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Abstra
tWhen we 
ut an i.i.d. sequen
e of letters into words a

ording to an independent renewalpro
ess, we obtain an i.i.d. sequen
e of words. In the annealed large deviation prin
iple (LDP)for the empiri
al pro
ess of words, the rate fun
tion is the spe
i�
 relative entropy of theobserved law of words w.r.t. the referen
e law of words. In the present paper we 
onsider thequen
hed LDP, i.e., we 
ondition on a typi
al letter sequen
e. We fo
us on the 
ase where therenewal pro
ess has an algebrai
 tail. The rate fun
tion turns out to be a sum of two terms, onebeing the annealed rate fun
tion, the other being proportional to the spe
i�
 relative entropyof the observed law of letters w.r.t. the referen
e law of letters, with the former being obtainedby 
on
atenating the words and randomising the lo
ation of the origin. The proportionality
onstant equals the tail exponent of the renewal pro
ess. Earlier work by Birkner 
onsideredthe 
ase where the renewal pro
ess has an exponential tail, in whi
h 
ase the rate fun
tion turnsout to be the �rst term on the set where the se
ond term vanishes and to be in�nite elsewhere.We apply our LDP to prove that the radius of 
onvergen
e of the moment generating fun
tionof the 
ollision lo
al time of two strongly transient random walks on Z
d, d ≥ 1, stri
tly in
reaseswhen we 
ondition on one of the random walks, both in dis
rete time and in 
ontinuous time.The presen
e of these gaps implies the existen
e of an intermediate phase for the long-timebehaviour of a 
lass of 
oupled bran
hing pro
esses, intera
ting di�usions, respe
tively, dire
tedpolymers in random environments.1 Introdu
tion and main results1.1 Problem settingLet E be a �nite set of letters. Let Ẽ = ∪n∈NEn be the set of �nite words drawn from E. Both E and

Ẽ are Polish spa
es under the dis
rete topology. Let P(EN) and P(ẼN) denote the set of probabilitymeasures on sequen
es drawn from E, respe
tively, Ẽ, equipped with the topology of weak 
onver-gen
e. Write θ and θ̃ for the left-shift a
ting on EN, respe
tively, ẼN. Write P inv(EN),Perg(EN)and P inv(ẼN),Perg(ẼN) for the set of probability measures that are invariant and ergodi
 under θ,respe
tively, θ̃.For ν ∈ P(E), let X = (Xi)i∈N be i.i.d. with law ν. Without loss of generality we will assume that
supp(ν) = E (otherwise we repla
e E by supp(ν)). For ρ ∈ P(N), let τ = (τi)i∈N be i.i.d. with law
ρ having in�nite support and satisfying the algebrai
 tail property

lim
n→∞

ρ(n)>0

log ρ(n)

log n
=: −α, α ∈ (1,∞). (1.1)(No regularity assumption will be ne
essary for supp(ρ).) Assume that X and τ are independentand write P to denote their joint law. Cut words out of X a

ording to τ , i.e., put (see Figure 1)

T0 := 0 and Ti := Ti−1 + τi, i ∈ N, (1.2)1



and let
Y (i) :=

(
XTi−1+1,XTi−1+2, . . . ,XTi

)
, i ∈ N. (1.3)Then, under the law P, Y = (Y (i))i∈N is an i.i.d. sequen
e of words with marginal law qρ,ν on Ẽgiven by

qρ,ν

(
(x1, . . . , xn)

)
:= P

(
Y (1) = (x1, . . . , xn)

)
= ρ(n) ν(x1) · · · ν(xn),

n ∈ N, x1, . . . , xn ∈ E.
(1.4)
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XFigure 1: Cutting words from a letter sequen
e a

ording to a renewal pro
ess.For N ∈ N, let (Y (1), . . . , Y (N))per stand for the periodi
 extension of (Y (1), . . . , Y (N)) to an elementof ẼN, and de�ne

RN :=
1

N

N−1∑

i=0

δeθi(Y (1),...,Y (N))per ∈ P inv(ẼN), (1.5)the empiri
al pro
ess of N -tuples of words. By the ergodi
 theorem, we have
w− lim

N→∞
RN = q⊗N

ρ,ν P�a.s., (1.6)with w − lim denoting the weak limit. The following large deviation prin
iple (LDP) is standard(see e.g. Dembo and Zeitouni [10℄, Corollaries 6.5.15 and 6.5.17). Let
H(Q | q⊗N

ρ,ν ) := lim
N→∞

1

N
h
(
Q|FN

| (q⊗N

ρ,ν )|FN

)
∈ [0,∞] (1.7)be the spe
i�
 relative entropy of Q w.r.t. q⊗N

ρ,ν , where FN = σ(Y (1), . . . , Y (N)) is the sigma-algebragenerated by the �rst N words, Q|FN
is the restri
tion of Q to FN , and h( · | · ) denotes relativeentropy. (For general properties of entropy, see Walters [25℄, Chapter 4.)Theorem 1.1. [Annealed LDP℄ The family of probability distributions P(RN ∈ · ), N ∈ N,satis�es the LDP on P inv(ẼN) with rate N and with rate fun
tion Iann : P inv(ẼN) → [0,∞] givenby

Iann(Q) = H(Q | q⊗N

ρ,ν ). (1.8)This rate fun
tion is lower semi-
ontinuous, has 
ompa
t level sets, has a unique zero at Q = q⊗N
ρ,ν ,and is a�ne.The LDP for RN arises from the LDP for N -tuples via a proje
tive limit theorem. The ratiounder the limit in (1.7) is the rate fun
tion for N -tuples a

ording to Sanov's theorem (see e.g. denHollander [17℄, Se
tion II.5), and is non-de
reasing in N .2



1.2 Main theoremsOur aim in the present paper is to derive the LDP for P(RN ∈ · | X), N ∈ N. To state our result,we need some more notation.Let κ : ẼN → EN denote the 
on
atenation map that glues a sequen
e of words into a sequen
e ofletters. For Q ∈ P inv(ẼN) su
h that
mQ := EQ[τ1] < ∞, (1.9)de�ne ΨQ ∈ P inv(EN) as

ΨQ(·) :=
1

mQ
EQ

[
τ1−1∑

k=0

δθkκ(Y )(·)

]
. (1.10)Think of ΨQ as the shift-invariant version of the 
on
atenation of Y under the law Q obtained afterrandomising the lo
ation of the origin.For tr ∈ N, let [·]tr : Ẽ → [Ẽ]tr := ∪tr

n=1E
n denote the word length trun
ation map de�ned by

y = (x1, . . . , xn) 7→ [y]tr := (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E. (1.11)Extend this to a map from ẼN to [Ẽ]Ntr via
[
(y(1), y(2), . . . )

]
tr

:=
(
[y(1)]tr, [y

(2)]tr, . . .
) (1.12)and to a map from P inv(ẼN) to P inv([Ẽ]Ntr) via

[Q]tr(A) := Q({z ∈ ẼN : [z]tr ∈ A}), A ⊂ [Ẽ]Ntr measurable. (1.13)Note that if Q ∈ P inv(ẼN), then [Q]tr is an element of the set
P inv,fin(ẼN) = {Q ∈ P inv(ẼN) : mQ < ∞}. (1.14)Theorem 1.2. [Quen
hed LDP℄ Assume (1.1). Then, for ν⊗N�a.s. all X, the family of (regular)
onditional probability distributions P(RN ∈ · | X), N ∈ N, satis�es the LDP on P inv(ẼN) with rate

N and with deterministi
 rate fun
tion Ique : P inv(ẼN) → [0,∞] given by
Ique(Q) :=





Ifin(Q), if Q ∈ P inv,fin(ẼN),

lim
tr→∞

Ifin
(
[Q]tr

)
, otherwise, (1.15)where

Ifin(Q) := H(Q | q⊗N

ρ,ν ) + (α − 1)mQ H(ΨQ | ν⊗N). (1.16)Theorem 1.3. The rate fun
tion Ique is lower semi-
ontinuous, has 
ompa
t level sets, has a uniquezero at Q = q⊗N
ρ,ν , and is a�ne. Moreover, it is equal to the lower semi-
ontinuous extension of Ifinfrom P inv,fin(ẼN) to P inv(ẼN).

3



Theorem 1.2 will be proved in Se
tions 3�5, Theorem 1.3 in Se
tion 6.A remarkable aspe
t of (1.16) in relation to (1.8) is that it quanti�es the di�eren
e between thequen
hed and the annealed rate fun
tion. Note the appearan
e of the tail exponent α. This willbe important in the appli
ations des
ribed in Se
tions 1.4�1.5. We have not been able to �nd asimple formula for Ique(Q) when mQ = ∞. In Appendix A we will show that the trun
ation mapis 
ontinuous on all of P inv(ẼN), i.e.,
Iann(Q) = lim

tr→∞
Iann([Q]tr), Ique(Q) = lim

tr→∞
Ique([Q]tr), Q ∈ P inv(ẼN). (1.17)Theorem 1.2 is an extension of Birkner [3℄, Theorem 1. In that paper, the quen
hed LDP is derivedunder the assumption that the law ρ satis�es the exponential tail property

∃C < ∞, λ > 0: ρ(n) ≤ Ce−λn ∀n ∈ N (1.18)(whi
h in
ludes the 
ase where supp(ρ) is �nite). The rate fun
tion governing the LDP is given by
Ique(Q) :=

{
H(Q | q⊗N

ρ,ν ), if Q ∈ Rν ,

∞, if Q /∈ Rν ,
(1.19)where

Rν :=

{
Q ∈ P inv(ẼN) : w−lim

L→∞

1

L

L−1∑

k=0

δθkκ(Y ) = ν⊗N Q − a.s.

}
. (1.20)Think of Rν as the set of those Q's for whi
h the 
on
atenation of words has the same statisti
alproperties as the letter sequen
e X. This set is not 
losed in the weak topology: its 
losure is

P inv(ẼN).We 
an in
lude the 
ases where ρ satis�es (1.1) with α = 1 or α = ∞.Theorem 1.4. (a) If α = 1, then the quen
hed LDP holds with Ique = Iann given by (1.8).(b) If α = ∞, then the quen
hed LDP holds with rate fun
tion
Ique(Q) =

{
H(Q | q⊗N

ρ,ν ) if lim
tr→∞

m[Q]trH(Ψ[Q]tr | ν⊗N) = 0,

∞ otherwise. (1.21)Theorem 1.4 will be proved in Se
tion 7. Part (a) says that the quen
hed and the annealed ratefun
tion are identi
al when α = 1. Part (b) says that (1.19) 
an be viewed as the limiting 
ase of(1.16) as α → ∞. Indeed, it was shown in Birkner [3℄, Lemma 2, that on P inv,fin(ẼN):
ΨQ = ν⊗N if and only if Q ∈ Rν . (1.22)Hen
e, (1.21) and (1.19) agree on P inv,fin(ẼN), and the rate fun
tion (1.21) is the lower semi
ontinu-ous extension of (1.19) to P inv(ẼN). Note that by Lemma 7 in Birkner [3℄, the expressions in (1.21)and (1.19) are identi
al if ρ has exponentially de
aying tails. In this sense, Part (b) generalises theresult in Birkner [3℄, Theorem 1, to arbitrary ρ with a tail that de
ays faster than algebrai
.Let π1 : ẼN → Ẽ be the proje
tion onto the �rst word, and let P(Ẽ) be the set of probabilitymeasures on Ẽ. An appli
ation of the 
ontra
tion prin
iple to Theorem 1.2 yields the following.4



Corollary 1.5. Under the assumptions of Theorem 1.2, for ν⊗N�a.s. all X, the family of (regular)
onditional probability distributions P(π1RN ∈ · | X), N ∈ N, satis�es the LDP on P(Ẽ) with rate
N and with deterministi
 rate fun
tion Ique

1 : P(Ẽ) → [0,∞] given by
Ique
1 (q) := inf

{
Ique(Q) : Q ∈ P inv(ẼN), π1Q = q

}
. (1.23)This rate fun
tion is lower semi-
ontinuous, has 
ompa
t levels sets, has a unique zero at q = qρ,ν,and is 
onvex.By taking proje
tive limits, it is possible to extend Theorems 1.2�1.3 to more general letter spa
es.The following 
orollary will be proved in Se
tion 8.Corollary 1.6. The quen
hed LDP also holds when E is 
ountable, with the same rate fun
tion asin (1.15�1.16).One 
an push further and obtain an LDP for E = R, by pi
king E = 2−n

Z, n ∈ Z, and takingthe limit as n → ∞. We will, however, not pursue this extension here, sin
e 
ontrol of the limitingrelative entropies adds on an extra te
hni
al layer.1.3 Heuristi
 explanation of main theoremsTo explain the ba
kground of Theorem 1.2, we begin by re
alling a few properties of entropy. Let
H(Q) denote the spe
i�
 entropy of Q ∈ P inv(ẼN) de�ned by

H(Q) := lim
N→∞

1

N
h
(
Q|FN

)
∈ [0,∞], (1.24)where h(·) denotes entropy. The sequen
e under the limit in (1.24) is non-in
reasing in N . Sin
e

q⊗N
ρ,ν is a produ
t measure, we have the identity (re
all (1.2�1.4))

H(Q | q⊗N

ρ,ν ) = −H(Q) − EQ[log qρ,ν(Y1)]

= −H(Q) − EQ[log ρ(τ1)] − mQ EΨQ
[log ν(X1)].

(1.25)Similarly,
H(ΨQ | ν⊗N) = −H(ΨQ) − EΨQ

[log ν(X1)]. (1.26)Below, for a dis
rete random variable Z with a law Q on a state spa
e Z we will write Q(Z) for therandom variable f(Z) with f(z) = Q(Z = z), z ∈ Z. Abbreviate
K(N) := κ(Y (1), . . . , Y (N)) and K(∞) := κ(Y ). (1.27)In analogy with (1.14), de�ne

Perg,fin(ẼN) :=
{
Q ∈ Perg(ẼN) : mQ < ∞

}
. (1.28)

5



Lemma 1.7. [Birkner [3℄, Lemmas 3 and 4℄Suppose that Q ∈ Perg,fin(ẼN) and H(Q) < ∞. Then, Q-a.s.,
lim

N→∞

1

N
log Q(K(N)) = −mQH(ΨQ),

lim
N→∞

1

N
log Q

(
τ1, . . . , τN | K(N)

)
=: −Hτ |K(Q),

lim
N→∞

1

N
log Q

(
Y (1), . . . , Y (N)

)
= −H(Q),

(1.29)with
mQH(ΨQ) + Hτ |K(Q) = H(Q). (1.30)Equation (1.30), whi
h follows from (1.29) and the identity

Q(K(N))Q(τ1, . . . , τN | K(N)) = Q(Y (1), . . . , Y (N)), (1.31)identi�es Hτ |K(Q). Think of Hτ |K(Q) as the 
onditional spe
i�
 entropy of word lengths under thelaw Q given the 
on
atenation. Combining (1.25�1.26) and (1.30), we have
H(Q | q⊗N

ρ,ν ) = mQH(ΨQ | ν⊗N) − Hτ |K(Q) − EQ[log ρ(τ1)]. (1.32)The term −Hτ |K(Q) − EQ[log ρ(τ1)] in (1.32) 
an be interpreted as the 
onditional spe
i�
 relativeentropy of word lengths under the law Q w.r.t. ρ⊗N given the 
on
atenation.Note that mQ < ∞ and H(Q) < ∞ imply that H(ΨQ) < ∞, as 
an be seen from (1.30). Alsonote that −EΨQ
[log ν(X1)] < ∞ be
ause E is �nite, and −EQ[log ρ(τ1)] < ∞ be
ause of (1.1) and

mQ < ∞, implying that (1.25�1.26) are proper.We are now ready to give a heuristi
 explanation of Theorem 1.2. Let
RN

j1,...,jN
(X), 0 < j1 < · · · < jN < ∞, (1.33)denote the empiri
al pro
ess of N -tuples of words when X is 
ut at the points j1, . . . , jN (i.e.,when Ti = ji for i = 1, . . . , N ; see (3.16�3.17) for a pre
ise de�nition). Fix Q ∈ Perg,fin(ẼN).The probability P(RN ≈ Q | X) is a sum over all N -tuples j1, . . . , jN su
h that RN

j1,...,jN
(X) ≈ Q,weighted by∏N

i=1 ρ(ji−ji−1) (with j0 = 0). The fa
t that RN
j1,...,jN

(X) ≈ Q has three 
onsequen
es:(1) The j1, . . . , jN must 
ut ≈ N substrings out of X of total length ≈ NmQ that look like the
on
atenation of words that are Q-typi
al, i.e., that look as if generated by ΨQ (possiblywith gaps in between). This means that most of the 
ut-points must hit atypi
al pie
es of
X. We expe
t to have to shift X by ≈ exp[NmQH(ΨQ | ν⊗N)] in order to �nd the �rst
ontiguous substring of length NmQ whose empiri
al shifts lie in a small neighbourhood of
ΨQ. By (1.1), the probability for the single in
rement j1 − j0 to have the size of this shift is
≈ exp[−Nα mQH(ΨQ | ν⊗N)].(2) The 
ombinatorial fa
tor exp[NHτ |K(Q)] 
ounts how many �lo
al perturbations� of j1, . . . , jNpreserve the property that RN

j1,...,jN
(X) ≈ Q.6



(3) The statisti
s of the in
rements j1−j0, . . . , jN −jN−1 must be 
lose to the distribution of wordlengths under Q. Hen
e, the weight fa
tor ∏N
i=1 ρ(ji − ji−1) must be ≈ exp[NEQ[log ρ(τ1)]](at least, for Q-typi
al pie
es).The 
ontributions from (1)�(3), together with the identity in (1.32), explain the formula in (1.16)on Perg,fin(ẼN). Considerable work is needed to extend (1)�(3) from Perg,fin(ẼN) to P inv(ẼN). Thisis explained in Se
tion 3.5.In (1), instead of having a single large in
rement pre
eding a single 
ontiguous substring of length

NmQ, it is possible to have several large in
rements pre
eding several 
ontiguous substrings, whi
htogether have length NmQ. The latter gives rise to the same 
ontribution, and so there is someentropy asso
iated with the 
hoi
e of the large in
rements. Lemma 2.1 in Se
tion 2.1 is needed to
ontrol this entropy, and shows that it is negligible.1.4 Appli
ation of LDP to 
ollision lo
al time of random walksIn this se
tion we apply Theorems 1.1�1.2 to derive two results about the 
ollision lo
al time ofrandom walks, whi
h will in turn be used in Se
tion 1.5.1.4.1 Dis
rete timeLet S = (Sk)
∞
k=0 and S′ = (S′

k)
∞
k=0 be two independent random walks on Z

d, d ≥ 1, both startingat the origin, with a symmetri
 and irredu
ible transition kernel p(·, ·). Suppose that
lim

n→∞

log p2n(0, 0)

log(2n)
=: −α, α ∈ (1,∞). (1.34)Write P to denote the joint law of S, S′. Let

V :=
∞∑

k=0

1{Sk=S′
k}

(1.35)be the 
ollision lo
al time of S, S′, and de�ne
z1 := sup

{
z ≥ 0: E

[
zV | S

]
< ∞ S-a.s.} , z2 := sup

{
z ≥ 0: E

[
zV
]

< ∞
}

. (1.36)(The lower indi
es indi
ate the number of random walks being averaged over.) Note that, by thetail triviality of S, the range of z's for whi
h E[ zV | S ] 
onverges is S-a.s. 
onstant. Also note that(1.34) implies that p(·, ·) is transient, so that P(V < ∞) = 1. The following theorem holds when
p(·, ·) is strongly transient, i.e., when ∑∞

n=1 npn(0, 0) < ∞.Theorem 1.8. Assume (1.34). If p(·, ·) is strongly transient, then 1 < z2 < z1 < ∞.Sin
e P(V = k) = (1 − F (2))[F (2)]k−1, k ∈ N, with
F (2) := P

(
∃ k ∈ N : Sk = S′

k

)
, (1.37)an easy 
omputation gives

z2 = 1/F (2). (1.38)Note that F (2) = 1 − [1/G(2)(0, 0)] with G(2)(0, 0) =
∑∞

n=0 p2n(0, 0) (see Spitzer [22℄, Se
tion 1).There is no simple expression for z1. In Se
tion 9.1 we will give an upper bound.7



1.4.2 Continuous timeNext we turn the dis
rete-time random walks S, S′ into 
ontinuous-time random walks S̃ = (St)t≥0and S̃′ = (S̃′
t)t≥0 by allowing them to make steps at rate 1, keeping the same p(·, ·). Then the
ollision lo
al time be
omes

Ṽ :=

∫ ∞

0
1{eSt= eS′

t}
dt. (1.39)For the analogous quantities z̃1 and z̃2, we have the following.Theorem 1.9. Assume (1.34). If p(·, ·) is strongly transient, then 0 < z̃2 < z̃1 < ∞.An easy 
omputation gives log z̃2 = 2/G(0, 0) with G(0, 0) =

∑∞
n=0 pn(0, 0). There is again nosimple expression for z̃1.1.4.3 Conje
tureWe 
lose with the following 
onje
ture.Conje
ture 1.10. The gaps in Theorems 1.8�1.9 are present also when p(·, ·) is transient but notstrongly transient.Random walks with zero mean and �nite varian
e are transient for d ≥ 3 and strongly transientfor d ≥ 5 (Spitzer [22℄, Se
tion 1). In a forth
oming paper by Birkner and Sun [4℄, the gap inTheorem 1.8 is proved for simple random walk on Z

d, d ≥ 4, and the proof is in prin
iple extendableto more general random walks. It is an adaptation of the fra
tional moment te
hnique developedby Derrida, Gia
omin, La
oin and Toninelli [11℄ in the 
ontext of pinning models. Note that simplerandom walk on Z
4 is just on the border of not being strongly transient. Thus, part of the above
onje
ture is already giving way.1.5 The gaps settle three 
onje
turesIn this se
tion we use Theorems 1.8�1.9 to prove the existen
e of an intermediate phase for three
lasses of intera
ting parti
le systems.1.5.1 Coupled bran
hing pro
essesTheorem 1.9 proves a 
onje
ture put forward in Greven [14℄, [15℄. Consider a spatial populationmodel, de�ned as the Markov pro
ess (ηt)t≥0 taking values in (N ∪ {0})Zd (
ounting the number ofindividuals at the di�erent sites of Z

d) evolving as follows:(1) Individuals migrate at rate 1 a

ording to a(·, ·).(2) A new individual is born at site x at rate bη(x).(3) One individual at site x dies at rate (1 − p)bη(x).8



(4) All individuals at site x die simultaneously at rate pb.Here, a(·, ·) is an irredu
ible random walk transition kernel on Z
d × Z

d, b ∈ (0,∞) is a birth-deathrate, p ∈ [0, 1] is a 
oupling parameter, while (1)�(4) o

ur independently at every x ∈ Z
d. The 
ase

p = 0 
orresponds to a 
riti
al bran
hing random walk, for whi
h the average number of individualsper site is preserved. The 
ase p > 0 is interesting be
ause the individuals des
ending from di�erentan
estors are no longer independent.A 
riti
al bran
hing random walk satis�es the following di
hotomy (where for simpli
ity we restri
tto the 
ase where a(·, ·) is symmetri
): if the initial 
on�guration η0 is drawn from a shift-invariantprobability distribution with �nite mean, then ηt as t → ∞ lo
ally dies out (�extin
tion�) when
a(·, ·) is re
urrent, but 
onverges to a non-trivial equilibrium (�survival�) when a(·, ·) is transient,both irrespe
tive of the value of b. In the latter 
ase, the equilibrium has the same mean as theinitial distribution and has all moments �nite.For the 
oupled bran
hing pro
ess with p > 0 there is a di
hotomy too, but it is 
ontrolled by asubtle interplay of a(·, ·), b and p: extin
tion holds when a(·, ·) is re
urrent, but also when a(·, ·) istransient and p is su�
iently large. Indeed, it is shown in Greven [14℄ that if a(·, ·) is transient, thenthere is a unique p∗ ∈ (0, 1) su
h that survival holds for p < p∗ and extin
tion holds for p > p∗.Re
all the 
riti
al values z̃1, z̃2 introdu
ed in Se
tion 1.4.2. Survival holds if E(exp[bpṼ ] | S̃) < ∞
S̃-a.s., i.e., if p < p1 with

p1 =
1

b
log z̃1. (1.40)This is shown by a size-biasing of the population in the spirit of Kallenberg [19℄. On the otherhand, survival with a �nite se
ond moment holds if and only if E(exp[bpṼ ]) < ∞, i.e., if and onlyif p < p2 with

p2 =
1

b
log z̃2. (1.41)Clearly, p∗ ≥ p1 ≥ p2. Theorem 1.9 shows that if a(·, ·) satis�es (1.34) and is strongly transient, then

p1 > p2, implying that there is an intermediate phase of survival with an in�nite se
ond moment.Theorem 1.8 
orre
ts an error in Birkner [1℄, Theorem 6. Here, a system of individuals living on
Z

d is 
onsidered subje
t to migration and bran
hing. Ea
h individual independently migrates atrate 1 a

ording to a random walk transition kernel a(·, ·), and bran
hes at a rate that dependson the number of individuals present at the same lo
ation. It is argued that this system has anintermediate phase in whi
h the numbers of individuals at di�erent sites tend to an equilibriumwith a �nite �rst moment but an in�nite se
ond moment. The proof is, however, based on a wrongrate fun
tion. Corollary 1.5 shows that the rate fun
tion 
laimed in Birkner [1℄, Theorem 6, mustbe repla
ed by that in (1.23), after whi
h the intermediate phase persists. This also a�e
ts [1℄,Theorem 5, whi
h uses [1℄, Theorem 6, to 
ompute z1 in Se
tion 1.4 and �nds an in
orre
t formula.As we will see in Se
tion 9.1, this formula a
tually is an upper bound for z1.1.5.2 Intera
ting di�usionsTheorem 1.9 proves a 
onje
ture put forward in Greven and den Hollander [16℄. Consider thesystem of intera
ting di�usions on [0,∞) de�ned by the following 
olle
tion of 
oupled sto
hasti
9



di�erential equations:
dXx(t) =

∑

y∈Zd

a(x, y)[Xy(t) − Xx(t)] dt +
√

bXx(t)2 dWx(t), x ∈ Z
d, t ≥ 0. (1.42)Here, a(·, ·) is an irredu
ible random walk transition kernel on Z

d × Z
d, b ∈ (0,∞) is a di�usionparameter, and ({Wx(t)}x∈Zd)t≥0 is a 
olle
tion of independent standard Brownian motions on R.The initial 
ondition is 
hosen su
h that {Xx(0)}x∈Zd is a shift-invariant and shift-ergodi
 random�eld on [0,∞) with mean Θ ∈ (0,∞) (the evolution preserves the mean).It was shown in [16℄, Theorems 1.4�1.6, that if a(·, ·) is symmetri
 and transient, then there exist

0 < b2 ≤ b∗ su
h that the system in (1.42) 
onverges to an equilibrium when 0 < b < b∗, andthis equilibrium has a �nite se
ond moment when 0 < b < b2 and an in�nite se
ond moment when
b2 ≤ b < b∗. It was 
onje
tured in [16℄, Conje
ture 1.8, that b∗ > b2. As explained in [16℄, Se
tion4.2, the gap in Theorem 1.9 settles this 
onje
ture (at least when a(·, ·) is strongly transient), with

b2 = log z̃2 and b∗ = log z̃1.1.5.3 Dire
ted polymers in random environmentsTheorem 1.8 disproves a 
onje
ture put forward in Monthus and Garel [20℄. Let a(·, ·) be a symmetri
and irredu
ible random walk transition kernel on Z
d × Z

d, let S = (Sk)
∞
k=0 be the 
orrespondingrandom walk, and let ξ = {ξ(x, n) : x ∈ Z

d, n ∈ N} be i.i.d. R-valued non-degenerate randomvariables satisfying
λ(β) := log E

(
exp[βξ(x, n)]

)
∈ R ∀ β ∈ R. (1.43)Put

en(ξ, S) := exp

[
n∑

k=1

{βξ(Sk, k) − λ(β)}

]
, (1.44)and set

Zn(ξ) := E[en(ξ, S)] =
∑

s1,...,sn∈Zd

[
n∏

k=1

p(sk−1, sk)

]
en(ξ, s), s = (sk)

∞
k=0, s0 = 0, (1.45)i.e., Zn(ξ) is the normalizing 
onstant in the probability distribution of the random walk S whosepaths are reweighted by en(ξ, S), whi
h is referred to as the �polymer measure�. The ξ(x, n)'sdes
ribe a random spa
e-time medium with whi
h S is intera
ting, with β playing the role of theintera
tion strength.It is well known that (Zn)n∈N is a non-negative martingale with respe
t to the family of sigma-algebras Fn := σ(ξ(x, k), x ∈ Z

d, 1 ≤ k ≤ n), n ∈ N. Hen
e
lim

n→∞
Zn = Z∞ ≥ 0 ξ − a.s., (1.46)with the event {Z∞ = 0} being ξ-trivial. One speaks of weak disorder if Z∞ > 0 ξ-a.s. and of strongdisorder otherwise. As shown in Comets and Yoshida [9℄, there is a unique 
riti
al value β∗ su
hthat weak disorder holds for β < β∗ and strong disorder holds for β > β∗. Moreover, in the weak10



disorder region the paths have a Gaussian s
aling limit under the polymer measure, while this isnot the 
ase in the strong disorder region.Re
all the 
riti
al values z1, z2 de�ned in Se
tion 1.4. Bolthausen [5℄ observed that
E
[
Z2

n

]
= E

[
exp

[
{λ(2β) − 2λ(β)} |{1 ≤ k ≤ n : Sk = S′

k}|
]]

, (1.47)where S and S′ are two independent random walks with transition kernel p(·, ·), and 
on
luded that
(Zn)n∈N is L2-bounded if and only if β < β2 with β2 ∈ (0,∞] the unique solution of

λ(2β2) − 2λ(β2) = z2. (1.48)Sin
e P(Z∞ > 0) ≤ E[Z∞]2/E[Z2
∞] and E[Z∞] = Z0 = 1, it follows that β < β2 implies weakdisorder, i.e., β∗ ≥ β2. By a sto
hasti
 representation of the size-biased law of Zn, it was shown inBirkner [2℄, Proposition 1, that in fa
t weak disorder holds if β < β1 with β1 ∈ (0,∞] the uniquesolution of

λ(2β1) − 2λ(β1) = z1, (1.49)i.e., β∗ ≥ β1. Sin
e β 7→ λ(2β) − 2λ(β) is stri
tly in
reasing, it follows from (1.48�1.49) andTheorem 1.8 that β1 > β2 when a(·, ·) satis�es (1.34) and is strongly transient and when ξ is su
hthat β2 < ∞. In that 
ase the weak disorder region 
ontains a subregion for whi
h (Zn)n∈N is not
L2-bounded. This disproves a 
onje
ture of Monthus and Garel [20℄, who argued that β2 = β∗.A similar 
on
lusion is rea
hed in a re
ent paper by Camanes and Carmona [6℄ with di�erentte
hniques. The latter paper 
onsiders only simple random walk, but in
ludes examples of ξ forwhi
h the gap is present also in d = 3 and d = 4.1.6 OutlineSe
tion 2 
olle
ts some preparatory fa
ts that are needed for the proofs of the main theorems,in
luding a lemma that 
ontrols the entropy asso
iated with the lo
ations of the large in
rements inthe renewal pro
ess. In Se
tion 3 and 4 we prove the large deviation upper, respe
tively, lower bound.The proof of the former is long (taking up more than half of the paper) and requires a somewhatlengthy 
onstru
tion with 
ombinatorial, fun
tional analyti
 and ergodi
 theoreti
 ingredients. Inparti
ular, extending the lower bound from ergodi
 to non-ergodi
 probability measures is te
hni
allyinvolved. The proofs of Theorems 1.2�1.4 are in Se
tions 5�7, of Theorem 1.6 in Se
tion 8, and ofTheorems 1.8�1.9 in Se
tion 9. Appendix A 
ontains a proof that the annealed and the quen
hedrate fun
tion are 
ontinuous under the trun
ation of the word length approximation.2 Preparatory fa
tsSe
tion 2.1 proves a 
ore lemma that is needed to 
ontrol the entropy of large in
rements in therenewal pro
ess. Se
tion 2.2 shows that the tail property of ρ is preserved under 
onvolutions.

11



2.1 A 
ore lemmaAs announ
ed at the end of Se
tion 1.3, we need to a

ount for the entropy that is asso
iated with thelo
ations of the large in
rements in the renewal pro
ess. This requires the following 
ombinatoriallemma.Lemma 2.1. Let ω = (ωl)l∈N be i.i.d. with P(ω1 = 1) = 1 − P(ω1 = 0) = p ∈ (0, 1), and let
α ∈ (1,∞). For N ∈ N, let

SN (ω) :=
∑

0<j1<···<jN <∞
ωj1

=···=ωjN
=1

N∏

i=1

(ji − ji−1)
−α (j0 = 0) (2.1)and put

lim sup
N→∞

1

N
log SN (ω) =: −φ(α, p) ω − a.s. (2.2)(the limit being ω-a.s. 
onstant by tail triviality). Then

lim
p↓0

φ(α, p)

α log(1/p)
= 1. (2.3)Proof. Let τN := min{l ∈ N : ωl = ωl+1 = · · · = ωl+N−1}. In (2.1), 
hoosing j1 = τN and

ji = ji−1 + 1 for i = 2, . . . , N , we see that SN (ω) ≥ τ−α
N . Sin
e

lim
N→∞

1

N
log τN → log(1/p) ω − a.s., (2.4)we have

φ(α, p) ≤ α log(1/p) ∀ p ∈ (0, 1). (2.5)To show that this bound is sharp in the limit as p ↓ 0, we estimate fra
tional moments of SN(ω).For any β ∈ (1/α, 1], using that (u + v)β ≤ uβ + vβ, u, v ≥ 0, we get
E

[
SN (ω)β

]
≤

∑

0<j1<···<jN<∞

E

[1{ωj1
=···=ωjN

=1}

N∏

i=1

(ji − ji−1)
−αβ

]

=
∑

0<j1<···<jN<∞

pN
N∏

i=1

(ji − ji−1)
−αβ

=
[
p ζ(αβ)

]N
,

(2.6)
where ζ(s) =

∑
n∈N

n−s, s > 1, is Riemann's ζ-fun
tion. Hen
e
E

[ 1

N
log SN (ω)

]
≤

1

Nβ
log E

[
SN (ω)β

]
≤

1

β

[
log p + log ζ(αβ)

]
. (2.7)Letting N → ∞, and using (2.2) together with Fatou's lemma, we obtain that

φ(α, p) ≥
1

β
[log(1/p) − log ζ(αβ)] ∀ β ∈ (1/α, 1]. (2.8)Now let p ↓ 0, followed by β ↓ 1/α to obtain the 
laim.12



Remark 2.2. Note that E[SN (ω)] = (pζ(α))N , but we expe
t that typi
ally SN (ω) ≈ pαN . This isveri�ed by bounding suitable non-integer moments of SN (ω)/pαN . Estimating non-integer momentsin situations when the mean is in
on
lusive is a useful te
hnique in various �elds of probability, see,e.g., Holley and Liggett [18℄ and Toninelli [24℄ and the dis
ussion and referen
es there. It hasre
ently been fruitfully applied by Toninelli [24℄ to pinning and 
opolymer models, and the proofabove is similar to that of Theorem 2.1 there.2.2 Convolution preserves polynomial tailThe following lemma will be needed in Se
tion 3.6. For m ∈ N, let ρ∗m denote the m-fold 
onvolutionof ρ.Lemma 2.3. Suppose that ρ satis�es ρ(n) ≤ Cρ n−α, n ∈ N, for some Cρ < ∞. Then
ρ∗m(n) ≤ (2αCρ ∨ 1)mα+1n−α ∀m,n ∈ N. (2.9)Proof. If n ≤ m, then the right-hand side of (2.9) is ≥ 1. So, let us assume that n > m. Then

ρ∗m(n) =
∑

x1,...,xm≥1
x1+···+xm=n

m∏

i=1

ρ(xi) ≤
n∑

j=1

∑

x1,...,xm≥1
x1+···+xm=n
xj=x1∨···∨xm

ρ(xj)

m∏

i6=j

ρ(xi)

≤ m Cρ ⌊n/m⌋−α
∑

x1,...,xm−1≥1

m−1∏

i=1

ρ(xi)

= m Cρ ⌊n/m⌋−α ≤ 2αCρ mα+1 n−α.

(2.10)
3 Upper boundThe following upper bound will be used in Se
tion 5 to derive the upper bound in the de�nition ofthe LDP.Proposition 3.1. For any Q ∈ P inv,fin(ẼN) and any ε > 0, there is an open neighbourhood O(Q) ⊂
P inv(ẼN) of Q su
h that

lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −Ifin(Q) + ε X − a.s. (3.1)Proof. It su�
es to 
onsider the 
ase ΨQ 6= ν⊗N. The 
ase ΨQ = ν⊗N, for whi
h Ifin(Q) = H(Q |

q⊗N
ρ,ν ) as is seen from (1.16), is 
ontained in the upper bound in Birkner [3℄, Lemma 8. Alternatively,by lower semi
ontinuity of Q′ 7→ H(Q′ | q⊗N

ρ,ν ), there is a neighbourhood O(Q) su
h that
inf

Q′∈O(Q)
H(Q′ | q⊗N

ρ,ν ) ≥ H(Q | q⊗N

ρ,ν ) − ε = Ifin(Q) − ε, (3.2)13



where O(Q) denotes the 
losure of O(Q) (in the weak topology), and we 
an use the annealedbound.In Se
tions 3.1�3.5 we �rst prove Proposition 3.1 under the assumption that there exist α ∈
(1,∞), Cρ < ∞ su
h that

ρ(n) ≤ Cρ n−α, n ∈ N, (3.3)whi
h is needed in Lemma 2.3. In Se
tion 3.6 we show that this 
an be repla
ed by (1.1). InSe
tions 3.1�3.4, we �rst 
onsider Q ∈ Perg,fin(ẼN) (re
all (1.28)). Here, we turn the heuristi
s fromSe
tion 1.3 into a rigorous proof. In Se
tion 3.5 we remove the ergodi
ity restri
tion. The proof islong and te
hni
al (taking up more than half of the paper).3.1 Step 1: Consequen
es of ergodi
ityWe will use the ergodi
 theorem to 
onstru
t spe
i�
 neighborhoods of Q ∈ Perg,fin(ẼN) that arewell adapted to formalize the strategy of proof outlined in our heuristi
 explanation of the maintheorem in Se
tion 1.3.Fix ε1, δ1 > 0. By the ergodi
ity of Q and Lemma 1.7, the event (re
all (1.9) and (1.27))
{

1

M
|K(M)| ∈ mQ + [−ε1, ε1]

}

∩

{
−

1

M
log Q(K(M)) ∈ mQH(ΨQ) + [−ε1, ε1]

}

∩

{
−

1

M
log Q(Y (1), . . . , Y (M)) ∈ H(Q) + [−ε1, ε1]

}

∩





1

M

|K(M)|∑

k=1

log ν((K(M))k) ∈ mQEΨQ

[
log ν(X1)

]
+ [−ε1, ε1]





∩

{
1

M

M∑

i=1

log ρ(τi) ∈ EQ

[
log ρ(τ1)

]
+ [−ε1, ε1]

}

(3.4)
has Q-probability at least 1−δ1/4 for M large enough (depending on Q), where |K(M)| is the lengthof the string of letters K(M). Hen
e, there is a �nite number A of senten
es of length M , denotedby

(za)a=1,...,A with za := (y(a,1), . . . , y(a,M)) ∈ ẼM , (3.5)
14



su
h that for a = 1, . . . , A,
|κ(za)| ∈

[
M(mQ − ε1),M(mQ + ε1)

]
,

Q(K(M) = κ(za)) ∈
[
exp[−M(mQH(ΨQ) + ε1)], exp[−M(mQH(ΨQ) − ε1)]

]
,

Q
(
(Y (1), . . . , Y (M)) = za

)
∈
[
exp[−M(H(Q) + ε1)], exp[−M(H(Q) − ε1)]

]
,

|κ(za)|∑

k=1

log ν((κ(za))k) ∈
[
M(mQEΨQ

[log ν(X1)] − ε1),M(mQEΨQ
[log ν(X1)] + ε1)

]
,

M∑

i=1

log ρ(|y(a,i)|) ∈
[
M(EQ[log ρ(τ1)] − ε1),M(EQ[log ρ(τ1)] + ε1)

]
,

(3.6)
and

A∑

a=1

Q
(
(Y (1), . . . , Y (M)) = za

)
≥ 1 −

δ1

2
. (3.7)Note that (3.7) and the third line of (3.6) imply that

A ∈
[
(1 − δ1) exp

[
M(H(Q) − ε1)

]
, exp

[
M(H(Q) + ε1)

]]
. (3.8)Abbreviate

A := {za, a = 1, . . . , A}. (3.9)Let
B :=

{
ζ(b), b = 1, . . . , B

}
=
{
κ(za), a = 1, . . . , A

} (3.10)be the set of strings of letters arising from 
on
atenations of the individual za's, and let
Ib :=

{
1 ≤ a ≤ A : κ(za) = ζ(b)

}
, b = 1, . . . , B, (3.11)so that |Ib| is the number of senten
es in A giving a parti
ular string in B. By the se
ond line of(3.6), we 
an bound B as

B ≤ exp
[
M(mQH(ΨQ) + ε1)

]
, (3.12)be
ause ∑B

b=1 Q(K(M) = ζ(b)) ≤ 1 and ea
h summand is at least exp[−M(mQH(ΨQ) + ε1)].Furthermore, we have
|Ib| ≤ exp

[
M(Hτ |K(Q) + 2ε1)

]
, b = 1, . . . , B, (3.13)sin
e

exp
[
− M(mQH(ΨQ) − ε1)

]
≥ Q

(
κ(Y (1), . . . , Y (M)) = ζ(b)

)

≥
∑

a∈Ib

Q
(
(Y (1), . . . , Y (M)) = za

)
≥ |Ib| exp

[
− M(H(Q) + ε1)

]
,(3.14)and H(Q) − mQH(ΨQ) = Hτ |K(Q) by (1.32). 15



3.2 Step 2: Good senten
es in open neighbourhoodsDe�ne the following open neighbourhood of Q (re
all (3.9))
O :=

{
Q′ ∈ P inv(ẼN) : Q′

|FM
(A ) > 1 − δ1

}
. (3.15)Here, Q(z) is shorthand for Q((Y (1), . . . , Y (M)) = z). For x ∈ EN and for a ve
tor of 
ut-points

(j1, . . . , jN ) ∈ N
N with 0 < j1 < · · · < jN < ∞ and N > M , let

ξN := (ξ(i))i=1,...,N =
(
x|(0,j1], x|(j1,j2], . . . , x|(jN−1,jN ]

)
∈ ẼN (3.16)(with (0, j1] short-hand notation for (0, j1] ∩ N, et
.) be the sequen
e of words obtained by 
utting

x at the positions ji, and let
RN

j1,...,jN
(x) :=

1

N

N−1∑

i=0

δ
θ̃i(ξN )per (3.17)be the 
orresponding empiri
al pro
ess. By (3.15),

RN
j1,...,jN

(x) ∈ O =⇒

#
{
1 ≤ i ≤ N − M :

(
x|(ji−1,ji], . . . , x|(ji+M−1,ji+M ]

)
∈ A

}
≥ N(1 − δ1) − M.

(3.18)Note that (3.18) implies that the senten
e ξN 
ontains at least
C := ⌊(1 − δ1)N/M⌋ − 1 (3.19)disjoint subsenten
es from the set A , i.e., there are 1 ≤ i1, . . . , iC ≤ N −M with ic − ic−1 ≥ M for

c = 1, . . . , C su
h that (
ξ(ic), ξ(ic+1), . . . , ξ(ic+M−1)

)
∈ A (3.20)(we impli
itly assume that N is large enough so that C > 1). Indeed, we 
an e.g. 
onstru
t the ic'siteratively as

i0 = −M,

ic = min
{
k ≥ ic−1 + M : a senten
e from A starts at position k in ξN

}
,

c = 1, . . . , C,

(3.21)and we 
an 
ontinue the iteration as long as cM + δ1N ≤ N . But (3.20) in turn implies that the
jic 's 
ut out of x at least C disjoint subwords from B, i.e.,

x|(jic ,jic+M ] ∈ B, c = 1, . . . , C. (3.22)3.3 Step 3: Estimate of the large deviation probabilityUsing Steps 1 and 2, we estimate (re
all (3.15))
P
(
RN ∈ O | X

)
=

∑

0<j1<···<jN<∞

1O (RN
j1,...,jN

(X)
) N∏

i=1

ρ(ji − ji−1) (3.23)16



PSfrag repla
ements �lling subsenten
es
good subsenten
esmedium ≈ ΨQ

X

Figure 2: Looking for good subsenten
es and �lling subsenten
es (see below (3.25)).from above as follows. Fix a ve
tor of 
ut-points (j1, . . . , jN ) giving rise to a non-zero 
ontributionin the right-hand side of (3.23). We think of this ve
tor as des
ribing a parti
ular way of 
utting Xinto a senten
e of N words. By (3.22), at least C (re
all 3.19) of the jc's must be 
ut-points wherea word from B is written on X, and these C subwords must be disjoint. As words in B arise from
on
atenations of senten
es from A , this means we 
an �nd
ℓ1 < · · · < ℓC , {ℓ1, . . . , ℓC} ⊂ {0, j1, . . . , jN} and ζ1, . . . , ζC ∈ A (3.24)su
h that

X|(ℓc,ℓc+|κ(ζc)|] = κ(ζc) =: η(c) ∈ B and ℓc ≥ ℓc−1 + |κ(ζc−1)|, c = 1, . . . , C − 1. (3.25)We 
all ζ1, . . . , ζC the good subsenten
es.Note that on
e we �x the ℓc's and the ζc's, this determines C + 1 �lling subsenten
es (some ofwhi
h may be empty) 
onsisting of the words between the good subsenten
es. See Figure 2 for anillustration. In parti
ular, this determines numbers m1, . . . ,mC+1 ∈ N su
h that m1 + · · ·+mC+1 =
N − CM , where mc is the number of words we 
ut between the (c − 1)-st and the c-th goodsubsenten
e (and mC+1 is the number of words after the C-th good subsenten
e).Next, let us �x good ℓ1 < · · · < ℓC and η(1), . . . , η(C) ∈ B, satisfying

X|(ℓc,ℓc+|η(c)|] = η(c), ℓc ≥ ℓc−1 + |η(c−1)|, c = 1, . . . , C. (3.26)To estimate how many di�erent 
hoi
es of (j1, . . . , jN ) may lead to this parti
ular ((ℓc), (η
(c))), wepro
eed as follows. There are at most

(
2Mε1

)C
exp

[
M
(
Hτ |K(Q) + 2ε1

)]C
≤ exp

[
N
(
Hτ |K(Q) + δ2

)] (3.27)possible 
hoi
es for the word lengths inside these good subsenten
es. Indeed, by the �rst line of(3.6), at most 2Mε1 di�erent elements of B 
an start at any given position ℓc and, by (3.13), ea
hof them 
an be 
ut in at most exp
[
M(Hτ |K(Q) + 2ε1)

] di�erent ways to obtain an element of A .In (3.27), δ2 = δ2(ε1, δ1,M) 
an be made arbitrarily small by 
hoosing M large and ε1, δ1 small.Furthermore, there are at most
(

N − C(M − 1)

C

)
≤ exp[δ3N ] (3.28)17



possible 
hoi
es of the mc's, where δ3 = δ3(δ1,M) 
an be made arbitrarily small by 
hoosing Mlarge and δ1 small.Next, we estimate the value of∏N
i=1 ρ(ji−ji−1) for any (j1, . . . , jN ) leading to the given ((ℓc), (η

(c))).In view of the �fth line of (3.6), we have
N∏

i=1

1{the i-th word falls inside the C good subsenten
es} ρ(ji − ji−1)

≤ exp
[
CM

(
EQ[log ρ(τ1)] + ε1

)]

≤ exp
[
N
(
EQ[log ρ(τ1)] + δ4

)]
,

(3.29)where δ4 = δ4(ε1, δ1,M) 
an be made arbitrarily small by 
hoosing M large and ε1, δ1 small. The�lling subsenten
es have to exa
tly �ll up the gaps between the good subsenten
es and so, for a given
hoi
e of (ℓc), (η(c)) and (mc), the 
ontribution to ∏N
i=1 ρ(ji − ji−1) from the �lling subsenten
es is∏C

c=1 ρ∗mc(ℓc − ℓc−1 − |η(c−1)|) (the term for c = 1 is to be interpreted as ρ∗m1(ℓ1), and ρ∗0 as δ0).By Lemma 2.3,
C∏

c=1

ρ∗mc
(
ℓc − ℓc−1 − |η(c−1)|

)

≤ (2αCρ ∨ 1)C

(
C∏

c=1

mα+1
c

)
C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α

≤ (2αCρ ∨ 1)C
(N − CM

G

)(α+1)C
C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α

≤ exp[Nδ5]

C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
,

(3.30)
where δ5 = δ(δ1,M) 
an be made arbitrarily small by 
hoosing M large and δ1 small. For these
ond inequality, we have used the fa
t that the produ
t ∏C

c=1 mα+1
c is maximal when all fa
torsare equal.Combining (3.23�3.30), we obtain

P
(
RN ∈ O | X

)
≤ exp

[
N
(
Hτ |K(Q) + EQ[log ρ(τ1)] + δ2 + δ3 + δ4 + δ5

)]

×
∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
.

(3.31)Combining (3.31) with Lemma 3.2 below, and re
alling the identity in (1.32), we obtain the resultin Proposition 3.1 for ρ satisfying (3.3), with O de�ned in (3.15) and ε = δ2 + δ3 + δ4 + δ5 + δ6.Note that ε 
an be made arbitrarily small by 
hoosing ε1, δ1 small and M large.
18



3.4 Step 4: Cost of �nding good senten
esLemma 3.2. For ε1, δ1 > 0 and M ∈ N,
lim sup
N→∞

1

N
log




∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α




≤ −αmQH(ΨQ | ν⊗N) + δ6 a.s., (3.32)where δ6 = δ(ε1, δ1,M) 
an be made arbitrarily small by 
hoosing M large and ε1, δ1 small.Proof. Note that, by the fourth line of (3.6), for any η ∈ B (re
all (3.10)) and k ∈ N,
P
(
η starts at position k in X

)
≤ exp

[
M
(
mQEΨQ

[log ν(X1)] + ε1

)]
. (3.33)Combining this with (3.12), we get

P
(some element of B starts at position k in X

)

≤ exp
[
M
(
mQEΨQ

[log ν(X1)] + ε1

)]
× exp

[
M
(
mQH(ΨQ) + ε1

)]

= exp
[
− M

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
,

(3.34)where we use (1.26).Next, we 
oarse-grain the sequen
e X into blo
ks of length
L := ⌊M(mQ − ε1)⌋, (3.35)and 
ompare the 
oarse-grained sequen
e with a low-density Bernoulli sequen
e. To this end, de�nea {0, 1}-valued sequen
e (Al)l∈N indu
tively as follows. Put A0 := 0, and, for l ∈ N given that

A0, A1, . . . , Al−1 have been assigned values, de�ne Al by distinguishing the following two 
ases:(1) If Al−1 = 0, then
Al :=





1, if in X there is a word η ∈ B starting in ((l − 1)L, lL],
0, otherwise. (3.36)(2) If Al−1 = 1, then

Al :=





1,
if in X there are words η, η′ ∈ B starting in ((l − 2)L, (l − 1)L],respe
tively, ((l − 1)L, lL] and o

urring disjointly,

0, otherwise. (3.37)Put
p := L exp

[
− M

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
. (3.38)19



Then we 
laim
P(A1 = a1, . . . , An = an) ≤ pa1+···+an , n ∈ N, a1, . . . , an ∈ {0, 1}. (3.39)In order to verify (3.39), �x a1, . . . , an ∈ {0, 1} with a1 + · · · + an = m. By 
onstru
tion, for theevent in the left-hand side of (3.39) to o

ur there must be m non-overlapping elements of B at
ertain positions in X. By (3.34), the o

urren
e of any m �xed starting positions has probabilityat most

exp
[
− mM

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
, (3.40)while the 
hoi
e of the al's di
tates that there are at most Lm possibilities for the starting pointsof the m words.By (3.39), we 
an 
ouple the sequen
e (Al)l∈N with an i.i.d. Bernoulli(p)-sequen
e (ωl)l∈N su
h that

Al ≤ ωl ∀ l ∈ N a.s. (3.41)(Note that (3.39) guarantees the existen
e of su
h a 
oupling for any �xed n. In order to extendthis existen
e to the in�nite sequen
e, observe that the set of fun
tions depending on �nitely many
oordinates is dense in the set of 
ontinuous in
reasing fun
tions on {0, 1}N, and use the results inStrassen [23℄.)Ea
h admissible 
hoi
e of ℓ1, . . . , ℓC in (3.32) leads to a C-tuple i1 < · · · < iC su
h that Ai1 = · · · =
AiC = 1 (sin
e it 
uts out non-overlapping words, whi
h is 
ompatible with (3.36�3.37)), and forany su
h (i1, . . . , iC) there are at most LC di�erent admissible 
hoi
es of the ℓc's. Thus, we have

∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
≤ LCL−α

∑

0<i1<···<iC<∞
Ai1

=···=AiC
=1

C∏

c=1

(ic − ic−1)
−α. (3.42)Using (3.3) and (3.19), and re
alling the de�nition of φ(α, p) in (2.2), we have

lim sup
N→∞

1

N
log [ r.h.s. (3.42) ] ≤

1 − δ1

M

(
log
(
MmQ

)
− log Cρ − φ(α, p)

)
ω − a.s. (3.43)From (3.38) we know that log(1/p) ∼ M(mQH(ΨQ | ν⊗N)−2ε1) as M → ∞ and so, by Lemma 2.1,we have r.h.s. (3.43) ≤ −(1 − ε2)α

(
mQH(ΨQ | ν⊗N) − 2ε1

) (3.44)for any ε2 ∈ (0, 1), provided M is large enough. This 
ompletes the proof of Lemma 3.2, and hen
eof Proposition 3.1 for Q ∈ Perg,fin(ẼN).3.5 Step 5: Removing the assumption of ergodi
itySe
tions 3.1�3.4 
ontain the main ideas behind the proof of Proposition 3.1. In the present se
tionwe extend the bound from Perg,fin(ẼN) to P inv,fin(ẼN). This requires setting up a variant of theargument in Se
tions 3.1�3.4 in whi
h the ergodi
 
omponents of Q are �approximated with a
ommon length s
ale on the letter level�. This turns out to be te
hni
ally involved and to fall apartinto 6 substeps. 20



Let Q ∈ P inv,fin(ẼN) have a non-trivial ergodi
 de
omposition
Q =

∫

Perg( eEN)
Q′ WQ(dQ′), (3.45)where WQ is a probability measure on Perg(ẼN) (Georgii [13℄, Proposition 7.22). We may assumew.l.o.g. that H(Q | q⊗N

ρ,ν ) < ∞, otherwise we 
an simply employ the annealed bound. Thus, WQ isin fa
t supported on Perg,fin(ẼN) ∩ {Q′ : H(Q′ | q⊗N
ρ,ν ) < ∞}.Fix ε > 0. In the following steps, we will 
onstru
t an open neighbourhood O(Q) ⊂ P inv(ẼN) of Qsatisfying (3.1) (for te
hni
al reasons with ε repla
ed by some ε′ = ε′(ε) that be
omes arbitrarilysmall as ε ↓ 0).3.5.1 PreliminariesObserving that

mQ =

∫

Perg( eEN)
mQ′ WQ(dQ′) < ∞, H(Q|q⊗N

ρ,ν ) =

∫

Perg( eEN)
H(Q′|q⊗N

ρ,ν )WQ(dQ′) < ∞, (3.46)we 
an �nd K0,K1,m
∗ > 0 and a 
ompa
t set

C ⊂ P inv(ẼN) ∩ supp(WQ) ∩ {Q : H(·|q⊗N

ρ,ν ) ≤ K0} (3.47)su
h that
sup{H(ΨP | ν⊗N) : P ∈ C } ≤ K1, (3.48)
sup{mP : P ∈ C } ≤ m∗, (3.49)the family {LP (τ1) : P ∈ C } is uniformly integrable, (3.50)
WQ(C ) ≥ 1 − ε/2, (3.51)∫

C

H(Q′|q⊗N

ρ,ν )WQ(dQ′) ≥ H(Q|q⊗N

ρ,ν ) − ε/2, (3.52)
∫

C

mQ′H(ΨQ′ |ν⊗N)WQ(dQ′) ≥ mQH(ΨQ|ν
⊗N) − ε/2. (3.53)In order to 
he
k (3.50), observe that EQ[τ1] < ∞ implies that there is a sequen
e (cn) with

limn→∞ cn = ∞ su
h that
EQ

[
τ11{τ1≥cn}

]
≤

6

π2n3

ε

6
, n ∈ N. (3.54)Put

Ân := {Q′ ∈ P inv(ẼN) : EQ′

[
τ11{τ1≥cn}

]
> 1/n} (3.55)and A := ∩n∈N(Ân)c. Ea
h Ân is open, hen
e A is 
losed, and by the Markov inequality we have

WQ

({
Q′ : EQ′

[
τ11{τ1≥cn}

]
> 1/n

})
≤ nEQ

[
τ11{τ1≥cn}

]
≤

6

π2n2

ε

6
. (3.56)Thus,

WQ(Ac) = WQ

(
∪n∈N(Ân)c

)
≤

ε

6

∑

n∈N

6

π2n2
=

ε

6
. (3.57)21



This implies that the mapping
Q′ 7→ mQ′H(ΨQ′ |ν⊗N) is lower semi
ontinuous on C . (3.58)Indeed, if w − limn→∞ Q′

n = Q′′ and (Q′
n) ⊂ C , then limn→∞ EQ′

n
[τ1] = limn→∞ mQ′

n
= mQ′′ =

EQ′′ [τ1] and w − limn→∞ ΨQ′
n

= ΨQ′′ by uniform integrability (see Birkner [3℄, Remark 7).Furthermore, we 
an �nd N0, L0 ∈ N with L0 ≤ N0 and a �nite set W̃ ⊂ ẼN0 su
h that the followingholds. Let
W :=

{
πL0(θ

iκ(ζ)) : ζ = (ζ(1), . . . , ζ(N0)) ∈ W̃ , 0 ≤ i < |ζ(1)|
} (3.59)be the set of words of length L0 obtained by 
on
atenating senten
es from W̃ , possibly shiftingthe �origin� inside the �rst word and restri
ting to the �rst L0 letters. Then for all P ∈ D ⊂

P inv,fin(ẼN) ∩ C that satisfy
∑

ζ∈fW

P (ζ) ≥ 1 −
ε

3c⌈3/ε⌉
, (3.60)

1

N0

∑

ζ∈fW

P (ζ) log
P (ζ)

q⊗N0
ρ,ν (ζ)

≥ H(P | q⊗N

ρ,ν ) − ε/2, (3.61)
1

L0

∑

w∈W

ΨP (w) log
ΨP (w)

ν⊗L0(w)
≥ H(ΨP | ν⊗N) − ε/2, (3.62)the following inequalities hold:

WQ(D) ≥ 1 − 3ε/4, (3.63)∫

D

H(P | q⊗N

ρ,ν )WQ(dP ) ≥ H(Q | q⊗N

ρ,ν ) − 3ε/4, (3.64)
∫

D

mP H(ΨP |ν
⊗N)WQ(dP ) ≥ mQH(ΨQ | ν⊗N) − 3ε/4. (3.65)We may 
hoose the set W̃ in su
h a way that

δfW
:= min{q⊗N0

ρ,ν (ζ) : ζ ∈ W̃} ∧
min{ν⊗L0(ξ) : ξ ∈ W}

max{|ζ(1)| : ζ ∈ W̃}
> 0. (3.66)3.5.2 Approximating with a given length s
ale on the letter levelFor δ > 0 and L ∈ N, we say that P ∈ P inv,fin(ẼN) 
an be (δ, L)-approximated if there exists a �nitesubset AP ⊂ Ẽ⌈L/mP ⌉ of �P -typi
al� senten
es, ea
h 
onsisting of ≈ L/mP words, su
h that

P|F⌈L/mP ⌉
(AP ) > 1 −

δ

2
δfW

(
min

{
P (ζ) : ζ ∈ W̃ , P (ζ) > 0

}
∧ min

{
ΨP (ξ) : ξ ∈ W,ΨP (ξ) > 0

})(3.67)
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and, for all z = (y(1), . . . , y(⌈L/mP ⌉)) ∈ AP ,
P (z) ∈

[
exp

[
− ⌈L/mP ⌉(H(Q) + δ)

]
, exp

[
− ⌈L/mP ⌉(H(Q) − δ)

]]
,

|κ(z)| ∈ [L(1 − δ), L(1 + δ)],

P
(
K(⌈L/mP ⌉) = z

)
∈
[
exp

[
− L(H(ΨQ) + δ)

]
, exp[−L(H(ΨQ) − δ)

]]
,

|κ(z)|∑

k=1

log ν(κ(z)k) ∈ [L(1 − δ), L(1 + δ)] EΨP

[
log ν(X1)

]
,

⌈L/mP ⌉∑

i=1

log ρ(|y(i)|) ∈ [(L/mP )(1 − δ), (L/mP )(1 + δ)] EP

[
log ρ(τ1)

]
,

|{z′ ∈ AP : κ(z) = κ(z′)}| ≤ exp
[
(L/mP )(Hτ |K(P ) + δ)

]
.

(3.68)
By the third and the �fth line of (3.68) we have, using (1.26),

P
(
X starts with some element of κ(AP )

)
≤ exp

[
− L(1 − 2δ)H

(
ΨQ | ν⊗N

)]
. (3.69)For P that 
an be (δ, L)-approximated, de�ne an open neighbourhood of P via

U(δ,L)(P ) :=

{
P ′ ∈ P inv(ẼN) :

P ′(z)

P (z)
∈ (1 − δ, 1 + δ) ∀ z ∈ AP

}
, (3.70)where AP = AP (δ, L) is the set from (3.67�3.68). By the results of Se
tion 3.1 and the above, forgiven P ∈ Perg,fin(ẼN) ∩ C and δ0 > 0 there exist δ′ ∈ (0, δ0) and L0 su
h that

∀L′ ≥ L0 : P 
an be (δ′, L′)-approximated. (3.71)Assume that a given P ∈ D 
an be (δ, L)-approximated for some L su
h that ⌈L/mP ⌉ ≥ N0. We
laim that then for any P ′ ∈ D ∩ U(δ,L)(P ),
∀ ζ ∈ W̃ : P ′(ζ) ≤

{
(1 + 2δ)P (ζ) if P (ζ) > 0,

min{q⊗N0
ρ,ν (ζ ′) : ζ ′ ∈ W̃} otherwise, (3.72)

∀ ξ ∈ W : mP ′ΨP ′(ξ) ≤

{
(1 + 2δ)mP ΨP (ξ) if ΨP (ξ) > 0,

min{ν⊗L0(ξ′) : ξ′ ∈ W} otherwise, (3.73)
mP ′ ≥ (1 − 3δ)mP . (3.74)To verify (3.72), note that, for ζ ∈ W̃ ,

P ′(ζ) ≤
∑

z∈AP : πN0
(z)=ζ

P ′(z) +
∑

z∈ eE⌈L/mP ⌉\AP : πN0
(z)=ζ

P ′(z)

≤ (1 + δ)
∑

z∈AP :πN0
(z)=ζ

P (z) + P ′
(
Ẽ⌈L/mP ⌉ \ AP

)

≤ (1 + δ)
[
P (ζ) +

δ

2

(
min

{
P (ζ) : ζ ∈ W̃ , P (ζ) > 0

}
∧ min{q⊗N0

ρ,ν (ζ) : ζ ∈ W̃}
)]

.23



To verify (3.73), observe that, for ξ ∈ W (re
all the de�nition of ΨP ′ from (1.10)),
mP ′ΨP ′(ξ) =

∑

ζ∈fW

P ′(ζ)

|ζ(1)|−1∑

i=0

1{ξ}(πL0(θ
iκ(ζ))

)

≤ (1 + δ)mP ΨP (ξ) +
∑

ζ∈fW : P (ζ)=0

|ζ(1)|P ′(ζ)

(3.75)and that the sum in the se
ond line above is bounded by
max
η∈fW

|η(1)|P ′
(
ẼN0 \ AP

)
≤ (1 + δ)

δ

2

(
min

{
ΨP (ξ) : ξ ∈ W,ΨP (ξ) > 0

}
∧ min{ν⊗L0(ξ′) : ξ′ ∈ W}

)
.(3.76)Lastly, to verify (3.74), note that

P ′(ζ) ≥ (1 − 2δ)P (ζ) ∀ ζ ∈ W̃ (3.77)(whi
h 
an be proved in the same way as (3.72)), so that
mP ′ =

∑

y∈ eE

|y|P ′(y) ≥
∑

ζ∈fW

|ζ(1)|P ′(ζ) ≥ (1 − 2δ)
∑

ζ∈fW

|ζ(1)|P (ζ). (3.78)Furthermore,
mP ≤

∑

ζ∈fW

|ζ(1)|P (ζ) + c⌈3/δ⌉P
(
ẼN0 \ Ẽ

)
+

∑

y eE : |y|>c⌈3/δ⌉

|y|P (y). (3.79)Observing that the se
ond and the third term on the right-hand side are ea
h at most δ/3, we �ndthat (3.78�3.79) imply (3.74).Finally, observe that (3.72�3.74) imply that, for any P,P ′ ∈ D su
h that P 
an be (δ, L)-approximatedfor some L with ⌈L/mP ⌉ ≥ N0 and P ′ ∈ U(δ,L)(P ),
H(P ′ | q⊗N

ρ,ν ) ≤ H(P | q⊗N

ρ,ν ) + 2K0δ + ε/2, (3.80)
mP ′H(ΨP ′ | ν⊗N) ≤ mP H(ΨP | ν⊗N) + 2K1δ + ε/2. (3.81)Here, (3.80) follows from the observation

H(P ′ | q⊗N

ρ,ν ) −
ε

2

≤
1

N0

∑

ζ∈fW

P ′(ζ) log
P ′(ζ)

q⊗N0
ρ,ν (ζ)

≤
1 + 2δ

N0

∑

ζ∈fW

P (ζ) log
(1 + 2δ)P (ζ)

q⊗N0
ρ,ν (ζ)

+
1

N0

∑

ζ∈fW :P (ζ)=0

P ′(ζ) log
min{q⊗N0

ρ,ν (ζ ′) : ζ ′ ∈ W̃}

q⊗N0
ρ,ν (ζ)

≤ (1 + 2δ)H(P | q⊗N

ρ,ν ) +
1 + 2δ

N0
log(1 + 2δ).

(3.82)
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Similarly, observing that
mP ′

∑

ξ∈W

ΨP ′(ξ) log
mP ′ΨP ′(ξ)

mP ′ν⊗L0(ξ)

≤ (1 + 2δ)mP

∑

ξ∈W

ΨP (ξ) log
(1 + 2δ)mP ΨP (ξ)

(1 − 3δ)mP ν⊗L0(ξ)
+ mP ′

∑

ξ∈W : ΨP (ξ)=0

ΨP ′(ξ) log
min{ν⊗L0(ξ′) : ξ′ ∈ W}

ν⊗L0(ξ)

≤ (1 + 2δ)L0mP H(ΨP | ν⊗N) + (1 + 2δ)m∗ log(1 + 6δ), (3.83)we obtain (3.81) in view of (3.62).3.5.3 Approximating the ergodi
 de
ompositionIn the previous subse
tion, we have approximated a given P ∈ Perg,fin, i.e., we have 
onstru
teda 
ertain neighbourhood of P w.r.t. the weak topology, whi
h requires only 
onditions on thefrequen
ies of senten
es whose 
on
atenations are ≈ L letters long. While the required L will ingeneral vary with P , we now want to 
onstru
t a 
ompa
t C ′ ⊂ C su
h that WQ(C ′) is still 
loseto 1 and all P ∈ C ′ 
an be approximated on the same s
ale L (on the letter level). To this end, let
Dε′,L′ :=

{
P ∈ D : P 
an be (ε′, L′)-approximated}. (3.84)By (3.71), we have ⋃

ε′∈(0,ε/2)

L′∈N

Dε′,L′ = Perg,fin(ẼN) ∩ C , (3.85)so, in view of (3.51�3.53), we 
an 
hoose
0 < ε1 <

ε

8(1 ∨ K0 ∨ K1)
(3.86)and L ∈ N su
h that

WQ(Dε1,L) ≥ 1 − ε, (3.87)∫

Dε1,L

H(Q′ | q⊗N

ρ,ν )WQ(dQ′) ≥ H(Q | q⊗N

ρ,ν ) − ε, (3.88)
∫

Dε1,L

mQ′H(ΨQ′ | ν⊗N)WQ(dQ′) ≥ mQH(ΨQ | ν⊗N) − ε. (3.89)For P ∈ Dε1,L, let
U ′(P ) :=

{
P ′ ∈ P inv(ẼN) :

P ′(z)

P (z)
∈
(
1 −

ε1

2
, 1 +

ε1

2

)
∀ z ∈ AP

}
, (3.90)where AP is the set from (3.67�3.68) that appears in the de�nition of U(ε1,L)(P ). Note that

U ′(P ) ⊂ U(ε1,L)(P ). Indeed, infP∈Dε1,L
dist(U ′(P ),U(ε1,L)(P )c) > 0 if we metrize the weak topology.Consequently,

C
′ := C ∩ ∪P∈Dε1,L

U ′(P )
(
⊃ Dε1,L

) (3.91)25



is 
ompa
t and satis�es WQ(C ′) ≥ 1 − ε, and
C

′ ⊂
⋃

P∈Dε1,L

U(ε1,L)(P ) (3.92)is an open 
over. By 
ompa
tness there exist R ∈ N and (pairwise di�erent) Q1, . . . , QR ∈
Perg,fin(ẼN) ∩ C su
h that

U(ε1,L)(Q1) ∪ · · · ∪ U(ε1,L)(QR) ⊃ C
′, (3.93)where U(ε1,L)(Qr) is of the type (3.70) with a set Ar ⊂ ẼMr satisfying (3.67�3.68) with P repla
edby Qr, and Mr = ⌈L/mQr⌉.For z ∈ ∪n∈NẼn 
onsider the probability measure on [0, 1] given by µQ,z(B) := WQ({Q′ ∈

Perg,fin(ẼN) : Q′(z) ∈ B}), B ⊂ [0, 1] measurable. Observing that
R⋃

r=1

⋃

z∈Ar

{
u ∈ [0, 1] : u is an atom of µQ,z

} (3.94)is at most 
ountable, we 
an �nd ε2 ∈ [ε1, ε1 + ε2
1) (note that still ε2 < ε) and δ̃ > 0 su
h that

WQ

({
Q′ ∈ Perg,fin(ẼN) :

Q′(z)/Qr(z) ∈ [1 − ε2 − δ̃, 1 − ε2 + δ̃] ∪ [1 + ε2 − δ̃, 1 + ε2 + δ̃]for some r ∈ {1, . . . , R} and z ∈ Ar

})

≤
ε

1 ∨ K0 ∨ m∗K1
. (3.95)De�ne �disjointi�ed� versions of the U(ε,L)(Qr) as follows. For r = 1, . . . , R, put iteratively

Ũr :=

{
Q′ ∈ P inv(ẼN) :

Q′(z) ∈ Qr(z)(1 − ε2, 1 + ε) for all z ∈ Ar and for ea
h r′ < r thereis z′ ∈ Ar′ su
h that Q′(z′) 6∈ Qr′(z
′)[1 − ε2 − δ̃, 1 + ε2 + δ̃]

}
.(3.96)It may happen that some of the Ũr are empty or satisfy WQ(Ũr) = 0. We then (silently) removethese and re-number the remaining ones. Note that ea
h Ũr is an open subset of P inv(ẼN) and

WQ

(
∪R

r=1 Ũr

)
=

R∑

r=1

WQ(Ũr) ≥ 1 − 2ε, (3.97)sin
e WQ

(
C ′ \ ∪R

r=1Ũr

)
≤ ε.For r = 1, . . . , R, we have, using (3.80�3.81) and the 
hoi
e of ε2 (≤ 2ε1),

WQ(Ũr ∩ D)
(
H(Qr | q⊗N

ρ,ν ) + ε
)

≥

∫

eUr∩D

H(Q′ | q⊗N

ρ,ν )WQ(dQ′), (3.98)
WQ(Ũr ∩ D)

(
mQrH(ΨQr | ν⊗N) + ε

)
≥

∫

eUr∩D

mQ′H(ΨQ′ | ν⊗N)WQ(dQ′), (3.99)so that altogether
R∑

r=1

WQ(Ũr)
{

H(Qr | q⊗N

ρ,ν ) + (α − 1)mQrH(ΨQr | ν⊗N)
}

≥ H(Q | q⊗N

ρ,ν ) + (α − 1)mQH(ΨQ | ν⊗N) − (3 + 3α)ε.

(3.100)26



3.5.4 More layers: long senten
es with the right pattern frequen
iesFor z ∈ ∪n∈NẼn and ξ = (ξ(1), . . . , ξ(fM )) ∈ ẼM (with M > |z|), let
freqz(ξ) =

1

M

∣∣{1 ≤ i ≤ M − |z| : (ξ(i), . . . , ξ(i+|z|−1)) = z}
∣∣ (3.101)be the empiri
al frequen
y of z in ξ. Note that, for any P ∈ Perg,fin(ẼN), z ∈ ∪n∈NẼn and ε > 0,we have

lim
M→∞

P
({

ξ ∈ ẼM : freqz(ξ) ∈ P (z)(1 − ε, 1 + ε)
})

= 1 (3.102)and
lim

M→∞
P
({

ξ ∈ ẼM : |κ(ξ)| ∈ M(mP − ε,mP + ε)
})

= 1. (3.103)For M̃ ∈ N and r ∈ {1, . . . , R}, put
V

r,fM
:=

{
ξ ∈ Ẽ

fM :

|κ(ξ)| ∈ M̃(mQr − ε,mQr + ε), freqz(ξ) ∈ Qr(z)(1 − ε2, 1 + ε2) for all z ∈ Ar, and for ea
h
r′ < r there is a z′ ∈ Ar′ su
h that freqz′(ξ) 6∈ Qr′(z

′)[1 − ε2 − δ̃, 1 + ε2 + δ̃]

}
.(3.104)Note that when |E| < ∞, also |V

r,fM
| < ∞. Furthermore, V

r,fM
∩ V

r′,fM
= ∅ for r 6= r′. For ξ ∈ V

r,fM
,we have

∣∣∣
{
1 ≤ i ≤ M̃ − Mr + 1:

(
ξ(i), ξ(i+1), . . . , ξ(i+Mr−1)

)
∈ Ar

}∣∣∣ ≥ M̃(1 − 2ε), (3.105)in parti
ular, there are at least Kr := ⌊M̃ (1 − 3ε)/Mr⌋ elements z1, . . . , zKr ∈ Ar (not ne
essarilydistin
t) appearing in this order as disjoint subwords of ξ. The zk's 
an for example be 
onstru
tedin a �greedy� way, parsing ξ from left to right as in Se
tion 3.2 (see, in parti
ular, (3.21)). Thisimplies, in parti
ular, that
fM∏

i=1

ρ(|ξ(i)|) ≤
Kr∏

k=1

∏

w in zk

ρ(|w|) ≤
(

exp
[
(1 − ε)M̃rEQr [log ρ(τ1)]

])Kr

≤ exp
[
(1 − 4ε)M̃EQr [log ρ(τ1)]

]
(3.106)if M̃ is large enough. Furthermore, for ea
h r ∈ {1, . . . , R} and η ∈ V

r,fM
, we have

∣∣{ζ ∈ V
r,fM

: κ(ζ) = κ(η)
}∣∣ ≤ exp

[
M̃(Hτ |K(Qr) + δ1)

]
, (3.107)where δ1 
an be made arbitrarily small by 
hoosing ε small. (Note that the quantity on the left-handside is the number of ways in whi
h κ(η) 
an be �re-
ut� to obtain another element of V

r,fM
.) Inorder to 
he
k (3.107), we note that any ζ ∈ V

r,fM
must 
ontain at least Kr disjoint subsenten
esfrom Ar, and ea
h z ∈ Ar ⊂ ẼMr satis�es |κ(z)| ≥ L. Hen
e there are at most

(
M̃(mQr + ε) − Kr(L − 1)

Kr

)
≤ 24εfMmQr ≤ 24εm∗ fM (3.108)27




hoi
es for the positions in the letter sequen
e κ(η) where the 
on
atenations of the disjoint sub-senten
es from Ar 
an begin, and there are at most
(

M̃ − Kr(Mr − 1)

Kr

)
≤ 23εfM (3.109)
hoi
es for the positions in the word sequen
e ζ where the subsenten
es from Ar 
an begin.By 
onstru
tion (re
all the last line of (3.68)), ea
h z ∈ Ar 
an be �re-
ut� in not more than

exp[(L/mQr)(Hτ |K(Qr) + ε)] many ways. Combining these observations with the fa
t that
(

exp
[
(L/mQr)(Hτ |K(Qr) + ε)

])Kr

≤ exp
[ M̃

Mr
Mr(Hτ |K(Qr) + ε)

]
, (3.110)we get (3.107) with δ1 := ε + 3ε log 2 + 4εm∗ log 2.We see from (3.102�3.103) and the de�nitions of Ũr and V

r,fM
that, for any ε > 0

⋃

fM∈N

{
P ∈ Ũr : P (V

r,fM
) > 1 − ε

}
= Ũr. (3.111)Hen
e we 
an 
hoose M̃ so large that

WQ

({
P ∈ Ũr : P (V

r,fM
) > 1 −

ε

3

})
> WQ(Ũr)

(
1 −

ε

2

)
, r = 1, . . . , R. (3.112)For M ′ > M̃ and r = 1, . . . , R, put

Wr,M ′ :=
{
ζ ∈ ẼM ′

: freqV
r, fM

(ζ) > 1 − ε/2
}
. (3.113)Note that for r 6= r′ (be
ause V

r,fM
∩ V

r′,fM
= ∅) there 
annot be mu
h overlap between ζ ∈ Wr,M ′and η ∈ Wr′,M ′ :

max{k : k-su�x of ζ = k-pre�x of η} ≤ εM ′ (3.114)(here, the k-pre�x of η ∈ Ẽn, k < n, 
onsists of the �rst k words, the k-su�x of the last k words).To see this, note that any subsequen
e of length k of ζ must 
ontain at least (k−εM ′/2)+ positionswhere a senten
e from V
r,fM

starts, and any subsequen
e of length k of η must 
ontain at least
(k − εM ′/2)+ positions where a senten
e from V

r′,fM
starts, so any k appearing in (3.114) mustsatisfy 2(k − εM ′/2)+ ≤ k, whi
h enfor
es k ≤ εM ′. Now, (3.114) implies that we may 
hoose M ′so large that for r = 1, . . . , R,ea
h ζ ∈ Wr,M ′ 
ontains at least (1 − ε)

M ′

M̃
disjoint subsenten
es from V

r,fM
. (3.115)For P ∈ Perg,fin(ẼN) with P (V

r,fM
) > 1 − ε/3 we have

lim
M ′→∞

P (Wr,M ′) = 1, (3.116)and hen
e
⋃

M ′>fM

{
P ∈ Ũr : P (Wr,M ′) > 1 − ε

}
⊃
{
P ∈ Ũr : P (V

r,fM
) > 1 − ε/3

}
, (3.117)28



and so we 
an 
hoose M ′ so large that
WQ

({
P ∈ Ũr : P (Wr,M ′) > 1 − ε

})
> WQ(Ũr)(1 − ε), r = 1, . . . , R. (3.118)Now de�ne

O(Q) :=
{

Q′ ∈ P inv(ẼN) : Q′(Wr,M ′) > WQ(Ũr)(1 − 2ε), r = 1, . . . , R
}

. (3.119)Note that O(Q) is open in the weak topology on P inv(ẼN), sin
e it is de�ned in terms of requirementson 
ertain �nite marginals of Q′, and that for r = 1, . . . , R,
Q(Wr,M ′) =

∫

Perg( eEN)
Q′(Wr,M ′)WQ(dQ′) ≥

∫

eUr

Q′(Wr,M ′)WQ(dQ′) ≥
(
1 − ε

)2
WQ(Ũr) (3.120)by (3.118), so that in fa
t Q ∈ O(Q).3.5.5 Estimating the large deviation probability: good loops and �lling loopsConsider a 
hoi
e of �
ut-points� j1 < · · · < jN as appearing in the sum in (3.23). Note that, bythe de�nition of O(Q) (re
all (3.16�3.17)),

RN
j1,...,jN

(X) ∈ O(Q) (3.121)enfor
es
∣∣{1 ≤ i ≤ N−M ′ : (X|(ji−1,ji], . . . ,X|(ji+M′−1,ji+M′ ]) ∈ Wr,M ′

}∣∣ ≥ NWQ(Ũr)(1−3ε), r = 1, . . . , R,(3.122)when N is large enough. This fa
t, together with (3.114), enables us to pi
k at least
J :=

R∑

r=1

⌈(1 − 4ε)N/M ′⌉WQ(Ũr) (3.123)subsenten
es ζ1, . . . , ζJ o

urring as disjoint subsenten
es in this order on ξN su
h that
∣∣{1 ≤ j ≤ J : ζj ∈ Wr,M ′

}∣∣ > (1 − 4ε)WQ(Ũr)
N

M ′
, r = 1, . . . , R, (3.124)where we note that J ≥ (1− 8ε)(N/M ′) by (3.97). Indeed, we 
an for example 
onstru
t these ζj 'siteratively in a �greedy� way, parsing through ξN from left to right and always pi
king the next pos-sible subsenten
e from one of the R types whose 
ount does not yet ex
eed (1−4ε)WQ(Ũr) (N/M ′),as follows. Let ks,r be total number of subsenten
es of type r we have 
hosen after the s-th step(k0,1 = · · · = k0,R = 0). If in the s-th step we have pi
ked ζs = (ξ
(p)
N , . . . , ξ

(p+M ′−1)
N ) at position p,then let

p′ := min
{
i ≥ p + M ′ : at position i in ξN starts a senten
e from Wu,M ′ for some u ∈ Us

}
,(3.125)29



where Us := {r : kr,s < (1 − 4ε)WQ(Ũr) (N/M ′)}, pi
k the next subsenten
e ζs+1 starting atposition p′ (say, of type u) and in
rease the 
orresponding ks+1,u. Repeat this until ks,r ≥

(1 − 4ε)WQ(Ũr) (N/M ′) for r = 1, . . . , R.In order to verify that this algorithm does not get stu
k, let rem(s, r) be the �remaining� numberof positions (to the right of the position where the word was pi
ked in the s-th step) where asubsenten
e from Wr,M ′ begins on ξN . By (3.122), we have
rem(0, r) ≥ NWQ(Ũr)(1 − 3ε). (3.126)If in the s-th step a subsenten
e of type r is pi
ked, then we have rem(s + 1, r) ≥ rem(s, r) − M ′,and for r′ 6= r we have rem(s + 1, r′) ≥ rem(s, r′) − εM ′ by (3.114). Thus,

rem(s, r) ≥ rem(0, r) − ks,rM
′ − (s − ks,r)εM

′

= rem(0, r) − ks,r(1 − ε)M ′ − sεM ′,
(3.127)whi
h is > 0 as long as ks,r < (1 − 4ε)WQ(Ũr) (N/M ′) and s < J .A. Combinatorial 
onsequen
es. By (3.115) and (3.124), RN

j1,...,jN
(X) ∈ O(Q) implies that ξN
ontains at least

C :=
R∑

r=1

⌈
(1 − 4ε)WQ(Ũr)

N

M ′

⌉⌈
(1 − ε)

M ′

M̃

⌉ (
≥ (1 − 10ε)

N

M̃

) (3.128)disjoint subsenten
es η1, . . . , ηC (appearing in this order in ξN ) su
h that at least
N

M̃
(1 − 6ε)WQ(Ũr) of the ηc's are from V

r,fM
, r = 1, . . . , R. (3.129)Let k1, . . . , kC (kc+1 ≥ kc + M̃ , 1 ≤ c < C) be the indi
es where the disjoint subsenten
es ηc startin ξN , i.e.,

ηc =
(
ξ
(jkc)
N , ξ

(jkc+1)
N , . . . , ξ

(j
kc+ fM−1

)

N

)
∈ V

rc,fM
, i = c, . . . , C, (3.130)and the rc's must respe
t the frequen
ies di
tated by the WQ(Ũr)'s as in (3.129). Thus, ea
h 
hoi
e

(j1, . . . , jN ) yielding a non-zero summand in (3.23) leads to a triple
(ℓ1, . . . , ℓC), (r1, . . . , rC), (η1, . . . , ηC) (3.131)su
h that ηc ∈ κ(V

rc,fM
), ℓc+1 ≥ ℓc + |ηc|, the rc's respe
t the frequen
ies as in (3.129), andthe word ηc starts at position ℓc in X for c = 1, . . . , C. (3.132)As in Se
tion 3.3, we 
all su
h triples good, the loops inside the subsenten
es ηi good loops, theothers �lling loops.Fix a good triple for the moment. In order to 
ount how many 
hoi
es of j1 < · · · < jN 
an lead tothis parti
ular triple and to estimate their 
ontribution, observe the following:30



1. There are at most (
N − C(M̃ − 1)

C

)
≤ exp(δ′1N) (3.133)
hoi
es for the k1 < · · · < kC , where δ′1 
an be made arbitrarily small by 
hoosing ε small and

M̃ large.2. On
e the kc's are �xed, by (3.107) and (3.129) there are at most
R∏

r=1

(
exp

[
M̃(Hτ |K(Qr) + δ1)

]) N
fM

WQ( eUr)

= exp
[
N

R∑

r=1

WQ(Ũr)(Hτ |K(Qr) + δ1)
] (3.134)
hoi
es for the good loops and, by (3.106), for ea
h 
hoi
e of the good loops the produ
t ofthe ρ(jk − jk−1)'s inside the good loops is at most

R∏

r=1

(
exp

[
(1 − 4ε)M̃EQr [log ρ(τ1)]

]) N
fM

WQ( eUr)

= exp
[
N(1 − 4ε)

R∑

r=1

WQ(Ũr)EQr [log ρ(τ1)]
]
.

(3.135)3. For ea
h 
hoi
e of the kc's, the 
ontribution of the �lling loops to the weight is
ρ∗(k1−1)(ℓ1 − 1)

C−1∏

c=1

ρ∗(kc+1−kc−fM)(ℓc+1 − ℓc − |ηc|)

≤ (2αCρ ∨ 1)Ckα+1
1

C−1∏

c=1

(kc+1 − kc − M̃ )α+1
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α

≤ (2αCρ ∨ 1)C
(N − CM̃

C

)(α+1)C
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α

≤ eδ′2N
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α
, (3.136)where δ′2 
an be made arbitrarily small by 
hoosing ε small and M̃ large (and we interpret

ℓ0 = 0, |η0| = 0). Here, we have used Lemma 2.3 in the �rst inequality, as well as the fa
tthat the produ
t ∏C−1
c=1 (kc+1 − kc − M̃) is maximal when all fa
tors are equal in the se
ondinequality.

31



Combining (3.133�3.136), we see that
P
(
RN ∈ O(Q)

∣∣X
)

≤ e(δ′1+δ′2+δ1)N exp
[
N(1 − 4ε)

R∑

r=1

WQ(Ũr)
(
Hτ |K(Qr) + EQr [log ρ(τ1)]

)]

×
∑

(ℓi),(ri),(ηi)good C∏

i=1

(
(ℓi − ℓi−1 − |ηi−1|) ∨ 1

)−α
.

(3.137)
We 
laim that X-a.s.

lim sup
N→∞

1

N
log

∑

(ℓi),(ri),(ηi)good C∏

i=1

(
(ℓi − ℓi−1 − |ηi−1|) ∨ 1

)−α

≤ δ2 − α(1 − 4ε)
R∑

r=1

WQ(Ũr)mQrH
(
ΨQr | ν⊗N

)
,

(3.138)where δ2 
an be made arbitrarily small by 
hoosing ε small and L large. A proof of this is given below.Observe next that (3.137�3.138) (re
all also (1.32)) yield that X-a.s. (with δ := δ′1 + δ′2 + δ1 + δ2)
lim sup
N→∞

1

N
log P

(
RN ∈ O(Q)

∣∣X
)

≤ δ − (1 − 4ε)

R∑

r=1

WQ(Ũr)
(
H
(
Qr | qρ, ν⊗N

)
+ αmQrH

(
ΨQr | ν⊗N

))

≤ δ + (1 − 4ε)ε(2 + 2α) − (1 − 4ε)

∫

Perg( eEN )
H
(
Q′ | q⊗N

ρ,ν

)
+ (α − 1)mQ′H

(
ΨQ′ | ν⊗N

)
WQ(dQ′)

= −(1 − 4ε)Ifin(Q) + δ + (1 − 4ε)ε(2 + 2α) (3.139)(use (3.100) for the se
ond inequality, and see (6.3) for the last equality), whi
h 
ompletes the proof.B. Coarse-graining X with R 
olours. It remains to verify (3.138), for whi
h we employa 
oarse-graining s
heme similar to the one used in Se
tion 3.4 (with blo
k lengths ⌈(1 − ε2)L⌉,et
.) To ease notation, we silently repla
e L by (1 − ε2)L in the following. Split X into blo
ksof L 
onse
utive letters, de�ne a {0, 1}-valued array Ai,r, i ∈ N, r ∈ {1, . . . , R} as in Se
tion 3.4indu
tively: For ea
h r, put A0,r := 0 and, given that A0,r, A1,r, . . . , Al−1,r have been assignedvalues, de�ne Al as follows:(1) If Al−1,r = 0, then
Al,r :=

{
1, if in X there is a word from κ(Ar) starting in ((l − 1)L, lL],
0, otherwise. (3.140)32



(2) If Al−1,r = 1, then
Al :=





1, if in X there are two words from κ(Ar) starting in ((l−2)L, (l−1)L],respe
tively, ((l − 1)L, lL] and o

urring disjointly,
0, otherwise. (3.141)Put

pr := L exp
(
− (1 − ε)LH(ΨQr | ν⊗N)

)
. (3.142)Arguing as in Se
tion 3.4, we 
an 
ouple the (Ai,r)i∈N,1≤r≤R with an array ω = (ωi,r)i∈N,1≤r≤R su
hthat Ai,r ≤ ωi,r and the sequen
e ((ωi,1, . . . , ωi,R)

)
i∈N

is i.i.d. with P(ωi,r = 1) = pr. In parti
ular,for ea
h r, (ωi,r)i∈N is a Bernoulli(pr)-sequen
e. There may (and 
ertainly will be if ΨQr and ΨQr′are similar) an arbitrary dependen
e between the ωi,1, . . . , ωi,R for �xed i, but this will be harmlessin the low-density limit we are interested in.For r ∈ {1, . . . , R}, put dr := WQ(Ũr)(1 − 6ε), Dr := ⌈(1 − ε)M̃mQr/L⌉. If ηc ∈ V
rc,fM

, then
|κ(ηc)| ∈ M̃mQrc

(1 − ε, 1 + ε), (3.143)so κ(ηc) 
overs at least Drc 
onse
utive L-blo
ks of the 
oarse-graining. Furthermore, as ηc in turn
ontains at least Drc(1− ε) disjoint subsenten
es from Arc , we see that at least Drc(1− ε) of theseblo
ks must have Ak,rc = 1. Thus, for �xed X, we read o� from ea
h good triple (ℓc), (rc), (ηc)numbers m1 < · · · < mC su
h that
mc+1 ≥ mc + Drc , c = 1, . . . , C − 1,∣∣{mc ≤ k < mc + Drc : Ak,rc = 1}

∣∣ ≥ Drc(1 − ε), c = 1, . . . , C,∣∣{1 ≤ c ≤ C : rc = r}
∣∣ ≥ drC, r = 1, . . . , R.

(3.144)where mc is the number of the L-blo
k that 
ontains ℓc. Furthermore, note that for a given �
oarse-graining� (mc) and (rc) satisfying (3.144), there are at most
LC
(
2εM̃ max

r=1,...,R
mQr

)C
≤ exp(δ3N) (3.145)
hoi
es for ℓc and ηc that lead to a good triple (ℓc), (rc), (ηc) with this parti
ular 
oarse-graining.Indeed, for ea
h c = 1, . . . , C there are at most L 
hoi
es for ℓc and, sin
e ea
h η ∈ V

rc,fM
satis�es

|κ(η)| ∈ M̃mQrc
(1 − ε, 1 + ε), (3.146)there are at most 2εM̃mQrc


hoi
es for ηc (note that on
e ℓc is �xed as a �starting point� for a wordon X, 
hoosing ηc in fa
t amounts to 
hoosing an �endpoint�). Note that δ3 
an be made arbitrarilysmall by 
hoosing ε small and M̃ large. Finally, (3.145) and Lemma 3.3 yield (3.138). Indeed, sin
e
lim sup
N→∞

C

N
≤

1

M̃
,

R∑

r=1

drDr log pr ≤ −(1 − 8ε)

R∑

r=1

WQ(Ũr)
M̃mQr

L

(
LH(ΨQr | ν⊗N) − log L

)
,by 
hoosing ε small, L and M̃ large, and γ su�
iently 
lose to 1/α, the right-hand side of (3.150)is smaller than the right-hand side of (3.138). 33



3.5.6 A multi
olour version of the 
ore lemmaThe following is an extension of Lemma 2.1. Let R ∈ N, ωi = (ωi,1, . . . , ωi,R) ∈ {0, 1}R, and assumethat (ωi)i∈N is i.i.d. with
P(ωi,r = 1) = pr, i ∈ N, r = 1, . . . , R. (3.147)Note that there may be an arbitrary dependen
e between the ωi,r's for �xed i. This will be harmlessin the limit we are interested in below.Lemma 3.3. Let α ∈ (1,∞), ε > 0, (d1, . . . , dR) ∈ [0, 1]R with ∑R

r=1 dr ≤ 1, D1, . . . ,DR ∈ N,
C ∈ N, put

SC(ω) :=
∑∗

m1,...,mC
r1,...,rC

C∏

i=1

(
mi − mi−1 − Dri−1

)−α
, (3.148)where the sum ∑∗ extends over all pairs of C-tuples m0 := 0 < m1 < · · · < mC from N

C and
(r1, . . . , rC) ∈ {1, . . . , R}C satisfying the 
onstraints

mi+1 ≥ mi + Dri ,

|{1 ≤ i ≤ C : ri = r}| ≥ drC, r = 1, . . . , R,

|{mi ≤ k < mi + Dri : ωk,ri
= 1}| ≥ Dri(1 − ε), i = 1, . . . , C.

(3.149)Then ω-a.s.
lim sup
C→∞

1

C
log SC(ω)

≤ inf
γ∈(1/a,1)

{1

γ

(
log ζ(aγ) + h(d) + d0 log R +

(
log 2

) R∑

r=1

drDr + (1 − ε)

R∑

r=1

drDr log pr

)}
,(3.150)where h(d) := −

∑R
r=0 dr log dr (with d0 := 1 − d1 − · · · − dR) is the entropy of d, and φ(ε) is afun
tion su
h that limε↓0 φ(ε) = 0.Proof. The proof is a variation on the proof of Lemma 2.1. We again estimate fra
tional moments.For γ ∈ (1/α, 1), we have

E
[
(SC)γ

]

≤
∑′

r1,...,rC

∑

m1,...,mC
mi+1≥mi+Dri ∀ i

P

(
∩C

i=1

{
|{k ∈ [mi,mi + Dri − 1] : ωk,ri

= 1}| ≥ (1 − ε)Dri

})

×
C∏

i=1

(mi − mi−1 − Dri−1)
−αγ , (3.151)where the sum∑′ extends over all (r1, . . . , rC) satisfying the 
onstraint in the se
ond line of (3.149).Noting that

P

(
|{k ∈ [mi,mi + Dri − 1] : ωk,ri

= 1}| ≥ (1 − ε)Dri

)
=

Dri∑

m=(1−ε)Dri

(
Dri

k

)
pm

r (1 − pr)
Dri−m

≤ p
(1−ε)Dri
r 2Dri34



and
∣∣{(r1, . . . , rC) ∈ {1, . . . , R}C : at least drC of the ri = r, r = 1, . . . , R

}∣∣

≤ Rd0C

(
C

d0C d1C . . . dRC

)
= exp

[
C
(
d0 log R + h(d) + o(1)

)]
,we see from (3.151) that

E
[
(SC)γ

]
≤ exp

[
C
(
d0 log R + h(d) + o(1)

)]
×

R∏

r=1

(
2p(1−ε)

r

)drCDr

×
∑

m1,...,mC
mi+1≥mi+Dri ∀ i

C∏

i=1

(mi − mi−1 − Dri−1)
−αγ

= exp C
[
d0 log R + h(d) + log ζ(aγ) +

∑R
r=1 drDr log 2 + (1 − ε)

∑R
r=1 drDrpr

]
,(3.152)whi
h yields (3.150) as in the proof of Lemma 2.1.3.6 Step 6: Weakening the tail assumptionWe �nally show how to go from (3.3) to (1.1). Suppose that ρ satis�es (1.1) with a 
ertain α ∈ (1,∞).Then, for any α′ ∈ (1, α), there is a Cρ(α

′) su
h that (3.3) holds for this α′. Hen
e, as shown inSe
tions 3.1�3.4, for any ε > 0 we 
an �nd a neighbourhood O(Q) ⊂ P inv,fin(ẼN) of Q su
h that
lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −H(Q | q⊗N

ρ,ν ) − (α′ − 1)mQ H(ΨQ | ν⊗N) +
ε

2
X − a.s.(3.153)The right-hand side is ≤ −Ifin(Q) + ε for α′ su�
iently 
lose to α, so that we again get (3.1).4 Lower boundThe following lower bound will be used in Se
tion 5 to derive the lower bound in the de�nition ofthe LDP.Proposition 4.1. For any Q ∈ P inv,fin(ẼN) and any open neighbourhood U(Q) ⊂ P inv(ẼN) of Q,

lim inf
N→∞

1

N
log P

(
RN ∈ U(Q) | X

)
≥ −Ifin(Q) X − a.s. (4.1)Proof. Suppose �rst that Q ∈ Perg,fin(ẼN). Then, informally, our strategy runs as follows. In X,look for the �rst string of length ≈ NmQ that looks typi
al for ΨQ. Make the �rst jump longenough so as to land at the start of this string. Make the remaining N −1 jumps typi
al for Q. Theprobability of this strategy on the exponential s
ale is the 
onditional spe
i�
 relative entropy ofword lengths under Q w.r.t. ρ⊗N given the 
on
atenation, i.e., ≈ exp[−N(Hτ |K(Q)+EQ[log ρ(τ1)])],times the probability of the �rst long jump. In order to �nd a suitable string, we have to skip ahead35



in X a distan
e ≈ exp[NmQH(ΨQ | ν⊗N)]. By (1.1), the probability of the �rst jump is therefore
≈ exp[−Nα mQH(ΨQ | ν⊗N)]. In view of (1.16) and (1.32), this yields the 
laim. In the a
tualproof, it turns out to be te
hni
ally simpler to employ a slightly di�erent strategy, whi
h has thesame asymptoti
 
ost, where we look not only for one 
ontiguous pie
e of �ΨQ-typi
al� letters butfor a sequen
e of ⌈N/M⌉ pie
es, ea
h of length ≈ MmQ. Then we let N → ∞, followed by M → ∞.More formally, we 
hoose for O(Q) an open neighborhood O′ ⊂ O of the type introdu
ed in Se
tion3.2, and we estimate P(RN ∈ O′ | X) from below by using (3.17�3.20).Assume �rst that Q is ergodi
. We 
an then assume that the neighbourhood U is given by

U =
{
Q′ ∈ P inv(ẼN) : (πLuQ′)(ζu) ∈ (au, bu), u = 1, . . . , U

} (4.2)for some U ∈ N, L1, . . . , LU ∈ N, 0 ≤ au < bu ≤ 1 and ζu ∈ ẼLu , u = 1, . . . , U . As in Se
tion 3.1, byergodi
ity of Q we 
an �nd for ea
h ε > 0 a su�
iently large M ∈ N and a set A = {z1, . . . , zA} ⊂
ẼM of �Q-typi
al senten
es� satisfying (3.6�3.7) (with ε1 = δ1 = ε, say), and additionally

1

M

∣∣{0 ≤ j ≤ M − Li : πLu(θ̃jza) = ζu}
∣∣ ∈ (ai, bi), a = 1, . . . , A, u = 1, . . . , U. (4.3)Let B := κ(A ). Then from (3.6�3.7) we have that, for ea
h b ∈ B,

|Ib| = |{z ∈ A : κ(z) = b}| ≥ exp
[
M(Hτ |K(Q) − 2ε)

]
, (4.4)and

P(X begins with some element of B) ≥ exp
[
− MmQ(H(ΨQ | ν⊗N) + 2ε)

]
. (4.5)Let

σ
(M)
1 := min{i : θiX begins with some element of B},

σ
(M)
l := min{i > τl−1 + M(mQ + ε) : σiX begins with some element of B}, l = 2, 3, . . . .

(4.6)Restri
ting the sum in (3.23) over 0 < j1 < · · · < jN < ∞ su
h that j1 = σ
(M)
1 , j2−j1, . . . , jM−jM−1are the word lengths 
orresponding to the za's 
ompatible with πMmQ

(θτ1X), jM+1 = σ
(M)
2 , et
.,we see that

1

N
log P(RN ∈ U | X) ≥ Hτ |K(Q) + EQ[log ρ(τ1)] − 3ε − α

1

N

⌊N/M⌋∑

l=1

log
(
σ

(M)
l − σ

(M)
l−1

) (4.7)for N su�
iently large. Hen
e X-a.s.
lim inf
N→∞

1

N
log P(RN ∈ U | X) ≥ Hτ |K(Q) + EQ[log ρ(τ1)] − 3ε − α

1

M
E[log σ

(M)
1 ]

≥ Hτ |K(Q) + EQ[log ρ(τ1)] − αmQ(H(ΨQ | ν⊗N) − 6ε

= −Ifin(Q) − 6ε,

(4.8)where we have used (4.5) in the se
ond inequality. Now let ε ↓ 0.36



It remains to remove the restri
tion of ergodi
ity of Q, analogously to the proof of Birkner [3℄,Proposition 2. To that end, assume that Q ∈ P inv,fin(ẼN) admits a non-trivial ergodi
 de
omposi-tion. Then, for ea
h ε > 0, we 
an �nd Q1, . . . , QR ∈ Perg,fin(ẼN), λ1, . . . , λR ∈ (0, 1), ∑R
r=1 λr = 1su
h that λ1Q1 + · · · + λRQR ∈ U and

R∑

i=1

λrI
fin(Qr) ≤ Ifin(Q) + ε (4.9)(for details see Birkner [3℄, p. 723; employ the fa
t that both terms in Ifin are a�ne). For ea
h

r = 1, . . . , R, pi
k a small neighbourhood Ur of Qr su
h that
Q′

r ∈ Ur, r = 1, . . . , R =⇒
R∑

i=1

λrQ
′
r ∈ U . (4.10)Using the above strategy for Q1 for λ1N loops, then the strategy for Q2 for λ2N loops, et
., we seethat

lim inf
N→∞

1

N
P(RN ∈ U | X) ≥ −

R∑

i=1

λrI
fin(Qr) − 6ε ≥ −Ifin(Q) − 7ε. (4.11)

5 Proof of Theorem 1.2Proof. The proof 
omes in 3 steps. We �rst prove that, for ea
h word length trun
ation level tr ∈ N,the family P([RN ]tr ∈ · | X), N ∈ N, X-a.s. satis�es an LDP on
P inv

tr (ẼN) =
{
Q ∈ P inv(ẼN) : Q(|Y (1)| ≤ tr) = 1

} (5.1)(re
all (1.11�1.13)) with a deterministi
 rate fun
tion Ifin([Q]tr) (this is essentially the 
ontent ofPropositions 4.1 and 3.1). Note that [Q]tr = Q for Q ∈ P inv
tr (ẼN), and that P inv

tr (ẼN) is a 
losedsubset of P inv(ẼN), in parti
ular, a Polish spa
e under the relative topology (whi
h is again theweak topology). After we have given the proof for �xed tr, we let tr → ∞ and use a proje
tive limitargument to 
omplete the proof of Theorem 1.2.1. Fix a trun
ation level tr ∈ N. Propositions 4.1 and 3.1 
ombine to yield the LDP on P inv
tr (ẼN)in the following standard manner. Note that any Q ∈ P inv

tr (ẼN) satis�es mQ < ∞.1a. Let O ⊂ P inv
tr (ẼN) be open. Then, for any Q ∈ O, there is an open neighbourhood O(Q) ⊂

P inv
tr (ẼN) of Q su
h that O(Q) ⊂ O. The latter in
lusion, together with Proposition 4.1, yields

lim inf
N→∞

1

N
log P

(
[RN ]tr ∈ O | X

)
≥ −Ifin(Q) X − a.s. (5.2)Optimising over Q ∈ O, we get

lim inf
N→∞

1

N
log P

(
[RN ]tr ∈ O | X

)
≥ − inf

Q∈O
Ifin(Q) X − a.s. (5.3)37



Here, note that, sin
e P inv
tr (ẼN) is Polish, it su�
es to optimise over a 
ountable set generating theweak topology, allowing us to transfer the X-a.s. limit from points to sets (see, e.g., Comets [7℄,Se
tion III).1b. Let K ⊂ P inv

tr (ẼN) be 
ompa
t. Then there exist M ∈ N, Q1, . . . , QM ∈ K and open neighbour-hoods O(Q1), . . . ,O(QM ) ⊂ P inv
tr (ẼN) su
h that K ⊂ ∪M

m=1O(Qm). The latter in
lusion, togetherwith Proposition 3.1, yields
lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ K | X

)
≤ − inf

1≤m≤M
Ifin(Qm) + ε X − a.s. ∀ ε > 0. (5.4)Extending the in�mum to Q ∈ K and letting ε ↓ 0 afterwards, we obtain

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ K | X

)
≤ − inf

Q∈K
Ifin(Q) X − a.s. (5.5)1
. Let C ⊂ P inv

tr (ẼN) be 
losed. Be
ause Q 7→ H(Q | q⊗N
ρ,ν ) has 
ompa
t level sets, for any M < ∞the set KM = C ∩ {Q ∈ P inv

tr (ẼN) : H(Q | q⊗N
ρ,ν ) ≤ M} is 
ompa
t. Hen
e, doing annealing on Xand using (5.5), we get

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ C | X

)
≤ max

{
−M,− inf

Q∈KM

Ifin(Q)

}
X − a.s. (5.6)Extending the in�mum to Q ∈ C and letting M → ∞ afterwards, we arrive at

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ C | X

)
≤ − inf

Q∈C
Ifin(Q) X − a.s. (5.7)Equations (5.3) and (5.7) 
omplete the proof of the 
onditional LDP for [RN ]tr.2. It remains to remove the trun
ation of word lengths. We know from Step 1 that, for every

tr ∈ N, the family P([RN ]tr ∈ · | X), N ∈ N, satis�es the LDP on P inv([Ẽ]Ntr) with rate fun
tion
Ifin. Consequently, by the Dawson-Gärtner proje
tive limit theorem (see Dembo and Zeitouni [10℄,Theorem 4.6.1), the family P(RN ∈ · | X), N ∈ N, satis�es the LDP on P inv(ẼN) with rate fun
tion

Ique(Q) = sup
tr∈N

Ifin([Q]tr), Q ∈ P inv(ẼN). (5.8)The sup may be repla
ed by a lim sup be
ause the trun
ation may start at any level. For Q ∈
P inv,fin(ẼN), we have limtr→∞ Ifin([Q]tr) = Ifin(Q) by Lemma A.1, and so we get the 
laim if we 
anshow that lim sup 
an be repla
ed by a limit, whi
h is done in Step 3. Note that Ique inherits from
Ifin the properties qualifying it to be a rate fun
tion: this is part of the proje
tive limit theorem.For Ifin these properties are proved in Se
tion 6.3. Sin
e Ique is lower semi-
ontinuous, it is equal to its lower semi-
ontinuous regularisation

Ĩque(Q) := sup
O(Q)

inf
Q′∈O(Q)

Ique(Q′), (5.9)where the supremum runs over the open neighborhoods of Q. For ea
h tr ∈ N, [Q]tr ∈ P inv,fin(ẼN),while w − limtr→∞[Q]tr = Q. So, in parti
ular,
Ique(Q) = Ĩque(Q) ≤ sup

n
inf
tr≥n

Ifin([Q]tr) = lim inf
tr→∞

Ifin([Q]tr), (5.10)38



implying that in fa
t
Ique(Q) = lim

tr→∞
Ifin([Q]tr), Q ∈ P inv(ẼN). (5.11)Lemma A.1 in Appendix A, together with (5.11), shows that Ique(Q) = Ifin(Q) for Q ∈ P inv,fin(ẼN),as 
laimed in the �rst line of (1.15).6 Proof of Theorem 1.3Proof. The proof 
omes in 5 steps.1. Every Q ∈ P inv(ẼN) 
an be de
omposed as

Q =

∫

Perg( eEN)
Q′ WQ(dQ′) (6.1)for some unique probability measure WQ on Perg(ẼN) (Georgii [13℄, Proposition 7.22). If Q ∈

P inv,fin(ẼN), then WQ is 
on
entrated on Perg,fin(ẼN) and so, by (1.9�1.10),
mQ =

∫

Perg,fin( eEN)
mQ′ WQ(dQ′), ΨQ =

∫

Perg,fin( eEN)

mQ′

mQ
ΨQ′ WQ(dQ′). (6.2)Sin
e Q 7→ H(Q | q⊗N

ρ,ν ) and Ψ 7→ H(Ψ | ν⊗N) are a�ne (see e.g. Deus
hel and Stroo
k [12℄,Example 4.4.41), it follows from (1.16) and (6.1�6.2) that
Ifin(Q) =

∫

Perg,fin( eEN)
Ifin(Q′)WQ(dQ′). (6.3)Sin
e Q 7→ WQ is a�ne, (6.3) shows that Ifin is a�ne on P inv,fin(ẼN).2. Let (Qn)n∈N ⊂ P inv,fin(ẼN) be su
h that w−limn→∞ Qn = Q ∈ P inv,fin(ẼN). By Proposition 3.1,for any ε > 0 we 
an �nd an open neighbourhood O(Q) ⊂ P inv(ẼN) of Q su
h that

lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −Ifin(Q) + ε X − a.s. (6.4)On the other hand, for n large enough so that Qn ∈ O(Q), we have from Proposition 4.1 that

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≥ −Ifin(Qn) X − a.s. (6.5)Combining (6.4�6.5), we get that, for any ε > 0,

lim inf
n→∞

Ifin(Qn) ≥ Ifin(Q) − ε. (6.6)Now let ε ↓ 0, to 
on
lude that Ifin is lower semi
ontinuous on P inv,fin(ẼN) (re
all also (5.11)).39



3. From (1.16) we have
Ifin(Q) ≥ H(Q | q⊗N

ρ,ν ) ∀Q ∈ P inv,fin(ẼN) (6.7)Sin
e {Q ∈ P inv(ẼN) : H(Q | q⊗N
ρ,ν ) ≤ C} is 
ompa
t for all C < ∞ (see, e.g., Dembo andZeitouni [10℄, Corollary 6.5.15), it follows that Ifin has 
ompa
t level sets on P inv,fin(ẼN).4. As mentioned at the end of Se
tion 5, Ique inherits from Ifin that it is lower semi
ontinuousand has 
ompa
t level sets. In parti
ular, Ique is the lower semi
ontinuous extension of Ifin from

P inv,fin(ẼN) to P inv(ẼN). Moreover, sin
e Ifin is a�ne on P inv,fin(ẼN) and Ique arises as the trun-
ation limit of Ifin (re
all (5.10)), it follows that Ique is a�ne on P inv(ẼN).5. It is immediate from (1.15�1.16) that q⊗N
ρ,ν is the unique zero of Ique.7 Proof of Theorem 1.4Proof. The extension is an easy generalisation of the proof given in Se
tions 3�4.(a) Assume that ρ satis�es (1.1) with α = 1. Sin
e the LDP upper bound holds by the annealedLDP (
ompare (1.8) and (1.16)), it su�
es to prove the LDP lower bound. To a
hieve this, we �rstshow that for any Q ∈ P inv,fin(ẼN) and ε > 0 there exists an open neighbourhood O(Q) ⊂ P inv(ẼN)of Q su
h that

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≥ −Iann(Q) − ε X�a.s. (7.1)After that, the extension from P inv,fin(ẼN) to P inv(ẼN) follows the argument in Se
tion 5.In order to verify (7.1), observe that, by our assumption on ρ(·), for any α′ > 1 there exists a

Cα′ > 0 su
h that
ρ(n)

nα′ ≥ Cα′ ∀n ∈ supp(ρ). (7.2)Pi
king α′ so 
lose to 1 that (α′ − 1)mQH(ΨQ|ν
⊗N) < ε/2, we 
an tra
e through the proof ofProposition 4.1 in Se
tion 4 to 
onstru
t an open neighbourhood O(Q) ⊂ P inv(ẼN) of Q satisfying

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)

≥ −H(Q | q⊗N

ρ,ν ) − (α′ − 1)mQH(ΨQ | ν⊗N) − ε/2 ≥ −Iann(Q) − ε X − a.s.,
(7.3)whi
h is (7.1).(b) We only give a sket
h of the argument. Assume α = ∞ in (1.1). For Q ∈ P inv,fin(ẼN), thelower bound (whi
h is non-zero only when Q ∈ Rν) follows from Birkner [3℄, Proposition 2, or
an alternatively be obtained from the argument in Se
tion 4. Now 
onsider a Q ∈ P inv(ẼN) with

mQ = ∞, H(Q | q⊗N
ρ,ν ) < ∞ and limtr→∞ m[Q]trH(Ψ[Q]tr | ν⊗N) = 0, let O(Q) ⊂ P inv(ẼN) be an40



open neighbourhood of Q. For simpli
ity, we assume supp(ρ) = N. Fix ε > 0. We 
an �nd asequen
e δN ↓ 0 su
h that
max

{
−

1

N
log ρ(n) : n ≤ ⌈NδN⌉

}
≤ ε. (7.4)Furthermore,

1

N
h
(
Q|FN

| q⊗N
ρ,ν

)
≥ H(Q | q⊗N

ρ,ν ) − ε (7.5)for N ≥ N0 = N0(ε,Q), and we 
an �nd tr0 ∈ N su
h that
1

N0
h
(
([Q]tr)|FN0

| q⊗N0
ρ,ν

)
≥

1

N0
h
(
Q|FN0

| q⊗N0
ρ,ν

)
− ε (7.6)for tr ≥ tr0. Hen
e

H([Q]tr | q⊗N

ρ,ν ) ≥ H(Q | q⊗N

ρ,ν ) − 2ε for tr ≥ tr0. (7.7)We may also assume that [Q]tr ∈ O(Q) for tr ≥ tr0. For a given N ≥ N0, pi
k tr(N) ≥ tr0 so largethat m[Q]tr(N)
H(Ψ[Q]tr(N)

| ν⊗N) ≤ δN/2. Using the strategy des
ribed at the beginning of Se
tion 4,we 
an 
onstru
t a neighbourhood ON ⊂ O(Q) of [Q]tr(N) su
h that the 
onditional probability
P(RN ∈ ON |X) is bounded below by

exp
[
− N(H([Q]tr | q⊗N

ρ,ν ) − ε)
]
× the 
ost of the �rst jump, (7.8)where the �rst jump takes us to a region of size ≈ Nm[Q]tr(N)

on whi
h the medium looks �Ψ[Q]tr(N)
-typi
al�. Sin
e, in a typi
al medium, the size of the �rst jump will be

≈ exp
[
Nm[Q]tr(N)

H(Ψ[Q]tr(N)
| ν⊗N)

]
≤ exp[NδN ], (7.9)we obtain from (7.4) and (7.7�7.9) that

P(RN ∈ O(Q)|X) ≥ exp
[
− N(H(Q | q⊗N

ρ,ν ) + 4ε)
] (7.10)for N large enough.For the upper bound we 
an argue as follows: For Q ∈ P inv(ẼN) put

r(Q) := lim sup
tr→∞

m[Q]tr(N)
H(Ψ[Q]tr(N)

| ν⊗N). (7.11)Sin
e ρ satis�es the bound (3.3) for any α > 1, we obtain from the upper bound in Theorem 1.2that the rate fun
tion at Q is at least
lim sup
tr→∞

Ifin([Q]tr) = H(Q | q⊗N

ρ,ν ) + (α − 1)r(Q), (7.12)hen
e equals ∞ if r(Q) > 0. On the other hand, if r(Q) = 0, then this is simply the annealedbound.
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8 Proof of Corollary 1.6Proof. Without loss of generality we may assume that E = N. For c ∈ N, let 〈·〉c : E → 〈E〉c :=
{1, . . . , c} be the letter trun
ation map de�ned by

〈x〉c := x ∧ c, x ∈ E, (8.1)and extend this map to Ẽ, EN, ẼN, P inv(EN) and P inv(ẼN) (similarly as in (1.11�1.13)). ByTheorem 1.2, for ea
h c ∈ N the family
P(〈RN 〉c ∈ · | X), N ∈ N, (8.2)

X-a.s. satis�es the LDP with deterministi
 rate fun
tion
Ique
c (Q) := H

(
Q | 〈q⊗N

ρ,ν 〉c
)

+ (α − 1)mQH
(
ΨQ | 〈ν⊗N〉c

)
, Q ∈ P inv(〈Ẽ〉Nc ), (8.3)where 〈Ẽ〉c := ∪n∈N(〈E〉c)

n. The letter trun
ations 〈·〉c, c ∈ N, form a proje
tive family. Hen
e,by the Dawson-Gärtner proje
tive limit theorem (see Dembo and Zeitouni [10℄, Theorem 4.6.1), thefamily P(RN ∈ · | X), N ∈ N, X-a.s. satis�es the LDP on P inv(ẼN) with rate fun
tion
Ique(Q) = sup

c∈N

Ique
c (〈Q〉c), Q ∈ P inv(ẼN). (8.4)However, the supremum equals the expression given in (1.15�1.16), be
ause the spe
i�
 relativeentropies in the right-hand side of (8.3) are non-de
reasing w.r.t. the letter trun
ation level, mQ =

m〈Q〉c , 〈ΨQ〉c = Ψ〈Q〉c , and the maps 〈·〉c and [·]tr 
ommute. Thus, Theorem 1.2 indeed 
arries over.It is part of the proje
tive limit theorem that Ique inherits from Ique
c , c ∈ N, the properties qualifyingit to be a rate fun
tion, so that also Theorem 1.3 
arries over.9 Proof of Theorems 1.8�1.99.1 Proof of Theorem 1.8Proof. The idea is to put the problem into the framework of (1.1�1.5) and then apply Theorem 1.2.To that end, we pi
k

E := Z
d, Ẽ := ∪n∈N(Zd)n, (9.1)and 
hoose

ν(u) := p(u), u ∈ E, ρ(n) :=
pn(0)

G(0) − 1
, n ∈ N, (9.2)where

p(u) = p(0, u), u ∈ Z
d, pn(u − v) = pn(u, v), u, v ∈ Z

d, G(0) =
∞∑

n=0

pn(0), (9.3)the latter being the Green fun
tion at the origin.42



Re
alling (1.35), and writing
zV =

(
(z − 1) + 1

)V
= 1 +

V∑

N=1

(z − 1)N
V (V − 1) · · · (V − N + 1)

N !
(9.4)with

V (V − 1) · · · (V − N + 1)

N !
=

∑

0<j1<···<jN<∞

1{Sj1
=S′

j1
,...,SjN

=S′
jN

}, (9.5)we have
E
[
zV | S

]
= 1 +

∞∑

N=1

(z − 1)NF
(1)
N (X),

E
[
zV
]

= 1 +

∞∑

N=1

(z − 1)NF
(2)
N ,

(9.6)with
F

(1)
N (X) :=

∑

0<j1<···<jN<∞

P(Sj1 = S′
j1, . . . , SjN

= S′
jN

| X),

F
(2)
N := E

[
F

(1)
N (X)

]
,

(9.7)where X = (Xk)k∈N denotes the sequen
e of in
rements of S. (The upper indi
es 1 and 2 indi
atethe number of random walks being averaged over.)The notation in (9.1�9.2) allows us to rewrite the �rst line of (9.7) as
F

(1)
N (X) =

∑

0<j1<···<jN <∞

N∏

i=1

pji−ji−1




ji∑

k=ji−1+1

Xk




=
∑

0<j1<···<jN <∞

N∏

i=1

ρ(ji − ji−1) exp

[
N∑

i=1

log

(
pji−ji−1(

∑ji

k=ji−1+1 Xk)

ρ(ji − ji−1)

)] (9.8)Let Y (i) = (Xji−1+1, · · · ,Xji). Introdu
e f : Ẽ → [0,∞) by (re
all (9.2))
f((x1, . . . , xn)) =

pn(x1 + · · · + xn)

pn(0)
[G(0) − 1], n ∈ Λ, x1, . . . , xn ∈ E, (9.9)with

Λ := {n ∈ N : ρ(n) = pn(0) > 0} ⊃ 2Z, (9.10)let RN ∈ P inv(ẼN) be the empiri
al pro
ess of words de�ned in (1.5), and π1RN ∈ P(Ẽ) theproje
tion of RN onto the �rst 
oordinate. Then we have
F

(1)
N (X) = E

[
exp

(
N∑

i=1

log f(Y (i))

)∣∣∣∣∣X
]

= E

[
exp

(
N

∫

eE
(π1RN )(dy) log f(y)

)∣∣∣∣X
]

.

(9.11)
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The se
ond line of (9.7) is obtained by averaging (9.11) over X:
F

(2)
N = E

[
exp

(
N

∫

eE
(π1RN )(dy) log f(y)

)]
. (9.12)Without 
onditioning on X, the sequen
e (Y (i))i∈N is i.i.d. with law (re
all (1.4))

q⊗N

ρ,ν with qρ,ν(x1, . . . , xn) =
pn(0)

G(0) − 1

n∏

k=1

p(xk). (9.13)Next we note that f de�ned in (9.9) is bounded from above. Indeed, the Fourier representation of
pn(x, y) reads

pn(0, x) =
1

(2π)d

∫

[−π,π)d

dk e−i(k·x) 1

1 − p̂(k)
(9.14)with p̂(k) =

∑
x∈Zd ei(k·x)p(0, x). Be
ause p(·, ·) is symmetri
, it follows that

max
x∈Zd

p2n(0, x) = p2n(0, 0), max
x∈Zd

p2n+1(0, x) ≤ p2n(0, 0), ∀n ∈ N. (9.15)Consequently, f((x1, . . . , xn)) ≤ [pn−1(0, 0)/pn(0, 0)][G(0)−1], n ∈ Λ, whi
h is bounded from abovebe
ause of (1.34). The annealed LDP in Theorem 1.1, together with Varadhan's lemma applied to(9.12), therefore gives z2 = 1 + exp[−r2] with
r2 := lim

N→∞

1

N
log F

(2)
N = sup

Q∈P inv( eEN)

{∫

eE
π1Q(dy) log f(y) − Iann(Q)

}

= sup
q∈P( eE)

{∫

eE
q(dy) log f(y) − h(q | qρ,ν)

} (9.16)(re
all (1.36) and (9.6)). The last equality stems from the fa
t that, on the set of Q's with a givenmarginal π1Q = q, the fun
tion Q 7→ Iann(Q) = H(Q | q⊗N
ρ,ν ) has a unique minimiser Q = q⊗N.In order to 
arry out the se
ond supremum in (9.16), we prove the following.Lemma 9.1. Let Z :=

∑
y∈E f(y)qρ,ν(y). Then

∫

eE
q(dy) log f(y) − h(q | qρ,ν) = log Z − h(q | q∗) ∀ q ∈ P(Ẽ), (9.17)where q∗(y) = f(y)qρ,ν(y)/Z, y ∈ E.Proof. This follows from a straightforward 
omputation.Inserting (9.17) into (9.16), we see that the suprema are uniquely attained at q = q∗ and Q = (q∗)⊗N,and that r2 = log Z. From (9.9) and (9.13), we have

Z =
∑

n∈N

∑

x1,...,xn∈Zd

pn(x1 + · · · + xn)
n∏

k=1

p(xk) =
∑

n∈N

p2n(0) = G(2)(0) − 1, (9.18)44



where we use that ∑v∈Zd pm(u + v)p(v) = pm+1(u), u ∈ Z
d, m ∈ N, and G(2)(0) is the Greenfun
tion at the origin asso
iated with p2(·, ·). Hen
e the maximizer in (9.16) is

q∗(x1, . . . , xn) =
pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk). (9.19)Note that z2 = 1 + exp[− log Z] = G(2)(0)/[G(2)(0) − 1].The quen
hed LDP in Theorem 1.2, together with Varadhan's lemma applied to (9.8), gives z1 =
1 + exp[−r1] with

r1 := lim
N→∞

1

N
log F

(1)
N (X)

= sup
Q∈P inv( eEN)

{∫

eE
π1Q(dy) log f(y) − Ique(Q)

}
X − a.s.,

(9.20)where Ique(Q) is given by (1.15�1.16).To 
ompare (9.20) with (9.16), we need the following lemma, the proof of whi
h is deferred toSe
tion 9.2.Lemma 9.2. Assume (1.34). Let Q∗ = (q∗)⊗N with q∗ as in (9.19). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).With the help of Lemma 9.2 we 
omplete the proof of the existen
e of the gap as follows. Sin
e
Ique(Q) ≥ Iann(Q), we have r1 ≤ r2 < ∞, and in order to prove the gap we are after, it su�
es toshow that r1 < r2. Sin
e Ique has 
ompa
t level sets, there exists a sequen
e (Qn)n∈N ⊂ P inv(ẼN)su
h that

r1 = lim
n→∞

∫

eE
π1Qn(dy) log f(y) − Ique(Qn) (9.21)and w− limn→∞ Qn = Q̃ ∈ P inv(ẼN). Using that f is positive and bounded from above (and hen
e

log f is negative after a shift), we have
lim sup

n→∞

∫

eE
π1Qn(dy) log f(y) ≤

∫

eE
π1Q̃(dy) log f(y) (9.22)by Fatou's Lemma. Furthermore, lim infn→∞ Ique(Qn) ≥ Ique(Q̃) by lower semi
ontinuity, so

r1 =

∫

eE
π1Q̃(dy) log f(y) − Ique(Q̃) ≤

∫

eE
π1Q̃(dy) log f(y) − Iann(Q̃) ≤ r2. (9.23)If r1 = r2, then Q̃ = Q∗, be
ause the un
onditional variational problem (9.16) has Q∗ as its uniquemaximiser. But Ique(Q∗) > Iann(Q∗) by Lemma 9.2, so this is a 
ontradi
tion, and we arrive at

r1 < r2 as required.
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9.2 Proof of Lemma 9.2Proof. Note that
q∗(En) =

∑

x1,...,xn∈Zd

pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk) =
p2n(0)

G(2)(0) − 1
, n ∈ N, (9.24)and hen
e, by assumption (1.35),

lim
n→∞

log q∗(En)

log n
= −α (9.25)and

mQ∗ =

∞∑

n=1

nq∗(En) =

∞∑

n=1

np2n(0)

G(2)(0) − 1
. (9.26)We will show that

mQ∗ < ∞ =⇒ Q∗ = (q∗)⊗N 6∈ Rν , (9.27)the set de�ned in (1.20). This implies ΨQ∗ 6= ν⊗N (re
all (1.22)), and hen
e H(ΨQ∗ |ν⊗N) > 0,implying the 
laim.In order to verify (9.27), we 
ompute the �rst two marginals of ΨQ∗. Using the symmetry of p(·, ·),we have
ΨQ∗(a) =

1

mQ∗

∞∑

n=1

n∑

j=1

∑

x1,...,xn∈Zd

xj=a

pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk) = p(a)

∑∞
n=1 np2n−1(a)∑∞

n=1 np2n(0)
. (9.28)Hen
e, ΨQ∗(a) = p(a) for all a ∈ Z

d with p(a) > 0 if and only if
a 7→

∞∑

n=1

n p2n−1(a) is 
onstant on the support of p(·). (9.29)There are many p(·, ·)'s for whi
h (9.29) fails, and for these (9.27) holds. However, for simple randomwalk (9.29) does not fail, be
ause a 7→ p2n−1(a) is 
onstant on the 2d neighbours of the origin, andso we have to look at the two-dimensional marginal.Observe that q∗(x1, . . . , xn) = q∗(xσ(1), . . . xσ(n)) for any permutation σ of {1, . . . , n}. For a, b ∈ Z
d,we have

mQ∗ΨQ∗(a, b) = EQ∗

[
τ1∑

k=1

1 (κ(Y )k = a, κ(Y )k+1 = b)

]

=

∞∑

n=1

∞∑

n′=1

∑

x1,...,xn+n′

q∗(x1, . . . , xn) q∗(xn+1, . . . , xn+n′)

n∑

k=1

1(a,b)(xk, xk+1)

= q∗(x1 = a) q∗(x1 = b) +

∞∑

n=2

(n − 1)q∗
(
x1 = a, x2 = b

)
.

(9.30)
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Sin
e
q∗(x1 = a)

=
p(a)2

G(2)(0) − 1
+

∞∑

n=2

∑

x2,...,xn∈Zd

pn(a + x2 + · · · + xn)

G(2)(0) − 1
p(a)

n∏

k=2

p(xk)

=
p(a)

G(2)(0) − 1

∞∑

n=1

p2n−1(a)

(9.31)and
q∗
(
x1 = a, x2 = b

)
= 1n=2

p(a)p(b)

G(2)(0) − 1
p2(a + b)

+ 1n≥3
p(a)p(b)

G(2)(0) − 1

∑

x3,...,xn∈Zd

pn(a + b + x3 + · · · + xn)

n∏

k=3

p(xk)

=
p(a)p(b)

G(2)(0) − 1
p2n−2(a + b),

(9.32)
we �nd

ΨQ∗(a, b) =
p(a)p(b)∑∞
n=1 np2n(0)

([ ∞∑

n=1

p2n−1(a)

][ ∞∑

n=1

p2n−1(b)

]
+

∞∑

n=2

(n − 1)p2n−2(a + b)

)
. (9.33)Pi
k b = −a with p(a) > 0. Then, shifting n to n − 1 in the last sum, we get

ΨQ∗(a,−a) − p(a)2 =
[
∑∞

n=1 p2n−1(a)]2∑∞
n=1 np2n(0)

> 0. (9.34)This shows that 
onse
utive letters are not un
orrelated under ΨQ∗, and implies that (9.27) holdsas 
laimed.9.3 Upper bound on z1Unlike for z2, no 
losed form expression is known for z1. The arguments used to prove Theorem 1.8,whi
h parallel those in Birkner [1℄, Chapter 5, imply that the value given in [1℄, Theorem 5, is infa
t an upper bound.Corollary 9.3. Under the assumptions of Theorem 1.8,
z1 ≤ 1 +

(
∑

n∈N

e−h(pn)

)−1

, (9.35)where h(pn) = −
∑

x∈Zd pn(0, x) log pn(0, x) is the entropy of pn(0, ·).Proof. Note that for q ∈ P(Ẽ) of the form
q(x1, . . . , xn) = ρq(n)ν(x1) · · · ν(xn), n ∈ N, x1, . . . , xn ∈ E, (9.36)47



for some ρq ∈ P(N), we have Ique
1 (q) = h(ρq | ρ), as then the minimiser in the right-hand side of(1.23) is Q = q⊗N. The 
laim therefore follows from (9.20) by 
hoosing Q = q⊗N, ν(x) = p(x),

x ∈ Z
d, and

ρq(n) =
exp[−h(pn)]∑

m∈N
exp[−h(pm)]

, n ∈ N. (9.37)
9.4 Proof of Theorem 1.9The proof is a relatively minor extension of that of Theorem 1.8 in Se
tions 9.1�9.2.Proof. The analogues of (9.4�9.7) are

z
eV =

∞∑

N=0

(log z)N
Ṽ N

N !
, (9.38)with

Ṽ N

N !
=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN 1
{eSt1= eS′

t1
,..., eStN

= eS′
tN

}
, (9.39)and

E

[
z

eV | S
]

=
∞∑

N=0

(log z)N F
(1)
N (S̃),

E

[
z

eV
]

=
∞∑

N=0

(log z)N F
(2)
N ,

(9.40)with
F

(1)
N (S̃) :=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN P

(
S̃t1 = S̃′

t1 , . . . , S̃tN = S̃′
tN

| S̃
)

,

F
(2)
N := E

[
F

(1)
N (S̃)

]
,

(9.41)where the 
onditioning in the �rst line is on the full 
ontinuous-time path S̃ = (S̃t)t≥0. Our task isto 
ompute
r̃1 := lim

N→∞

1

N
log F

(1)
N (S̃), S̃ − a.s.,

r̃2 := lim
N→∞

1

N
log F

(2)
N ,

(9.42)and show that r̃1 < r̃2.The idea is to average over the jump times of S̃ while keeping its jumps �xed, thereby redu
ing theproblem to the one for the dis
rete-time random walk treated in the proof of Theorem 1.9. For the�rst line in (9.41) this partial annealing gives an upper bound, while for the se
ond line it is simplypart of the averaging over S̃. To that end, put σ0 := 0, for k ∈ N put σk := inf{t > σk−1 : S̃t 6=
S̃σk−1

}, let
X♮ = (X♮

k)k∈N with X♮
k := S̃σk

, (9.43)48



and de�ne
F

(1)
N (X♮) :=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN P(S̃t1 = S̃′
t1 , . . . , S̃tN = S̃′

tN | X♮),

F
(2)
N := E

[
F

(1)
N (X♮)

]
,

(9.44)together with the 
riti
al values
r̃♮
1 := lim

N→∞

1

N
log F

(1)
N (X♮), X♮ − a.s.,

r̃♮
2 := lim

N→∞

1

N
log F

(2)
N .

(9.45)Clearly,
r̃1 ≤ r̃♮

1 and r̃2 = r̃♮
2, (9.46)whi
h 
an be viewed as a result of �partial annealing�, and so it su�
es to show that r̃1

♮ < r̃♮
2.To this end write out

P(S̃t1 = S̃′
t1 , . . . , S̃tN = S̃′

tN | X♮)

=
∑

0≤j1≤···≤jN <∞

(
N∏

i=1

e−(ti−ti−1) (ti − ti−1)
ji−ji−1

(ji − ji−1)!

)

∑

0≤j′1≤···≤j′N<∞

(
N∏

i=1

e−(ti−ti−1) (ti − ti−1)
j′i−j′i−1

(j′i − j′i−1)!

) 


N∏

i=1

pj′i−j′i−1




ji∑

k=ji−1+1

X♮
k




 .

(9.47)
Integrating over 0 ≤ t1 ≤ · · · ≤ tN < ∞, we obtain

F
(1)
N (X♮) =

∑

0≤j1≤···≤jN<∞

∑

0≤j′1≤···≤j′N<∞

N∏

i=1


2−(ji−ji−1)−(j′i−j′i−1)−1 [(ji − ji−1) + (j′i − j′i−1)]!

(ji − ji−1)!(j′i − j′i−1)!
pj′i−j′i−1




ji∑

k=ji−1+1

X♮
k




 .

(9.48)Abbreviating
Θn(u) =

∞∑

m=0

pm(u) 2−n−m−1

(
n + m

m

)
, n ∈ N ∪ {0}, u ∈ Z

d, (9.49)we may rewrite (9.48) as
F

(1)
N (X♮) =

∑

0≤j1≤···≤jN<∞

N∏

i=1

Θji−ji−1




ji∑

k=ji−1+1

X♮
k


 . (9.50)This expression is similar in form as the �rst line of (9.8), ex
ept that the order of the ji's is notstri
t. However, de�ninĝ

F
(1)
N (X♮) =

∑

0<j1<···<jN<∞

N∏

i=1

Θji−ji−1




ji∑

k=ji−1+1

X♮
k


 , (9.51)49



we have
F

(1)
N (X♮) =

N∑

M=0

(
N

M

)
θ0(0)

M F̂
(1)
N−M (X♮), (9.52)with the 
onvention F̂

(1)
0 (X♮) ≡ 1. Letting

r̂♮
1 = lim

N→∞

1

N
log F̂

(1)
N (X♮), X♮ − a.s., (9.53)and re
alling (9.45), we therefore have the relation

r̃♮
1 = log

[
θ0(0) + ebr♮

1

]
, (9.54)and so it su�
es to 
ompute r̂♮

1.Write
F

(1)
N (X♮) = E

[
exp

(
N

∫

eE
log f ♮(y) (π1RN )(dy)

)∣∣∣∣X
♮

]
, (9.55)where f ♮ : Ẽ → [0,∞) is de�ned by

f ♮((x1, . . . , xn)) =
Θn(x1 + · · · + xn)

pn(0)
[G(0) − 1], n ∈ N, x1, . . . , xn ∈ E. (9.56)Equations (9.55�9.56) repla
e (9.8�9.9). We 
an now repeat the same argument as in (9.16�9.23),with the sole di�eren
e that f in (9.9) is repla
ed by f ♮ in (9.56), and this, 
ombined with Lemma 9.4below, yields the gap r̃♮

1 < r̃♮
2.We �rst 
he
k that f ♮ is bounded from above, whi
h is ne
essary for the appli
ation of Varadhan'slemma. To that end, we insert the Fourier representation (9.14) into (9.49) to obtain

θn(u) =
1

(2π)d

∫

[−π,π)d

dk e−i(k·u) [2 − p̂(k)]−n−1, u ∈ Z
d, (9.57)from whi
h we see that θn(u) ≤ θn(0), u ∈ Z

d. Consequently,
f ♮

n((x1, · · · , xn)) ≤
θn(0)

pn(0)
[G(0) − 1], n ∈ Λ. (9.58)Next we note that

lim
n→∞

1

n
log

[
2−(a+b)n−1

(
(a + b)n

an

)] {
= 0, if a = b,
< 0, if a 6= b.

(9.59)From (1.34), (9.49) and (9.59) it follows that θn(0)/pn(0) ≤ C < ∞ for all n ∈ Λ, so that f ♮ indeedis bounded from above.Note that X♮ is the dis
rete-time random walk with transition kernel p(·, ·). The key ingredientbehind r̂♮
1 < r̂♮

2 is the analogue of Lemma 9.2, this time with Q∗ = (q∗)⊗N and q∗ given by
q∗(x1, . . . , xn) =

Θn(x1 + · · · + xn)

G(0) − 1

n∏

k=1

p(xk), (9.60)repla
ing (9.19). 50



Lemma 9.4. Assume (1.34). Let Q∗ = (q∗)⊗N with q∗ as in (9.60). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).The analogue of (9.18) reads

Z♮ =
∑

n∈N

∑

x1,...,xn∈Zd

[Θn(x1 + · · · + xn)]
n∏

k=1

p (xk)

=
∑

n∈N

∞∑

m=0

{
∑

x1,...,xn∈Zd

pm(x1 + · · · + xn)
n∏

k=1

p (xk)

}
2−n−m−1

(
n + m

m

)]

= −θ0(0) +
∞∑

n,m=0

pn+m(0) 2−n−m−1

(
n + m

m

)

= −θ0(0) +
1

2

∞∑

k=0

pk(0) = −θ0 +
G(0)

2
.

(9.61)
Consequently,

log z̃2 = e−er2 = e−er♮
2 =

1

θ0 + ebr♮
2

=
1

θ0 + Z♮
=

2

G(0)
, (9.62)where we use (9.40), (9.42), (9.46), (9.54) and (9.61).9.5 Proof of Lemma 9.4Proof. We must adapt the proof in Se
tion 9.2 to the fa
t that q∗ has a slightly di�erent form,namely, pn(x1 + · · · + xn) is repla
ed by Θn(x1 + · · · + xn), whi
h averages transition kernels. The
omputations are straightforward and are left to the reader. The analogues of (9.24) and (9.26) are

q∗(En) =
1

G(0) − 1

∞∑

m=0

pn+m(0) 2−n−m−1

(
n + m

m

)
,

mQ∗ =
∑

n∈N

nq∗(En) = 1
4

∞∑

k=0

kpk(0),

(9.63)while the analogues of (9.31�9.32) are
q∗(x1 = a) =

p(a)

G(0) − 1
1
2

∞∑

k=0

pk(a)[1 − 2−k−1],

q∗(x1 = a, x2 = b) =
p(a)p(b)

G(0) − 1

[
1
4

∞∑

k=0

kpk(a + b) +

∞∑

k=0

pk(a + b) 2−k−3

]
.

(9.64)Re
alling (9.30), we �nd
ΨQ∗(a,−a) − p(a)2 > 0, (9.65)implying that ΨQ∗ 6= ν⊗N (re
all (9.2)), and hen
e H(ΨQ∗ | ν⊗N) > 0, implying the 
laim.51



A Appendix: Continuity under trun
ation limitsThe following lemma implies (1.17).Lemma A.1. For all Q ∈ P inv,fin(ẼN),
lim

tr→∞
H([Q]tr | q⊗N

ρ,ν ) = H(Q | q⊗N

ρ,ν ),

lim
tr→∞

m[Q]trH(Ψ[Q]tr | νN) = mQH(ΨQ | νN).
(A.1)Proof. The proof is not quite standard, be
ause Q and [Q]tr, respe
tively, ΨQ and Ψ[Q]tr are not � d̄-
lose� when tr is large, so that we 
annot use the fa
t that entropy is � d̄-
ontinuous� (see Shields [21℄).Lower semi-
ontinuity yields lim inftr→∞ l.h.s. ≥ r.h.s. for both limits, so we need only prove thereverse inequality. Note that, for all Q ∈ P inv,fin(ẼN),

H(Q) ≤ h(Q|F1
) ≤ h

(
LQ(τ1)

)
+ mQ log |E| < ∞, H(ΨQ) ≤ log |E| < ∞, H(Q | q⊗N

ρ,ν ) < ∞.(A.2)For Z a random variable, we write LQ(Z) to denote the law of Z under Q.A.1 Proof of �rst half of (A.1)Proof. Sin
e q⊗N
ρ,ν is a produ
t measure, we have for, any tr ∈ N,

H([Q]tr | q⊗N

ρ,ν ) = −H([Q]tr) − E[Q]tr [log ρ(τ1)] − E[Q]tr

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]

= −H([Q]tr) − EQ [log ρ(τ1 ∧ tr)] − EQ

[
τ1∧tr∑

i=1

log ν
(
Y

(1)
i

)]
.

(A.3)By dominated 
onvergen
e, using that mQ < ∞ and log ρ(n) ≤ C log(n + 1) for some C < ∞, wesee that as tr → ∞ the last two terms in the se
ond line 
onverge to
−EQ

[
log ρ(τ1)

]
− EQ

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]
. (A.4)Thus, it remains to 
he
k that

lim
tr→∞

H([Q]tr) = H(Q). (A.5)Obviously, H([Q]tr) ≤ H(Q) for all tr ∈ N (indeed, h([Q]tr|FN
) ≤ h(Q|FN

) for all N, tr ∈ N,be
ause [Q]tr is the image measure of Q under the trun
ation map). For the asymptoti
 
onverse,we argue as follows. A de
omposition of entropy gives
h(Q|FN

) = h([Q]tr |FN
) +

∫

[ eE]Ntr

h
(
LQ

(
πNY | πN [Y ]tr = z

))
(πN [Q]tr)(dz), (A.6)52



where πN is the proje
tion onto the �rst N words, and LQ(πNY | πN [Y ]tr = z) is the 
onditionaldistribution of the �rst N words given their trun
ations. We have
h
(
LQ

(
πNY | πN [Y ]tr = z

))
≤

N∑

i=1

h
(
LQ

(
Yi | πN [Y ]tr = z

)) (A.7)and ∫

[ eE]Ntr

h
(
LQ

(
Yi | πN [Y ]tr = z

))
(πN [Q]tr)(dz)

≤

∫

[ eE]Ntr

h
(
LQ

(
Yi | [Yi]tr = zi

))
(πN [Q]tr)(dz)

=

∫

[ eE]tr

h
(
LQ

(
Y1 | [Y1]tr = y

))
(π1[Q]tr)(dy), 1 ≤ i ≤ N,

(A.8)where the inequality in the se
ond line 
omes from the fa
t that 
onditioning on less in
reasesentropy, and the third line uses the shift-invarian
e. Combining (A.6�A.8) and letting N → ∞, weobtain
H(Q) ≤ H([Q]tr) +

∫

[ eE]tr

h
(
LQ

(
Y1 | [Y1]tr = y

))
(π1[Q]tr)(dy), (A.9)and so it remains to 
he
k that the se
ond term in the right-hand side vanishes as tr → ∞.Note that this term equals (write ε for the empty word and w ·w′ for the 
on
atenation of words wand w′)

−
∑

w∈Ẽ
τ(w)=tr

[Q]tr(w)
∑

w′∈Ẽ∪{ε}

Q(w · w′)

[Q]tr(w)
log

[
Q(w · w′)

[Q]tr(w)

]

= −
∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log Q(w′′) +
∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log [Q]tr([w
′′]tr).

(A.10)But
0 ≥

∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log [Q]tr([w
′′]tr) ≥

∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log Q(w′′), (A.11)and so the right-hand side of (A.10) vanishes as tr → ∞.A.2 Proof of se
ond half of (A.1)Note that limtr→∞ m[Q]tr = mQ and w− limtr→∞ Ψ[Q]tr = ΨQ by dominated 
onvergen
e, implyingthat
lim inf
tr→∞

H(Ψ[Q]tr | νN) ≥ H(ΨQ | ν⊗N). (A.12)So it remains to 
he
k the reverse inequality. Sin
e ν⊗N is produ
t measure, we have
H(Ψ[Q]tr | νN) = −H(Ψ[Q]tr) −

1

m[Q]tr

EQ

[
τ1∧tr∑

i=1

log ν
(
Y

(1)
i

)]
. (A.13)53



By dominated 
onvergen
e, as tr → ∞ the se
ond term 
onverges to
1

mQ
EQ

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]
=

∫

E
ΨQ(dx) log ν(x). (A.14)Thus, it remains to 
he
k that

lim
tr→∞

H(Ψ[Q]tr) = H(ΨQ). (A.15)We will �rst prove (A.15) for ergodi
 Q, in whi
h 
ase [Q]tr, ΨQ, Ψ[Q]tr are ergodi
 (Birkner [3℄,Remark 5).For Ψ ∈ Perg(EN) and ε ∈ (0, 1), let
Nn(Ψ, ε) = min

{
#A : A ⊂ En,Ψ(A × E∞) ≥ ε

} (A.16)be the (n, ε) 
overing number of Ψ. For any ε ∈ (0, 1), we have
lim

n→∞

1

n
logNn(Ψ, ε) = H(Ψ) (A.17)(see Shields [21℄, Theorem I.7.4). The idea behind (A.15) is that there are ≈ exp[nH(ΨQ)] �ΨQ-typi
al� sequen
es of length n, and that a �Ψ[Q]tr-typi
al� sequen
e arises from a �ΨQ-typi
al�sequen
e by eliminating a fra
tion δtr of the letters, where δtr → 0 as tr → ∞. Hen
e Nn(ΨQ, ε)
annot be mu
h larger thanNn(Ψ[Q]tr, ε) (on an exponential s
ale), implying that H(ΨQ)−H(Ψ[Q]tr)must be small.To make this argument pre
ise, �x ε > 0 and pi
k N0 so large that

Q
(
|κ(Y (1), . . . , Y (N))| ∈ NmQ[1 − ε, 1 + ε]

)
> 1 − ε for N ≥ N0. (A.18)Pi
k tr0 ∈ N so large that for tr ≥ tr0 and N ≥ N0,

Q
(∑N

i=1(τ1 − tr)+ < Nε
)

> 1 − ε/2, Q
(
τ1 ≤ tr

)
> 1 − ε/2, m[Q]tr > (1 − ε)mQ. (A.19)For n ≥ ⌈N0/mQ⌉, we will 
onstru
t a set B ⊂ En su
h that

ΨQ(B × E∞) ≥ 1
2 , |B| ≤ exp

[
n(H(Ψ[Q]tr) + δ)

]
, (A.20)where δ 
an be made arbitrarily small by 
hoosing ε small in (A.18�A.19). Hen
e, by the asymptoti

over property (A.17), we have H(ΨQ) ≤ (1 + δ)H(Ψ[Q]tr) and

lim inf
tr→∞

H(Ψ[Q]tr) ≥ H(ΨQ), (A.21)
ompleting the proof of (A.15).We verify (A.20) as follows. Put N := ⌈nmQ(1 + 2ε)⌉. By (A.18�A.19) and the asymptoti
 
overproperty (A.17) for Ψ[Q]tr, there is a set A ⊂ ẼN su
h that
EQ

[
τ11A(Y (1), . . . , Y (N))

]
> (1 − ε)mQ (A.22)54



and
|κ(y(1), . . . , y(N))| ≥ n(1 + ε), τ(y(1)) ≤ tr,

N∑

i=1

(τ(y(i)) − tr)+ < Nε,

∀ (y(1), . . . , y(N)) ∈ A,

(A.23)while the set
B′ :=

{
κ([y(1)]tr, . . . , [y

(N)]tr)|(0,⌈(1−ε)n⌉] : (y(1), . . . , y(N)) ∈ A
}
⊂ E⌈(1−ε)n⌉] (A.24)satis�es

|B′| ≤ exp
[
n(H(Ψ[Q]tr) + ε)

]
. (A.25)Put

B :=
{
κ(y(1), . . . , y(N))|(0,n] : (y(1), . . . , y(N)) ∈ A

}
⊂ En. (A.26)Observe that ea
h x′ ∈ B′ 
orresponds to at most

|E|εn
(

n

εn

)
≤ exp

[
− n(ε log ε + (1 − ε) log(1 − ε)) + nε log |E|

] (A.27)di�erent x ∈ B, so that
|B| ≤ |B′| exp

[
− n(ε log ε + (1 − ε) log(1 − ε)) + nε log |E|

]
. (A.28)We have

mQΨQ(B × E∞) ≥ EQ

[
τ1−1∑

k=0

1B×E∞

(
θkκ(Y )

)1A(Y (1), . . . , Y (N))

]

= EQ

[
τ1∧tr−1∑

k=0

1B′×E∞

(
θkκ([Y ]tr)

)1A(Y (1), . . . , Y (N))

]

≥ EQ




τ1∧tr|−1∑

k=0

1B′×E∞

(
θkκ([Y ]tr)

)

− εmQ

= m[Q]trΨ[Q]tr(B
′ × E∞) − εmQ,

(A.29)
so that, �nally,

ΨQ(B × E∞) ≥
m[Q]tr

mQ
Ψ[Q]tr(B

′ × E∞) − ε ≥ 1
2 . (A.30)Combining (A.25), (A.28) and (A.30), we obtain (A.20) with

δ = −
(
ε log ε + (1 − ε) log(1 − ε)

)
+ ε
(
1 + log |E|

)
. (A.31)Sin
e lim suptr→∞ H(Ψ[Q]tr) ≤ H(ΨQ) by upper semi-
ontinuity of H (see e.g. Georgii [13℄, Propo-sition. 15.14), this 
on
ludes the proof of (A.15) for ergodi
 Q.For general Q ∈ P inv,fin(ẼN), we re
all the ergodi
 de
omposition formulas stated in (6.1�6.2).These yields

Ψ[Q]tr =

∫

Perg,fin( eEN)

m[Q′]tr

m[Q]tr

Ψ[Q′]tr WQ(dQ′), (A.32)55



and
H(Ψ[Q]tr) =

∫

Perg,fin( eEN)

m[Q′]tr

m[Q]tr

H(Ψ[Q′]tr)WQ(dQ′), (A.33)be
ause spe
i�
 relative entropy is a�ne. The integrand inside (A.33) is non-negative and, by theabove, 
onverges to mQ′

mQ
H(ΨQ′) as tr → ∞. Hen
e, by Fatou's lemma,

lim inf
tr→∞

H(Ψ[Q]tr) ≥

∫

Perg,fin( eEN)

mQ′

mQ
H(ΨQ′)WQ(dQ′) = H(ΨQ), (A.34)whi
h 
on
ludes the proof.Referen
es[1℄ M. Birkner, Parti
le Systems with Lo
ally Dependent Bran
hing: Long-Time Behaviour, Ge-nealogy and Criti
al Parameters, Dissertation, Johann Wolfgang Goethe-Universität Frankfurtam Main, 2003.http://publikationen.ub.uni-frankfurt.de/volltexte/2003/314/[2℄ M. Birkner, A 
ondition for weak disorder for dire
ted polymers in random environment,Ele
tron. Comm. Probab. 9 (2004) 22�25.[3℄ M. Birkner, Conditional large deviations for a sequen
e of words, Sto
h. Pro
. Appl. 118(2008) 703�729.[4℄ M. Birkner and R. Sun, Annealed vs quen
hed 
riti
al points for a random walk pinningmodel, preprint 2008.[5℄ E. Bolthausen, A note on the di�usion of dire
ted polymers in a random environment, Com-mun. Math. Phys. 123 (1989) 529�534.[6℄ A. Camanes and P. Carmona, Dire
ted polymers, 
riti
al temperature and uniform integra-bility, preprint 2007.[7℄ F. Comets, Large deviation estimates for a 
onditional probability distribution. Appli
ationsto random intera
tion Gibbs measures, Probab. Theory Relat. Fields 80 (1989) 407�432.[8℄ F. Comets, T. Shiga and N. Yoshida, Dire
ted polymers in random environment: path lo
al-ization and strong disorder, Bernoulli 9 (2003) 705�723.[9℄ F. Comets and N. Yoshida, Dire
ted polymers in random environment are di�usive at weakdisorder, Ann. Probab. 34 (2006) 1746�1770.[10℄ A. Dembo and O. Zeitouni, Large Deviations Te
hniques and Appli
ations, Jones and BartlettPublishers, Boston, 1993.[11℄ B. Derrida, G. Gia
omin, H. La
oin and F.L. Toninelli, Fra
tional moment bounds and dis-order relevan
e for pinning models (2007), arXiv:0712.2515v1.[12℄ J.-D. Deus
hel and D.W. Stroo
k, Large Deviations, A
ademi
 Press, Boston, 1989.56



[13℄ H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathemati
s 9,Walter de Gruyter, Berlin, 1988.[14℄ A. Greven, Phase transition for the 
oupled bran
hing pro
ess, Part I: The ergodi
 theory inthe range of se
ond moments, Probab. Theory Relat. Fields 87 (1991) 417�458.[15℄ A. Greven, On phase transitions in spatial bran
hing systems with intera
tion, in: Sto
hasti
Models (L.G. Gorostiza and B.G. Ivano�, eds.), CMS Conferen
e Pro
eedings 26 (2000) 173�204.[16℄ A. Greven and F. den Hollander, Phase transitions for the long-time behaviour of intera
tingdi�usions, Ann. Probab. 35 (2007) 1250�1306.[17℄ F. den Hollander, Large Deviations, Fields Institute Monographs 14, Ameri
an Mathemati
alSo
iety, Providen
e, RI, 2000.[18℄ R. Holley and T. M. Liggett, Generalized potlat
h and smoothing pro
esses, Z. Wahrs
hein-li
hkeitstheorie verw. Gebiete 55 (1981) 165-195.[19℄ O. Kallenberg, Stability of 
riti
al 
luster �elds, Math. Na
hr. 77 (1977) 7�45.[20℄ C. Monthus and T. Garel, Freezing transition of the dire
ted polymer in a 1+d randommedium: Lo
ation of the 
riti
al temperature and unusual 
riti
al properties, Phys. Rev. E74 (2006) 011101.[21℄ P.C. Shields, The Ergodi
 Theory of Dis
rete Sample Paths, Ameri
an Mathemati
al So
iety,Providen
e, RI, 1996.[22℄ F. Spitzer, Prin
iples of Random Walk (2nd. ed.), Springer, New York, 1976.[23℄ V. Strassen, The existen
e of probability measures with given marginals, Ann. Math. Statist.36 (1965) 423�439.[24℄ F. Toninelli, Disordered pinning models and 
opolymers: beyond annealed bounds,arXiv:0709.1629v1 (2007), to appear in Ann. Appl. Probab.[25℄ P. Walters, An Introdu
tion to Ergodi
 Theory, Graduate Texts in Mathemati
s 79, Springer,New York, 1982.

57


