is furthermore uniformly bounded
for p € [0,1]. Therefore

2%, < 07, (5.9)

By the monotonicity of ny = ny in t, to show 8 < G (i.e., sup;>q ny < 00 a.s. w.r.t. Y), it suffices

to show that for 3 = BGi4,, there exists v € (0,1) such that

supEé/[(Zgi})y] < 0. (5.10)
>0

Note that Ztﬁ)} is increasing in t for every Y, therefore we may assume ¢t € N. Similar to (5.6), we have

_ _ t _ _ _
Ztﬁ)} = ngl, + / K1+p(v)2f_vﬁvydv + / Kiqp(v— ww(B,v —u,Y, — Y“)ijiginlzf_v,@uydzidv
L O<u<L<v<t
i1 Jt+1
= 7}y + / Ky1p(0)Z) o ydv (5.11)
j=L 7
L—1t—1

+ Z Z // Kiyp(v —w)w(B,v —u,Y, — Yu)Zi’)Bianf_vﬂuydudv.
=0 j=Licuiy1
j<v<j+1
We will establish uniform estimates on the integrand for each integral in (5.11) by bounding Ztﬁ__v 9,y 1N
terms of Ztﬁ’

1 : ~B,pinl . ~3,pin2
10,41 and bounding Z - in terms of Ziy
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We first make a few observations which will come in handy. Note that for all s € [0,1] and all realizations

of Y,

Zy = Z0y =[] < e,

. . (5.12)
Zﬁ,}gln _ ﬁzg,;;m — ﬁEé( [eﬁLs(X,Y)l{Xs:Ys}] < ﬁeﬁ‘
Next note that K
C, = sup EESEVION < 00, (5.13)
220, Kip(u+s)

which is uniformly bounded for p € [0, 1].

If ve(4,j+1) for some L < j <t —1, then by the same decomposition as (5.6) with s1,s2,7 + 1 now
playing the roles of u,v, L and by the observations above, we have

Zf—vﬂvY:Z]‘ﬁ—H—v,@uY + / Kiyp(s2 — s1)w (B, s2—s1, Ys, _Y;1)Zsﬁl’glagvyzf_82’Gszy(1+5y(81))d81d82
v<s1<j+1
JH1<sg<t

. . ]
<C+ C/ 1 Kipp(s2—3j— 1)Zf_sz,eszyd32 =CZ"5 14
i+

(5.14)

j+1Y7

where C' < oo is independent of t,v,Y, 3 € [1,2], and furthermore is uniformly bounded for p € [0, 1].

Ifue (i,i+ 1) for some 0 <i < L — 1, then by a similar decomposition as above, we have

Zf’,}ginl — / K1+p(32)25f;;932y(1 + 0y (52))ds2
1<sa2<u
+ / Kiyp(sa — s1)w(B, 52 — 51, Vs, — }@1)236{?11/11125?;;9321/(1 + 0u(s2))ds1dsy
0<s1<i<so<u
< CKp4,(i)+C / Kigp(i — 51)Z00M ds) = CZP™, (5.15)
0<s1<1
Substituting the bounds (5.8), (5.13) (5.15) into (5.11) gives
) ) t—1 ) L-1t-1 ) )
=5,1 =31 . >3,1 . -\ Z73,pin2 73,1
S 2y O Ky G2y + O Y K+ 1= 020y
J=L i=0 j=L
) L—1t-1 ) )
3,1 ‘ ~ 508,pin2 50,1
< Zg,Y +C Z Z Kiyp(+1— Z)ZZ'B,);)IH Ztﬁ_j_l,gjﬂyy (5.16)
i=0 j—L

where C' < oo is independent of ¢, Y, 3 € [1,2], and can be chosen uniformly for p € [0, 1].

Fix v € (0,1) such that %’Y > 2 for d > 5. Denote AtB’l = EK[(ZE)})V] and flf’pinz =Ey [( _fi})inz)w].
Then the same calculations as those leading to (4.8) yields

e e L L-1 Aﬁ,pin2
Af’l < Ag’l +o0 sup Af’l with o=C Z —— | (5.17)
0<j<i—L o (L—i)2 "

where C' < oo is independent of ¢t and 3 € [1,2], and can be chosen uniformly for p € [0,1]. As in the
discrete time case, we aim to show p < 1.

Note that AZP"? < Y2027 < BY [ZOP™)r < EBY[Z”,]7 by Jensen and (5.4), where we see from (5.1)
that EY [ny] is the partition function of a continuous time homogeneous pinning model with return time
distribution Ki4,(-) and critical point 33™ = 1. For d > 5, it is easy to verify (by law of large numbers
and elementary large deviation estimates for the number of returns of the renewal process before time s)

that _ _
By [Z0y] < CeCP-Ds (5.18)
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for some C € (0,00) independent of s > 0 and 3 € [1,2], and is furthermore uniformly bounded for
p € 10,1]. As in the discrete time case, we choose

L=((-1)"" (5.19)
In view of (5.10) and (5.17), and by the same arguments as those leading to (4.12) in the discrete time
case, to show [} > 3™ for any p > 0, it suffices to show that

lim sup Af’pinz =0, (5.20)
Bl1 L—R<t<L

where R € N is large and fixed and can be chosen uniformly for p € [0,1]. On the other hand, showing
BE— B > ap (5.21)

for some a > 0 and all p € [0,1] reduces to showing that: (1) the convergence in (5.20) is in fact umform
for p € [po,1] for any 0 < po < 1, which implies that inf e[, (35 — 1) > 0 where 3} = G1+pﬂ
hence inf ¢, 11(85 — B2™) > 0; (2) for § = 1 + ap with a > 0 sufficiently small, L = (3 — 1)~} d
R € N large and independent of p € [0, 1],

limsup sup Atﬁ_’pm2<1, (5.22)
pl0  L—R<t<L

which implies that for some pg € (0,1], 82 — 1 = G14,(8F — B2™) > ap for all p € [0, po].

Change of measure. We now prove (5.20) and (5.22), where the convergence in (5.20) will be shown
to be uniform in p € [pg, 1] for any 0 < pg < 1. Here, the appropriate change of measure for the disorder
Y is simply to increase the jump rate of the random walk Y. Let Y?™" be a simple random walk on Z?
with jump rate p + h for some h > 0, then the path measures (Ys)o<s<¢ and (Y5p+h)0§8§t are equivalent,
and the Radon-Nikodym derivative of the law of (Y8p+h)0§5§t w.r.t. that of (Ys)o<s<: is given by

F(6,Y) = e (14 hp )N,
where Ny(Y') is the number of jumps of Y in [0,¢]. Then as in (4.14),

73,pin h in 4 N .
AP = BT [f( YT (2P0 < BY [£(,Y) T EY T (2000 (5.23)
Note that
EY[£(6Y) 77 = efEY [+ ) —61%326 POty 7S
h vhzt
N L hp ™) T g )i < — 5.24
eXP{(P( +hp) T p+1_7) }_e:><;p{2p(1_7)2}7 (5.24)

where second order Taylor expansion in h in the exponent provides a true upper bound. For L—R <t < L,
if we choose h = \\;E then the first term in (5.23) is bounded and independent of p, 3 and ¢. Thus it

ypth [Zﬁ ,pin2 ]

only remains to estimate E} tyoth

First note that IEYPM [Zf}f’:fﬁ] < C’EYHh [Ztﬁ;,ﬁh] for some C' > 0 independent of p > 0, 3 € [1,2] and

t > 0, because each term in the expansion for in (5.3) differs from the corresponding term in (5.7)

for Zfil,mﬂ by at most two factors of w, and IEYP+ [w(B,v—u,Y, —Y,)] = %W > C for some
) p)(v—u

C > 0 independent of p >0, h € [0,1], B € [1,2] and v — u > 0. Recall G14, = Jo~ P14p)s (0)ds,

By 20 }

t, Ypt+h

B B B m+1 m+1
= s, P+p+ny(0) + Z H P(14pth)(si—s;_1)(0)ds1 - dsm
i=1

Gi4p

10 50<81<8m<Sm+1=t

>\ m+1m+1

(L+p)5 / / <1+p > ’

= T 7 1+p+h H K1+p+h(5i - Si—l) dsy - dsp, (5.25)
1+p+nh 1+p+h paly

0=sp<sp-<sm<smymt1=t
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149)G
where Kiyp4n(s) = P4 p1n)s(0)/Graprn With Giypin = [5° Pt prn)s(0)ds = (Irf)Tlh”-

Denote 3 = gfpﬁzg Let o?th = (0, O'p+h §+h, --+) be a renewal sequence on [0,00) with inter-arrival

law K14 pn(-), and let Ef1+0+1[] denote expectation w.r.t. o?*t". Then in view of (5.25),

EEitpotn [(5/)1+\oﬂ+hm[0,t} K1+p+h(u +5) EYP+h [Zﬁ ,pin ]

Loosnnitarizny) > inf LY

02 Kivprn(u)

Recall the definition of C4, from (5.13), we then have

EY"™ [Z080,] < CppuBRisoin [y 0tod]. (5.20)

Now to prove (5.22), we recall that L = (3 — 1)~! and hence h = % = /p(B —1). Therefore there
exists 3y > 1 sufficiently small such that for all p > 0 and 3 € [1, By,

o _ (1+p)B 2 p(B—1)
ﬁ_m§(1+ﬁ—1)(1—m). (5.27)

First note that by our choice 3 = 1+ ap, we have 3’ < 1 — py/a/8 for all p € [0,1] if 0 < a < 1/64.
Next note that Cp4p, is uniformly bounded for p € [0,1] and 3 € [1,2]. For d > 5, by the local central
limit theorem, there exists an inter-arrival probability distribution K, on (0,00) with finite first moment
m = [y sK.(s)ds, such that K, stochastically dominates K14 45, for all h € [0,1] and p € [0,1]. Namely,
[ Ki(s)ds > [ Kiqpin(s)ds for all t >0, h € [0,1] and p € [0,1]. Combining the above observations,
we have

limsup sup A§7pin2<0hm sup sup EY” o [Zf;)ﬂh] < Climsup B [(1 — py/a/8)l" NOL=EIl - (5 98)
pl0 L—R<t<L pl0 L—R<t<L pl0
where (* is a renewal process on [0,00) with return time distribution K. By the law of large numbers,

a.s. w.r.t. o,

—1
lim(1 — py/a/8)" OL=EIl = Jim exp {_p\/ﬁ ar) R} = exp {—
plO plO 8

m

1
8m\/a} ’
which can be made arbitrarily small if @ > 0 is chosen sufficiently small. Inequality (5.22) then follows
by applying the dominated convergence theorem in (5.28).

The proof of (5.20) for any p > 0 and the uniform convergence in (5. 20) for p € [po, 1] for any pgy € (0,1]
follows by similar arguments. It suffices to observe that 3/ <1 — Cy/3 — 1 for some C' > 0 uniformly in
p € [po, 1] and 3 > 1 sufficiently small. This concludes the proof of Theorem 1.3. [ |

5.2 Proof of Theorem 1.3 in continuous time: d =4

As in d > 5, proving Theorem 1.3 reduces to proving ¢ < 1 (see (5.17)) for appropriate choices of I&;
and L depending on the diffusion constant p. Since E%/[ny] is the partition function of a homogeneous
pinning model with parameter 3 > 1 and return time distribution Kiq,(t) ~ Ct~2, by comparing
K14, with a return time distribution K’ which is stochastically smaller than K, and has finite first
moment, we see that (5.18) also holds in d = 4. Therefore setting L = (3 —1)~! as in d > 5, we have

SUPp<¢<, Af’pinz < C < o0, and analogous to (4.24), we have

L'« L-1 1B,pin2 1—e _
CA CL 5 omd
< i < CL* % Abpin 5.29
o< Z 2’y— %: T I gy e v LS AT (5.29)
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where € > 0, v € (0,1) is chosen so that 2y —1 > 1 —¢, and C € (0,00) is independent of 3 € [1,2] and
is furthermore uniformly bounded for p € [0,1]. Therefore, to show 3} > 2" for any p > 0, it suffices
to show

lim L2~ sup Aﬁ’pm2 0. (5.30)
Bl1 [1—e<t<L

On the other hand, to show that for any § > 0, there exists as > 0 such that
B — B > asp't ¥ pe0,1], (5.31)

it suffices to show that: (1) the convergence in (5.30) is uniform for p € [po, ] 1] for any 0 < pg < 1, which
implies that inf [, (85 — B2™) > 0; (2) for f=1+p"and L= (F—-1)"1 =p~ 179,

lim L*~%7 sup ABW12 0, (5.32)
pl0 Li-<<t<L

which implies that for some pg € (0,1], 3 — 1 = G14,(8F — B2™) > p'*° for all p € [0, po].

Proceeding exactly as in the d > 5 case, we note that (5.26) still holds in d = 4. By the choice
h = % = p'19/2 there exists p; € (0,1) such that

o _ (L+pB _ (L+p)(1+p")
l+p+h  1+p+plt/2

<1—p 279 <Ry pe 0, pyl. (5.33)

If we choose K, to be a return time distribution with [~ K.(s)ds = 1 and K,(s) ~ Cs™2 such that K,
stochastically dominates K4, for all p,h € [0,1], and let +* be a renewal process on [0, 00) with return
time distribution K, then

IN

1 Y
0 < lim 1227 sup Aﬁ,p1n2 Climp~ (1+5)(2—2~/)EK* [eXp {__p1+5/2 ‘L* n [O,p_(H&)(l_E)H}}
pl0 L1-e<t<L pl0 2

. 2-2y g 1 14e/2 v
= C]\}lm MT=E™* |exp —§M A= |,* N [0, M]| =0

where we applied Proposition A.1 with §; = % and 1 — o = (1 ), which satisfy the condition

0 <601 < by < 1ife>0issmall and 7 is then chosen sufficiently close to 1. This proves (5.32).

The proof of (5.30) for any p > 0 and the uniform convergence therein for p € [pg, 1] for any pg € (0, 1]
follows by similar arguments It suffices to note that for each p > 0, there exists C' > 0 and 3y > 1 such
that 3/ <1—Cy/B —1for all 3 € [1,3]. Furthermore, C and 3y can be chosen uniformly for p € [po, 1]
for any pg > 0. The rest of the proof proceeds exactly as for d = 4 in the discrete time case. |

A A renewal process estimate
The following proposition complements Proposition A.2 in [DGLTO07| for the case a = 1.

-} be a renewal process on No with inter-arrival probability

Proposition A.1 Let * = {19 = 0,1,
(n) =1 and K.(n) ~ Cn~2 as n — oo. Then for any ¢ > 0 and

distribution K, satisfying > K«(n
0 < <dg <1, we have

lim N'-2RkK- [exp{—cN_51|L*ﬁ [O,NH}] = 0. (A1)

N—oo

The same result holds if * is a renewal process on [0,00) with inter-arrival distribution K, satisfying
Jo° Ku(s)ds =1 and K.(s) ~ Cs™? as s — oc.
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Proof. Let d3 € (d1,02). Note that
EK- [exp {—cN—51 N o, NHH <P (o < n[o,N]| < N53) yemensToL (A.2)

Let (U;)ien be i.i.d. random variables with distribution K. By our assumption on K, for each a € (0, 1),
we can find a constant C,, > 0 and i.i.d. stable subordinators (V;);eny with exponent «, i.e., P(V; > 0) =1

aw

and V; 2 S Vi/n'/® such that P(U; > s) < P(Vy 4 C, > ) for all s > 0. Therefore, for a € (3, 1),

N¥3
]P<0§ ¥ N [0, N <N53) ~P(Y U, >N
n=1

N3 N3

< P(Y(VhtCa)>N| =P (S V>N -C,N%| =P (V1 > Nl-ds/a _ C’QN‘53(1_1/°‘))
n=1 n=1

< CON%~@ (A.3)

where we used the fact that P(V; > z) ~ Cz=% as x — oo. It is easy to see that (A.1) follows from (A.2)
and (A.3) if we choose a € (0,1) such that 1 — 3 + 63 — a < 0. The case when ¢* is a renewal process
on [0,00) can be treated identically. |
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