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Abstract 

A general comparison argument for expectations of certain multi-time 
functionals of infinite systems of linearly interacting diffusions differing in 
the diffusion coefficient is derived. As an application we prove clustering 
occurs in the case when the symmetrized interaction kernel is recurrent, 
and the components take values in a one-sided bounded interval. The 
technique gives also an alternative proof in the c~e of compact intervals. 

AMS Subject Classification Primary 60 K 35; Secondary 60 J 60, 60 J 15 

Keywords interacting diffusion, interacting particle system, clustering, preservation 
of convexity 

1 Introduction and results 
In [9] and implicitly in [2], a comparison of general linearly interacting diffusions 
with interacting Fisher-Wright diffusions was a powerful tool in the study of the 
long-term behavior of a class of models differing in the diffusion coefficient, 
in particular in establishing universality properties. For this it was important 
that one of the models in the comparison was Fisher-Wright, since a duality 
argument with delayed coalescing random walks was involved. 

Here we provide a general method based on the intuition that a larger dif-
fusion coefficient leads to a process· whose distribution is more "spread out". 
Consequently, certain functionals of the process, such as moments in the case 
where the state space of the components is a compact interval in R+ , have 
bigger expectations. This comparison gives a useful tool for studying cluster 
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formation in such interacting systems. At the same time it fills a gap (in an ap-
plication of the integration by parts formula involving semigroups) in the proof 
of Proposition 4.10 (jj) of [9] concerning the comparison with an interacting 
restricted Fisher-Wright diffusion. (See also Figure 1 below.) 

Using this comparison technique we are able to resolve a problem in the 
ergodic theory of interacting diffusions in the case where the underlying sym-
metrized migration term is recurrent, and where the state space of a component 
is one-sided bounded. We show that clustering is universal in the diffusion co-
efficient. This had been conjectured in Cox, Greven and Shiga [3] (see also 
Shiga [15]). On the way we obtain also a new proof for the case of components 
in a compact set, based on the interacting Fisher-Wright diffusion where the 
well-known duality is available. 

Further applications will be contained in the forthcoming paper [10] on the 
time-space cluster formation of hierarchically interacting systems in the regime 
of diffusive clustering, and in [4] where the relation between finite and infinite 
systems is studied. 

1.1 The model 
Consider the following model (compare with [3]). 

Definition 1 (interacting diffusionX) Let X = {Xe(t); e ES, t 2:: O} denote 
the unique (for each specified initial state X(O) E E) strong solution of the 
following system of stochastic differential equations 

e ES, (1) 

with values in E. 
The ingredients of this equation are as follows: 

(a) (label set) S denotes a countable set and is used to label the components 
of the system. 

(b) (migration parameters) p = {Pe,(; e, (ES} is a probability transition 
matrix in S, and "' a non-negative constant. We call p the migration kernel 
and "' the migration intensity. 

( c) (driving Brownian motions) {we; e E S} is a system of independent 
standard Brownian motions in R describing the noise in the system. 

( d) (diffusion coefficient g) The diffusion coefficient g : R 1-1- R+ is assumed 
to satisfy the following conditions: 
( dl) g is locally Lipschitz continuous, 
( d2) g = 0 on the complement of an open interval I (this "reference 

interval" I or its complement in R could be empty), 
( d3) limsup ~ < oo. 

lrl-oo 
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( e) (state !pace E) If B is finite, or the closure I of I is bounded, set 
E := y=-and llzll := supees lzel· Otherwise, choose a (strictly) positive, 
summable { ie; e E B} ("reference measure") independent of g satisfying 

2:e ie Pe,( :5 r /(, ( E B, for some constant r, 
and put E := {z E J2

; llzll < oo} where llzll := 2:e 1elzel· The convex 
set E is endowed with the topology of componentwise convergence. 

Write Pµ = P,! for the distribution of X if it starts off with the lawµ= C(X(O)), 
and Pz = P/ in the special caseµ= 8z (Dirac measure at z E E). The random 
initial state X(O) is always assumed to be independent of the driving Brownian 
motions {we; e E B}. <> 
Remark 2 Note that under the given conditions the existence of a unique 
strong solution living in E is guaranteed by Shiga and Shimizu [16, Theorem 
4.1]. This solution is a Markov process with continuous paths. - Note also that 
there is some freedom in the choice of the state space E. In the case of an 
-unbounded reference interval I and doubly stochastic p, see Liggett and Spitzer 
[12] for a construction of a reference measure ;. The integrability condition 
llzll < 00 prevents the components lzel from growing too rapidly as e-+ 00. <> 
Remark 3 If a probability law µ on 7::. satisfies supe EIXe(O)I < oo, then 
µ(IE) = 1 and the Markov process .X (living in E) with initial law µ is well-
defined. <> 
Example 4 (diffusion coefficients) The label set B is often the lattice space 
zd or a hierarchical group (see [9]), whereas for the diffusion coefficient g the 
following special cases have been intensively studied (see for instance [2, 3, 7, 9, 
15] and references therein): 

I g(r) on I 
Fisher- Wright (0, 1) cr(l - r) 
Ohta-Kimura (0, 1) c r2 (1 - r)2 

Feller's branching diffusion (0, +oo) er 
linear random potential (0, +oo) cr2 

crit(cal Ornstein- Uhlenbeck (-oo·,+oo) c 
where c is always a positive constant (scaling factor). 

1.2 The comparison result 
Before we formulate our comparison result, we introduce the cone inducing the 
corresponding order relation. 

Definition 5 (function cone F) Fix a state space E as introduced in Defini-
tion 1 ( e). Denote by F the set of all functions F : E i-+ R+ which are bounded, 
Lipschitz-continuous and convex. Moreover, we require that they are either all 
non-decreasing, or alternatively all non-increasing. <> 
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Here a map f : E 1-+ R is called Lipschitz-continuous if 

lf(x) - /(y)I ~ L(f) llx -yll, x,y EE, (2) 

for some constant L(f) (with II· II from Definition 1 (e)). Of course, F convex 
means that 

F(ax + (1 - a)y) ~ aF(x) + (1- a)F(y), x, y E E, 0 ~ a ~ 1, (3) 

and x ~yin Eis defined as xe ~Ye, e E 3. Note that Fis closed with respect 
to the operation of multiplication. <> 
Example 6 (function cone F) We mention a typical example for both cases, 
a non-decreasing and a non-increasing function: 
(a) ("moment function") If I is a bounded subinterval of R+, we fix natural 

numbers k 2: 1, ni, ... , nk 2: 0, and labels 6, ... , ek E 3, and set 

z EE. 

(b) ("Laplace function") If I is bounded below, we fix -X1, ... , Ak 2: 0 as well 
as 6, ... ,ek E 3, and put 

z EE. <> 

Now we are ready to state our comparison argument concerning the inter-
acting diffusion X = { X(t); t 2: 0}, which for typographical simplification we 
also write as {Xt; t 2: O} (as long as the labeling of components is not needed). 

Theorem 1 (comparison argument) Fix two diffusion coefficients 91 2: 92 1 

corresponding state spaces satisfying E1 ~ E2 , a finite sequence ti, ... , tk 2: 0 
and functions F1 , ••• , Fk E F 2 (the function cone related to E2). Then 

(4) 

for all initial states z E E1 • In particular, for all F E F 2 , 

(5) 

For the latter conclusion we need not require that F is bounded and monotone. 

Remark 7 (extensions of the comparison argument) Theorem 1 can be 
extended to hold for functions which arise as limits of functions in F in such 
a way that the corresponding functionals also converge. This is of particular 
interest in the case I= R. For instance, (5) is also true for the moment functions 
of Example 6 (a) or the Laplace functions of 6 (b) if the respective boundedness 
requirement on I is dropped. (In fact, extend linearly from an asymptotically 
large argument on to get convex Lipschitz functions.) <> 
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Example 8 (comparison with restricted Fisher-Wright) We mention an 
intrinsic example for a situation where the comparison theorem is applicable 
(and which is intensively used in [9] and [10]). Let g be a diffusion coefficient 
with reference interval I= (0, 1). Assume that g is positive on I, and set 

JC ::: (0, 1) =I, 

where 0 ~ c < t and ce > 0. Such a ge is called. a restricted Fisher-Wright 
diffusion coefficient related to the interval ( c, 1 - c). (Figure 1.) The interact-

0 1-c 1 

Figure 1: (restricted) Fisher-Wright bounds for g with support (0, 1) 

ing diffusion with this "reference diffusion coefficient" ge can be studied using 
delayed coalescing random walks which are dual to interacting Fisher-Wright 
diffusions (Shiga [14]). In the sense of the physics literature this is therefore an 
explicitly solvable model. (A similar explicitly solvable case is the interacting 
Feller's branching diffusion of Example 4, which can also be used in comparison 
arguments.) Note that by our assumptions on g, for each c > 0 sufficiently small 
one can always find constants c0 , ce > 0 such that g0 2::: g 2::: ge. Using "moment 
functions" Fas in Example 6 (a), Theorem 1 provides bounds of all higher and 
"mixed" moments of X with respect to PJ by the corresponding ones in the case 
of interacting (restricted) Fisher-Wright diffusions. This comparison is useful 
for the following reasons. First of all, statements on interacting diffusions are 
frequently proved by the method of moments. Second, limiting statements on 
the cluster formation as in Theorems 1-5 of [9], in the special case of (restricted) 
Fisher-Wright diffusion coefficients, do not depend on the scaling factor ce (and 
are continuous in c). Therefore the comparison theorem is a powerful tool for 
extending results from the Fisher-Wright case to general diffusion coefficients g 
with support (0, 1) (universality). 0 

1.3 An application 
Our main application of the comparison theorem in this paper is a result on the 
long-time behavior of interacting diffusions in the recurrent case, which covers 
new classes of systems, and even simplifies proofs for some known cases, as for 
example, interacting Feller's branching diffusions (super-random walks). In the 
transient case, the long-term behavior of X is relatively well understood, see 
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Cox and Greven [2], Deuschel [7], and Shiga [15]. To arrive at a simple form for 
the next theorem we require additional properties of the model. 

Assumption 9 (recurrence) In Definition 1 we also assume: 
(a) 3 is a (countable) Abelian group. 
(b} The migration kernel p is irreducible, homogeneous (Pe,c = Po,c-e )) and 

the symmetrized kernel Pe,c := ~ (Pe,c +Pee) is recurrent. 
( c} The diffusion coefficient g is positive on the (bounded or unbounded) ref-

erence interval I=: (a, b). <> 
Assumption 10 (homogeneity) The initial law µ = C(X(O)) is homoge-
neous (that is invariant with respect to the spatial shift). Moreover, suppose 
Eµ IXo(O) I is finite, and set (} := EµXo(O). <> 
Remark 11 If one wants to drop condition (a) in Assumption 9, analogs of (6) 
below can still be shown if instead of (b) one works with a pair of independent 
Markov chains which meet infinitely often almost surely ( cf. Shiga [14]). <> 

The result we now want to state says in particular, that under· Assumptions 
9, 10 and one-sided bounded components, the interacting diffusion clusters for 
all diffusion coefficients g (universality). Clustering means that for large times, 
locally, all components almost agree. In fact, with Theorem 1 and the ergodic 
theorem in the interacting Fisher-Wright case alone, which is easily handled via 
duality, we are able to derive the following result. Here g_ denotes the constant 
state Qe =a. 
Theorem 2 (clustering} Under Assumptions 9 and 10, 

{ 

b-B B-a --8 + --8b 
C(Xt) => b-a !!. b-a -' 

t-+oo 
8!!., 

if a, b ER, 
(6) 

if a E R, b = +oo. 

It remains an open problem to prove that in the remaining case a = -oo and 
b = +oo, 

C(Xt) t~ !(8-QQ. + 8+00) 

(in a suitable sense), which is only known for the interacting critical Ornstein-
Uhlenbeck diffusion of Example 4, which is explicitly solvable using Gaussian 
techniques. 

Remark 12 The universality for finite a and b was known before, see Cox 
and Greven [2]. But for g with unbounded support, only special cases have 
been handled so far. In fact, extinction behavior for interacting diffusions with 
linear potential had been studied in Shiga [15]; extinction properties of spatial 
branching models related to the interacting Feller's branching diffusion (super-
random walk) of Example 4 are also well-known; cf. e.g. Dawson [5]. <> 
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Remark 13 Treating, in the case I = (0, oo ), initial states with Eµ IXo(O) I = 
oo is a bit more subtle, since the limit point 800 may appear; cf. Bramson et 
al. [1], Dawson et al. [6]. However, using the relatively well-understandable 
interacting Feller's branching diffusion (super-random walk), it is possible to 
use Theorem 1 to get results in the class of processes where g(r)/r --+ O or oo 
as r --+ oo as well. O 

The rest of the paper is organized as follows. We prove Theorem 1 in the 
next section, and Theorem 2 in Section 3. 

2 Proof of the comparison Theorem 1 
The idea of the proof is to use an integration by parts formula for semigroups 
combined with a preservation property of the function cone F under the interact-
ing diffusion semigroup. The proof is broken up in three main steps (§§ 2.1-2.3). 
We sta;rt by proving a fact about finite-dimensional diffusions (for simplicity 
again denoted by X) without drift, namely that convexity of functions is pre-
served under the corresponding diffusion semigro·up. · 

2.1 Preservation of convexity for diffusions in IRm 
Definition 14 (finite-dimensional diffusion) Fix an open convex subset C 
of Rm, and an m x m-matrix-valued continuous function x 1-+ u( x) defined on 
the closure C of C, with the following properties: 

The entries x 1-+ O"i,j(x) grow at most linearly (as lxl--+ oo, in the case of 
an unbounded C). 

x 1-+ O"i,j(x) satisfies a Lipschitz condition on 

C0•K := { x EC; llxll $ K, llx - Yll ?: 8, YE 8C }, 
for each 8, K > 0. 

The matrix u( x) is invertible, for each x E C. 
u( x) = 0 on the boundary ac of c. 

Let W be a standard Brownian motion in Rm, and denote by X that unique 
strong solution of the stochastic differential equation 

dXt = u(Xt) dWt, Xo = z E C, (7) 

(living in C) which has the following property: Once Xt hits 8C then it is 
absorbed. Let U = { Ut ; t ?: 0} denote the semi group related to this time-
homogeneous Markov process: Utf(z) := Ezf(Xt)· 0 

Note that this existence and uniqueness result follows for example from 
Stroock and Varadhan [17] by combining their Theorems 5.1.1, 5.1.5, and 10.2.2 
in connection with Theorem 8.1.1. 
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Proposition 15 (preservation of convexity) Let F belong to the set C 2 ( C) 
of {real-valued) continuous functions defined on C which are twice continuously 
differentiable in C. Then for each fixed t > 0, the function x 1-+ UtF(x) is also 
convex on C. 

Proof The idea of the proof is to use the fact that in this case of invertible 
diffusion matrices er(x), the noise of the basic process W works in every direction 
of the space preserving convexity via the martingale property. 

Fix t > 0 and F as in the proposition. We will prove first that the Hessian 
of UtF is non-negative definite in each point z EC. This proof is broken up in 
four steps. Step 5° then treats z E C. 
Step 1° Fix an m x m-matrix A, and define a matrix-valued function [s, x] 1-+ 

erA(s, x) by 

( ) ·- { u(x) if 0 :::; s < t, 
erAs,x ·- Aer(x) if s?:.t, x E.c. (8) 

Replacing er by er A in Definition 14 (note that the new inhomogeneity is of no 
harm), we get an inhomogeneous diffusion process XA living on C. Denote by 
{ Vr,s ; 0 :::; r :::; s} the semigroup of this Markov process. 
Step 2° Since F is convex, and X is without drift, the process s 1-+ F(Xf") is 
a submartingale. Therefore we can conclude that s 1-+ Vo,sF satisfies 

lim Vo,t+hF(x)- Vo,tF(x) = a+vo,sF(x)I > 0 
h 10 h ~ - ' + us s=t 

x EC. (9) 

On the other hand, by the semigroup formula, and since Vo,t = Ut for our fixed 
t, 

a+vo sF I 
as' (x) s=t = GtUtF(x), x EC, (10) 

where the partial differential operators { Gs; s ?:. 0} are defined by 

1 f)2JI 
GsJI(x) := -2 l:(uAul)(s,x) ~(x), . . ux,ux, 1,3 

JI E C 2 (C), x EC. (11) 

Step 3° For a given vector). E Rm, define the matrix A by Ai,j := AiAj. For 
a fixed z E C, choose now A as follows. First write the symmetric non-negative 
definite matrix A in the form A= BBT, and then set A:= Bu- 1(z). With this 
choice of A, from (11) and (8) we get 

. 1 f)2JI 
GtJI(z) := 2 2: >.i>.i a-:8-(z). (12) 

i,j x, x, 

Step 4° Finally choose JI := UtF, combine (12), (10) and (9) to obtain 
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Step 5° Since z EC and A E Rm were arbitrary, this shows that UtF is convex 
on C. The convexity on the closure C of C then follows from the continuity of 
UtF on C by taking limits, finishing the proof. D 

2.2 Preservation of the function cone F for g with support I 
The proof of the comparison Theorem 1 is based on a preservation property 
(Proposition 16 below) of the function cone F (introduced in Definition 5) under 
the semigroup of our interacting diffusion X which we will prove in this section. 

Denote by S = Sg the semigroup associated with the Markov process X of 
Definition 1, 

Sfh(z) = E!h(Xt), z EE, 

acting on the set Cb := Cb(E) of bounded continuous functions h defined on 
E, equipped with the topology of uniform convergence. This semigroup has as 
its generator G = G9 the closure of the following operator acting on the set 
c5 = C5(E) of all those functions in Cb which depend only on finitely many 
components xe and are at least twice continuously differentiable on En / 2 : 

a 1 a2 

G9 := ~ 2: (Pe,( - 8e,dx( oxt: + 21: g(xe) ax2 ' 
e,, · "' e e 

x E En i::. (13) 

(Compare Shiga and Shimizu [16].) 
Now we are ready to state the following preservation property of F under 

the semigroup S of X. 

Proposition 16 (preservation of F) Assume that the diffusion coefficient g 
is positive on its reference interval I. For each finite sequence Fi, ... , Fk E F 
and time points ti, ... , tk ~ 0, the function 

z EE, 

belongs to F. In the case k = 1, the requirements that F1 zs bounded and 
monotone can be dropped. 

The key idea of the proof is to use Trotter's product formula to reduce the 
assertion to a system of pure diffusion, and to a system of pure migration. 

To prepare for this, we first want to formulate two lemmata which allow us 
later to reduce the problem to models with only a finite number of components. 
Such finite systems are technically easier to handle. These lemmata are used in 
the existence and uniqueness theorem for X and essentially appear in Liggett 
and Spitzer [12], Shiga [14]. Hence for proofs, we refer the reader to these 
papers. 
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Lemma 17 (preservation of the Lipschitz property) Suppose that f is a 
Lipschitz function on E with Lipschitz constant L(f). Then 

ISt!(x) - Stf(y)I ~ L(f) etr llx - Yll, 

with the constant r from Definition 1 (e). 

t ~ 0, x,y EE, 

Lemma 18 (approximation by finite sets) Consider finite sets 3 1 ~ 32 ~ 
· · · j 3. Let S(n) denote the semigroup which belongs to the Markov pro-
cess obtained from X by the following modification. For e ~ Bn , freeze X~ , 
whereas fore E Bn, restrict the summation in (1) to ( E Sn. Then, fork ~ 1, 
ti, ... , t1c E R+, and bounded Lipschitz functions Ji, ... , f1c on E, we have 

z EE. (14) 

For k = 1 we need not require that Ji is bounded. 

Note that the semigroup 5(n) describes essentially a system with only finitely 
many components. For technical purposes it is nicer to have for every n a process 
on the same state space. For this reason we just use the freezing to achieve that 
only 'finitely many components interact, but nevertheless for all n we have the 
common state space E. 

Proof of Proposition 16 Since F is closed with respect to multiplications, 
without loss of generality we may assume that 0 < t 1 < · · · < t1c. Preservation 
of non-negativity and boundedness is trivial. 

1° (finite system semigroup) We first treat the case where S is replaced by the 
finite system semigroup 5(n) introduced in Lemma 18. 

Lipschitz continuity follows from Lemma 17 combined with the boundedness 
of the functions in F. The proof of the remaining statements (monotonicity and 
convexity) is by induction on the number k of time points. In fact, the case 
k = 1 is the hard part, the induction step itself is very simple. 

Before giving the proof, we start with an observation: We may addition-
ally require that F1 , ... , F1c E C5. Indeed, since we are dealing with the finite 
system semigroup, we may restrict our attention to finitely many components. 
Moreover, each monotone convex Lipschitz function f on a closed cube C in 
Euclidean space Rm can be approximated in uniform convergence by monotone 
convex Lipschitz functions Ji, h, ... E C 2 = C 2(C). In fact, assume for the 
moment that C = Rm. Take a non-negative C 2-function h with the unit ball B 
as support, and with integral 1. Consider 

fN(x) := Nm j dy h(N (y- x)) f(y), 

These functions .satisfy all requirements (in the present case C = Rm). Indeed, 
differentiating with respect to x shows that fN E C 2 (note that, for x varying 
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in a bounded set, the domains of integration are uniformly bounded). On the 
other hand, from the identity IN(x) =Nm JBdy h(Ny) l(y+x) we conclude the 
monotonicity, convexity, and Lipschitz property of IN. Furthermore, IN(x)-+ 
l(x) as N -+ oo, uniformly in x (recall that I is Lipschitz, and h satisfies 
J dy IYI h(y) < oo ). This gives the claim in the case C = Rm. · 

If C =f:. . Rm, take a monotone convex Lipschitz extension of I to Rm and 
apply the above construction, to get the desired approximation on C. Such an 
extension can be obtained as follows. For every point z E Rm there exists a 
unique point z* E C such that 

llz* - zll := minxec llx - zll· 
Without loss of generality, we may assume that I is non-decreasing. Define 

l(z) := l(z*) + L(f)'E':::1 (zi - z;)+, 

(With L(f) a Lipschitz constant). That is, we extend in increasing directions of 
a component linearly with a "maximal" slope, and in decreasing ones with the 
slope 0. This function satisfies all requirements. 

Note also that if I is bounded then all the IN are (uniformly) bounded. 

(a) (first step of induction) For k = 1 drop the index 1 in notation, that is, 
look at 

Ht(z) := E!F(Xt), z EE, (15) 
for a fixed t > 0 and F E F. Then the idea of the proof is to show that the 
claimed property is true for systems with only mig~ation or with only diffusion, 
and later to use Trotter's product formula to get the full result (for k = 1 and 
the finite system semigroup case). 
(a. l) (only migration) First, simplify the model by setting the diffusion term g 
to 0 in (1). Then X degenerates to a deterministic process. In this case we can 
explicitly solve the linear system (1) (see, for instance, the expectation formula 
(2.59) in [9]): 

Xe(t) = {Lees .. Pn(t, e, () Z( 

ze 
if e E Bn, 
if e tl. Bn. 

(16) 

Here z is the initial state X(O), and Pn(t, e, ()are the transition probabilities of 
the continuous-time Markov chain in Bn related to the finite system semigroup 
5(n). Hence, in this pure migration case, (15) can be written as 

Ht(z) = F(Xe(t)) with Xe(t) from (16). 

This expression is obviously both monotone and convex in z. In fact, use the 
definition (3) of convexity of F, as well as Pn ~ 0. 
(a.2) (only diffusion) Now we simplify the model in the opposite direction by 
omitting the migration term in (1), that is, by putting "'= 0. We may restrict 
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our attention to Bn . Then X degenerates to a finite system of independent 
diffusions each with the same diffusion coefficient g. Now convexity is obtained 
using the preservation of convexity Proposition 15. 

The monotonicity part works as follows. Assume first that the label set 
consists of a single point. Then X is a one-dimensional diffusion in E = I 
with diffusion coefficient g. The semigroup of X preserves monotone functions 
F. Indeed, this results from the following coupling argument. Let X 1 and X 2 

be two versions of X, defined as solutions of the stochastic one-dimensional 
equation (1) but with the same driving Brownian motion. If now XJ .~ X5 
then Xf 2::: X'f a.s. (cf. [13, Theorem 9.3.7]). Then by the monotonicity of F, 
and taking expectations, we get the preservation of monotonicity. 

Monotonicity in the case of a finite number of diffusing components follows 
again via the above construction since all components evolve independently. 
(a.3) (general case) Now we decompose the interval [O, t] into small pieces of 
length ~ and apply alternately (a.l) and (a.2) with t replaced by ~ More 
specifically, consider 

z EE, m 2::: 1, (17) 

where 51 refers to the degenerate semigroup related to (a.I), and 52 to the 
semigroup of independent diffusions of ( a.2). Since each successive step results 
into a function in F, we end up in F with the whole chain of operations in 
(17). That is, Hm,t E F for each m (and the fixed t and F). Finally, by 
Trotter's product formula (see for instance Corollary 1.6.7 of [8]), we get point-

. wise limm-oo Hm,t = StF = Ht. (Note that in the present model this is a 
consequence of the usual construction of the solution by freezing the drift and 
diffusion coefficient to constants during time intervals of length ~ . ) Hence, the 
limiting Ht of (15) is certainly a monotone and convex function. 

This finishes the proof in the case k:::: 1 for the finite system semigroup. 

(b) (induction step) Now assume that k > 1. Then by the Markov property 
the expression under consideration can be written as the following product of 
two functions, one with a single time point and one with k - 1 time points: 

Ef F1 (Xt1)Et
1 
F2 (Xt2 -ti} · · · Fk (Xt,.-ti}. 

Since Fis closed under multiplication, the proof for the finite system semigroups 
can be completed by induction. 

2° (general S) Approximate 3 by finite sets and use the approximation of the 
infinite system as in Lemma 18. Then we can reduce the general case to the 
result of Step 1°, by Lemma 18. Namely, we know monotonicity and convexity 
for the terms at the l.h.s. of (14) (with the ti and fi appropriately replaced), so 
their limit is convex and monotone. 
Step 3° (extension for k = 1) An analysis of the arguments so far shows that 
the requirements of boundedness and monotonicity were related to the closeness 
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of F with respect to multiplications which we do not need in the case k = 1. 
This completes the proof. o 

2.3 Completion of the proof of the comparison theorem 
Fix E1 ~ E2

, g1 ~ g2, t1, ... , t1c ~ 0 and F1, ... , F1c E F2 . The proof proceeds in 
three steps, first a special case is treated, and then the general result is derived 
from the special one in two subsequent steps. 

Step 1° We consider first the case where g1 > 0 on 11 and E1 = E2 • Again 
without loss of generality we may assume that 0 < t 1 < · · · < t1c and that 
F1, ... , F1c E C6 (compare the beginning of the proof of Proposition 16). 

The proof of ( 4) is by induction over k, the number of time points considered. 
Start with k = 1, and drop in this special case the assumption that F1 is bounded 
and monotone. We have to show that 

Sf~F1(z) = Ei1 F1(Xt1 ) ~ Ei2 F1(Xti) = Sf:F1(z), . z E E1
. (18) 

Without loss of generality, we may assume that the l.h.s. in (18) is finite (recall 
that the functions in F are non-negative). By the integration by parts formula 

1t1 
5g1 - 5g2 = ds 5g2 (Gg1 - G92)5g1 ti t1 t1-6 $ 

0 . 
(19) 

(see for instance p. 367 in [11]), it suffices to demonstrate that 

(20) 

on E 1 . (Note that S~1 F1 is in the domain of G9i.) By the form of the generators 
(recall (13)), 

1 ( ) a2 Gg1 - G92 = 2 2:: Y1(xe) - g2(xe) 8 2 • 
e xe 

Since g1 ~ g2 by assumption, for the proof of (20) it therefore suffices to show 
that for fixed s 

S~1 F1(z) is convex in each component zc, (ES, of z E E1 . (21) 

But this follows from the preservation Proposition 16, since we assumed 91 > 0 
on 11 . Consequently, (18), hence (4) is true in the case k = 1. 

Consider k ~ 2. For a preparation of the induction step, we first rewrite ( 4) 
in a more convenient form. Namely, using the Markov property at time t1 and 
time-homogeneity of X, we see that (4) becomes 

(22) 

by setting 

Fi (x) := F1(x)E~i F2(XtrtJ · · · F1c(Xt1c-t 1 ), x E Ei, j = 1,2. (23) 
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Assume now that ( 4), respectively (22), is valid for some k- l ~ 1 (induction 
hypothesis). Then, by (4) and the non-negativity of F1 , from the definition (23) 
we immediately get F 1 ~ F 2 on E1 = E2

• Then the relation (22) for k ~ 2, 
hence ( 4) for k ~ 2, will follow from the positivity of the semigroups S9i, once 
we prove (18) with Fi replaced by F 1. As in the case k = 1, for this we need 
to know (21), with Fi replaced by F 1. By the definition (23) of F1, we may 
return to the original expression: 

(24) 

Again by the preservation Proposition 16, the needed convexity property holds 
since we assumed 91 > 0 on 11. This finishes the induction step, hence the proof 
in the case 91>0on11 and E1 = E2

• 

Step 2° Now we deal with the case 91 > 0 on 11 but assuming only E1 ~ E2. 
Choose a sequence 92,n of diffusion coefficients satisfying 91 ~ 92,1 ~ 92,2 ~ 
· · · ~ 92 with 92,n ! 92 as n ~ oo, but 92,n > 0 on 11. Hence we may assume 

· E1 = E21n, for all n (note that we.are interested in (4) only on E1). Then by 
the previous step of proof, 

where 7r := Fi (XtJ · · · Fk (Xt 1.). Hence it suffices to prove that E92 ,n 7r ! 
E9 2 tr. That is, using a representation as in (23), we have to prove monotone 
convergence with respect to the parameter 9. 

Consider first the case k = 1, and drop for this again the boundedness and 
monotonicity requirements on F1 , but assume that E9':l tr is finite. For every 
fixed t and f E F, by (an equivalent form of) the integration by parts formula 
(19), 

S9':l,n f S9':l f - td S9':l [1 '°'( )( )~] S9':l,nJ El (25) t - t - Jo s t-s 2 "'e"" 92,n -92 · a(-)l s on · 

But ::';l S~':l,n f ( x) ~ 0 by the preservation Proposition 16. Hence, the integrand 
E 

is non-negative. On the other hand, it is bounded from above by 

sr:,[~ ~(u1 -u2lO a~.;~] S!' t ~ a 
which integral equals Sf1 f - Sf';l f, hence is finite. Then by monotone con-
vergence, the integral in (25) converges to 0. This completes the proof of 
E9 1 tr ~ E9':ltr fork= 1. Using the Markov property, the case k ~ 2 follows by 
induction as in Step 1°. 

Step 3° Finally, for general 91 ~ 92 we may assume that 11 2 12 • This time 
we approximate 91 from above by a sequence of diffusion coefficients 91,n which 
are positive on 11. As in the previous step, by "monotone continuity" in 9 and 
induction on k, the claims follow. D 
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3 Proof of the clustering Theorem 2 
First note that under Assumption 10 by Remark 3 we have µ(E) = 1, and the 
process X living in E exists. 

Because of [2], we may restrict our attention to the second convergence claim 
in (6), even though we shall outline a new proof of the first statement in step 
2° below. 

The idea of the proof is to bound the diffusion coefficient g of the interacting 
diffusion X below by appropriate Fisher-Wright diffusion coefficients on large 
intervals, and exploit the comparison argument for suitable functionals. 

1° (Proof of the second convergence statement) Without loss of generality, we 
may put a = 0. Take an co E (0, 1). First consider an initial distribution µ 
which besides Assumption 10 additionally satisfies 

µ (co :::; ze :::; c:01
, e E B) = 1. (26) 

· It then suffices to show that for the Laplace functional of Xt 

liminf Ei exp- (.i\, Xt) ~ 1 t-oo 
for each .X E R; with -Xe # 0 for only finitely many e. In other words, we may 
consider a function F as written in Example 6 (b ), and we have to estimate 
EiF(Xt) from below appropriately. 

For each c E (0, co) sufficiently small, we find a constant ce > 0 such that 
g ~ ge .with ge defined by 

rE R 

By the comparison Theorem 1, for Fas given in Example 6 (b ), we get 

E~F(Xt) ~ Ef F(Xt)· (27) 

However by the first convergence statement in (6), Xt with respect to Pf has a 
limit in law as t--+ oo denoted by X 00 • Applying this to the continuous bounded 
function F of Example 6 (b) (recall that z ~ 0 by the assumption a= 0) yields 

~ c;-1 -0 
E~ F(Xt) ~ EF(Xoo) ~ _1 exp [ - (.X1 + · · · + Ak) c]. t-oo c - c 

But the latter term converges to 1 as c; ! 0. 
Consequently, .C(Xt) => 6g_ as t --+ oo which proves the second claim in (6) 

in the case of aµ satisfying the restriction (26). 
In order to treat a general initial distributionµ, for c; E (0, 1) let re denote 

the image law on E x E of µ under the mapping 
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Note that the first marginal law of re is µ, whereas the second, truncated one, 
again satisfies Assumption 10. Now it is easy to show that if we construct a 
bivariate process [X, xe] starting with law re and such that X and xe satisfies 
(1) but using the same driving Wiener processes for both (coupling), then 

e E 3, t ~ 0, 

(see [9, Proof of Lemma 4.6]). But the r.h.s. converges to 0 as c l 0. Hence, the 
claim holds for generalµ. 

2° (outline of a Proof of the first convergence statement) Without loss of 
generality, we may put a= 0 and b = 1. Since EiXe(t) = B, it suffices to show 
that for 0 < c < t , and all e, ( E B, 

This result is known for interacting Fisher-Wright diffusions using duality (Shiga 
[14]). Now proceed as in step 1°, but with replacing Laplace fun.ctions by the 
moment of Xe(t)Xc(t) - Xe(t). We leave the details to the reader (cf. [2]). D 

Acknowledgment: We thank Donald Dawson who suggested the use of Trotter's 
product formula. 
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