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Abstract

Using a systematic approach to evaluate Fredholm determinants numeri-

cally, we provide convincing evidence that the Airy1-process, arising as a limit

law in stochastic surface growth, is not the limit law for the evolution of the

largest eigenvalue in GOE matrix diffusion.

1 Introduction

One of the unsolved problems in random matrix theory is to understand the law
for the largest eigenvalue in GOE matrix diffusion. Let M(t) be a matrix-valued
stationary process on real symmetric matrices of size N ×N satisfying: (i) the one-
time distribution of M(t) is given by the Gaussian Orthogonal Ensemble (GOE), (ii)
the (independent) entries of M(t) are independent stationary Ornstein-Uhlenbeck
processes in time. The corresponding process for the ordered eigenvalues λN,j(t),
j = 1, . . . , N is Dyson’s Brownian motion with β = 1. The stationary distribution
of the largest eigenvalue, λN,N(t), can be expressed fairly explicit, and its limiting
distribution, under proper rescaling as N → ∞, is the GOE Tracy-Widom distri-
bution [16]. However, no simple expression for the joint distribution of the largest
eigenvalue at two different times is known. To be specific, one can ask for the covari-
ance of the largest eigenvalue Cov

(

λN,N(t), λN,N(0)
)

and its asymptotic behavior as
N → ∞.

For the related case of GUE matrix diffusion, i.e., when M(t) is a hermitian matrix
and the stationary distribution is given by the Gaussian Unitary Ensemble (GUE),
the corresponding question is answered. In this case the law for the eigenvalues
is given by Dyson’s Brownian motion with β = 2 and the limiting process of the
properly rescaled largest eigenvalue is the Airy process. This process first arose in
the context of one-dimensional stochastic surface growth with curved macroscopic
shape [14] for the so-called polynuclear growth (PNG) model.

This raised the question, whether the limit process of the largest eigenvalue in GOE
matrix diffusion can also be obtained from a growth process. A strong candidate
was one-dimensional growth starting from a flat substrate, since in this case the
limiting one-point distribution is the same as for GOE matrix diffusion [13]. This
correspondence was partially extended to a multilayer version of flat growth with
non-intersecting height lines. It was shown in [8] that the point process of the
multilayer at a fixed position and the point process of the GOE ensemble at the
edge of the spectrum have the same asymptotic law.
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The analogue of the Airy process for flat growth was discovered by Sasamoto in a
growth model related to PNG [15]. Since its defining kernel at equal times is, in
a certain sense, the square root of the standard Airy kernel [10], it was baptized
the “Airy1 process”. Accordingly, for better distinction, we call the standard Airy
process “Airy2 process” in the rest of the paper.

In [4] two conjectures have been formulated. The first predicted that the Airy1

process is also the limit process for the PNG model with flat initial conditions,
which subsequently has been proven in [6]. The second claimed that the Airy1

process is also the limit of the largest eigenvalue in GOE matrix diffusion (β = 1
Dyson’s Brownian motion).

In this paper we show that the second conjecture does not hold. To this end we
compare the two-point functions of the Airy1 process and of the largest eigenvalue
in GOE matrix diffusion for different matrix sizes.

The joint distribution functions for the Airy processes are given in terms of Fredholm
determinants of integral operators. To evaluate these Fredholm determinants we
employ a numerical scheme, recently developed by one of the authors [2], which in
itself is of general interest. For matrix diffusion we use straightforward Monte-Carlo
simulations on large matrices.

The comparison shows that the correlation function for GOE matrix diffusion differs,
in the limit of large matrices, from the one for Airy1. In contrast, in the case of
GUE matrix diffusion, the corresponding numerical calculations perfectly illustrate
the known convergence to the Airy2 process.

2 Polynuclear growth model

In this section we present the polynuclear growth model in 1 + 1 dimensions and
give known results relevant for the discussion. We refer to the original papers for
more details.

The model and its multilayer extension

We briefly define the polynuclear growth (PNG) model on a one-dimensional sub-
strate. At time t, the surface is described by an integer-valued height function
x 7→ h(x, t) ∈ Z, x ∈ R, t ∈ R+, with steps of size 1, which is taken to be upper
semicontinuous, i.e., lim

x→x0

h(x, t) ≤ h(x0, t) for all x0, t. Thus the surface consists of

up-steps (yp) and down-steps (qx). The dynamics of these steps has a deterministic
and a stochastic part:

(i) up- (down-) steps move to the left (right) with unit speed. When a down-step
and an up-step collide they simply disappear.
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(ii) pairs of up- and down- steps at the same point (spikes) are produced by random
nucleation events with some given intensity. The up- and down-steps of the
spikes then spread out with unit speed according to (i).

The multilayer extension of the PNG model [14] is the following. Instead of a single
height function h(x, t) we have a set of height functions {hℓ(x, t), ℓ ≤ 0}, with the
initial condition hℓ(x, 0) = ℓ, for all x ∈ R. The dynamics of h0(x, t) is the same as
for the original h(x, t). For the remaining lines (i) applies as for h0(x, t). Rule (ii)
is modified insofar, that for hℓ(x, t), ℓ ≤ −1, nucleation events are not produced at
random, but whenever there is a collision of a pair of steps in level ℓ + 1 at (x, t), a
spike is produced in level ℓ at (x, t). By construction the lines do not intersect and
one associates an (extended) point process η on R× Z, by

η(x, j) =

{

1, hℓ(x, t) = j for some ℓ ≤ 0,
0, otherwise.

(2.1)

The PNG droplet

Consider a flat initial substrate h(x, 0) = 0, x ∈ R. The PNG droplet is obtained
when the nucleations form a Poisson point process in space-time with intensity
ρ(x, t) = 2 for |x| ≤ t and ρ(x, t) = 0 otherwise. For large growth time t, the
interface has the shape of a droplet, namely the deterministic limit,

hma(ξ) := lim
t→∞

t−1h(ξt, t) = 2
√

1 − ξ21(|ξ|≤1). (2.2)

The fluctuations of the height function grow as t1/3 and the correlation length as
t2/3. Therefore, the edge scaling of the (multilayer) height functions around the
origin, x = 0, is given by

hdroplet
ℓ (u, t) :=

hℓ(ut2/3) − thma(ut−1/3)

t1/3
. (2.3)

For the PNG droplet, the point process associated to the multilayer is determinantal.
Moreover, rescaled as in (2.3), it converges in the large t limit to the Airy field [14],
defined by the n-point correlation functions

ρ(n)(u1, s1; . . . ; un, sn) = det(KA2
(ui, si; uj, sj))1≤i,j≤n, (2.4)

where

KA2
(u, s; u′, s′) =



















∫ ∞

0

dλe(u′−u)λAi(s + λ)Ai(s′ + λ), u′ ≤ u,

−
∫ 0

−∞

dλe(u′−u)λAi(s + λ)Ai(s′ + λ), u′ > u.

(2.5)

3



Denote by A2(u) the highest point of the Airy field at position u. It can be seen
as a process u 7→ A2(u) and it is called the Airy2 process. The convergence of the
extended point process to the Airy field implies in particular that [14]

lim
t→∞

hdroplet
0 (u, t) = A2(u). (2.6)

The joint distributions of the Airy2 process are given by Fredholm determinants:
for any given u1 < u2 < . . . < um, and s1, . . . , sm ∈ R,P( m

⋂

k=1

{A2(uk) ≤ sk}
)

= det(1− χsKA2
χs)L2({u1,...,um}×R), (2.7)

where χs(uk, x) = 1(x>sk). This expression allows to determine some properties of
the covariance

g2(u) := Cov(A2(u),A2(0)), (2.8)

namely
g2(0) = Var(A2(0)) = 0.81320 . . . , g′

2(0) = −1, (2.9)

and the asymptotics for large u [1, 17],

g2(u) =
1

u2
+

c

u4
+ O(u−6), (2.10)

with the constant c = −3.542 . . . , evaluated numerically from an explicit expression
in terms of the Hastings-McLeod solution of Painlevé II [2].

The flat PNG

Consider a flat initial substrate h(x, 0) = 0, x ∈ R, and run the PNG dynamics
with constant nucleation intensity, say ρ(x, t) = 2 for all x ∈ R, t ≥ 0. Then the
limit shape is flat, hma(ξ) = 2. Thus the edge scaling is

hflat
ℓ (u, t) :=

hℓ(ut2/3) − 2t

t1/3
. (2.11)

For the flat PNG, the correlation structure of the multilayer version is not known,
but a few results are available.

(a) In the large time limit the point process corresponding to (2.11) for a fixed value
of u converges to a Pfaffian point process [8] whose n-point correlation functions are
given by

ρ(n)(s1, . . . , sn) = 22n/3Pf(GGOE(22/3si; 2
2/3sj))1≤i,j≤n. (2.12)

GGOE is a 2 × 2 matrix kernel (for an explicit expression see, e.g. (2.9) in [8]) and
Pf is the Pfaffian (Pf(A) =

√

det(A) for an antisymmetric matrix A). This kernel
also occurs for GOE random matrices in the large matrix limit at the edge of the
spectrum.
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(b) Recently, it has been proven that the Airy1 process describes the limit of the
top line of the multilayer flat PNG [5], namely

lim
t→∞

hflat
0 (u, t) = 21/3A1(u/22/3). (2.13)

The joint distributions of the Airy1 process are given by Fredholm determinants:
for any given u1 < u2 < . . . < um, and s1, . . . , sm ∈ R,P( m

⋂

k=1

{A1(uk) ≤ sk}
)

= det(1− χsKA1
χs)L2({u1,...,um}×R), (2.14)

where χs(uk, x) = 1(x > sk), and the kernel KA1
is defined by

KA1
(u, s; u′, s′) = Ai(s + s′ + (u − u′)2) exp

(

(u′ − u)(s + s′) + 2
3
(u′ − u)3

)

− 1
√

4π(u′ − u)
exp

(

− (s′ − s)2

4(u′ − u)

)1(u′ > u) (2.15)

Some properties of the Airy1 process like the short and long time behavior of the
covariance are known. We refer to the review [9] for details. In particular, the
short-time behavior of the covariance of the Airy1 process,

g1(u) := Cov(A1(u),A1(0)), (2.16)

satisfies
g1(0) = Var(A1(0)) ≃ 0.402 . . . , g′

1(0) = −1. (2.17)

3 Dyson’s Brownian motion

Dyson’s Brownian motion [7] describes the diffusion of N mutually repelling particles
with positions λj(t), j = 1, . . . , N , at time t on the real line in a harmonic potential,

dλj(t) =

(

−γλj(t) +
β

2

∑

i6=j

1

λj(t) − λi(t)

)

dt + dbj(t), j = 1, . . . , N, (3.1)

the bj(t) being independent standard Brownian motions with Var(bj(t)) = t. Let
P (λ) denote the probability distribution of particle positions λ = (λ1, . . . , λN). It
satisfies the diffusion equation

∂

∂t
P (λ) =

N
∑

j=1

∂

∂λj

(

γλjP (λ) − β

2

∑

i6=j

1

λj − λi
P (λ)

)

+
1

2

∂2

∂λ2
j

P (λ). (3.2)

The stationary distribution is given by

P (λ) =
1

Z
|∆(λ)|β exp

(

− γ
N
∑

j=1

λ2
j

)

, (3.3)
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with ∆(λ) =
∏

1≤i<j≤N

(λj − λi), and Z the normalization.

In his original work, Dyson linked the special values β = 1, 2, 4 to the eigenvalue
GOE, GUE and GSE random matrices, respectively. In these cases, λj(t) is the j-th
smallest eigenvalue of a random matrix M(t) diffusing according to an Ornstein-
Uhlenbeck process on real symmetric, hermitian or symplectic matrices, respectively.

We describe the correspondence only in the cases β = 1 (GOE) and β = 2 (GUE).
Let bα

ij(t), 1 ≤ i, j ≤ N , α = 1, 2, be independent standard Brownian motions.
In the GOE case one sets bij(t) = b1

ij(t) ∈ R, in the GUE case one sets bij(t) =

b1
ij(t) + ib2

ij(t) ∈ C. Let Bij(t) = 1
2

(

bij(t) + bji(t)
)

. Now B(t) is a Brownian motion
on the space of real symmetric, resp., hermitian matrices, which is invariant with
respect to orthogonal, resp. unitary rotations. For GOE the independent entries are
Bij, j ≥ i, while for GUE the independent entries are Bii and Re(Bij), Im(Bij), j > i.
These real-valued independent entries perform Brownian motions, with variance t
on the diagonal and variance t/2 for the remaining entries. Now let M(t) be the
stationary Ornstein-Uhlenbeck process defined by

dM(t) = −γM(t)dt + dB(t). (3.4)

The stationary distribution is proportional to exp(−γTr(M2)) in both cases, GOE
and GUE. By integrating over the angular variables, one gets the stochastic evolution
of eigenvalues as in (3.3).

Let us mention here, that the parameter γ is in fact irrelevant. Multiplying the
eigenvalues by

√
γ and rescaling time by γ−1 one can always arrange for γ = 1.

We kept this parameter throughout the formulas to facilitate comparisons with the
literature, where different, sometimes N -dependent, conventions for γ have been
adopted. The most common choice, γ = 1, leads to the standard Hermite kernel
with Hermite polynomials orthogonal with respect to the weight e−x2

.

GUE diffusion and Airy process

In the case β = 2, the point process associated to the ordered eigenvalues, λj(t)
of M(t) is determinantal, defined by the extended Hermite kernel [12]. The edge
scaling at the upper edge of the spectrum is given by

λGUE
N,j (u) =

√

2γN1/6
(

λj(u/(γN1/3)) −
√

2N/γ
)

. (3.5)

Under this rescaling, the kernel of the corresponding point process converges to the
Airy kernel KA2

as N → ∞ [1]. This allows to show the convergence of the rescaled
largest eigenvalue, λGUE

N,N (u), to the Airy2 process,

lim
N→∞

λGUE
N,N (u) = A2(u), (3.6)

in the sense of convergence of finite-dimensional distributions [11]. The finite-N
covariance of the largest eigenvalue is denoted by fGUE

N ,

fGUE
N (u) = Cov

(

λGUE
N,N (u), λGUE

N,N (0)
)

. (3.7)
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Obviously one expects that limN→∞ fGUE
N (u) = g2(u). To prove this rigorously,

convergence of moments is needed in (3.6), a result which is currently not available.

GOE diffusion

For β = 1, the GOE case, explicit expressions for dynamical correlations are not
known. Nevertheless one expects an analogous behavior as for GUE diffusion. In
the edge scaling of the ordered eigenvalues λj(t) of M(t) in the GOE case, one has
two free parameters (time and space scaling). In order to check the hypothesis that
the Airy1 process describes the evolution of the largest eigenvalue for the GOE case,
we choose the free parameters by matching the covariance and its derivative at zero,
see (2.17). We obtain

λGOE
N,j (u) =

√
γN1/6

(

λj(2u/(γN1/3)) −
√

N/γ
)

. (3.8)

As anticipated while speaking of the flat PNG, the point process of the edge-rescaled
GOE eigenvalues at a fixed time (the one associated to {λGOE

N,j (0), 1 ≤ j ≤ N})
converges to a Pfaffian point process with n-point correlation given by

ρ(n)(s1, . . . , sn) = 2nPf(GGOE(2si, 2sj))1≤i,j≤n (3.9)

in the N → ∞ limit. We denote by fGOE
N the finite-N covariance of the largest

eigenvalue,
fGOE

N (u) = Cov
(

λGOE
N,N (u), λGOE

N,N (0)
)

. (3.10)

The scaling in (3.8) is chosen such that fGOE
N

′
(0) = −1 and fGOE

N (0) → g1(0) as
N → ∞. As in the GUE case one expects the limit fGOE

∞ (u) = limN→∞ fGOE
N (u) to

exist. In the next section we address the question whether fGOE
∞ (u) equals g1(u).

4 Numerical results

The Airy1 process was regarded as a candidate for the limit of the rescaled largest
GOE eigenvalue process [4, 15], because of the known properties of these two pro-
cesses. Both are stationary processes with the same one-point distribution, and the
conjectured short time behaviors coincide, too. Furthermore, as explained above,
the underlying multiline ensembles have the same limiting single time distribution
as point processes on R (see (2.12) and (3.9)). The final ingredient for the guess is
that the connections carries over the multilines picture in the β = 2 case.

In lack of more analytical input, we looked for an answer to the question, whether
the Airy1 process is the limit of the β = 1 Dyson’s Brownian motion by numerical
means. We decided to compare the large N limit of (3.10) with the covariance
of the Airy1 process (2.16). The quantities in question are not straightforwardly
accessible. For the Airy1 process one needs to evaluate Fredholm determinants. For
Dyson’s Brownian motion we performed Monte-Carlo simulations on the eigenvalues
of coupled GOE matrices directly.
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Covariances of the Airy1 and Airy2 processes

The key point of the numerical computation is the evaluation of the Fredholm de-
terminants of the two-point joint distributions for the Airy1 and Airy2 processes,
eqs. (2.7), (2.14). This is explained in details in the recent paper [2]. Let us briefly
describe the procedure.

Basic ingredient is a Nyström-type approximation of integral operators by an n-
point quadrature formula for integrals over the interval (s,∞) that gives exponential
convergence rates for holomorphic integrands. Such a formula can be based on the
holomorphic transformation

φs : (0, 1) → (s,∞), ξ 7→ s + 10 tan(πξ/2),

followed by Gauss–Legendre quadrature on the interval (0, 1) with weights wj and
points ξj (j = 1, . . . , n). This way we obtain

∫ ∞

sk

f(x) ≈
n
∑

j=1

wjφ
′
sk

(ξj) f(φsk
(ξj)) =

n
∑

j=1

wkjf(xkj).

The Fredholm determinants (2.7) and (2.14) are now approximated by the mn×mn-
dimensional determinant

det(1− χsKAµ
χs)L2({u1,...,um}×R) ≈ det













1− A11 A12 · · · A1m

A21 1− A22 · · · A2m

...
...

...

Am1 Am2 · · · 1− Amm













(4.1)

where the submatrices Aij ∈ Rn×n (i, j = 1, . . . , m) are defined by

(Aij)pq = w
1/2
ip KAµ

(ui, xip; uj, xjq)w
1/2
jq (p, q = 1, . . . , n). (4.2)

Theorem 8.1 of [2] shows that the approximation error in (4.1) decays exponentially
with n, that is, like O(ρ−n) for some constant ρ > 1. Thus, doubling n doubles
the number of correct digits; a fact on which simple strategies for adaptive error
control can be based [3]. Additionally, the level of round-off error can be controlled
as described in [2]. It turns out that the two-point (m = 2) joint distribution can
be calculated to an absolute precision of 10−14 using n quadrature points with n
between 20 and 100, depending on the specific values of u, s1, and s2. The CPU
time for a single evaluation of the joint distribution is well below a second (using a
2 GHz PC).

The covariances g1(u) and g2(u) were calculated by first truncating the integrals,
then integrating by parts (to avoid numerical differentiation), and finally using
Clenshaw–Curtis quadrature. A truncation at ±10 (except for small u ≤ 0.05 in
the case of g1, where larger integration intervals are necessary) and 100 quadrature
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points in each of the two dimensions are sufficient to secure an absolute precision of
10−10.

The code for calculating the two-point joint distributions and the covariances g1 and
g2 can be obtained from the first author upon request.

Monte Carlo Simulation of Random Matrices

To get an estimate for the covariance of the largest eigenvalue of GUE and GOE
matrices, we performed straightforward Monte-Carlo simulations. A collection of
matrices Ck, k = 0, . . . , K, independently distributed according to the stationary
distribution of (3.4) can be easily produced with standard pseudo random generators,
since each Ck consists of independently normally distributed entries. Fixing a time
step ∆t, it is easy to see that for the stationary process M(t) governed by (3.4) the
joint distribution of (M(k∆t))0≤k≤K is the same as for the matrices Mk, defined by

M0 = C0, Mk = e−γ∆tMk−1 +
√

1 − e−2γ∆tCk, 1 ≤ k ≤ K. (4.3)

Now, one numerically determines the largest eigenvalues of the Mk and rescales
according to eqs. (3.5), resp., (3.8). This yields realizations of λGOE

N,N (u) and λGUE
N,N (u)

at equidistant times u. The empirical auto-covariance of these time series gives
an estimate for the covariance functions fGOE

N (u) and fGUE
N (u) at discrete values

of u. The data presented here are for N = 64, 128, and 256 with γ = 1/2 and
∆t = 1

2
N−1/3. We chose K = 106, and produced up to 100 independent realizations

of the time series in each case. This allows to obtain an error estimate for each data
point.

Discussion

In Figure 1 we compare the covariance (2.16) of the Airy1 process and the one of
the largest eigenvalue for GOE matrix diffusion (3.10) for N = 64 and N = 256.
One clearly sees that they do not agree.

Increasing the matrix dimension does not change sensibly the result; namely, the
results for N = 128 agree to plotting accuracy with the one for N = 256 in Figure 1
and therefore are not shown. In comparison, in Figure 2 we plot the covariance (2.8)
of the Airy2 process and the one of the largest eigenvalue for GUE matrix diffusion
(3.7) for the same matrix dimensions. Here the agreement is already quite good
even for relatively small matrix sizes. In both plots the errorbars are of order 10−3,
smaller then the symbols used and therefore omitted.

Concerning the decay of g1, it appears to be superexponentially in sharp contrast
to the algebraic decay (2.10) of g2. After reinspecting the 2 × 2 block Fredholm
determinant this behavior becomes clear, since one of the off-diagonal blocks is
superexponentially small in u for large values of u, while the others stay of order
one, a fact already noticed by Widom [18].
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Figure 1: The covariance g1 of the Airy1 process (line) versus the one of the largest
eigenvalue for GOE matrix diffusion, fGOE

N , for N = 64, 256.
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eigenvalue for GUE matrix diffusion, fGUE

N , for N = 64, 256.
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Figure 3: Log-log plot of the rescaled correlation functions for GOE and GUE.

Finally, in Figure 3, we provide a comparison of the decay of correlation for GOE and
GUE matrix diffusion. In a log-log plot we draw fGOE

N and fGUE
N for N = 128 and

N = 256 with errorbars. For GUE one observes the deviation from the asymptotic
behavior u−2 for large u due to finite size effects. Remarkably fGOE

N (u) looks very
similar to 1

2
fGUE

N (2u), indicating that the large u behavior of fGOE
∞ (u) might also

be algebraically decaying, in sharp contrast to the superexponential decay of g1(u).
Given the small matrix dimensions we used, we can not, however, conclude whether
the decay for fGOE

∞ (u) is of order u−2 as for GUE or not.
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