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AbstratWhen we ut an i.i.d. sequene of letters into words aording to an independent renewalproess, we obtain an i.i.d. sequene of words. In the annealed large deviation priniple (LDP)for the empirial proess of words, the rate funtion is the spei� relative entropy of theobserved law of words w.r.t. the referene law of words. In the present paper we onsider thequenhed LDP, i.e., we ondition on a typial letter sequene. We fous on the ase where therenewal proess has an algebrai tail. The rate funtion turns out to be a sum of two terms, onebeing the annealed rate funtion, the other being proportional to the spei� relative entropyof the observed law of letters w.r.t. the referene law of letters, with the former being obtainedby onatenating the words and randomising the loation of the origin. The proportionalityonstant equals the tail exponent of the renewal proess. Earlier work by Birkner onsideredthe ase where the renewal proess has an exponential tail, in whih ase the rate funtion turnsout to be the �rst term on the set where the seond term vanishes and to be in�nite elsewhere.We apply our LDP to prove that the radius of onvergene of the moment generating funtionof the ollision loal time of two strongly transient random walks on Z
d, d ≥ 1, stritly inreaseswhen we ondition on one of the random walks, both in disrete time and in ontinuous time.The presene of these gaps implies the existene of an intermediate phase for the long-timebehaviour of a lass of oupled branhing proesses, interating di�usions, respetively, diretedpolymers in random environments.1 Introdution and main results1.1 Problem settingLet E be a �nite set of letters. Let Ẽ = ∪n∈NEn be the set of �nite words drawn from E. Both E and

Ẽ are Polish spaes under the disrete topology. Let P(EN) and P(ẼN) denote the set of probabilitymeasures on sequenes drawn from E, respetively, Ẽ, equipped with the topology of weak onver-gene. Write θ and θ̃ for the left-shift ating on EN, respetively, ẼN. Write P inv(EN),Perg(EN)and P inv(ẼN),Perg(ẼN) for the set of probability measures that are invariant and ergodi under θ,respetively, θ̃.For ν ∈ P(E), let X = (Xi)i∈N be i.i.d. with law ν. Without loss of generality we will assume that
supp(ν) = E (otherwise we replae E by supp(ν)). For ρ ∈ P(N), let τ = (τi)i∈N be i.i.d. with law
ρ having in�nite support and satisfying the algebrai tail property

lim
n→∞

ρ(n)>0

log ρ(n)

log n
=: −α, α ∈ (1,∞). (1.1)(No regularity assumption will be neessary for supp(ρ).) Assume that X and τ are independentand write P to denote their joint law. Cut words out of X aording to τ , i.e., put (see Figure 1)

T0 := 0 and Ti := Ti−1 + τi, i ∈ N, (1.2)1



and let
Y (i) :=

(
XTi−1+1,XTi−1+2, . . . ,XTi

)
, i ∈ N. (1.3)Then, under the law P, Y = (Y (i))i∈N is an i.i.d. sequene of words with marginal law qρ,ν on Ẽgiven by

qρ,ν

(
(x1, . . . , xn)

)
:= P

(
Y (1) = (x1, . . . , xn)

)
= ρ(n) ν(x1) · · · ν(xn),

n ∈ N, x1, . . . , xn ∈ E.
(1.4)
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XFigure 1: Cutting words from a letter sequene aording to a renewal proess.For N ∈ N, let (Y (1), . . . , Y (N))per stand for the periodi extension of (Y (1), . . . , Y (N)) to an elementof ẼN, and de�ne

RN :=
1

N

N−1∑

i=0

δeθi(Y (1),...,Y (N))per ∈ P inv(ẼN), (1.5)the empirial proess of N -tuples of words. By the ergodi theorem, we have
w− lim

N→∞
RN = q⊗N

ρ,ν P�a.s., (1.6)with w − lim denoting the weak limit. The following large deviation priniple (LDP) is standard(see e.g. Dembo and Zeitouni [10℄, Corollaries 6.5.15 and 6.5.17). Let
H(Q | q⊗N

ρ,ν ) := lim
N→∞

1

N
h
(
Q|FN

| (q⊗N

ρ,ν )|FN

)
∈ [0,∞] (1.7)be the spei� relative entropy of Q w.r.t. q⊗N

ρ,ν , where FN = σ(Y (1), . . . , Y (N)) is the sigma-algebragenerated by the �rst N words, Q|FN
is the restrition of Q to FN , and h( · | · ) denotes relativeentropy. (For general properties of entropy, see Walters [25℄, Chapter 4.)Theorem 1.1. [Annealed LDP℄ The family of probability distributions P(RN ∈ · ), N ∈ N,satis�es the LDP on P inv(ẼN) with rate N and with rate funtion Iann : P inv(ẼN) → [0,∞] givenby

Iann(Q) = H(Q | q⊗N

ρ,ν ). (1.8)This rate funtion is lower semi-ontinuous, has ompat level sets, has a unique zero at Q = q⊗N
ρ,ν ,and is a�ne.The LDP for RN arises from the LDP for N -tuples via a projetive limit theorem. The ratiounder the limit in (1.7) is the rate funtion for N -tuples aording to Sanov's theorem (see e.g. denHollander [17℄, Setion II.5), and is non-dereasing in N .2



1.2 Main theoremsOur aim in the present paper is to derive the LDP for P(RN ∈ · | X), N ∈ N. To state our result,we need some more notation.Let κ : ẼN → EN denote the onatenation map that glues a sequene of words into a sequene ofletters. For Q ∈ P inv(ẼN) suh that
mQ := EQ[τ1] < ∞, (1.9)de�ne ΨQ ∈ P inv(EN) as

ΨQ(·) :=
1

mQ
EQ

[
τ1−1∑

k=0

δθkκ(Y )(·)

]
. (1.10)Think of ΨQ as the shift-invariant version of the onatenation of Y under the law Q obtained afterrandomising the loation of the origin.For tr ∈ N, let [·]tr : Ẽ → [Ẽ]tr := ∪tr

n=1E
n denote the word length trunation map de�ned by

y = (x1, . . . , xn) 7→ [y]tr := (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E. (1.11)Extend this to a map from ẼN to [Ẽ]Ntr via
[
(y(1), y(2), . . . )

]
tr

:=
(
[y(1)]tr, [y

(2)]tr, . . .
) (1.12)and to a map from P inv(ẼN) to P inv([Ẽ]Ntr) via

[Q]tr(A) := Q({z ∈ ẼN : [z]tr ∈ A}), A ⊂ [Ẽ]Ntr measurable. (1.13)Note that if Q ∈ P inv(ẼN), then [Q]tr is an element of the set
P inv,fin(ẼN) = {Q ∈ P inv(ẼN) : mQ < ∞}. (1.14)Theorem 1.2. [Quenhed LDP℄ Assume (1.1). Then, for ν⊗N�a.s. all X, the family of (regular)onditional probability distributions P(RN ∈ · | X), N ∈ N, satis�es the LDP on P inv(ẼN) with rate

N and with deterministi rate funtion Ique : P inv(ẼN) → [0,∞] given by
Ique(Q) :=





Ifin(Q), if Q ∈ P inv,fin(ẼN),

lim
tr→∞

Ifin
(
[Q]tr

)
, otherwise, (1.15)where

Ifin(Q) := H(Q | q⊗N

ρ,ν ) + (α − 1)mQ H(ΨQ | ν⊗N). (1.16)Theorem 1.3. The rate funtion Ique is lower semi-ontinuous, has ompat level sets, has a uniquezero at Q = q⊗N
ρ,ν , and is a�ne. Moreover, it is equal to the lower semi-ontinuous extension of Ifinfrom P inv,fin(ẼN) to P inv(ẼN).
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Theorem 1.2 will be proved in Setions 3�5, Theorem 1.3 in Setion 6.A remarkable aspet of (1.16) in relation to (1.8) is that it quanti�es the di�erene between thequenhed and the annealed rate funtion. Note the appearane of the tail exponent α. This willbe important in the appliations desribed in Setions 1.4�1.5. We have not been able to �nd asimple formula for Ique(Q) when mQ = ∞. In Appendix A we will show that the trunation mapis ontinuous on all of P inv(ẼN), i.e.,
Iann(Q) = lim

tr→∞
Iann([Q]tr), Ique(Q) = lim

tr→∞
Ique([Q]tr), Q ∈ P inv(ẼN). (1.17)Theorem 1.2 is an extension of Birkner [3℄, Theorem 1. In that paper, the quenhed LDP is derivedunder the assumption that the law ρ satis�es the exponential tail property

∃C < ∞, λ > 0: ρ(n) ≤ Ce−λn ∀n ∈ N (1.18)(whih inludes the ase where supp(ρ) is �nite). The rate funtion governing the LDP is given by
Ique(Q) :=

{
H(Q | q⊗N

ρ,ν ), if Q ∈ Rν ,

∞, if Q /∈ Rν ,
(1.19)where

Rν :=

{
Q ∈ P inv(ẼN) : w−lim

L→∞

1

L

L−1∑

k=0

δθkκ(Y ) = ν⊗N Q − a.s.

}
. (1.20)Think of Rν as the set of those Q's for whih the onatenation of words has the same statistialproperties as the letter sequene X. This set is not losed in the weak topology: its losure is

P inv(ẼN).We an inlude the ases where ρ satis�es (1.1) with α = 1 or α = ∞.Theorem 1.4. (a) If α = 1, then the quenhed LDP holds with Ique = Iann given by (1.8).(b) If α = ∞, then the quenhed LDP holds with rate funtion
Ique(Q) =

{
H(Q | q⊗N

ρ,ν ) if lim
tr→∞

m[Q]trH(Ψ[Q]tr | ν⊗N) = 0,

∞ otherwise. (1.21)Theorem 1.4 will be proved in Setion 7. Part (a) says that the quenhed and the annealed ratefuntion are idential when α = 1. Part (b) says that (1.19) an be viewed as the limiting ase of(1.16) as α → ∞. Indeed, it was shown in Birkner [3℄, Lemma 2, that on P inv,fin(ẼN):
ΨQ = ν⊗N if and only if Q ∈ Rν . (1.22)Hene, (1.21) and (1.19) agree on P inv,fin(ẼN), and the rate funtion (1.21) is the lower semiontinu-ous extension of (1.19) to P inv(ẼN). Note that by Lemma 7 in Birkner [3℄, the expressions in (1.21)and (1.19) are idential if ρ has exponentially deaying tails. In this sense, Part (b) generalises theresult in Birkner [3℄, Theorem 1, to arbitrary ρ with a tail that deays faster than algebrai.Let π1 : ẼN → Ẽ be the projetion onto the �rst word, and let P(Ẽ) be the set of probabilitymeasures on Ẽ. An appliation of the ontration priniple to Theorem 1.2 yields the following.4



Corollary 1.5. Under the assumptions of Theorem 1.2, for ν⊗N�a.s. all X, the family of (regular)onditional probability distributions P(π1RN ∈ · | X), N ∈ N, satis�es the LDP on P(Ẽ) with rate
N and with deterministi rate funtion Ique

1 : P(Ẽ) → [0,∞] given by
Ique
1 (q) := inf

{
Ique(Q) : Q ∈ P inv(ẼN), π1Q = q

}
. (1.23)This rate funtion is lower semi-ontinuous, has ompat levels sets, has a unique zero at q = qρ,ν,and is onvex.By taking projetive limits, it is possible to extend Theorems 1.2�1.3 to more general letter spaes.The following orollary will be proved in Setion 8.Corollary 1.6. The quenhed LDP also holds when E is ountable, with the same rate funtion asin (1.15�1.16).One an push further and obtain an LDP for E = R, by piking E = 2−n

Z, n ∈ Z, and takingthe limit as n → ∞. We will, however, not pursue this extension here, sine ontrol of the limitingrelative entropies adds on an extra tehnial layer.1.3 Heuristi explanation of main theoremsTo explain the bakground of Theorem 1.2, we begin by realling a few properties of entropy. Let
H(Q) denote the spei� entropy of Q ∈ P inv(ẼN) de�ned by

H(Q) := lim
N→∞

1

N
h
(
Q|FN

)
∈ [0,∞], (1.24)where h(·) denotes entropy. The sequene under the limit in (1.24) is non-inreasing in N . Sine

q⊗N
ρ,ν is a produt measure, we have the identity (reall (1.2�1.4))

H(Q | q⊗N

ρ,ν ) = −H(Q) − EQ[log qρ,ν(Y1)]

= −H(Q) − EQ[log ρ(τ1)] − mQ EΨQ
[log ν(X1)].

(1.25)Similarly,
H(ΨQ | ν⊗N) = −H(ΨQ) − EΨQ

[log ν(X1)]. (1.26)Below, for a disrete random variable Z with a law Q on a state spae Z we will write Q(Z) for therandom variable f(Z) with f(z) = Q(Z = z), z ∈ Z. Abbreviate
K(N) := κ(Y (1), . . . , Y (N)) and K(∞) := κ(Y ). (1.27)In analogy with (1.14), de�ne

Perg,fin(ẼN) :=
{
Q ∈ Perg(ẼN) : mQ < ∞

}
. (1.28)

5



Lemma 1.7. [Birkner [3℄, Lemmas 3 and 4℄Suppose that Q ∈ Perg,fin(ẼN) and H(Q) < ∞. Then, Q-a.s.,
lim

N→∞

1

N
log Q(K(N)) = −mQH(ΨQ),

lim
N→∞

1

N
log Q

(
τ1, . . . , τN | K(N)

)
=: −Hτ |K(Q),

lim
N→∞

1

N
log Q

(
Y (1), . . . , Y (N)

)
= −H(Q),

(1.29)with
mQH(ΨQ) + Hτ |K(Q) = H(Q). (1.30)Equation (1.30), whih follows from (1.29) and the identity

Q(K(N))Q(τ1, . . . , τN | K(N)) = Q(Y (1), . . . , Y (N)), (1.31)identi�es Hτ |K(Q). Think of Hτ |K(Q) as the onditional spei� entropy of word lengths under thelaw Q given the onatenation. Combining (1.25�1.26) and (1.30), we have
H(Q | q⊗N

ρ,ν ) = mQH(ΨQ | ν⊗N) − Hτ |K(Q) − EQ[log ρ(τ1)]. (1.32)The term −Hτ |K(Q) − EQ[log ρ(τ1)] in (1.32) an be interpreted as the onditional spei� relativeentropy of word lengths under the law Q w.r.t. ρ⊗N given the onatenation.Note that mQ < ∞ and H(Q) < ∞ imply that H(ΨQ) < ∞, as an be seen from (1.30). Alsonote that −EΨQ
[log ν(X1)] < ∞ beause E is �nite, and −EQ[log ρ(τ1)] < ∞ beause of (1.1) and

mQ < ∞, implying that (1.25�1.26) are proper.We are now ready to give a heuristi explanation of Theorem 1.2. Let
RN

j1,...,jN
(X), 0 < j1 < · · · < jN < ∞, (1.33)denote the empirial proess of N -tuples of words when X is ut at the points j1, . . . , jN (i.e.,when Ti = ji for i = 1, . . . , N ; see (3.16�3.17) for a preise de�nition). Fix Q ∈ Perg,fin(ẼN).The probability P(RN ≈ Q | X) is a sum over all N -tuples j1, . . . , jN suh that RN

j1,...,jN
(X) ≈ Q,weighted by∏N

i=1 ρ(ji−ji−1) (with j0 = 0). The fat that RN
j1,...,jN

(X) ≈ Q has three onsequenes:(1) The j1, . . . , jN must ut ≈ N substrings out of X of total length ≈ NmQ that look like theonatenation of words that are Q-typial, i.e., that look as if generated by ΨQ (possiblywith gaps in between). This means that most of the ut-points must hit atypial piees of
X. We expet to have to shift X by ≈ exp[NmQH(ΨQ | ν⊗N)] in order to �nd the �rstontiguous substring of length NmQ whose empirial shifts lie in a small neighbourhood of
ΨQ. By (1.1), the probability for the single inrement j1 − j0 to have the size of this shift is
≈ exp[−Nα mQH(ΨQ | ν⊗N)].(2) The ombinatorial fator exp[NHτ |K(Q)] ounts how many �loal perturbations� of j1, . . . , jNpreserve the property that RN

j1,...,jN
(X) ≈ Q.6



(3) The statistis of the inrements j1−j0, . . . , jN −jN−1 must be lose to the distribution of wordlengths under Q. Hene, the weight fator ∏N
i=1 ρ(ji − ji−1) must be ≈ exp[NEQ[log ρ(τ1)]](at least, for Q-typial piees).The ontributions from (1)�(3), together with the identity in (1.32), explain the formula in (1.16)on Perg,fin(ẼN). Considerable work is needed to extend (1)�(3) from Perg,fin(ẼN) to P inv(ẼN). Thisis explained in Setion 3.5.In (1), instead of having a single large inrement preeding a single ontiguous substring of length

NmQ, it is possible to have several large inrements preeding several ontiguous substrings, whihtogether have length NmQ. The latter gives rise to the same ontribution, and so there is someentropy assoiated with the hoie of the large inrements. Lemma 2.1 in Setion 2.1 is needed toontrol this entropy, and shows that it is negligible.1.4 Appliation of LDP to ollision loal time of random walksIn this setion we apply Theorems 1.1�1.2 to derive two results about the ollision loal time ofrandom walks, whih will in turn be used in Setion 1.5.1.4.1 Disrete timeLet S = (Sk)
∞
k=0 and S′ = (S′

k)
∞
k=0 be two independent random walks on Z

d, d ≥ 1, both startingat the origin, with a symmetri and irreduible transition kernel p(·, ·). Suppose that
lim

n→∞

log p2n(0, 0)

log(2n)
=: −α, α ∈ (1,∞). (1.34)Write P to denote the joint law of S, S′. Let

V :=
∞∑

k=0

1{Sk=S′
k}

(1.35)be the ollision loal time of S, S′, and de�ne
z1 := sup

{
z ≥ 0: E

[
zV | S

]
< ∞ S-a.s.} , z2 := sup

{
z ≥ 0: E

[
zV
]

< ∞
}

. (1.36)(The lower indies indiate the number of random walks being averaged over.) Note that, by thetail triviality of S, the range of z's for whih E[ zV | S ] onverges is S-a.s. onstant. Also note that(1.34) implies that p(·, ·) is transient, so that P(V < ∞) = 1. The following theorem holds when
p(·, ·) is strongly transient, i.e., when ∑∞

n=1 npn(0, 0) < ∞.Theorem 1.8. Assume (1.34). If p(·, ·) is strongly transient, then 1 < z2 < z1 < ∞.Sine P(V = k) = (1 − F (2))[F (2)]k−1, k ∈ N, with
F (2) := P

(
∃ k ∈ N : Sk = S′

k

)
, (1.37)an easy omputation gives

z2 = 1/F (2). (1.38)Note that F (2) = 1 − [1/G(2)(0, 0)] with G(2)(0, 0) =
∑∞

n=0 p2n(0, 0) (see Spitzer [22℄, Setion 1).There is no simple expression for z1. In Setion 9.1 we will give an upper bound.7



1.4.2 Continuous timeNext we turn the disrete-time random walks S, S′ into ontinuous-time random walks S̃ = (St)t≥0and S̃′ = (S̃′
t)t≥0 by allowing them to make steps at rate 1, keeping the same p(·, ·). Then theollision loal time beomes

Ṽ :=

∫ ∞

0
1{eSt= eS′

t}
dt. (1.39)For the analogous quantities z̃1 and z̃2, we have the following.Theorem 1.9. Assume (1.34). If p(·, ·) is strongly transient, then 0 < z̃2 < z̃1 < ∞.An easy omputation gives log z̃2 = 2/G(0, 0) with G(0, 0) =

∑∞
n=0 pn(0, 0). There is again nosimple expression for z̃1.1.4.3 ConjetureWe lose with the following onjeture.Conjeture 1.10. The gaps in Theorems 1.8�1.9 are present also when p(·, ·) is transient but notstrongly transient.Random walks with zero mean and �nite variane are transient for d ≥ 3 and strongly transientfor d ≥ 5 (Spitzer [22℄, Setion 1). In a forthoming paper by Birkner and Sun [4℄, the gap inTheorem 1.8 is proved for simple random walk on Z

d, d ≥ 4, and the proof is in priniple extendableto more general random walks. It is an adaptation of the frational moment tehnique developedby Derrida, Giaomin, Laoin and Toninelli [11℄ in the ontext of pinning models. Note that simplerandom walk on Z
4 is just on the border of not being strongly transient. Thus, part of the aboveonjeture is already giving way.1.5 The gaps settle three onjeturesIn this setion we use Theorems 1.8�1.9 to prove the existene of an intermediate phase for threelasses of interating partile systems.1.5.1 Coupled branhing proessesTheorem 1.9 proves a onjeture put forward in Greven [14℄, [15℄. Consider a spatial populationmodel, de�ned as the Markov proess (ηt)t≥0 taking values in (N ∪ {0})Zd (ounting the number ofindividuals at the di�erent sites of Z

d) evolving as follows:(1) Individuals migrate at rate 1 aording to a(·, ·).(2) A new individual is born at site x at rate bη(x).(3) One individual at site x dies at rate (1 − p)bη(x).8



(4) All individuals at site x die simultaneously at rate pb.Here, a(·, ·) is an irreduible random walk transition kernel on Z
d × Z

d, b ∈ (0,∞) is a birth-deathrate, p ∈ [0, 1] is a oupling parameter, while (1)�(4) our independently at every x ∈ Z
d. The ase

p = 0 orresponds to a ritial branhing random walk, for whih the average number of individualsper site is preserved. The ase p > 0 is interesting beause the individuals desending from di�erentanestors are no longer independent.A ritial branhing random walk satis�es the following dihotomy (where for simpliity we restritto the ase where a(·, ·) is symmetri): if the initial on�guration η0 is drawn from a shift-invariantprobability distribution with �nite mean, then ηt as t → ∞ loally dies out (�extintion�) when
a(·, ·) is reurrent, but onverges to a non-trivial equilibrium (�survival�) when a(·, ·) is transient,both irrespetive of the value of b. In the latter ase, the equilibrium has the same mean as theinitial distribution and has all moments �nite.For the oupled branhing proess with p > 0 there is a dihotomy too, but it is ontrolled by asubtle interplay of a(·, ·), b and p: extintion holds when a(·, ·) is reurrent, but also when a(·, ·) istransient and p is su�iently large. Indeed, it is shown in Greven [14℄ that if a(·, ·) is transient, thenthere is a unique p∗ ∈ (0, 1) suh that survival holds for p < p∗ and extintion holds for p > p∗.Reall the ritial values z̃1, z̃2 introdued in Setion 1.4.2. Survival holds if E(exp[bpṼ ] | S̃) < ∞
S̃-a.s., i.e., if p < p1 with

p1 =
1

b
log z̃1. (1.40)This is shown by a size-biasing of the population in the spirit of Kallenberg [19℄. On the otherhand, survival with a �nite seond moment holds if and only if E(exp[bpṼ ]) < ∞, i.e., if and onlyif p < p2 with

p2 =
1

b
log z̃2. (1.41)Clearly, p∗ ≥ p1 ≥ p2. Theorem 1.9 shows that if a(·, ·) satis�es (1.34) and is strongly transient, then

p1 > p2, implying that there is an intermediate phase of survival with an in�nite seond moment.Theorem 1.8 orrets an error in Birkner [1℄, Theorem 6. Here, a system of individuals living on
Z

d is onsidered subjet to migration and branhing. Eah individual independently migrates atrate 1 aording to a random walk transition kernel a(·, ·), and branhes at a rate that dependson the number of individuals present at the same loation. It is argued that this system has anintermediate phase in whih the numbers of individuals at di�erent sites tend to an equilibriumwith a �nite �rst moment but an in�nite seond moment. The proof is, however, based on a wrongrate funtion. Corollary 1.5 shows that the rate funtion laimed in Birkner [1℄, Theorem 6, mustbe replaed by that in (1.23), after whih the intermediate phase persists. This also a�ets [1℄,Theorem 5, whih uses [1℄, Theorem 6, to ompute z1 in Setion 1.4 and �nds an inorret formula.As we will see in Setion 9.1, this formula atually is an upper bound for z1.1.5.2 Interating di�usionsTheorem 1.9 proves a onjeture put forward in Greven and den Hollander [16℄. Consider thesystem of interating di�usions on [0,∞) de�ned by the following olletion of oupled stohasti9



di�erential equations:
dXx(t) =

∑

y∈Zd

a(x, y)[Xy(t) − Xx(t)] dt +
√

bXx(t)2 dWx(t), x ∈ Z
d, t ≥ 0. (1.42)Here, a(·, ·) is an irreduible random walk transition kernel on Z

d × Z
d, b ∈ (0,∞) is a di�usionparameter, and ({Wx(t)}x∈Zd)t≥0 is a olletion of independent standard Brownian motions on R.The initial ondition is hosen suh that {Xx(0)}x∈Zd is a shift-invariant and shift-ergodi random�eld on [0,∞) with mean Θ ∈ (0,∞) (the evolution preserves the mean).It was shown in [16℄, Theorems 1.4�1.6, that if a(·, ·) is symmetri and transient, then there exist

0 < b2 ≤ b∗ suh that the system in (1.42) onverges to an equilibrium when 0 < b < b∗, andthis equilibrium has a �nite seond moment when 0 < b < b2 and an in�nite seond moment when
b2 ≤ b < b∗. It was onjetured in [16℄, Conjeture 1.8, that b∗ > b2. As explained in [16℄, Setion4.2, the gap in Theorem 1.9 settles this onjeture (at least when a(·, ·) is strongly transient), with

b2 = log z̃2 and b∗ = log z̃1.1.5.3 Direted polymers in random environmentsTheorem 1.8 disproves a onjeture put forward in Monthus and Garel [20℄. Let a(·, ·) be a symmetriand irreduible random walk transition kernel on Z
d × Z

d, let S = (Sk)
∞
k=0 be the orrespondingrandom walk, and let ξ = {ξ(x, n) : x ∈ Z

d, n ∈ N} be i.i.d. R-valued non-degenerate randomvariables satisfying
λ(β) := log E

(
exp[βξ(x, n)]

)
∈ R ∀ β ∈ R. (1.43)Put

en(ξ, S) := exp

[
n∑

k=1

{βξ(Sk, k) − λ(β)}

]
, (1.44)and set

Zn(ξ) := E[en(ξ, S)] =
∑

s1,...,sn∈Zd

[
n∏

k=1

p(sk−1, sk)

]
en(ξ, s), s = (sk)

∞
k=0, s0 = 0, (1.45)i.e., Zn(ξ) is the normalizing onstant in the probability distribution of the random walk S whosepaths are reweighted by en(ξ, S), whih is referred to as the �polymer measure�. The ξ(x, n)'sdesribe a random spae-time medium with whih S is interating, with β playing the role of theinteration strength.It is well known that (Zn)n∈N is a non-negative martingale with respet to the family of sigma-algebras Fn := σ(ξ(x, k), x ∈ Z

d, 1 ≤ k ≤ n), n ∈ N. Hene
lim

n→∞
Zn = Z∞ ≥ 0 ξ − a.s., (1.46)with the event {Z∞ = 0} being ξ-trivial. One speaks of weak disorder if Z∞ > 0 ξ-a.s. and of strongdisorder otherwise. As shown in Comets and Yoshida [9℄, there is a unique ritial value β∗ suhthat weak disorder holds for β < β∗ and strong disorder holds for β > β∗. Moreover, in the weak10



disorder region the paths have a Gaussian saling limit under the polymer measure, while this isnot the ase in the strong disorder region.Reall the ritial values z1, z2 de�ned in Setion 1.4. Bolthausen [5℄ observed that
E
[
Z2

n

]
= E

[
exp

[
{λ(2β) − 2λ(β)} |{1 ≤ k ≤ n : Sk = S′

k}|
]]

, (1.47)where S and S′ are two independent random walks with transition kernel p(·, ·), and onluded that
(Zn)n∈N is L2-bounded if and only if β < β2 with β2 ∈ (0,∞] the unique solution of

λ(2β2) − 2λ(β2) = z2. (1.48)Sine P(Z∞ > 0) ≤ E[Z∞]2/E[Z2
∞] and E[Z∞] = Z0 = 1, it follows that β < β2 implies weakdisorder, i.e., β∗ ≥ β2. By a stohasti representation of the size-biased law of Zn, it was shown inBirkner [2℄, Proposition 1, that in fat weak disorder holds if β < β1 with β1 ∈ (0,∞] the uniquesolution of

λ(2β1) − 2λ(β1) = z1, (1.49)i.e., β∗ ≥ β1. Sine β 7→ λ(2β) − 2λ(β) is stritly inreasing, it follows from (1.48�1.49) andTheorem 1.8 that β1 > β2 when a(·, ·) satis�es (1.34) and is strongly transient and when ξ is suhthat β2 < ∞. In that ase the weak disorder region ontains a subregion for whih (Zn)n∈N is not
L2-bounded. This disproves a onjeture of Monthus and Garel [20℄, who argued that β2 = β∗.A similar onlusion is reahed in a reent paper by Camanes and Carmona [6℄ with di�erenttehniques. The latter paper onsiders only simple random walk, but inludes examples of ξ forwhih the gap is present also in d = 3 and d = 4.1.6 OutlineSetion 2 ollets some preparatory fats that are needed for the proofs of the main theorems,inluding a lemma that ontrols the entropy assoiated with the loations of the large inrements inthe renewal proess. In Setion 3 and 4 we prove the large deviation upper, respetively, lower bound.The proof of the former is long (taking up more than half of the paper) and requires a somewhatlengthy onstrution with ombinatorial, funtional analyti and ergodi theoreti ingredients. Inpartiular, extending the lower bound from ergodi to non-ergodi probability measures is tehniallyinvolved. The proofs of Theorems 1.2�1.4 are in Setions 5�7, of Theorem 1.6 in Setion 8, and ofTheorems 1.8�1.9 in Setion 9. Appendix A ontains a proof that the annealed and the quenhedrate funtion are ontinuous under the trunation of the word length approximation.2 Preparatory fatsSetion 2.1 proves a ore lemma that is needed to ontrol the entropy of large inrements in therenewal proess. Setion 2.2 shows that the tail property of ρ is preserved under onvolutions.

11



2.1 A ore lemmaAs announed at the end of Setion 1.3, we need to aount for the entropy that is assoiated with theloations of the large inrements in the renewal proess. This requires the following ombinatoriallemma.Lemma 2.1. Let ω = (ωl)l∈N be i.i.d. with P(ω1 = 1) = 1 − P(ω1 = 0) = p ∈ (0, 1), and let
α ∈ (1,∞). For N ∈ N, let

SN (ω) :=
∑

0<j1<···<jN <∞
ωj1

=···=ωjN
=1

N∏

i=1

(ji − ji−1)
−α (j0 = 0) (2.1)and put

lim sup
N→∞

1

N
log SN (ω) =: −φ(α, p) ω − a.s. (2.2)(the limit being ω-a.s. onstant by tail triviality). Then

lim
p↓0

φ(α, p)

α log(1/p)
= 1. (2.3)Proof. Let τN := min{l ∈ N : ωl = ωl+1 = · · · = ωl+N−1}. In (2.1), hoosing j1 = τN and

ji = ji−1 + 1 for i = 2, . . . , N , we see that SN (ω) ≥ τ−α
N . Sine

lim
N→∞

1

N
log τN → log(1/p) ω − a.s., (2.4)we have

φ(α, p) ≤ α log(1/p) ∀ p ∈ (0, 1). (2.5)To show that this bound is sharp in the limit as p ↓ 0, we estimate frational moments of SN(ω).For any β ∈ (1/α, 1], using that (u + v)β ≤ uβ + vβ, u, v ≥ 0, we get
E

[
SN (ω)β

]
≤

∑

0<j1<···<jN<∞

E

[1{ωj1
=···=ωjN

=1}

N∏

i=1

(ji − ji−1)
−αβ

]

=
∑

0<j1<···<jN<∞

pN
N∏

i=1

(ji − ji−1)
−αβ

=
[
p ζ(αβ)

]N
,

(2.6)
where ζ(s) =

∑
n∈N

n−s, s > 1, is Riemann's ζ-funtion. Hene
E

[ 1

N
log SN (ω)

]
≤

1

Nβ
log E

[
SN (ω)β

]
≤

1

β

[
log p + log ζ(αβ)

]
. (2.7)Letting N → ∞, and using (2.2) together with Fatou's lemma, we obtain that

φ(α, p) ≥
1

β
[log(1/p) − log ζ(αβ)] ∀ β ∈ (1/α, 1]. (2.8)Now let p ↓ 0, followed by β ↓ 1/α to obtain the laim.12



Remark 2.2. Note that E[SN (ω)] = (pζ(α))N , but we expet that typially SN (ω) ≈ pαN . This isveri�ed by bounding suitable non-integer moments of SN (ω)/pαN . Estimating non-integer momentsin situations when the mean is inonlusive is a useful tehnique in various �elds of probability, see,e.g., Holley and Liggett [18℄ and Toninelli [24℄ and the disussion and referenes there. It hasreently been fruitfully applied by Toninelli [24℄ to pinning and opolymer models, and the proofabove is similar to that of Theorem 2.1 there.2.2 Convolution preserves polynomial tailThe following lemma will be needed in Setion 3.6. For m ∈ N, let ρ∗m denote the m-fold onvolutionof ρ.Lemma 2.3. Suppose that ρ satis�es ρ(n) ≤ Cρ n−α, n ∈ N, for some Cρ < ∞. Then
ρ∗m(n) ≤ (2αCρ ∨ 1)mα+1n−α ∀m,n ∈ N. (2.9)Proof. If n ≤ m, then the right-hand side of (2.9) is ≥ 1. So, let us assume that n > m. Then

ρ∗m(n) =
∑

x1,...,xm≥1
x1+···+xm=n

m∏

i=1

ρ(xi) ≤
n∑

j=1

∑

x1,...,xm≥1
x1+···+xm=n
xj=x1∨···∨xm

ρ(xj)

m∏

i6=j

ρ(xi)

≤ m Cρ ⌊n/m⌋−α
∑

x1,...,xm−1≥1

m−1∏

i=1

ρ(xi)

= m Cρ ⌊n/m⌋−α ≤ 2αCρ mα+1 n−α.

(2.10)
3 Upper boundThe following upper bound will be used in Setion 5 to derive the upper bound in the de�nition ofthe LDP.Proposition 3.1. For any Q ∈ P inv,fin(ẼN) and any ε > 0, there is an open neighbourhood O(Q) ⊂
P inv(ẼN) of Q suh that

lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −Ifin(Q) + ε X − a.s. (3.1)Proof. It su�es to onsider the ase ΨQ 6= ν⊗N. The ase ΨQ = ν⊗N, for whih Ifin(Q) = H(Q |

q⊗N
ρ,ν ) as is seen from (1.16), is ontained in the upper bound in Birkner [3℄, Lemma 8. Alternatively,by lower semiontinuity of Q′ 7→ H(Q′ | q⊗N

ρ,ν ), there is a neighbourhood O(Q) suh that
inf

Q′∈O(Q)
H(Q′ | q⊗N

ρ,ν ) ≥ H(Q | q⊗N

ρ,ν ) − ε = Ifin(Q) − ε, (3.2)13



where O(Q) denotes the losure of O(Q) (in the weak topology), and we an use the annealedbound.In Setions 3.1�3.5 we �rst prove Proposition 3.1 under the assumption that there exist α ∈
(1,∞), Cρ < ∞ suh that

ρ(n) ≤ Cρ n−α, n ∈ N, (3.3)whih is needed in Lemma 2.3. In Setion 3.6 we show that this an be replaed by (1.1). InSetions 3.1�3.4, we �rst onsider Q ∈ Perg,fin(ẼN) (reall (1.28)). Here, we turn the heuristis fromSetion 1.3 into a rigorous proof. In Setion 3.5 we remove the ergodiity restrition. The proof islong and tehnial (taking up more than half of the paper).3.1 Step 1: Consequenes of ergodiityWe will use the ergodi theorem to onstrut spei� neighborhoods of Q ∈ Perg,fin(ẼN) that arewell adapted to formalize the strategy of proof outlined in our heuristi explanation of the maintheorem in Setion 1.3.Fix ε1, δ1 > 0. By the ergodiity of Q and Lemma 1.7, the event (reall (1.9) and (1.27))
{

1

M
|K(M)| ∈ mQ + [−ε1, ε1]

}

∩

{
−

1

M
log Q(K(M)) ∈ mQH(ΨQ) + [−ε1, ε1]

}

∩

{
−

1

M
log Q(Y (1), . . . , Y (M)) ∈ H(Q) + [−ε1, ε1]

}

∩





1

M

|K(M)|∑

k=1

log ν((K(M))k) ∈ mQEΨQ

[
log ν(X1)

]
+ [−ε1, ε1]





∩

{
1

M

M∑

i=1

log ρ(τi) ∈ EQ

[
log ρ(τ1)

]
+ [−ε1, ε1]

}

(3.4)
has Q-probability at least 1−δ1/4 for M large enough (depending on Q), where |K(M)| is the lengthof the string of letters K(M). Hene, there is a �nite number A of sentenes of length M , denotedby

(za)a=1,...,A with za := (y(a,1), . . . , y(a,M)) ∈ ẼM , (3.5)
14



suh that for a = 1, . . . , A,
|κ(za)| ∈

[
M(mQ − ε1),M(mQ + ε1)

]
,

Q(K(M) = κ(za)) ∈
[
exp[−M(mQH(ΨQ) + ε1)], exp[−M(mQH(ΨQ) − ε1)]

]
,

Q
(
(Y (1), . . . , Y (M)) = za

)
∈
[
exp[−M(H(Q) + ε1)], exp[−M(H(Q) − ε1)]

]
,

|κ(za)|∑

k=1

log ν((κ(za))k) ∈
[
M(mQEΨQ

[log ν(X1)] − ε1),M(mQEΨQ
[log ν(X1)] + ε1)

]
,

M∑

i=1

log ρ(|y(a,i)|) ∈
[
M(EQ[log ρ(τ1)] − ε1),M(EQ[log ρ(τ1)] + ε1)

]
,

(3.6)
and

A∑

a=1

Q
(
(Y (1), . . . , Y (M)) = za

)
≥ 1 −

δ1

2
. (3.7)Note that (3.7) and the third line of (3.6) imply that

A ∈
[
(1 − δ1) exp

[
M(H(Q) − ε1)

]
, exp

[
M(H(Q) + ε1)

]]
. (3.8)Abbreviate

A := {za, a = 1, . . . , A}. (3.9)Let
B :=

{
ζ(b), b = 1, . . . , B

}
=
{
κ(za), a = 1, . . . , A

} (3.10)be the set of strings of letters arising from onatenations of the individual za's, and let
Ib :=

{
1 ≤ a ≤ A : κ(za) = ζ(b)

}
, b = 1, . . . , B, (3.11)so that |Ib| is the number of sentenes in A giving a partiular string in B. By the seond line of(3.6), we an bound B as

B ≤ exp
[
M(mQH(ΨQ) + ε1)

]
, (3.12)beause ∑B

b=1 Q(K(M) = ζ(b)) ≤ 1 and eah summand is at least exp[−M(mQH(ΨQ) + ε1)].Furthermore, we have
|Ib| ≤ exp

[
M(Hτ |K(Q) + 2ε1)

]
, b = 1, . . . , B, (3.13)sine

exp
[
− M(mQH(ΨQ) − ε1)

]
≥ Q

(
κ(Y (1), . . . , Y (M)) = ζ(b)

)

≥
∑

a∈Ib

Q
(
(Y (1), . . . , Y (M)) = za

)
≥ |Ib| exp

[
− M(H(Q) + ε1)

]
,(3.14)and H(Q) − mQH(ΨQ) = Hτ |K(Q) by (1.32). 15



3.2 Step 2: Good sentenes in open neighbourhoodsDe�ne the following open neighbourhood of Q (reall (3.9))
O :=

{
Q′ ∈ P inv(ẼN) : Q′

|FM
(A ) > 1 − δ1

}
. (3.15)Here, Q(z) is shorthand for Q((Y (1), . . . , Y (M)) = z). For x ∈ EN and for a vetor of ut-points

(j1, . . . , jN ) ∈ N
N with 0 < j1 < · · · < jN < ∞ and N > M , let

ξN := (ξ(i))i=1,...,N =
(
x|(0,j1], x|(j1,j2], . . . , x|(jN−1,jN ]

)
∈ ẼN (3.16)(with (0, j1] short-hand notation for (0, j1] ∩ N, et.) be the sequene of words obtained by utting

x at the positions ji, and let
RN

j1,...,jN
(x) :=

1

N

N−1∑

i=0

δ
θ̃i(ξN )per (3.17)be the orresponding empirial proess. By (3.15),

RN
j1,...,jN

(x) ∈ O =⇒

#
{
1 ≤ i ≤ N − M :

(
x|(ji−1,ji], . . . , x|(ji+M−1,ji+M ]

)
∈ A

}
≥ N(1 − δ1) − M.

(3.18)Note that (3.18) implies that the sentene ξN ontains at least
C := ⌊(1 − δ1)N/M⌋ − 1 (3.19)disjoint subsentenes from the set A , i.e., there are 1 ≤ i1, . . . , iC ≤ N −M with ic − ic−1 ≥ M for

c = 1, . . . , C suh that (
ξ(ic), ξ(ic+1), . . . , ξ(ic+M−1)

)
∈ A (3.20)(we impliitly assume that N is large enough so that C > 1). Indeed, we an e.g. onstrut the ic'siteratively as

i0 = −M,

ic = min
{
k ≥ ic−1 + M : a sentene from A starts at position k in ξN

}
,

c = 1, . . . , C,

(3.21)and we an ontinue the iteration as long as cM + δ1N ≤ N . But (3.20) in turn implies that the
jic 's ut out of x at least C disjoint subwords from B, i.e.,

x|(jic ,jic+M ] ∈ B, c = 1, . . . , C. (3.22)3.3 Step 3: Estimate of the large deviation probabilityUsing Steps 1 and 2, we estimate (reall (3.15))
P
(
RN ∈ O | X

)
=

∑

0<j1<···<jN<∞

1O (RN
j1,...,jN

(X)
) N∏

i=1

ρ(ji − ji−1) (3.23)16



PSfrag replaements �lling subsentenes
good subsentenesmedium ≈ ΨQ

X

Figure 2: Looking for good subsentenes and �lling subsentenes (see below (3.25)).from above as follows. Fix a vetor of ut-points (j1, . . . , jN ) giving rise to a non-zero ontributionin the right-hand side of (3.23). We think of this vetor as desribing a partiular way of utting Xinto a sentene of N words. By (3.22), at least C (reall 3.19) of the jc's must be ut-points wherea word from B is written on X, and these C subwords must be disjoint. As words in B arise fromonatenations of sentenes from A , this means we an �nd
ℓ1 < · · · < ℓC , {ℓ1, . . . , ℓC} ⊂ {0, j1, . . . , jN} and ζ1, . . . , ζC ∈ A (3.24)suh that

X|(ℓc,ℓc+|κ(ζc)|] = κ(ζc) =: η(c) ∈ B and ℓc ≥ ℓc−1 + |κ(ζc−1)|, c = 1, . . . , C − 1. (3.25)We all ζ1, . . . , ζC the good subsentenes.Note that one we �x the ℓc's and the ζc's, this determines C + 1 �lling subsentenes (some ofwhih may be empty) onsisting of the words between the good subsentenes. See Figure 2 for anillustration. In partiular, this determines numbers m1, . . . ,mC+1 ∈ N suh that m1 + · · ·+mC+1 =
N − CM , where mc is the number of words we ut between the (c − 1)-st and the c-th goodsubsentene (and mC+1 is the number of words after the C-th good subsentene).Next, let us �x good ℓ1 < · · · < ℓC and η(1), . . . , η(C) ∈ B, satisfying

X|(ℓc,ℓc+|η(c)|] = η(c), ℓc ≥ ℓc−1 + |η(c−1)|, c = 1, . . . , C. (3.26)To estimate how many di�erent hoies of (j1, . . . , jN ) may lead to this partiular ((ℓc), (η
(c))), weproeed as follows. There are at most

(
2Mε1

)C
exp

[
M
(
Hτ |K(Q) + 2ε1

)]C
≤ exp

[
N
(
Hτ |K(Q) + δ2

)] (3.27)possible hoies for the word lengths inside these good subsentenes. Indeed, by the �rst line of(3.6), at most 2Mε1 di�erent elements of B an start at any given position ℓc and, by (3.13), eahof them an be ut in at most exp
[
M(Hτ |K(Q) + 2ε1)

] di�erent ways to obtain an element of A .In (3.27), δ2 = δ2(ε1, δ1,M) an be made arbitrarily small by hoosing M large and ε1, δ1 small.Furthermore, there are at most
(

N − C(M − 1)

C

)
≤ exp[δ3N ] (3.28)17



possible hoies of the mc's, where δ3 = δ3(δ1,M) an be made arbitrarily small by hoosing Mlarge and δ1 small.Next, we estimate the value of∏N
i=1 ρ(ji−ji−1) for any (j1, . . . , jN ) leading to the given ((ℓc), (η

(c))).In view of the �fth line of (3.6), we have
N∏

i=1

1{the i-th word falls inside the C good subsentenes} ρ(ji − ji−1)

≤ exp
[
CM

(
EQ[log ρ(τ1)] + ε1

)]

≤ exp
[
N
(
EQ[log ρ(τ1)] + δ4

)]
,

(3.29)where δ4 = δ4(ε1, δ1,M) an be made arbitrarily small by hoosing M large and ε1, δ1 small. The�lling subsentenes have to exatly �ll up the gaps between the good subsentenes and so, for a givenhoie of (ℓc), (η(c)) and (mc), the ontribution to ∏N
i=1 ρ(ji − ji−1) from the �lling subsentenes is∏C

c=1 ρ∗mc(ℓc − ℓc−1 − |η(c−1)|) (the term for c = 1 is to be interpreted as ρ∗m1(ℓ1), and ρ∗0 as δ0).By Lemma 2.3,
C∏

c=1

ρ∗mc
(
ℓc − ℓc−1 − |η(c−1)|

)

≤ (2αCρ ∨ 1)C

(
C∏

c=1

mα+1
c

)
C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α

≤ (2αCρ ∨ 1)C
(N − CM

G

)(α+1)C
C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α

≤ exp[Nδ5]

C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
,

(3.30)
where δ5 = δ(δ1,M) an be made arbitrarily small by hoosing M large and δ1 small. For theseond inequality, we have used the fat that the produt ∏C

c=1 mα+1
c is maximal when all fatorsare equal.Combining (3.23�3.30), we obtain

P
(
RN ∈ O | X

)
≤ exp

[
N
(
Hτ |K(Q) + EQ[log ρ(τ1)] + δ2 + δ3 + δ4 + δ5

)]

×
∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
.

(3.31)Combining (3.31) with Lemma 3.2 below, and realling the identity in (1.32), we obtain the resultin Proposition 3.1 for ρ satisfying (3.3), with O de�ned in (3.15) and ε = δ2 + δ3 + δ4 + δ5 + δ6.Note that ε an be made arbitrarily small by hoosing ε1, δ1 small and M large.
18



3.4 Step 4: Cost of �nding good sentenesLemma 3.2. For ε1, δ1 > 0 and M ∈ N,
lim sup
N→∞

1

N
log




∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α




≤ −αmQH(ΨQ | ν⊗N) + δ6 a.s., (3.32)where δ6 = δ(ε1, δ1,M) an be made arbitrarily small by hoosing M large and ε1, δ1 small.Proof. Note that, by the fourth line of (3.6), for any η ∈ B (reall (3.10)) and k ∈ N,
P
(
η starts at position k in X

)
≤ exp

[
M
(
mQEΨQ

[log ν(X1)] + ε1

)]
. (3.33)Combining this with (3.12), we get

P
(some element of B starts at position k in X

)

≤ exp
[
M
(
mQEΨQ

[log ν(X1)] + ε1

)]
× exp

[
M
(
mQH(ΨQ) + ε1

)]

= exp
[
− M

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
,

(3.34)where we use (1.26).Next, we oarse-grain the sequene X into bloks of length
L := ⌊M(mQ − ε1)⌋, (3.35)and ompare the oarse-grained sequene with a low-density Bernoulli sequene. To this end, de�nea {0, 1}-valued sequene (Al)l∈N indutively as follows. Put A0 := 0, and, for l ∈ N given that

A0, A1, . . . , Al−1 have been assigned values, de�ne Al by distinguishing the following two ases:(1) If Al−1 = 0, then
Al :=





1, if in X there is a word η ∈ B starting in ((l − 1)L, lL],
0, otherwise. (3.36)(2) If Al−1 = 1, then

Al :=





1,
if in X there are words η, η′ ∈ B starting in ((l − 2)L, (l − 1)L],respetively, ((l − 1)L, lL] and ourring disjointly,

0, otherwise. (3.37)Put
p := L exp

[
− M

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
. (3.38)19



Then we laim
P(A1 = a1, . . . , An = an) ≤ pa1+···+an , n ∈ N, a1, . . . , an ∈ {0, 1}. (3.39)In order to verify (3.39), �x a1, . . . , an ∈ {0, 1} with a1 + · · · + an = m. By onstrution, for theevent in the left-hand side of (3.39) to our there must be m non-overlapping elements of B atertain positions in X. By (3.34), the ourrene of any m �xed starting positions has probabilityat most

exp
[
− mM

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
, (3.40)while the hoie of the al's ditates that there are at most Lm possibilities for the starting pointsof the m words.By (3.39), we an ouple the sequene (Al)l∈N with an i.i.d. Bernoulli(p)-sequene (ωl)l∈N suh that

Al ≤ ωl ∀ l ∈ N a.s. (3.41)(Note that (3.39) guarantees the existene of suh a oupling for any �xed n. In order to extendthis existene to the in�nite sequene, observe that the set of funtions depending on �nitely manyoordinates is dense in the set of ontinuous inreasing funtions on {0, 1}N, and use the results inStrassen [23℄.)Eah admissible hoie of ℓ1, . . . , ℓC in (3.32) leads to a C-tuple i1 < · · · < iC suh that Ai1 = · · · =
AiC = 1 (sine it uts out non-overlapping words, whih is ompatible with (3.36�3.37)), and forany suh (i1, . . . , iC) there are at most LC di�erent admissible hoies of the ℓc's. Thus, we have

∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
≤ LCL−α

∑

0<i1<···<iC<∞
Ai1

=···=AiC
=1

C∏

c=1

(ic − ic−1)
−α. (3.42)Using (3.3) and (3.19), and realling the de�nition of φ(α, p) in (2.2), we have

lim sup
N→∞

1

N
log [ r.h.s. (3.42) ] ≤

1 − δ1

M

(
log
(
MmQ

)
− log Cρ − φ(α, p)

)
ω − a.s. (3.43)From (3.38) we know that log(1/p) ∼ M(mQH(ΨQ | ν⊗N)−2ε1) as M → ∞ and so, by Lemma 2.1,we have r.h.s. (3.43) ≤ −(1 − ε2)α

(
mQH(ΨQ | ν⊗N) − 2ε1

) (3.44)for any ε2 ∈ (0, 1), provided M is large enough. This ompletes the proof of Lemma 3.2, and heneof Proposition 3.1 for Q ∈ Perg,fin(ẼN).3.5 Step 5: Removing the assumption of ergodiitySetions 3.1�3.4 ontain the main ideas behind the proof of Proposition 3.1. In the present setionwe extend the bound from Perg,fin(ẼN) to P inv,fin(ẼN). This requires setting up a variant of theargument in Setions 3.1�3.4 in whih the ergodi omponents of Q are �approximated with aommon length sale on the letter level�. This turns out to be tehnially involved and to fall apartinto 6 substeps. 20



Let Q ∈ P inv,fin(ẼN) have a non-trivial ergodi deomposition
Q =

∫

Perg( eEN)
Q′ WQ(dQ′), (3.45)where WQ is a probability measure on Perg(ẼN) (Georgii [13℄, Proposition 7.22). We may assumew.l.o.g. that H(Q | q⊗N

ρ,ν ) < ∞, otherwise we an simply employ the annealed bound. Thus, WQ isin fat supported on Perg,fin(ẼN) ∩ {Q′ : H(Q′ | q⊗N
ρ,ν ) < ∞}.Fix ε > 0. In the following steps, we will onstrut an open neighbourhood O(Q) ⊂ P inv(ẼN) of Qsatisfying (3.1) (for tehnial reasons with ε replaed by some ε′ = ε′(ε) that beomes arbitrarilysmall as ε ↓ 0).3.5.1 PreliminariesObserving that

mQ =

∫

Perg( eEN)
mQ′ WQ(dQ′) < ∞, H(Q|q⊗N

ρ,ν ) =

∫

Perg( eEN)
H(Q′|q⊗N

ρ,ν )WQ(dQ′) < ∞, (3.46)we an �nd K0,K1,m
∗ > 0 and a ompat set

C ⊂ P inv(ẼN) ∩ supp(WQ) ∩ {Q : H(·|q⊗N

ρ,ν ) ≤ K0} (3.47)suh that
sup{H(ΨP | ν⊗N) : P ∈ C } ≤ K1, (3.48)
sup{mP : P ∈ C } ≤ m∗, (3.49)the family {LP (τ1) : P ∈ C } is uniformly integrable, (3.50)
WQ(C ) ≥ 1 − ε/2, (3.51)∫

C

H(Q′|q⊗N

ρ,ν )WQ(dQ′) ≥ H(Q|q⊗N

ρ,ν ) − ε/2, (3.52)
∫

C

mQ′H(ΨQ′ |ν⊗N)WQ(dQ′) ≥ mQH(ΨQ|ν
⊗N) − ε/2. (3.53)In order to hek (3.50), observe that EQ[τ1] < ∞ implies that there is a sequene (cn) with

limn→∞ cn = ∞ suh that
EQ

[
τ11{τ1≥cn}

]
≤

6

π2n3

ε

6
, n ∈ N. (3.54)Put

Ân := {Q′ ∈ P inv(ẼN) : EQ′

[
τ11{τ1≥cn}

]
> 1/n} (3.55)and A := ∩n∈N(Ân)c. Eah Ân is open, hene A is losed, and by the Markov inequality we have

WQ

({
Q′ : EQ′

[
τ11{τ1≥cn}

]
> 1/n

})
≤ nEQ

[
τ11{τ1≥cn}

]
≤

6

π2n2

ε

6
. (3.56)Thus,

WQ(Ac) = WQ

(
∪n∈N(Ân)c

)
≤

ε

6

∑

n∈N

6

π2n2
=

ε

6
. (3.57)21



This implies that the mapping
Q′ 7→ mQ′H(ΨQ′ |ν⊗N) is lower semiontinuous on C . (3.58)Indeed, if w − limn→∞ Q′

n = Q′′ and (Q′
n) ⊂ C , then limn→∞ EQ′

n
[τ1] = limn→∞ mQ′

n
= mQ′′ =

EQ′′ [τ1] and w − limn→∞ ΨQ′
n

= ΨQ′′ by uniform integrability (see Birkner [3℄, Remark 7).Furthermore, we an �nd N0, L0 ∈ N with L0 ≤ N0 and a �nite set W̃ ⊂ ẼN0 suh that the followingholds. Let
W :=

{
πL0(θ

iκ(ζ)) : ζ = (ζ(1), . . . , ζ(N0)) ∈ W̃ , 0 ≤ i < |ζ(1)|
} (3.59)be the set of words of length L0 obtained by onatenating sentenes from W̃ , possibly shiftingthe �origin� inside the �rst word and restriting to the �rst L0 letters. Then for all P ∈ D ⊂

P inv,fin(ẼN) ∩ C that satisfy
∑

ζ∈fW

P (ζ) ≥ 1 −
ε

3c⌈3/ε⌉
, (3.60)

1

N0

∑

ζ∈fW

P (ζ) log
P (ζ)

q⊗N0
ρ,ν (ζ)

≥ H(P | q⊗N

ρ,ν ) − ε/2, (3.61)
1

L0

∑

w∈W

ΨP (w) log
ΨP (w)

ν⊗L0(w)
≥ H(ΨP | ν⊗N) − ε/2, (3.62)the following inequalities hold:

WQ(D) ≥ 1 − 3ε/4, (3.63)∫

D

H(P | q⊗N

ρ,ν )WQ(dP ) ≥ H(Q | q⊗N

ρ,ν ) − 3ε/4, (3.64)
∫

D

mP H(ΨP |ν
⊗N)WQ(dP ) ≥ mQH(ΨQ | ν⊗N) − 3ε/4. (3.65)We may hoose the set W̃ in suh a way that

δfW
:= min{q⊗N0

ρ,ν (ζ) : ζ ∈ W̃} ∧
min{ν⊗L0(ξ) : ξ ∈ W}

max{|ζ(1)| : ζ ∈ W̃}
> 0. (3.66)3.5.2 Approximating with a given length sale on the letter levelFor δ > 0 and L ∈ N, we say that P ∈ P inv,fin(ẼN) an be (δ, L)-approximated if there exists a �nitesubset AP ⊂ Ẽ⌈L/mP ⌉ of �P -typial� sentenes, eah onsisting of ≈ L/mP words, suh that

P|F⌈L/mP ⌉
(AP ) > 1 −

δ

2
δfW

(
min

{
P (ζ) : ζ ∈ W̃ , P (ζ) > 0

}
∧ min

{
ΨP (ξ) : ξ ∈ W,ΨP (ξ) > 0

})(3.67)
22



and, for all z = (y(1), . . . , y(⌈L/mP ⌉)) ∈ AP ,
P (z) ∈

[
exp

[
− ⌈L/mP ⌉(H(Q) + δ)

]
, exp

[
− ⌈L/mP ⌉(H(Q) − δ)

]]
,

|κ(z)| ∈ [L(1 − δ), L(1 + δ)],

P
(
K(⌈L/mP ⌉) = z

)
∈
[
exp

[
− L(H(ΨQ) + δ)

]
, exp[−L(H(ΨQ) − δ)

]]
,

|κ(z)|∑

k=1

log ν(κ(z)k) ∈ [L(1 − δ), L(1 + δ)] EΨP

[
log ν(X1)

]
,

⌈L/mP ⌉∑

i=1

log ρ(|y(i)|) ∈ [(L/mP )(1 − δ), (L/mP )(1 + δ)] EP

[
log ρ(τ1)

]
,

|{z′ ∈ AP : κ(z) = κ(z′)}| ≤ exp
[
(L/mP )(Hτ |K(P ) + δ)

]
.

(3.68)
By the third and the �fth line of (3.68) we have, using (1.26),

P
(
X starts with some element of κ(AP )

)
≤ exp

[
− L(1 − 2δ)H

(
ΨQ | ν⊗N

)]
. (3.69)For P that an be (δ, L)-approximated, de�ne an open neighbourhood of P via

U(δ,L)(P ) :=

{
P ′ ∈ P inv(ẼN) :

P ′(z)

P (z)
∈ (1 − δ, 1 + δ) ∀ z ∈ AP

}
, (3.70)where AP = AP (δ, L) is the set from (3.67�3.68). By the results of Setion 3.1 and the above, forgiven P ∈ Perg,fin(ẼN) ∩ C and δ0 > 0 there exist δ′ ∈ (0, δ0) and L0 suh that

∀L′ ≥ L0 : P an be (δ′, L′)-approximated. (3.71)Assume that a given P ∈ D an be (δ, L)-approximated for some L suh that ⌈L/mP ⌉ ≥ N0. Welaim that then for any P ′ ∈ D ∩ U(δ,L)(P ),
∀ ζ ∈ W̃ : P ′(ζ) ≤

{
(1 + 2δ)P (ζ) if P (ζ) > 0,

min{q⊗N0
ρ,ν (ζ ′) : ζ ′ ∈ W̃} otherwise, (3.72)

∀ ξ ∈ W : mP ′ΨP ′(ξ) ≤

{
(1 + 2δ)mP ΨP (ξ) if ΨP (ξ) > 0,

min{ν⊗L0(ξ′) : ξ′ ∈ W} otherwise, (3.73)
mP ′ ≥ (1 − 3δ)mP . (3.74)To verify (3.72), note that, for ζ ∈ W̃ ,

P ′(ζ) ≤
∑

z∈AP : πN0
(z)=ζ

P ′(z) +
∑

z∈ eE⌈L/mP ⌉\AP : πN0
(z)=ζ

P ′(z)

≤ (1 + δ)
∑

z∈AP :πN0
(z)=ζ

P (z) + P ′
(
Ẽ⌈L/mP ⌉ \ AP

)

≤ (1 + δ)
[
P (ζ) +

δ

2

(
min

{
P (ζ) : ζ ∈ W̃ , P (ζ) > 0

}
∧ min{q⊗N0

ρ,ν (ζ) : ζ ∈ W̃}
)]

.23



To verify (3.73), observe that, for ξ ∈ W (reall the de�nition of ΨP ′ from (1.10)),
mP ′ΨP ′(ξ) =

∑

ζ∈fW

P ′(ζ)

|ζ(1)|−1∑

i=0

1{ξ}(πL0(θ
iκ(ζ))

)

≤ (1 + δ)mP ΨP (ξ) +
∑

ζ∈fW : P (ζ)=0

|ζ(1)|P ′(ζ)

(3.75)and that the sum in the seond line above is bounded by
max
η∈fW

|η(1)|P ′
(
ẼN0 \ AP

)
≤ (1 + δ)

δ

2

(
min

{
ΨP (ξ) : ξ ∈ W,ΨP (ξ) > 0

}
∧ min{ν⊗L0(ξ′) : ξ′ ∈ W}

)
.(3.76)Lastly, to verify (3.74), note that

P ′(ζ) ≥ (1 − 2δ)P (ζ) ∀ ζ ∈ W̃ (3.77)(whih an be proved in the same way as (3.72)), so that
mP ′ =

∑

y∈ eE

|y|P ′(y) ≥
∑

ζ∈fW

|ζ(1)|P ′(ζ) ≥ (1 − 2δ)
∑

ζ∈fW

|ζ(1)|P (ζ). (3.78)Furthermore,
mP ≤

∑

ζ∈fW

|ζ(1)|P (ζ) + c⌈3/δ⌉P
(
ẼN0 \ Ẽ

)
+

∑

y eE : |y|>c⌈3/δ⌉

|y|P (y). (3.79)Observing that the seond and the third term on the right-hand side are eah at most δ/3, we �ndthat (3.78�3.79) imply (3.74).Finally, observe that (3.72�3.74) imply that, for any P,P ′ ∈ D suh that P an be (δ, L)-approximatedfor some L with ⌈L/mP ⌉ ≥ N0 and P ′ ∈ U(δ,L)(P ),
H(P ′ | q⊗N

ρ,ν ) ≤ H(P | q⊗N

ρ,ν ) + 2K0δ + ε/2, (3.80)
mP ′H(ΨP ′ | ν⊗N) ≤ mP H(ΨP | ν⊗N) + 2K1δ + ε/2. (3.81)Here, (3.80) follows from the observation

H(P ′ | q⊗N

ρ,ν ) −
ε

2

≤
1

N0

∑

ζ∈fW

P ′(ζ) log
P ′(ζ)

q⊗N0
ρ,ν (ζ)

≤
1 + 2δ

N0

∑

ζ∈fW

P (ζ) log
(1 + 2δ)P (ζ)

q⊗N0
ρ,ν (ζ)

+
1

N0

∑

ζ∈fW :P (ζ)=0

P ′(ζ) log
min{q⊗N0

ρ,ν (ζ ′) : ζ ′ ∈ W̃}

q⊗N0
ρ,ν (ζ)

≤ (1 + 2δ)H(P | q⊗N

ρ,ν ) +
1 + 2δ

N0
log(1 + 2δ).

(3.82)
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Similarly, observing that
mP ′

∑

ξ∈W

ΨP ′(ξ) log
mP ′ΨP ′(ξ)

mP ′ν⊗L0(ξ)

≤ (1 + 2δ)mP

∑

ξ∈W

ΨP (ξ) log
(1 + 2δ)mP ΨP (ξ)

(1 − 3δ)mP ν⊗L0(ξ)
+ mP ′

∑

ξ∈W : ΨP (ξ)=0

ΨP ′(ξ) log
min{ν⊗L0(ξ′) : ξ′ ∈ W}

ν⊗L0(ξ)

≤ (1 + 2δ)L0mP H(ΨP | ν⊗N) + (1 + 2δ)m∗ log(1 + 6δ), (3.83)we obtain (3.81) in view of (3.62).3.5.3 Approximating the ergodi deompositionIn the previous subsetion, we have approximated a given P ∈ Perg,fin, i.e., we have onstruteda ertain neighbourhood of P w.r.t. the weak topology, whih requires only onditions on thefrequenies of sentenes whose onatenations are ≈ L letters long. While the required L will ingeneral vary with P , we now want to onstrut a ompat C ′ ⊂ C suh that WQ(C ′) is still loseto 1 and all P ∈ C ′ an be approximated on the same sale L (on the letter level). To this end, let
Dε′,L′ :=

{
P ∈ D : P an be (ε′, L′)-approximated}. (3.84)By (3.71), we have ⋃

ε′∈(0,ε/2)

L′∈N

Dε′,L′ = Perg,fin(ẼN) ∩ C , (3.85)so, in view of (3.51�3.53), we an hoose
0 < ε1 <

ε

8(1 ∨ K0 ∨ K1)
(3.86)and L ∈ N suh that

WQ(Dε1,L) ≥ 1 − ε, (3.87)∫

Dε1,L

H(Q′ | q⊗N

ρ,ν )WQ(dQ′) ≥ H(Q | q⊗N

ρ,ν ) − ε, (3.88)
∫

Dε1,L

mQ′H(ΨQ′ | ν⊗N)WQ(dQ′) ≥ mQH(ΨQ | ν⊗N) − ε. (3.89)For P ∈ Dε1,L, let
U ′(P ) :=

{
P ′ ∈ P inv(ẼN) :

P ′(z)

P (z)
∈
(
1 −

ε1

2
, 1 +

ε1

2

)
∀ z ∈ AP

}
, (3.90)where AP is the set from (3.67�3.68) that appears in the de�nition of U(ε1,L)(P ). Note that

U ′(P ) ⊂ U(ε1,L)(P ). Indeed, infP∈Dε1,L
dist(U ′(P ),U(ε1,L)(P )c) > 0 if we metrize the weak topology.Consequently,

C
′ := C ∩ ∪P∈Dε1,L

U ′(P )
(
⊃ Dε1,L

) (3.91)25



is ompat and satis�es WQ(C ′) ≥ 1 − ε, and
C

′ ⊂
⋃

P∈Dε1,L

U(ε1,L)(P ) (3.92)is an open over. By ompatness there exist R ∈ N and (pairwise di�erent) Q1, . . . , QR ∈
Perg,fin(ẼN) ∩ C suh that

U(ε1,L)(Q1) ∪ · · · ∪ U(ε1,L)(QR) ⊃ C
′, (3.93)where U(ε1,L)(Qr) is of the type (3.70) with a set Ar ⊂ ẼMr satisfying (3.67�3.68) with P replaedby Qr, and Mr = ⌈L/mQr⌉.For z ∈ ∪n∈NẼn onsider the probability measure on [0, 1] given by µQ,z(B) := WQ({Q′ ∈

Perg,fin(ẼN) : Q′(z) ∈ B}), B ⊂ [0, 1] measurable. Observing that
R⋃

r=1

⋃

z∈Ar

{
u ∈ [0, 1] : u is an atom of µQ,z

} (3.94)is at most ountable, we an �nd ε2 ∈ [ε1, ε1 + ε2
1) (note that still ε2 < ε) and δ̃ > 0 suh that

WQ

({
Q′ ∈ Perg,fin(ẼN) :

Q′(z)/Qr(z) ∈ [1 − ε2 − δ̃, 1 − ε2 + δ̃] ∪ [1 + ε2 − δ̃, 1 + ε2 + δ̃]for some r ∈ {1, . . . , R} and z ∈ Ar

})

≤
ε

1 ∨ K0 ∨ m∗K1
. (3.95)De�ne �disjointi�ed� versions of the U(ε,L)(Qr) as follows. For r = 1, . . . , R, put iteratively

Ũr :=

{
Q′ ∈ P inv(ẼN) :

Q′(z) ∈ Qr(z)(1 − ε2, 1 + ε) for all z ∈ Ar and for eah r′ < r thereis z′ ∈ Ar′ suh that Q′(z′) 6∈ Qr′(z
′)[1 − ε2 − δ̃, 1 + ε2 + δ̃]

}
.(3.96)It may happen that some of the Ũr are empty or satisfy WQ(Ũr) = 0. We then (silently) removethese and re-number the remaining ones. Note that eah Ũr is an open subset of P inv(ẼN) and

WQ

(
∪R

r=1 Ũr

)
=

R∑

r=1

WQ(Ũr) ≥ 1 − 2ε, (3.97)sine WQ

(
C ′ \ ∪R

r=1Ũr

)
≤ ε.For r = 1, . . . , R, we have, using (3.80�3.81) and the hoie of ε2 (≤ 2ε1),

WQ(Ũr ∩ D)
(
H(Qr | q⊗N

ρ,ν ) + ε
)

≥

∫

eUr∩D

H(Q′ | q⊗N

ρ,ν )WQ(dQ′), (3.98)
WQ(Ũr ∩ D)

(
mQrH(ΨQr | ν⊗N) + ε

)
≥

∫

eUr∩D

mQ′H(ΨQ′ | ν⊗N)WQ(dQ′), (3.99)so that altogether
R∑

r=1

WQ(Ũr)
{

H(Qr | q⊗N

ρ,ν ) + (α − 1)mQrH(ΨQr | ν⊗N)
}

≥ H(Q | q⊗N

ρ,ν ) + (α − 1)mQH(ΨQ | ν⊗N) − (3 + 3α)ε.

(3.100)26



3.5.4 More layers: long sentenes with the right pattern frequeniesFor z ∈ ∪n∈NẼn and ξ = (ξ(1), . . . , ξ(fM )) ∈ ẼM (with M > |z|), let
freqz(ξ) =

1

M

∣∣{1 ≤ i ≤ M − |z| : (ξ(i), . . . , ξ(i+|z|−1)) = z}
∣∣ (3.101)be the empirial frequeny of z in ξ. Note that, for any P ∈ Perg,fin(ẼN), z ∈ ∪n∈NẼn and ε > 0,we have

lim
M→∞

P
({

ξ ∈ ẼM : freqz(ξ) ∈ P (z)(1 − ε, 1 + ε)
})

= 1 (3.102)and
lim

M→∞
P
({

ξ ∈ ẼM : |κ(ξ)| ∈ M(mP − ε,mP + ε)
})

= 1. (3.103)For M̃ ∈ N and r ∈ {1, . . . , R}, put
V

r,fM
:=

{
ξ ∈ Ẽ

fM :

|κ(ξ)| ∈ M̃(mQr − ε,mQr + ε), freqz(ξ) ∈ Qr(z)(1 − ε2, 1 + ε2) for all z ∈ Ar, and for eah
r′ < r there is a z′ ∈ Ar′ suh that freqz′(ξ) 6∈ Qr′(z

′)[1 − ε2 − δ̃, 1 + ε2 + δ̃]

}
.(3.104)Note that when |E| < ∞, also |V

r,fM
| < ∞. Furthermore, V

r,fM
∩ V

r′,fM
= ∅ for r 6= r′. For ξ ∈ V

r,fM
,we have

∣∣∣
{
1 ≤ i ≤ M̃ − Mr + 1:

(
ξ(i), ξ(i+1), . . . , ξ(i+Mr−1)

)
∈ Ar

}∣∣∣ ≥ M̃(1 − 2ε), (3.105)in partiular, there are at least Kr := ⌊M̃ (1 − 3ε)/Mr⌋ elements z1, . . . , zKr ∈ Ar (not neessarilydistint) appearing in this order as disjoint subwords of ξ. The zk's an for example be onstrutedin a �greedy� way, parsing ξ from left to right as in Setion 3.2 (see, in partiular, (3.21)). Thisimplies, in partiular, that
fM∏

i=1

ρ(|ξ(i)|) ≤
Kr∏

k=1

∏

w in zk

ρ(|w|) ≤
(

exp
[
(1 − ε)M̃rEQr [log ρ(τ1)]

])Kr

≤ exp
[
(1 − 4ε)M̃EQr [log ρ(τ1)]

]
(3.106)if M̃ is large enough. Furthermore, for eah r ∈ {1, . . . , R} and η ∈ V

r,fM
, we have

∣∣{ζ ∈ V
r,fM

: κ(ζ) = κ(η)
}∣∣ ≤ exp

[
M̃(Hτ |K(Qr) + δ1)

]
, (3.107)where δ1 an be made arbitrarily small by hoosing ε small. (Note that the quantity on the left-handside is the number of ways in whih κ(η) an be �re-ut� to obtain another element of V

r,fM
.) Inorder to hek (3.107), we note that any ζ ∈ V

r,fM
must ontain at least Kr disjoint subsentenesfrom Ar, and eah z ∈ Ar ⊂ ẼMr satis�es |κ(z)| ≥ L. Hene there are at most

(
M̃(mQr + ε) − Kr(L − 1)

Kr

)
≤ 24εfMmQr ≤ 24εm∗ fM (3.108)27



hoies for the positions in the letter sequene κ(η) where the onatenations of the disjoint sub-sentenes from Ar an begin, and there are at most
(

M̃ − Kr(Mr − 1)

Kr

)
≤ 23εfM (3.109)hoies for the positions in the word sequene ζ where the subsentenes from Ar an begin.By onstrution (reall the last line of (3.68)), eah z ∈ Ar an be �re-ut� in not more than

exp[(L/mQr)(Hτ |K(Qr) + ε)] many ways. Combining these observations with the fat that
(

exp
[
(L/mQr)(Hτ |K(Qr) + ε)

])Kr

≤ exp
[ M̃

Mr
Mr(Hτ |K(Qr) + ε)

]
, (3.110)we get (3.107) with δ1 := ε + 3ε log 2 + 4εm∗ log 2.We see from (3.102�3.103) and the de�nitions of Ũr and V

r,fM
that, for any ε > 0

⋃

fM∈N

{
P ∈ Ũr : P (V

r,fM
) > 1 − ε

}
= Ũr. (3.111)Hene we an hoose M̃ so large that

WQ

({
P ∈ Ũr : P (V

r,fM
) > 1 −

ε

3

})
> WQ(Ũr)

(
1 −

ε

2

)
, r = 1, . . . , R. (3.112)For M ′ > M̃ and r = 1, . . . , R, put

Wr,M ′ :=
{
ζ ∈ ẼM ′

: freqV
r, fM

(ζ) > 1 − ε/2
}
. (3.113)Note that for r 6= r′ (beause V

r,fM
∩ V

r′,fM
= ∅) there annot be muh overlap between ζ ∈ Wr,M ′and η ∈ Wr′,M ′ :

max{k : k-su�x of ζ = k-pre�x of η} ≤ εM ′ (3.114)(here, the k-pre�x of η ∈ Ẽn, k < n, onsists of the �rst k words, the k-su�x of the last k words).To see this, note that any subsequene of length k of ζ must ontain at least (k−εM ′/2)+ positionswhere a sentene from V
r,fM

starts, and any subsequene of length k of η must ontain at least
(k − εM ′/2)+ positions where a sentene from V

r′,fM
starts, so any k appearing in (3.114) mustsatisfy 2(k − εM ′/2)+ ≤ k, whih enfores k ≤ εM ′. Now, (3.114) implies that we may hoose M ′so large that for r = 1, . . . , R,eah ζ ∈ Wr,M ′ ontains at least (1 − ε)

M ′

M̃
disjoint subsentenes from V

r,fM
. (3.115)For P ∈ Perg,fin(ẼN) with P (V

r,fM
) > 1 − ε/3 we have

lim
M ′→∞

P (Wr,M ′) = 1, (3.116)and hene
⋃

M ′>fM

{
P ∈ Ũr : P (Wr,M ′) > 1 − ε

}
⊃
{
P ∈ Ũr : P (V

r,fM
) > 1 − ε/3

}
, (3.117)28



and so we an hoose M ′ so large that
WQ

({
P ∈ Ũr : P (Wr,M ′) > 1 − ε

})
> WQ(Ũr)(1 − ε), r = 1, . . . , R. (3.118)Now de�ne

O(Q) :=
{

Q′ ∈ P inv(ẼN) : Q′(Wr,M ′) > WQ(Ũr)(1 − 2ε), r = 1, . . . , R
}

. (3.119)Note that O(Q) is open in the weak topology on P inv(ẼN), sine it is de�ned in terms of requirementson ertain �nite marginals of Q′, and that for r = 1, . . . , R,
Q(Wr,M ′) =

∫

Perg( eEN)
Q′(Wr,M ′)WQ(dQ′) ≥

∫

eUr

Q′(Wr,M ′)WQ(dQ′) ≥
(
1 − ε

)2
WQ(Ũr) (3.120)by (3.118), so that in fat Q ∈ O(Q).3.5.5 Estimating the large deviation probability: good loops and �lling loopsConsider a hoie of �ut-points� j1 < · · · < jN as appearing in the sum in (3.23). Note that, bythe de�nition of O(Q) (reall (3.16�3.17)),

RN
j1,...,jN

(X) ∈ O(Q) (3.121)enfores
∣∣{1 ≤ i ≤ N−M ′ : (X|(ji−1,ji], . . . ,X|(ji+M′−1,ji+M′ ]) ∈ Wr,M ′

}∣∣ ≥ NWQ(Ũr)(1−3ε), r = 1, . . . , R,(3.122)when N is large enough. This fat, together with (3.114), enables us to pik at least
J :=

R∑

r=1

⌈(1 − 4ε)N/M ′⌉WQ(Ũr) (3.123)subsentenes ζ1, . . . , ζJ ourring as disjoint subsentenes in this order on ξN suh that
∣∣{1 ≤ j ≤ J : ζj ∈ Wr,M ′

}∣∣ > (1 − 4ε)WQ(Ũr)
N

M ′
, r = 1, . . . , R, (3.124)where we note that J ≥ (1− 8ε)(N/M ′) by (3.97). Indeed, we an for example onstrut these ζj 'siteratively in a �greedy� way, parsing through ξN from left to right and always piking the next pos-sible subsentene from one of the R types whose ount does not yet exeed (1−4ε)WQ(Ũr) (N/M ′),as follows. Let ks,r be total number of subsentenes of type r we have hosen after the s-th step(k0,1 = · · · = k0,R = 0). If in the s-th step we have piked ζs = (ξ
(p)
N , . . . , ξ

(p+M ′−1)
N ) at position p,then let

p′ := min
{
i ≥ p + M ′ : at position i in ξN starts a sentene from Wu,M ′ for some u ∈ Us

}
,(3.125)29



where Us := {r : kr,s < (1 − 4ε)WQ(Ũr) (N/M ′)}, pik the next subsentene ζs+1 starting atposition p′ (say, of type u) and inrease the orresponding ks+1,u. Repeat this until ks,r ≥

(1 − 4ε)WQ(Ũr) (N/M ′) for r = 1, . . . , R.In order to verify that this algorithm does not get stuk, let rem(s, r) be the �remaining� numberof positions (to the right of the position where the word was piked in the s-th step) where asubsentene from Wr,M ′ begins on ξN . By (3.122), we have
rem(0, r) ≥ NWQ(Ũr)(1 − 3ε). (3.126)If in the s-th step a subsentene of type r is piked, then we have rem(s + 1, r) ≥ rem(s, r) − M ′,and for r′ 6= r we have rem(s + 1, r′) ≥ rem(s, r′) − εM ′ by (3.114). Thus,

rem(s, r) ≥ rem(0, r) − ks,rM
′ − (s − ks,r)εM

′

= rem(0, r) − ks,r(1 − ε)M ′ − sεM ′,
(3.127)whih is > 0 as long as ks,r < (1 − 4ε)WQ(Ũr) (N/M ′) and s < J .A. Combinatorial onsequenes. By (3.115) and (3.124), RN

j1,...,jN
(X) ∈ O(Q) implies that ξNontains at least

C :=
R∑

r=1

⌈
(1 − 4ε)WQ(Ũr)

N

M ′

⌉⌈
(1 − ε)

M ′

M̃

⌉ (
≥ (1 − 10ε)

N

M̃

) (3.128)disjoint subsentenes η1, . . . , ηC (appearing in this order in ξN ) suh that at least
N

M̃
(1 − 6ε)WQ(Ũr) of the ηc's are from V

r,fM
, r = 1, . . . , R. (3.129)Let k1, . . . , kC (kc+1 ≥ kc + M̃ , 1 ≤ c < C) be the indies where the disjoint subsentenes ηc startin ξN , i.e.,

ηc =
(
ξ
(jkc)
N , ξ

(jkc+1)
N , . . . , ξ

(j
kc+ fM−1

)

N

)
∈ V

rc,fM
, i = c, . . . , C, (3.130)and the rc's must respet the frequenies ditated by the WQ(Ũr)'s as in (3.129). Thus, eah hoie

(j1, . . . , jN ) yielding a non-zero summand in (3.23) leads to a triple
(ℓ1, . . . , ℓC), (r1, . . . , rC), (η1, . . . , ηC) (3.131)suh that ηc ∈ κ(V

rc,fM
), ℓc+1 ≥ ℓc + |ηc|, the rc's respet the frequenies as in (3.129), andthe word ηc starts at position ℓc in X for c = 1, . . . , C. (3.132)As in Setion 3.3, we all suh triples good, the loops inside the subsentenes ηi good loops, theothers �lling loops.Fix a good triple for the moment. In order to ount how many hoies of j1 < · · · < jN an lead tothis partiular triple and to estimate their ontribution, observe the following:30



1. There are at most (
N − C(M̃ − 1)

C

)
≤ exp(δ′1N) (3.133)hoies for the k1 < · · · < kC , where δ′1 an be made arbitrarily small by hoosing ε small and

M̃ large.2. One the kc's are �xed, by (3.107) and (3.129) there are at most
R∏

r=1

(
exp

[
M̃(Hτ |K(Qr) + δ1)

]) N
fM

WQ( eUr)

= exp
[
N

R∑

r=1

WQ(Ũr)(Hτ |K(Qr) + δ1)
] (3.134)hoies for the good loops and, by (3.106), for eah hoie of the good loops the produt ofthe ρ(jk − jk−1)'s inside the good loops is at most

R∏

r=1

(
exp

[
(1 − 4ε)M̃EQr [log ρ(τ1)]

]) N
fM

WQ( eUr)

= exp
[
N(1 − 4ε)

R∑

r=1

WQ(Ũr)EQr [log ρ(τ1)]
]
.

(3.135)3. For eah hoie of the kc's, the ontribution of the �lling loops to the weight is
ρ∗(k1−1)(ℓ1 − 1)

C−1∏

c=1

ρ∗(kc+1−kc−fM)(ℓc+1 − ℓc − |ηc|)

≤ (2αCρ ∨ 1)Ckα+1
1

C−1∏

c=1

(kc+1 − kc − M̃ )α+1
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α

≤ (2αCρ ∨ 1)C
(N − CM̃

C

)(α+1)C
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α

≤ eδ′2N
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α
, (3.136)where δ′2 an be made arbitrarily small by hoosing ε small and M̃ large (and we interpret

ℓ0 = 0, |η0| = 0). Here, we have used Lemma 2.3 in the �rst inequality, as well as the fatthat the produt ∏C−1
c=1 (kc+1 − kc − M̃) is maximal when all fators are equal in the seondinequality.

31



Combining (3.133�3.136), we see that
P
(
RN ∈ O(Q)

∣∣X
)

≤ e(δ′1+δ′2+δ1)N exp
[
N(1 − 4ε)

R∑

r=1

WQ(Ũr)
(
Hτ |K(Qr) + EQr [log ρ(τ1)]

)]

×
∑

(ℓi),(ri),(ηi)good C∏

i=1

(
(ℓi − ℓi−1 − |ηi−1|) ∨ 1

)−α
.

(3.137)
We laim that X-a.s.

lim sup
N→∞

1

N
log

∑

(ℓi),(ri),(ηi)good C∏

i=1

(
(ℓi − ℓi−1 − |ηi−1|) ∨ 1

)−α

≤ δ2 − α(1 − 4ε)
R∑

r=1

WQ(Ũr)mQrH
(
ΨQr | ν⊗N

)
,

(3.138)where δ2 an be made arbitrarily small by hoosing ε small and L large. A proof of this is given below.Observe next that (3.137�3.138) (reall also (1.32)) yield that X-a.s. (with δ := δ′1 + δ′2 + δ1 + δ2)
lim sup
N→∞

1

N
log P

(
RN ∈ O(Q)

∣∣X
)

≤ δ − (1 − 4ε)

R∑

r=1

WQ(Ũr)
(
H
(
Qr | qρ, ν⊗N

)
+ αmQrH

(
ΨQr | ν⊗N

))

≤ δ + (1 − 4ε)ε(2 + 2α) − (1 − 4ε)

∫

Perg( eEN )
H
(
Q′ | q⊗N

ρ,ν

)
+ (α − 1)mQ′H

(
ΨQ′ | ν⊗N

)
WQ(dQ′)

= −(1 − 4ε)Ifin(Q) + δ + (1 − 4ε)ε(2 + 2α) (3.139)(use (3.100) for the seond inequality, and see (6.3) for the last equality), whih ompletes the proof.B. Coarse-graining X with R olours. It remains to verify (3.138), for whih we employa oarse-graining sheme similar to the one used in Setion 3.4 (with blok lengths ⌈(1 − ε2)L⌉,et.) To ease notation, we silently replae L by (1 − ε2)L in the following. Split X into bloksof L onseutive letters, de�ne a {0, 1}-valued array Ai,r, i ∈ N, r ∈ {1, . . . , R} as in Setion 3.4indutively: For eah r, put A0,r := 0 and, given that A0,r, A1,r, . . . , Al−1,r have been assignedvalues, de�ne Al as follows:(1) If Al−1,r = 0, then
Al,r :=

{
1, if in X there is a word from κ(Ar) starting in ((l − 1)L, lL],
0, otherwise. (3.140)32



(2) If Al−1,r = 1, then
Al :=





1, if in X there are two words from κ(Ar) starting in ((l−2)L, (l−1)L],respetively, ((l − 1)L, lL] and ourring disjointly,
0, otherwise. (3.141)Put

pr := L exp
(
− (1 − ε)LH(ΨQr | ν⊗N)

)
. (3.142)Arguing as in Setion 3.4, we an ouple the (Ai,r)i∈N,1≤r≤R with an array ω = (ωi,r)i∈N,1≤r≤R suhthat Ai,r ≤ ωi,r and the sequene ((ωi,1, . . . , ωi,R)

)
i∈N

is i.i.d. with P(ωi,r = 1) = pr. In partiular,for eah r, (ωi,r)i∈N is a Bernoulli(pr)-sequene. There may (and ertainly will be if ΨQr and ΨQr′are similar) an arbitrary dependene between the ωi,1, . . . , ωi,R for �xed i, but this will be harmlessin the low-density limit we are interested in.For r ∈ {1, . . . , R}, put dr := WQ(Ũr)(1 − 6ε), Dr := ⌈(1 − ε)M̃mQr/L⌉. If ηc ∈ V
rc,fM

, then
|κ(ηc)| ∈ M̃mQrc

(1 − ε, 1 + ε), (3.143)so κ(ηc) overs at least Drc onseutive L-bloks of the oarse-graining. Furthermore, as ηc in turnontains at least Drc(1− ε) disjoint subsentenes from Arc , we see that at least Drc(1− ε) of thesebloks must have Ak,rc = 1. Thus, for �xed X, we read o� from eah good triple (ℓc), (rc), (ηc)numbers m1 < · · · < mC suh that
mc+1 ≥ mc + Drc , c = 1, . . . , C − 1,∣∣{mc ≤ k < mc + Drc : Ak,rc = 1}

∣∣ ≥ Drc(1 − ε), c = 1, . . . , C,∣∣{1 ≤ c ≤ C : rc = r}
∣∣ ≥ drC, r = 1, . . . , R.

(3.144)where mc is the number of the L-blok that ontains ℓc. Furthermore, note that for a given �oarse-graining� (mc) and (rc) satisfying (3.144), there are at most
LC
(
2εM̃ max

r=1,...,R
mQr

)C
≤ exp(δ3N) (3.145)hoies for ℓc and ηc that lead to a good triple (ℓc), (rc), (ηc) with this partiular oarse-graining.Indeed, for eah c = 1, . . . , C there are at most L hoies for ℓc and, sine eah η ∈ V

rc,fM
satis�es

|κ(η)| ∈ M̃mQrc
(1 − ε, 1 + ε), (3.146)there are at most 2εM̃mQrc

hoies for ηc (note that one ℓc is �xed as a �starting point� for a wordon X, hoosing ηc in fat amounts to hoosing an �endpoint�). Note that δ3 an be made arbitrarilysmall by hoosing ε small and M̃ large. Finally, (3.145) and Lemma 3.3 yield (3.138). Indeed, sine
lim sup
N→∞

C

N
≤

1

M̃
,

R∑

r=1

drDr log pr ≤ −(1 − 8ε)

R∑

r=1

WQ(Ũr)
M̃mQr

L

(
LH(ΨQr | ν⊗N) − log L

)
,by hoosing ε small, L and M̃ large, and γ su�iently lose to 1/α, the right-hand side of (3.150)is smaller than the right-hand side of (3.138). 33



3.5.6 A multiolour version of the ore lemmaThe following is an extension of Lemma 2.1. Let R ∈ N, ωi = (ωi,1, . . . , ωi,R) ∈ {0, 1}R, and assumethat (ωi)i∈N is i.i.d. with
P(ωi,r = 1) = pr, i ∈ N, r = 1, . . . , R. (3.147)Note that there may be an arbitrary dependene between the ωi,r's for �xed i. This will be harmlessin the limit we are interested in below.Lemma 3.3. Let α ∈ (1,∞), ε > 0, (d1, . . . , dR) ∈ [0, 1]R with ∑R

r=1 dr ≤ 1, D1, . . . ,DR ∈ N,
C ∈ N, put

SC(ω) :=
∑∗

m1,...,mC
r1,...,rC

C∏

i=1

(
mi − mi−1 − Dri−1

)−α
, (3.148)where the sum ∑∗ extends over all pairs of C-tuples m0 := 0 < m1 < · · · < mC from N

C and
(r1, . . . , rC) ∈ {1, . . . , R}C satisfying the onstraints

mi+1 ≥ mi + Dri ,

|{1 ≤ i ≤ C : ri = r}| ≥ drC, r = 1, . . . , R,

|{mi ≤ k < mi + Dri : ωk,ri
= 1}| ≥ Dri(1 − ε), i = 1, . . . , C.

(3.149)Then ω-a.s.
lim sup
C→∞

1

C
log SC(ω)

≤ inf
γ∈(1/a,1)

{1

γ

(
log ζ(aγ) + h(d) + d0 log R +

(
log 2

) R∑

r=1

drDr + (1 − ε)

R∑

r=1

drDr log pr

)}
,(3.150)where h(d) := −

∑R
r=0 dr log dr (with d0 := 1 − d1 − · · · − dR) is the entropy of d, and φ(ε) is afuntion suh that limε↓0 φ(ε) = 0.Proof. The proof is a variation on the proof of Lemma 2.1. We again estimate frational moments.For γ ∈ (1/α, 1), we have

E
[
(SC)γ

]

≤
∑′

r1,...,rC

∑

m1,...,mC
mi+1≥mi+Dri ∀ i

P

(
∩C

i=1

{
|{k ∈ [mi,mi + Dri − 1] : ωk,ri

= 1}| ≥ (1 − ε)Dri

})

×
C∏

i=1

(mi − mi−1 − Dri−1)
−αγ , (3.151)where the sum∑′ extends over all (r1, . . . , rC) satisfying the onstraint in the seond line of (3.149).Noting that

P

(
|{k ∈ [mi,mi + Dri − 1] : ωk,ri

= 1}| ≥ (1 − ε)Dri

)
=

Dri∑

m=(1−ε)Dri

(
Dri

k

)
pm

r (1 − pr)
Dri−m

≤ p
(1−ε)Dri
r 2Dri34



and
∣∣{(r1, . . . , rC) ∈ {1, . . . , R}C : at least drC of the ri = r, r = 1, . . . , R

}∣∣

≤ Rd0C

(
C

d0C d1C . . . dRC

)
= exp

[
C
(
d0 log R + h(d) + o(1)

)]
,we see from (3.151) that

E
[
(SC)γ

]
≤ exp

[
C
(
d0 log R + h(d) + o(1)

)]
×

R∏

r=1

(
2p(1−ε)

r

)drCDr

×
∑

m1,...,mC
mi+1≥mi+Dri ∀ i

C∏

i=1

(mi − mi−1 − Dri−1)
−αγ

= exp C
[
d0 log R + h(d) + log ζ(aγ) +

∑R
r=1 drDr log 2 + (1 − ε)

∑R
r=1 drDrpr

]
,(3.152)whih yields (3.150) as in the proof of Lemma 2.1.3.6 Step 6: Weakening the tail assumptionWe �nally show how to go from (3.3) to (1.1). Suppose that ρ satis�es (1.1) with a ertain α ∈ (1,∞).Then, for any α′ ∈ (1, α), there is a Cρ(α

′) suh that (3.3) holds for this α′. Hene, as shown inSetions 3.1�3.4, for any ε > 0 we an �nd a neighbourhood O(Q) ⊂ P inv,fin(ẼN) of Q suh that
lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −H(Q | q⊗N

ρ,ν ) − (α′ − 1)mQ H(ΨQ | ν⊗N) +
ε

2
X − a.s.(3.153)The right-hand side is ≤ −Ifin(Q) + ε for α′ su�iently lose to α, so that we again get (3.1).4 Lower boundThe following lower bound will be used in Setion 5 to derive the lower bound in the de�nition ofthe LDP.Proposition 4.1. For any Q ∈ P inv,fin(ẼN) and any open neighbourhood U(Q) ⊂ P inv(ẼN) of Q,

lim inf
N→∞

1

N
log P

(
RN ∈ U(Q) | X

)
≥ −Ifin(Q) X − a.s. (4.1)Proof. Suppose �rst that Q ∈ Perg,fin(ẼN). Then, informally, our strategy runs as follows. In X,look for the �rst string of length ≈ NmQ that looks typial for ΨQ. Make the �rst jump longenough so as to land at the start of this string. Make the remaining N −1 jumps typial for Q. Theprobability of this strategy on the exponential sale is the onditional spei� relative entropy ofword lengths under Q w.r.t. ρ⊗N given the onatenation, i.e., ≈ exp[−N(Hτ |K(Q)+EQ[log ρ(τ1)])],times the probability of the �rst long jump. In order to �nd a suitable string, we have to skip ahead35



in X a distane ≈ exp[NmQH(ΨQ | ν⊗N)]. By (1.1), the probability of the �rst jump is therefore
≈ exp[−Nα mQH(ΨQ | ν⊗N)]. In view of (1.16) and (1.32), this yields the laim. In the atualproof, it turns out to be tehnially simpler to employ a slightly di�erent strategy, whih has thesame asymptoti ost, where we look not only for one ontiguous piee of �ΨQ-typial� letters butfor a sequene of ⌈N/M⌉ piees, eah of length ≈ MmQ. Then we let N → ∞, followed by M → ∞.More formally, we hoose for O(Q) an open neighborhood O′ ⊂ O of the type introdued in Setion3.2, and we estimate P(RN ∈ O′ | X) from below by using (3.17�3.20).Assume �rst that Q is ergodi. We an then assume that the neighbourhood U is given by

U =
{
Q′ ∈ P inv(ẼN) : (πLuQ′)(ζu) ∈ (au, bu), u = 1, . . . , U

} (4.2)for some U ∈ N, L1, . . . , LU ∈ N, 0 ≤ au < bu ≤ 1 and ζu ∈ ẼLu , u = 1, . . . , U . As in Setion 3.1, byergodiity of Q we an �nd for eah ε > 0 a su�iently large M ∈ N and a set A = {z1, . . . , zA} ⊂
ẼM of �Q-typial sentenes� satisfying (3.6�3.7) (with ε1 = δ1 = ε, say), and additionally

1

M

∣∣{0 ≤ j ≤ M − Li : πLu(θ̃jza) = ζu}
∣∣ ∈ (ai, bi), a = 1, . . . , A, u = 1, . . . , U. (4.3)Let B := κ(A ). Then from (3.6�3.7) we have that, for eah b ∈ B,

|Ib| = |{z ∈ A : κ(z) = b}| ≥ exp
[
M(Hτ |K(Q) − 2ε)

]
, (4.4)and

P(X begins with some element of B) ≥ exp
[
− MmQ(H(ΨQ | ν⊗N) + 2ε)

]
. (4.5)Let

σ
(M)
1 := min{i : θiX begins with some element of B},

σ
(M)
l := min{i > τl−1 + M(mQ + ε) : σiX begins with some element of B}, l = 2, 3, . . . .

(4.6)Restriting the sum in (3.23) over 0 < j1 < · · · < jN < ∞ suh that j1 = σ
(M)
1 , j2−j1, . . . , jM−jM−1are the word lengths orresponding to the za's ompatible with πMmQ

(θτ1X), jM+1 = σ
(M)
2 , et.,we see that

1

N
log P(RN ∈ U | X) ≥ Hτ |K(Q) + EQ[log ρ(τ1)] − 3ε − α

1

N

⌊N/M⌋∑

l=1

log
(
σ

(M)
l − σ

(M)
l−1

) (4.7)for N su�iently large. Hene X-a.s.
lim inf
N→∞

1

N
log P(RN ∈ U | X) ≥ Hτ |K(Q) + EQ[log ρ(τ1)] − 3ε − α

1

M
E[log σ

(M)
1 ]

≥ Hτ |K(Q) + EQ[log ρ(τ1)] − αmQ(H(ΨQ | ν⊗N) − 6ε

= −Ifin(Q) − 6ε,

(4.8)where we have used (4.5) in the seond inequality. Now let ε ↓ 0.36



It remains to remove the restrition of ergodiity of Q, analogously to the proof of Birkner [3℄,Proposition 2. To that end, assume that Q ∈ P inv,fin(ẼN) admits a non-trivial ergodi deomposi-tion. Then, for eah ε > 0, we an �nd Q1, . . . , QR ∈ Perg,fin(ẼN), λ1, . . . , λR ∈ (0, 1), ∑R
r=1 λr = 1suh that λ1Q1 + · · · + λRQR ∈ U and

R∑

i=1

λrI
fin(Qr) ≤ Ifin(Q) + ε (4.9)(for details see Birkner [3℄, p. 723; employ the fat that both terms in Ifin are a�ne). For eah

r = 1, . . . , R, pik a small neighbourhood Ur of Qr suh that
Q′

r ∈ Ur, r = 1, . . . , R =⇒
R∑

i=1

λrQ
′
r ∈ U . (4.10)Using the above strategy for Q1 for λ1N loops, then the strategy for Q2 for λ2N loops, et., we seethat

lim inf
N→∞

1

N
P(RN ∈ U | X) ≥ −

R∑

i=1

λrI
fin(Qr) − 6ε ≥ −Ifin(Q) − 7ε. (4.11)

5 Proof of Theorem 1.2Proof. The proof omes in 3 steps. We �rst prove that, for eah word length trunation level tr ∈ N,the family P([RN ]tr ∈ · | X), N ∈ N, X-a.s. satis�es an LDP on
P inv

tr (ẼN) =
{
Q ∈ P inv(ẼN) : Q(|Y (1)| ≤ tr) = 1

} (5.1)(reall (1.11�1.13)) with a deterministi rate funtion Ifin([Q]tr) (this is essentially the ontent ofPropositions 4.1 and 3.1). Note that [Q]tr = Q for Q ∈ P inv
tr (ẼN), and that P inv

tr (ẼN) is a losedsubset of P inv(ẼN), in partiular, a Polish spae under the relative topology (whih is again theweak topology). After we have given the proof for �xed tr, we let tr → ∞ and use a projetive limitargument to omplete the proof of Theorem 1.2.1. Fix a trunation level tr ∈ N. Propositions 4.1 and 3.1 ombine to yield the LDP on P inv
tr (ẼN)in the following standard manner. Note that any Q ∈ P inv

tr (ẼN) satis�es mQ < ∞.1a. Let O ⊂ P inv
tr (ẼN) be open. Then, for any Q ∈ O, there is an open neighbourhood O(Q) ⊂

P inv
tr (ẼN) of Q suh that O(Q) ⊂ O. The latter inlusion, together with Proposition 4.1, yields

lim inf
N→∞

1

N
log P

(
[RN ]tr ∈ O | X

)
≥ −Ifin(Q) X − a.s. (5.2)Optimising over Q ∈ O, we get

lim inf
N→∞

1

N
log P

(
[RN ]tr ∈ O | X

)
≥ − inf

Q∈O
Ifin(Q) X − a.s. (5.3)37



Here, note that, sine P inv
tr (ẼN) is Polish, it su�es to optimise over a ountable set generating theweak topology, allowing us to transfer the X-a.s. limit from points to sets (see, e.g., Comets [7℄,Setion III).1b. Let K ⊂ P inv

tr (ẼN) be ompat. Then there exist M ∈ N, Q1, . . . , QM ∈ K and open neighbour-hoods O(Q1), . . . ,O(QM ) ⊂ P inv
tr (ẼN) suh that K ⊂ ∪M

m=1O(Qm). The latter inlusion, togetherwith Proposition 3.1, yields
lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ K | X

)
≤ − inf

1≤m≤M
Ifin(Qm) + ε X − a.s. ∀ ε > 0. (5.4)Extending the in�mum to Q ∈ K and letting ε ↓ 0 afterwards, we obtain

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ K | X

)
≤ − inf

Q∈K
Ifin(Q) X − a.s. (5.5)1. Let C ⊂ P inv

tr (ẼN) be losed. Beause Q 7→ H(Q | q⊗N
ρ,ν ) has ompat level sets, for any M < ∞the set KM = C ∩ {Q ∈ P inv

tr (ẼN) : H(Q | q⊗N
ρ,ν ) ≤ M} is ompat. Hene, doing annealing on Xand using (5.5), we get

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ C | X

)
≤ max

{
−M,− inf

Q∈KM

Ifin(Q)

}
X − a.s. (5.6)Extending the in�mum to Q ∈ C and letting M → ∞ afterwards, we arrive at

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ C | X

)
≤ − inf

Q∈C
Ifin(Q) X − a.s. (5.7)Equations (5.3) and (5.7) omplete the proof of the onditional LDP for [RN ]tr.2. It remains to remove the trunation of word lengths. We know from Step 1 that, for every

tr ∈ N, the family P([RN ]tr ∈ · | X), N ∈ N, satis�es the LDP on P inv([Ẽ]Ntr) with rate funtion
Ifin. Consequently, by the Dawson-Gärtner projetive limit theorem (see Dembo and Zeitouni [10℄,Theorem 4.6.1), the family P(RN ∈ · | X), N ∈ N, satis�es the LDP on P inv(ẼN) with rate funtion

Ique(Q) = sup
tr∈N

Ifin([Q]tr), Q ∈ P inv(ẼN). (5.8)The sup may be replaed by a lim sup beause the trunation may start at any level. For Q ∈
P inv,fin(ẼN), we have limtr→∞ Ifin([Q]tr) = Ifin(Q) by Lemma A.1, and so we get the laim if we anshow that lim sup an be replaed by a limit, whih is done in Step 3. Note that Ique inherits from
Ifin the properties qualifying it to be a rate funtion: this is part of the projetive limit theorem.For Ifin these properties are proved in Setion 6.3. Sine Ique is lower semi-ontinuous, it is equal to its lower semi-ontinuous regularisation

Ĩque(Q) := sup
O(Q)

inf
Q′∈O(Q)

Ique(Q′), (5.9)where the supremum runs over the open neighborhoods of Q. For eah tr ∈ N, [Q]tr ∈ P inv,fin(ẼN),while w − limtr→∞[Q]tr = Q. So, in partiular,
Ique(Q) = Ĩque(Q) ≤ sup

n
inf
tr≥n

Ifin([Q]tr) = lim inf
tr→∞

Ifin([Q]tr), (5.10)38



implying that in fat
Ique(Q) = lim

tr→∞
Ifin([Q]tr), Q ∈ P inv(ẼN). (5.11)Lemma A.1 in Appendix A, together with (5.11), shows that Ique(Q) = Ifin(Q) for Q ∈ P inv,fin(ẼN),as laimed in the �rst line of (1.15).6 Proof of Theorem 1.3Proof. The proof omes in 5 steps.1. Every Q ∈ P inv(ẼN) an be deomposed as

Q =

∫

Perg( eEN)
Q′ WQ(dQ′) (6.1)for some unique probability measure WQ on Perg(ẼN) (Georgii [13℄, Proposition 7.22). If Q ∈

P inv,fin(ẼN), then WQ is onentrated on Perg,fin(ẼN) and so, by (1.9�1.10),
mQ =

∫

Perg,fin( eEN)
mQ′ WQ(dQ′), ΨQ =

∫

Perg,fin( eEN)

mQ′

mQ
ΨQ′ WQ(dQ′). (6.2)Sine Q 7→ H(Q | q⊗N

ρ,ν ) and Ψ 7→ H(Ψ | ν⊗N) are a�ne (see e.g. Deushel and Strook [12℄,Example 4.4.41), it follows from (1.16) and (6.1�6.2) that
Ifin(Q) =

∫

Perg,fin( eEN)
Ifin(Q′)WQ(dQ′). (6.3)Sine Q 7→ WQ is a�ne, (6.3) shows that Ifin is a�ne on P inv,fin(ẼN).2. Let (Qn)n∈N ⊂ P inv,fin(ẼN) be suh that w−limn→∞ Qn = Q ∈ P inv,fin(ẼN). By Proposition 3.1,for any ε > 0 we an �nd an open neighbourhood O(Q) ⊂ P inv(ẼN) of Q suh that

lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −Ifin(Q) + ε X − a.s. (6.4)On the other hand, for n large enough so that Qn ∈ O(Q), we have from Proposition 4.1 that

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≥ −Ifin(Qn) X − a.s. (6.5)Combining (6.4�6.5), we get that, for any ε > 0,

lim inf
n→∞

Ifin(Qn) ≥ Ifin(Q) − ε. (6.6)Now let ε ↓ 0, to onlude that Ifin is lower semiontinuous on P inv,fin(ẼN) (reall also (5.11)).39



3. From (1.16) we have
Ifin(Q) ≥ H(Q | q⊗N

ρ,ν ) ∀Q ∈ P inv,fin(ẼN) (6.7)Sine {Q ∈ P inv(ẼN) : H(Q | q⊗N
ρ,ν ) ≤ C} is ompat for all C < ∞ (see, e.g., Dembo andZeitouni [10℄, Corollary 6.5.15), it follows that Ifin has ompat level sets on P inv,fin(ẼN).4. As mentioned at the end of Setion 5, Ique inherits from Ifin that it is lower semiontinuousand has ompat level sets. In partiular, Ique is the lower semiontinuous extension of Ifin from

P inv,fin(ẼN) to P inv(ẼN). Moreover, sine Ifin is a�ne on P inv,fin(ẼN) and Ique arises as the trun-ation limit of Ifin (reall (5.10)), it follows that Ique is a�ne on P inv(ẼN).5. It is immediate from (1.15�1.16) that q⊗N
ρ,ν is the unique zero of Ique.7 Proof of Theorem 1.4Proof. The extension is an easy generalisation of the proof given in Setions 3�4.(a) Assume that ρ satis�es (1.1) with α = 1. Sine the LDP upper bound holds by the annealedLDP (ompare (1.8) and (1.16)), it su�es to prove the LDP lower bound. To ahieve this, we �rstshow that for any Q ∈ P inv,fin(ẼN) and ε > 0 there exists an open neighbourhood O(Q) ⊂ P inv(ẼN)of Q suh that

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≥ −Iann(Q) − ε X�a.s. (7.1)After that, the extension from P inv,fin(ẼN) to P inv(ẼN) follows the argument in Setion 5.In order to verify (7.1), observe that, by our assumption on ρ(·), for any α′ > 1 there exists a

Cα′ > 0 suh that
ρ(n)

nα′ ≥ Cα′ ∀n ∈ supp(ρ). (7.2)Piking α′ so lose to 1 that (α′ − 1)mQH(ΨQ|ν
⊗N) < ε/2, we an trae through the proof ofProposition 4.1 in Setion 4 to onstrut an open neighbourhood O(Q) ⊂ P inv(ẼN) of Q satisfying

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)

≥ −H(Q | q⊗N

ρ,ν ) − (α′ − 1)mQH(ΨQ | ν⊗N) − ε/2 ≥ −Iann(Q) − ε X − a.s.,
(7.3)whih is (7.1).(b) We only give a sketh of the argument. Assume α = ∞ in (1.1). For Q ∈ P inv,fin(ẼN), thelower bound (whih is non-zero only when Q ∈ Rν) follows from Birkner [3℄, Proposition 2, oran alternatively be obtained from the argument in Setion 4. Now onsider a Q ∈ P inv(ẼN) with

mQ = ∞, H(Q | q⊗N
ρ,ν ) < ∞ and limtr→∞ m[Q]trH(Ψ[Q]tr | ν⊗N) = 0, let O(Q) ⊂ P inv(ẼN) be an40



open neighbourhood of Q. For simpliity, we assume supp(ρ) = N. Fix ε > 0. We an �nd asequene δN ↓ 0 suh that
max

{
−

1

N
log ρ(n) : n ≤ ⌈NδN⌉

}
≤ ε. (7.4)Furthermore,

1

N
h
(
Q|FN

| q⊗N
ρ,ν

)
≥ H(Q | q⊗N

ρ,ν ) − ε (7.5)for N ≥ N0 = N0(ε,Q), and we an �nd tr0 ∈ N suh that
1

N0
h
(
([Q]tr)|FN0

| q⊗N0
ρ,ν

)
≥

1

N0
h
(
Q|FN0

| q⊗N0
ρ,ν

)
− ε (7.6)for tr ≥ tr0. Hene

H([Q]tr | q⊗N

ρ,ν ) ≥ H(Q | q⊗N

ρ,ν ) − 2ε for tr ≥ tr0. (7.7)We may also assume that [Q]tr ∈ O(Q) for tr ≥ tr0. For a given N ≥ N0, pik tr(N) ≥ tr0 so largethat m[Q]tr(N)
H(Ψ[Q]tr(N)

| ν⊗N) ≤ δN/2. Using the strategy desribed at the beginning of Setion 4,we an onstrut a neighbourhood ON ⊂ O(Q) of [Q]tr(N) suh that the onditional probability
P(RN ∈ ON |X) is bounded below by

exp
[
− N(H([Q]tr | q⊗N

ρ,ν ) − ε)
]
× the ost of the �rst jump, (7.8)where the �rst jump takes us to a region of size ≈ Nm[Q]tr(N)

on whih the medium looks �Ψ[Q]tr(N)
-typial�. Sine, in a typial medium, the size of the �rst jump will be

≈ exp
[
Nm[Q]tr(N)

H(Ψ[Q]tr(N)
| ν⊗N)

]
≤ exp[NδN ], (7.9)we obtain from (7.4) and (7.7�7.9) that

P(RN ∈ O(Q)|X) ≥ exp
[
− N(H(Q | q⊗N

ρ,ν ) + 4ε)
] (7.10)for N large enough.For the upper bound we an argue as follows: For Q ∈ P inv(ẼN) put

r(Q) := lim sup
tr→∞

m[Q]tr(N)
H(Ψ[Q]tr(N)

| ν⊗N). (7.11)Sine ρ satis�es the bound (3.3) for any α > 1, we obtain from the upper bound in Theorem 1.2that the rate funtion at Q is at least
lim sup
tr→∞

Ifin([Q]tr) = H(Q | q⊗N

ρ,ν ) + (α − 1)r(Q), (7.12)hene equals ∞ if r(Q) > 0. On the other hand, if r(Q) = 0, then this is simply the annealedbound.
41



8 Proof of Corollary 1.6Proof. Without loss of generality we may assume that E = N. For c ∈ N, let 〈·〉c : E → 〈E〉c :=
{1, . . . , c} be the letter trunation map de�ned by

〈x〉c := x ∧ c, x ∈ E, (8.1)and extend this map to Ẽ, EN, ẼN, P inv(EN) and P inv(ẼN) (similarly as in (1.11�1.13)). ByTheorem 1.2, for eah c ∈ N the family
P(〈RN 〉c ∈ · | X), N ∈ N, (8.2)

X-a.s. satis�es the LDP with deterministi rate funtion
Ique
c (Q) := H

(
Q | 〈q⊗N

ρ,ν 〉c
)

+ (α − 1)mQH
(
ΨQ | 〈ν⊗N〉c

)
, Q ∈ P inv(〈Ẽ〉Nc ), (8.3)where 〈Ẽ〉c := ∪n∈N(〈E〉c)

n. The letter trunations 〈·〉c, c ∈ N, form a projetive family. Hene,by the Dawson-Gärtner projetive limit theorem (see Dembo and Zeitouni [10℄, Theorem 4.6.1), thefamily P(RN ∈ · | X), N ∈ N, X-a.s. satis�es the LDP on P inv(ẼN) with rate funtion
Ique(Q) = sup

c∈N

Ique
c (〈Q〉c), Q ∈ P inv(ẼN). (8.4)However, the supremum equals the expression given in (1.15�1.16), beause the spei� relativeentropies in the right-hand side of (8.3) are non-dereasing w.r.t. the letter trunation level, mQ =

m〈Q〉c , 〈ΨQ〉c = Ψ〈Q〉c , and the maps 〈·〉c and [·]tr ommute. Thus, Theorem 1.2 indeed arries over.It is part of the projetive limit theorem that Ique inherits from Ique
c , c ∈ N, the properties qualifyingit to be a rate funtion, so that also Theorem 1.3 arries over.9 Proof of Theorems 1.8�1.99.1 Proof of Theorem 1.8Proof. The idea is to put the problem into the framework of (1.1�1.5) and then apply Theorem 1.2.To that end, we pik

E := Z
d, Ẽ := ∪n∈N(Zd)n, (9.1)and hoose

ν(u) := p(u), u ∈ E, ρ(n) :=
pn(0)

G(0) − 1
, n ∈ N, (9.2)where

p(u) = p(0, u), u ∈ Z
d, pn(u − v) = pn(u, v), u, v ∈ Z

d, G(0) =
∞∑

n=0

pn(0), (9.3)the latter being the Green funtion at the origin.42



Realling (1.35), and writing
zV =

(
(z − 1) + 1

)V
= 1 +

V∑

N=1

(z − 1)N
V (V − 1) · · · (V − N + 1)

N !
(9.4)with

V (V − 1) · · · (V − N + 1)

N !
=

∑

0<j1<···<jN<∞

1{Sj1
=S′

j1
,...,SjN

=S′
jN

}, (9.5)we have
E
[
zV | S

]
= 1 +

∞∑

N=1

(z − 1)NF
(1)
N (X),

E
[
zV
]

= 1 +

∞∑

N=1

(z − 1)NF
(2)
N ,

(9.6)with
F

(1)
N (X) :=

∑

0<j1<···<jN<∞

P(Sj1 = S′
j1, . . . , SjN

= S′
jN

| X),

F
(2)
N := E

[
F

(1)
N (X)

]
,

(9.7)where X = (Xk)k∈N denotes the sequene of inrements of S. (The upper indies 1 and 2 indiatethe number of random walks being averaged over.)The notation in (9.1�9.2) allows us to rewrite the �rst line of (9.7) as
F

(1)
N (X) =

∑

0<j1<···<jN <∞

N∏

i=1

pji−ji−1




ji∑

k=ji−1+1

Xk




=
∑

0<j1<···<jN <∞

N∏

i=1

ρ(ji − ji−1) exp

[
N∑

i=1

log

(
pji−ji−1(

∑ji

k=ji−1+1 Xk)

ρ(ji − ji−1)

)] (9.8)Let Y (i) = (Xji−1+1, · · · ,Xji). Introdue f : Ẽ → [0,∞) by (reall (9.2))
f((x1, . . . , xn)) =

pn(x1 + · · · + xn)

pn(0)
[G(0) − 1], n ∈ Λ, x1, . . . , xn ∈ E, (9.9)with

Λ := {n ∈ N : ρ(n) = pn(0) > 0} ⊃ 2Z, (9.10)let RN ∈ P inv(ẼN) be the empirial proess of words de�ned in (1.5), and π1RN ∈ P(Ẽ) theprojetion of RN onto the �rst oordinate. Then we have
F

(1)
N (X) = E

[
exp

(
N∑

i=1

log f(Y (i))

)∣∣∣∣∣X
]

= E

[
exp

(
N

∫

eE
(π1RN )(dy) log f(y)

)∣∣∣∣X
]

.

(9.11)
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The seond line of (9.7) is obtained by averaging (9.11) over X:
F

(2)
N = E

[
exp

(
N

∫

eE
(π1RN )(dy) log f(y)

)]
. (9.12)Without onditioning on X, the sequene (Y (i))i∈N is i.i.d. with law (reall (1.4))

q⊗N

ρ,ν with qρ,ν(x1, . . . , xn) =
pn(0)

G(0) − 1

n∏

k=1

p(xk). (9.13)Next we note that f de�ned in (9.9) is bounded from above. Indeed, the Fourier representation of
pn(x, y) reads

pn(0, x) =
1

(2π)d

∫

[−π,π)d

dk e−i(k·x) 1

1 − p̂(k)
(9.14)with p̂(k) =

∑
x∈Zd ei(k·x)p(0, x). Beause p(·, ·) is symmetri, it follows that

max
x∈Zd

p2n(0, x) = p2n(0, 0), max
x∈Zd

p2n+1(0, x) ≤ p2n(0, 0), ∀n ∈ N. (9.15)Consequently, f((x1, . . . , xn)) ≤ [pn−1(0, 0)/pn(0, 0)][G(0)−1], n ∈ Λ, whih is bounded from abovebeause of (1.34). The annealed LDP in Theorem 1.1, together with Varadhan's lemma applied to(9.12), therefore gives z2 = 1 + exp[−r2] with
r2 := lim

N→∞

1

N
log F

(2)
N = sup

Q∈P inv( eEN)

{∫

eE
π1Q(dy) log f(y) − Iann(Q)

}

= sup
q∈P( eE)

{∫

eE
q(dy) log f(y) − h(q | qρ,ν)

} (9.16)(reall (1.36) and (9.6)). The last equality stems from the fat that, on the set of Q's with a givenmarginal π1Q = q, the funtion Q 7→ Iann(Q) = H(Q | q⊗N
ρ,ν ) has a unique minimiser Q = q⊗N.In order to arry out the seond supremum in (9.16), we prove the following.Lemma 9.1. Let Z :=

∑
y∈E f(y)qρ,ν(y). Then

∫

eE
q(dy) log f(y) − h(q | qρ,ν) = log Z − h(q | q∗) ∀ q ∈ P(Ẽ), (9.17)where q∗(y) = f(y)qρ,ν(y)/Z, y ∈ E.Proof. This follows from a straightforward omputation.Inserting (9.17) into (9.16), we see that the suprema are uniquely attained at q = q∗ and Q = (q∗)⊗N,and that r2 = log Z. From (9.9) and (9.13), we have

Z =
∑

n∈N

∑

x1,...,xn∈Zd

pn(x1 + · · · + xn)
n∏

k=1

p(xk) =
∑

n∈N

p2n(0) = G(2)(0) − 1, (9.18)44



where we use that ∑v∈Zd pm(u + v)p(v) = pm+1(u), u ∈ Z
d, m ∈ N, and G(2)(0) is the Greenfuntion at the origin assoiated with p2(·, ·). Hene the maximizer in (9.16) is

q∗(x1, . . . , xn) =
pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk). (9.19)Note that z2 = 1 + exp[− log Z] = G(2)(0)/[G(2)(0) − 1].The quenhed LDP in Theorem 1.2, together with Varadhan's lemma applied to (9.8), gives z1 =
1 + exp[−r1] with

r1 := lim
N→∞

1

N
log F

(1)
N (X)

= sup
Q∈P inv( eEN)

{∫

eE
π1Q(dy) log f(y) − Ique(Q)

}
X − a.s.,

(9.20)where Ique(Q) is given by (1.15�1.16).To ompare (9.20) with (9.16), we need the following lemma, the proof of whih is deferred toSetion 9.2.Lemma 9.2. Assume (1.34). Let Q∗ = (q∗)⊗N with q∗ as in (9.19). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).With the help of Lemma 9.2 we omplete the proof of the existene of the gap as follows. Sine
Ique(Q) ≥ Iann(Q), we have r1 ≤ r2 < ∞, and in order to prove the gap we are after, it su�es toshow that r1 < r2. Sine Ique has ompat level sets, there exists a sequene (Qn)n∈N ⊂ P inv(ẼN)suh that

r1 = lim
n→∞

∫

eE
π1Qn(dy) log f(y) − Ique(Qn) (9.21)and w− limn→∞ Qn = Q̃ ∈ P inv(ẼN). Using that f is positive and bounded from above (and hene

log f is negative after a shift), we have
lim sup

n→∞

∫

eE
π1Qn(dy) log f(y) ≤

∫

eE
π1Q̃(dy) log f(y) (9.22)by Fatou's Lemma. Furthermore, lim infn→∞ Ique(Qn) ≥ Ique(Q̃) by lower semiontinuity, so

r1 =

∫

eE
π1Q̃(dy) log f(y) − Ique(Q̃) ≤

∫

eE
π1Q̃(dy) log f(y) − Iann(Q̃) ≤ r2. (9.23)If r1 = r2, then Q̃ = Q∗, beause the unonditional variational problem (9.16) has Q∗ as its uniquemaximiser. But Ique(Q∗) > Iann(Q∗) by Lemma 9.2, so this is a ontradition, and we arrive at

r1 < r2 as required.
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9.2 Proof of Lemma 9.2Proof. Note that
q∗(En) =

∑

x1,...,xn∈Zd

pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk) =
p2n(0)

G(2)(0) − 1
, n ∈ N, (9.24)and hene, by assumption (1.35),

lim
n→∞

log q∗(En)

log n
= −α (9.25)and

mQ∗ =

∞∑

n=1

nq∗(En) =

∞∑

n=1

np2n(0)

G(2)(0) − 1
. (9.26)We will show that

mQ∗ < ∞ =⇒ Q∗ = (q∗)⊗N 6∈ Rν , (9.27)the set de�ned in (1.20). This implies ΨQ∗ 6= ν⊗N (reall (1.22)), and hene H(ΨQ∗ |ν⊗N) > 0,implying the laim.In order to verify (9.27), we ompute the �rst two marginals of ΨQ∗. Using the symmetry of p(·, ·),we have
ΨQ∗(a) =

1

mQ∗

∞∑

n=1

n∑

j=1

∑

x1,...,xn∈Zd

xj=a

pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk) = p(a)

∑∞
n=1 np2n−1(a)∑∞

n=1 np2n(0)
. (9.28)Hene, ΨQ∗(a) = p(a) for all a ∈ Z

d with p(a) > 0 if and only if
a 7→

∞∑

n=1

n p2n−1(a) is onstant on the support of p(·). (9.29)There are many p(·, ·)'s for whih (9.29) fails, and for these (9.27) holds. However, for simple randomwalk (9.29) does not fail, beause a 7→ p2n−1(a) is onstant on the 2d neighbours of the origin, andso we have to look at the two-dimensional marginal.Observe that q∗(x1, . . . , xn) = q∗(xσ(1), . . . xσ(n)) for any permutation σ of {1, . . . , n}. For a, b ∈ Z
d,we have

mQ∗ΨQ∗(a, b) = EQ∗

[
τ1∑

k=1

1 (κ(Y )k = a, κ(Y )k+1 = b)

]

=

∞∑

n=1

∞∑

n′=1

∑

x1,...,xn+n′

q∗(x1, . . . , xn) q∗(xn+1, . . . , xn+n′)

n∑

k=1

1(a,b)(xk, xk+1)

= q∗(x1 = a) q∗(x1 = b) +

∞∑

n=2

(n − 1)q∗
(
x1 = a, x2 = b

)
.

(9.30)
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Sine
q∗(x1 = a)

=
p(a)2

G(2)(0) − 1
+

∞∑

n=2

∑

x2,...,xn∈Zd

pn(a + x2 + · · · + xn)

G(2)(0) − 1
p(a)

n∏

k=2

p(xk)

=
p(a)

G(2)(0) − 1

∞∑

n=1

p2n−1(a)

(9.31)and
q∗
(
x1 = a, x2 = b

)
= 1n=2

p(a)p(b)

G(2)(0) − 1
p2(a + b)

+ 1n≥3
p(a)p(b)

G(2)(0) − 1

∑

x3,...,xn∈Zd

pn(a + b + x3 + · · · + xn)

n∏

k=3

p(xk)

=
p(a)p(b)

G(2)(0) − 1
p2n−2(a + b),

(9.32)
we �nd

ΨQ∗(a, b) =
p(a)p(b)∑∞
n=1 np2n(0)

([ ∞∑

n=1

p2n−1(a)

][ ∞∑

n=1

p2n−1(b)

]
+

∞∑

n=2

(n − 1)p2n−2(a + b)

)
. (9.33)Pik b = −a with p(a) > 0. Then, shifting n to n − 1 in the last sum, we get

ΨQ∗(a,−a) − p(a)2 =
[
∑∞

n=1 p2n−1(a)]2∑∞
n=1 np2n(0)

> 0. (9.34)This shows that onseutive letters are not unorrelated under ΨQ∗, and implies that (9.27) holdsas laimed.9.3 Upper bound on z1Unlike for z2, no losed form expression is known for z1. The arguments used to prove Theorem 1.8,whih parallel those in Birkner [1℄, Chapter 5, imply that the value given in [1℄, Theorem 5, is infat an upper bound.Corollary 9.3. Under the assumptions of Theorem 1.8,
z1 ≤ 1 +

(
∑

n∈N

e−h(pn)

)−1

, (9.35)where h(pn) = −
∑

x∈Zd pn(0, x) log pn(0, x) is the entropy of pn(0, ·).Proof. Note that for q ∈ P(Ẽ) of the form
q(x1, . . . , xn) = ρq(n)ν(x1) · · · ν(xn), n ∈ N, x1, . . . , xn ∈ E, (9.36)47



for some ρq ∈ P(N), we have Ique
1 (q) = h(ρq | ρ), as then the minimiser in the right-hand side of(1.23) is Q = q⊗N. The laim therefore follows from (9.20) by hoosing Q = q⊗N, ν(x) = p(x),

x ∈ Z
d, and

ρq(n) =
exp[−h(pn)]∑

m∈N
exp[−h(pm)]

, n ∈ N. (9.37)
9.4 Proof of Theorem 1.9The proof is a relatively minor extension of that of Theorem 1.8 in Setions 9.1�9.2.Proof. The analogues of (9.4�9.7) are

z
eV =

∞∑

N=0

(log z)N
Ṽ N

N !
, (9.38)with

Ṽ N

N !
=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN 1
{eSt1= eS′

t1
,..., eStN

= eS′
tN

}
, (9.39)and

E

[
z

eV | S
]

=
∞∑

N=0

(log z)N F
(1)
N (S̃),

E

[
z

eV
]

=
∞∑

N=0

(log z)N F
(2)
N ,

(9.40)with
F

(1)
N (S̃) :=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN P

(
S̃t1 = S̃′

t1 , . . . , S̃tN = S̃′
tN

| S̃
)

,

F
(2)
N := E

[
F

(1)
N (S̃)

]
,

(9.41)where the onditioning in the �rst line is on the full ontinuous-time path S̃ = (S̃t)t≥0. Our task isto ompute
r̃1 := lim

N→∞

1

N
log F

(1)
N (S̃), S̃ − a.s.,

r̃2 := lim
N→∞

1

N
log F

(2)
N ,

(9.42)and show that r̃1 < r̃2.The idea is to average over the jump times of S̃ while keeping its jumps �xed, thereby reduing theproblem to the one for the disrete-time random walk treated in the proof of Theorem 1.9. For the�rst line in (9.41) this partial annealing gives an upper bound, while for the seond line it is simplypart of the averaging over S̃. To that end, put σ0 := 0, for k ∈ N put σk := inf{t > σk−1 : S̃t 6=
S̃σk−1

}, let
X♮ = (X♮

k)k∈N with X♮
k := S̃σk

, (9.43)48



and de�ne
F

(1)
N (X♮) :=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN P(S̃t1 = S̃′
t1 , . . . , S̃tN = S̃′

tN | X♮),

F
(2)
N := E

[
F

(1)
N (X♮)

]
,

(9.44)together with the ritial values
r̃♮
1 := lim

N→∞

1

N
log F

(1)
N (X♮), X♮ − a.s.,

r̃♮
2 := lim

N→∞

1

N
log F

(2)
N .

(9.45)Clearly,
r̃1 ≤ r̃♮

1 and r̃2 = r̃♮
2, (9.46)whih an be viewed as a result of �partial annealing�, and so it su�es to show that r̃1

♮ < r̃♮
2.To this end write out

P(S̃t1 = S̃′
t1 , . . . , S̃tN = S̃′

tN | X♮)

=
∑

0≤j1≤···≤jN <∞

(
N∏

i=1

e−(ti−ti−1) (ti − ti−1)
ji−ji−1

(ji − ji−1)!

)

∑

0≤j′1≤···≤j′N<∞

(
N∏

i=1

e−(ti−ti−1) (ti − ti−1)
j′i−j′i−1

(j′i − j′i−1)!

) 


N∏

i=1

pj′i−j′i−1




ji∑

k=ji−1+1

X♮
k




 .

(9.47)
Integrating over 0 ≤ t1 ≤ · · · ≤ tN < ∞, we obtain

F
(1)
N (X♮) =

∑

0≤j1≤···≤jN<∞

∑

0≤j′1≤···≤j′N<∞

N∏

i=1


2−(ji−ji−1)−(j′i−j′i−1)−1 [(ji − ji−1) + (j′i − j′i−1)]!

(ji − ji−1)!(j′i − j′i−1)!
pj′i−j′i−1




ji∑

k=ji−1+1

X♮
k




 .

(9.48)Abbreviating
Θn(u) =

∞∑

m=0

pm(u) 2−n−m−1

(
n + m

m

)
, n ∈ N ∪ {0}, u ∈ Z

d, (9.49)we may rewrite (9.48) as
F

(1)
N (X♮) =

∑

0≤j1≤···≤jN<∞

N∏

i=1

Θji−ji−1




ji∑

k=ji−1+1

X♮
k


 . (9.50)This expression is similar in form as the �rst line of (9.8), exept that the order of the ji's is notstrit. However, de�ninĝ

F
(1)
N (X♮) =

∑

0<j1<···<jN<∞

N∏

i=1

Θji−ji−1




ji∑

k=ji−1+1

X♮
k


 , (9.51)49



we have
F

(1)
N (X♮) =

N∑

M=0

(
N

M

)
θ0(0)

M F̂
(1)
N−M (X♮), (9.52)with the onvention F̂

(1)
0 (X♮) ≡ 1. Letting

r̂♮
1 = lim

N→∞

1

N
log F̂

(1)
N (X♮), X♮ − a.s., (9.53)and realling (9.45), we therefore have the relation

r̃♮
1 = log

[
θ0(0) + ebr♮

1

]
, (9.54)and so it su�es to ompute r̂♮

1.Write
F

(1)
N (X♮) = E

[
exp

(
N

∫

eE
log f ♮(y) (π1RN )(dy)

)∣∣∣∣X
♮

]
, (9.55)where f ♮ : Ẽ → [0,∞) is de�ned by

f ♮((x1, . . . , xn)) =
Θn(x1 + · · · + xn)

pn(0)
[G(0) − 1], n ∈ N, x1, . . . , xn ∈ E. (9.56)Equations (9.55�9.56) replae (9.8�9.9). We an now repeat the same argument as in (9.16�9.23),with the sole di�erene that f in (9.9) is replaed by f ♮ in (9.56), and this, ombined with Lemma 9.4below, yields the gap r̃♮

1 < r̃♮
2.We �rst hek that f ♮ is bounded from above, whih is neessary for the appliation of Varadhan'slemma. To that end, we insert the Fourier representation (9.14) into (9.49) to obtain

θn(u) =
1

(2π)d

∫

[−π,π)d

dk e−i(k·u) [2 − p̂(k)]−n−1, u ∈ Z
d, (9.57)from whih we see that θn(u) ≤ θn(0), u ∈ Z

d. Consequently,
f ♮

n((x1, · · · , xn)) ≤
θn(0)

pn(0)
[G(0) − 1], n ∈ Λ. (9.58)Next we note that

lim
n→∞

1

n
log

[
2−(a+b)n−1

(
(a + b)n

an

)] {
= 0, if a = b,
< 0, if a 6= b.

(9.59)From (1.34), (9.49) and (9.59) it follows that θn(0)/pn(0) ≤ C < ∞ for all n ∈ Λ, so that f ♮ indeedis bounded from above.Note that X♮ is the disrete-time random walk with transition kernel p(·, ·). The key ingredientbehind r̂♮
1 < r̂♮

2 is the analogue of Lemma 9.2, this time with Q∗ = (q∗)⊗N and q∗ given by
q∗(x1, . . . , xn) =

Θn(x1 + · · · + xn)

G(0) − 1

n∏

k=1

p(xk), (9.60)replaing (9.19). 50



Lemma 9.4. Assume (1.34). Let Q∗ = (q∗)⊗N with q∗ as in (9.60). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).The analogue of (9.18) reads

Z♮ =
∑

n∈N

∑

x1,...,xn∈Zd

[Θn(x1 + · · · + xn)]
n∏

k=1

p (xk)

=
∑

n∈N

∞∑

m=0

{
∑

x1,...,xn∈Zd

pm(x1 + · · · + xn)
n∏

k=1

p (xk)

}
2−n−m−1

(
n + m

m

)]

= −θ0(0) +
∞∑

n,m=0

pn+m(0) 2−n−m−1

(
n + m

m

)

= −θ0(0) +
1

2

∞∑

k=0

pk(0) = −θ0 +
G(0)

2
.

(9.61)
Consequently,

log z̃2 = e−er2 = e−er♮
2 =

1

θ0 + ebr♮
2

=
1

θ0 + Z♮
=

2

G(0)
, (9.62)where we use (9.40), (9.42), (9.46), (9.54) and (9.61).9.5 Proof of Lemma 9.4Proof. We must adapt the proof in Setion 9.2 to the fat that q∗ has a slightly di�erent form,namely, pn(x1 + · · · + xn) is replaed by Θn(x1 + · · · + xn), whih averages transition kernels. Theomputations are straightforward and are left to the reader. The analogues of (9.24) and (9.26) are

q∗(En) =
1

G(0) − 1

∞∑

m=0

pn+m(0) 2−n−m−1

(
n + m

m

)
,

mQ∗ =
∑

n∈N

nq∗(En) = 1
4

∞∑

k=0

kpk(0),

(9.63)while the analogues of (9.31�9.32) are
q∗(x1 = a) =

p(a)

G(0) − 1
1
2

∞∑

k=0

pk(a)[1 − 2−k−1],

q∗(x1 = a, x2 = b) =
p(a)p(b)

G(0) − 1

[
1
4

∞∑

k=0

kpk(a + b) +

∞∑

k=0

pk(a + b) 2−k−3

]
.

(9.64)Realling (9.30), we �nd
ΨQ∗(a,−a) − p(a)2 > 0, (9.65)implying that ΨQ∗ 6= ν⊗N (reall (9.2)), and hene H(ΨQ∗ | ν⊗N) > 0, implying the laim.51



A Appendix: Continuity under trunation limitsThe following lemma implies (1.17).Lemma A.1. For all Q ∈ P inv,fin(ẼN),
lim

tr→∞
H([Q]tr | q⊗N

ρ,ν ) = H(Q | q⊗N

ρ,ν ),

lim
tr→∞

m[Q]trH(Ψ[Q]tr | νN) = mQH(ΨQ | νN).
(A.1)Proof. The proof is not quite standard, beause Q and [Q]tr, respetively, ΨQ and Ψ[Q]tr are not � d̄-lose� when tr is large, so that we annot use the fat that entropy is � d̄-ontinuous� (see Shields [21℄).Lower semi-ontinuity yields lim inftr→∞ l.h.s. ≥ r.h.s. for both limits, so we need only prove thereverse inequality. Note that, for all Q ∈ P inv,fin(ẼN),

H(Q) ≤ h(Q|F1
) ≤ h

(
LQ(τ1)

)
+ mQ log |E| < ∞, H(ΨQ) ≤ log |E| < ∞, H(Q | q⊗N

ρ,ν ) < ∞.(A.2)For Z a random variable, we write LQ(Z) to denote the law of Z under Q.A.1 Proof of �rst half of (A.1)Proof. Sine q⊗N
ρ,ν is a produt measure, we have for, any tr ∈ N,

H([Q]tr | q⊗N

ρ,ν ) = −H([Q]tr) − E[Q]tr [log ρ(τ1)] − E[Q]tr

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]

= −H([Q]tr) − EQ [log ρ(τ1 ∧ tr)] − EQ

[
τ1∧tr∑

i=1

log ν
(
Y

(1)
i

)]
.

(A.3)By dominated onvergene, using that mQ < ∞ and log ρ(n) ≤ C log(n + 1) for some C < ∞, wesee that as tr → ∞ the last two terms in the seond line onverge to
−EQ

[
log ρ(τ1)

]
− EQ

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]
. (A.4)Thus, it remains to hek that

lim
tr→∞

H([Q]tr) = H(Q). (A.5)Obviously, H([Q]tr) ≤ H(Q) for all tr ∈ N (indeed, h([Q]tr|FN
) ≤ h(Q|FN

) for all N, tr ∈ N,beause [Q]tr is the image measure of Q under the trunation map). For the asymptoti onverse,we argue as follows. A deomposition of entropy gives
h(Q|FN

) = h([Q]tr |FN
) +

∫

[ eE]Ntr

h
(
LQ

(
πNY | πN [Y ]tr = z

))
(πN [Q]tr)(dz), (A.6)52



where πN is the projetion onto the �rst N words, and LQ(πNY | πN [Y ]tr = z) is the onditionaldistribution of the �rst N words given their trunations. We have
h
(
LQ

(
πNY | πN [Y ]tr = z

))
≤

N∑

i=1

h
(
LQ

(
Yi | πN [Y ]tr = z

)) (A.7)and ∫

[ eE]Ntr

h
(
LQ

(
Yi | πN [Y ]tr = z

))
(πN [Q]tr)(dz)

≤

∫

[ eE]Ntr

h
(
LQ

(
Yi | [Yi]tr = zi

))
(πN [Q]tr)(dz)

=

∫

[ eE]tr

h
(
LQ

(
Y1 | [Y1]tr = y

))
(π1[Q]tr)(dy), 1 ≤ i ≤ N,

(A.8)where the inequality in the seond line omes from the fat that onditioning on less inreasesentropy, and the third line uses the shift-invariane. Combining (A.6�A.8) and letting N → ∞, weobtain
H(Q) ≤ H([Q]tr) +

∫

[ eE]tr

h
(
LQ

(
Y1 | [Y1]tr = y

))
(π1[Q]tr)(dy), (A.9)and so it remains to hek that the seond term in the right-hand side vanishes as tr → ∞.Note that this term equals (write ε for the empty word and w ·w′ for the onatenation of words wand w′)

−
∑

w∈Ẽ
τ(w)=tr

[Q]tr(w)
∑

w′∈Ẽ∪{ε}

Q(w · w′)

[Q]tr(w)
log

[
Q(w · w′)

[Q]tr(w)

]

= −
∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log Q(w′′) +
∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log [Q]tr([w
′′]tr).

(A.10)But
0 ≥

∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log [Q]tr([w
′′]tr) ≥

∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log Q(w′′), (A.11)and so the right-hand side of (A.10) vanishes as tr → ∞.A.2 Proof of seond half of (A.1)Note that limtr→∞ m[Q]tr = mQ and w− limtr→∞ Ψ[Q]tr = ΨQ by dominated onvergene, implyingthat
lim inf
tr→∞

H(Ψ[Q]tr | νN) ≥ H(ΨQ | ν⊗N). (A.12)So it remains to hek the reverse inequality. Sine ν⊗N is produt measure, we have
H(Ψ[Q]tr | νN) = −H(Ψ[Q]tr) −

1

m[Q]tr

EQ

[
τ1∧tr∑

i=1

log ν
(
Y

(1)
i
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. (A.13)53



By dominated onvergene, as tr → ∞ the seond term onverges to
1

mQ
EQ

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]
=

∫

E
ΨQ(dx) log ν(x). (A.14)Thus, it remains to hek that

lim
tr→∞

H(Ψ[Q]tr) = H(ΨQ). (A.15)We will �rst prove (A.15) for ergodi Q, in whih ase [Q]tr, ΨQ, Ψ[Q]tr are ergodi (Birkner [3℄,Remark 5).For Ψ ∈ Perg(EN) and ε ∈ (0, 1), let
Nn(Ψ, ε) = min

{
#A : A ⊂ En,Ψ(A × E∞) ≥ ε

} (A.16)be the (n, ε) overing number of Ψ. For any ε ∈ (0, 1), we have
lim

n→∞

1

n
logNn(Ψ, ε) = H(Ψ) (A.17)(see Shields [21℄, Theorem I.7.4). The idea behind (A.15) is that there are ≈ exp[nH(ΨQ)] �ΨQ-typial� sequenes of length n, and that a �Ψ[Q]tr-typial� sequene arises from a �ΨQ-typial�sequene by eliminating a fration δtr of the letters, where δtr → 0 as tr → ∞. Hene Nn(ΨQ, ε)annot be muh larger thanNn(Ψ[Q]tr, ε) (on an exponential sale), implying that H(ΨQ)−H(Ψ[Q]tr)must be small.To make this argument preise, �x ε > 0 and pik N0 so large that

Q
(
|κ(Y (1), . . . , Y (N))| ∈ NmQ[1 − ε, 1 + ε]

)
> 1 − ε for N ≥ N0. (A.18)Pik tr0 ∈ N so large that for tr ≥ tr0 and N ≥ N0,

Q
(∑N

i=1(τ1 − tr)+ < Nε
)

> 1 − ε/2, Q
(
τ1 ≤ tr

)
> 1 − ε/2, m[Q]tr > (1 − ε)mQ. (A.19)For n ≥ ⌈N0/mQ⌉, we will onstrut a set B ⊂ En suh that

ΨQ(B × E∞) ≥ 1
2 , |B| ≤ exp

[
n(H(Ψ[Q]tr) + δ)

]
, (A.20)where δ an be made arbitrarily small by hoosing ε small in (A.18�A.19). Hene, by the asymptotiover property (A.17), we have H(ΨQ) ≤ (1 + δ)H(Ψ[Q]tr) and

lim inf
tr→∞

H(Ψ[Q]tr) ≥ H(ΨQ), (A.21)ompleting the proof of (A.15).We verify (A.20) as follows. Put N := ⌈nmQ(1 + 2ε)⌉. By (A.18�A.19) and the asymptoti overproperty (A.17) for Ψ[Q]tr, there is a set A ⊂ ẼN suh that
EQ

[
τ11A(Y (1), . . . , Y (N))

]
> (1 − ε)mQ (A.22)54



and
|κ(y(1), . . . , y(N))| ≥ n(1 + ε), τ(y(1)) ≤ tr,

N∑

i=1

(τ(y(i)) − tr)+ < Nε,

∀ (y(1), . . . , y(N)) ∈ A,

(A.23)while the set
B′ :=

{
κ([y(1)]tr, . . . , [y

(N)]tr)|(0,⌈(1−ε)n⌉] : (y(1), . . . , y(N)) ∈ A
}
⊂ E⌈(1−ε)n⌉] (A.24)satis�es

|B′| ≤ exp
[
n(H(Ψ[Q]tr) + ε)

]
. (A.25)Put

B :=
{
κ(y(1), . . . , y(N))|(0,n] : (y(1), . . . , y(N)) ∈ A

}
⊂ En. (A.26)Observe that eah x′ ∈ B′ orresponds to at most

|E|εn
(

n

εn

)
≤ exp

[
− n(ε log ε + (1 − ε) log(1 − ε)) + nε log |E|

] (A.27)di�erent x ∈ B, so that
|B| ≤ |B′| exp

[
− n(ε log ε + (1 − ε) log(1 − ε)) + nε log |E|

]
. (A.28)We have

mQΨQ(B × E∞) ≥ EQ

[
τ1−1∑

k=0

1B×E∞

(
θkκ(Y )

)1A(Y (1), . . . , Y (N))

]

= EQ

[
τ1∧tr−1∑

k=0

1B′×E∞

(
θkκ([Y ]tr)

)1A(Y (1), . . . , Y (N))

]

≥ EQ




τ1∧tr|−1∑

k=0

1B′×E∞

(
θkκ([Y ]tr)

)

− εmQ

= m[Q]trΨ[Q]tr(B
′ × E∞) − εmQ,

(A.29)
so that, �nally,

ΨQ(B × E∞) ≥
m[Q]tr

mQ
Ψ[Q]tr(B

′ × E∞) − ε ≥ 1
2 . (A.30)Combining (A.25), (A.28) and (A.30), we obtain (A.20) with

δ = −
(
ε log ε + (1 − ε) log(1 − ε)

)
+ ε
(
1 + log |E|

)
. (A.31)Sine lim suptr→∞ H(Ψ[Q]tr) ≤ H(ΨQ) by upper semi-ontinuity of H (see e.g. Georgii [13℄, Propo-sition. 15.14), this onludes the proof of (A.15) for ergodi Q.For general Q ∈ P inv,fin(ẼN), we reall the ergodi deomposition formulas stated in (6.1�6.2).These yields

Ψ[Q]tr =

∫

Perg,fin( eEN)

m[Q′]tr

m[Q]tr

Ψ[Q′]tr WQ(dQ′), (A.32)55



and
H(Ψ[Q]tr) =

∫

Perg,fin( eEN)

m[Q′]tr

m[Q]tr

H(Ψ[Q′]tr)WQ(dQ′), (A.33)beause spei� relative entropy is a�ne. The integrand inside (A.33) is non-negative and, by theabove, onverges to mQ′

mQ
H(ΨQ′) as tr → ∞. Hene, by Fatou's lemma,

lim inf
tr→∞

H(Ψ[Q]tr) ≥

∫

Perg,fin( eEN)

mQ′

mQ
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