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Abstract

A stochastic analysis of an elastostatics problem for a half-plane under random
white noise excitations of the displacement vector prescribed on the boundary is
given. Solutions of the problem are inhomogeneous random fields homogeneous in
the longitudinal direction. This is used to model the displacements and represent
their correlation tensor via spectral expansion. This approach makes it possible
to derive exact representations for other functionals of interest, in particular, the
vorticity, the strain tensor, and the elastic energy.

1 Introduction.

The problem of estimating the respond to random excitations caused by different stochastically
perturbed parameters of PDEs is of high interest in many fields of science and technology. The
random excitations can be considered both as a natural source of stochastic fluctuations, or as
a model to describe extremely complicated irregularities and uncertainties (e.g., see [23], [20],
[12]). We mention here such classical examples as the Navier-Stokes equation with a stochastic
forcing, and the Darcy equation with a random hydraulic conductivity (e.g., see [9], [2], [1], [3])-

In electrical impedance tomography [6] important problem is to evaluate a global response to
random boundary excitations, and to estimate local fluctuations of the solution fields. Similar
analysis is made in the inverse problems of elastography [10], [15], recognition technology [4],
acoustic scattering from rough surfaces [22]|, and reaction-diffusion equations with white noise
boundary perturbations [20].

Unlike the fluctuations described by random coefficients of PDS, or their source terms, the
random boundary conditions are not so well studied. The main reason is that in this case, we
deal with statistically inhomogeneous random fields, hence the well known and commonly used
spectral methods are here not applicable anymore. Another difficulty comes from the necessity
to deal with boundary conditions and treat the relevant random boundary functions.

The main method for modeling inhomogeneous random fields is the Karhunen-Loéve (K-L) ex-
pansion. Generally, it is computational demanding because it requires to solve numerically
eigen-value problems of high dimension. However in some practically interesting cases models
with analytically solvable eigen-value problem for the correlation operator can be obtained. This
gives then a very efficient numerical method because as a rule, the K-L expansions are very fast
convergent.

We deal in this paper with 2D zero mean random fields v(z,y) in a half-plane {(z,y) : (—oc0 <
x < oo,y > 0} which are homogeneous with respect to the longitudinal coordinate x, and
inhomogeneous in the transverse direction y. Random fields with this property are called partially
homogeneous [13]. The correlation function B, = (v(x1,y1)v(z2,y2)) is then depending on the
difference 7 = x1 — x9, so we will write B,(7,y1,y2). The partial spectral function is defined as
the inverse Fourier transform with respect to 7:
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Assume we have no dependence on the variable y. The spectral representation of the random
field is written in the form

o(z,) = /R 9 G, ) Z(d8) 1)

where G is defined by G(&, -, - )G* (&, -, ) = S(&, -, -), the star sign stands for the complex conjugate,
the sign - stands to recall we omit the dependence on the variable y, and Z(d€) is a white noise
on R.

To simulate homogeneous random field, say, u(z), one commonly uses the Randomized Spectral
methods (e.g., see [7], [13], [19]) which is based on the randomized calculation of the stochastic
integral (1). Another method is based on the Riemann sums calculation with fixed cells. The
integral is approximated by a finite sum

N
u(z) ~ Z (¢ sin(& @) + n; cos(&; )]
=1

7

where &; are deterministic nodes in the Fourier space, (; and 7; are Gaussian variables with zero
mean and relevant covariance.

In our case we have however the dependence on the variable y, and the random fields are par-
tially inhomogeneous. In [13] we have extended the Spectral Randomization method to general
partially homogeneous random fields, but the inhomogeneity in y was still a problem assumed
to be solved by other methods. In a sense it was a method which reduced the dimension of the
problem (see for details [13]).

In the case we deal with, the partial spectral function has a special structure, namely, S(§, y1,y2)
depends on y; and yo as follows: S(&,y1,y2) = G(&,y1)G*(§,y2). This enables to construct a
simple extension of the Randomization method, without solving the inhomogeneity problem in
y, see [14] and [18]. This was first done in [14] by using the Karhunen-Love expansion.

Assume now, without loss of generality, that a generally inhomogeneous random field u(x) has
a zero mean and a variance Fu?(z) that is bounded. The Karhunen-Loéve expansion has the
form [24]

u(e) = S VA Geh(a)
k=1

where A, and hg(x) are the eigen-values and eigen-functions of the correlation function B(x1,x2) =
(u(x1)u(xz)), and (i is a family of random variables.

By definition, B(z1,x2) is bounded, symmetric and positive definite. For such kernels, the
Hilbert-Schmidt theory says that the following spectral representation is valid

B(xy,2z9) = Z i by (1) hue(22)
k=1

where the eigen-values and eigen-functions are the solutions of the following eigen-value problem
for the correlation operator:

/B(Sl?l, .’L'Q) hk(.’El) d:l?l = )‘k; hk(SCQ) .
The eigen-functions form a complete orthogonal set [ h;(z)h;(z)dz = §;; where §;; is the Kro-

necker delta-function. The family {(x} is a set of uncorrelated random variables which are
obviously related to hy by

ckzw%_k/u@)hk(x)dx, EGo=0, EGG=0;.
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It is well known that the Karhunen-Loéve expansion presents an optimal (in the mean square
sense) convergence for any distribution of u(z). If u(x) is a zero mean Gaussian random field,
then {(;} is a family of standard Gaussian random variables. We assume in this study that the

random fields are Gaussian. Some generalizations to non-gaussian random fields are reported in
[11].

Consider now a case when the domain is unbounded, e.g., a homogeneous random process u(z)
is defined on the whole real line R. The eigen-value problem reads

/B(.%'g — xl)hk(xl)dxl = A\ hk(wg) , —o0o <y <00. (2)
R

Note that we can take h(x) = €“%, then from (2) we get

A= / By — 1) e @277 ) = S(w) .

—00

To make further considerations more rigorous, we assume that our domain is bounded, say,
—a < z < a, and u is periodic (e.g., see [8], [21]). Then, we may develop B(ze — z1) in a Fourier

series,
)\ i2nk(z—a’)
(x — ) e . (3)

The eigen-value problem can then be solved via the unique representation

CC—SC Z)\ 6127rkz —i2rk 2’ (4)

which imply that !?™® are the eigen-functions with eigen-values Ay = S(wy). And conversely,

if the eigen-functions are Fourier modes we can write the equality (4) which leads to (3).

We apply the cut-off in the integration, i.e., we have to solve the eigen-value problem
a
/B(.T,'Q — .1‘1) h(.%'l) dml = )\k hk(wg),

where a is sufficiently large. Then it is possible to show (e.g., see [21]) that

1 .
A~ S(wg) = S(rk/a), hp(z) =~ - ¢l (mhe/a)

which yields an approximation

e 1 7T/€(.1‘2 — .%'1)
B(z1,x2) =~ By(x1,x2) Z E ) cos (f) ,
k=1

and the K-L expansion approaches in this case to the spectral representation

u(z) = g (x) = i ES(W_]{:)} UQ{@ cos[m kx/a] + ny Sin[ﬂ'kx/a]} .

a

The rate of convergence of the K-L expansion is closely related to the smoothness of the corre-
lation kernel and to ratio between the length ¢ and L, the correlation length of the process. For
example, in [8] is reported that for the particular case B(zy, ) = o e~ 1*2=#1/L an upper bound
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for the relative error in variance ¢ of the process represented by its K-L expansion is given by

e < %%% where n is the number of retained terms.

In this paper we give exact K-L expansions of the solution and its derivatives for an elastostatics
of a 2D elastic half-plane with random displacements prescribed on the boundary. The problem
is governed by a system of Lamé equations with random Dirichlet boundary conditions. This
paper continues the study we have published recently in [18] and [14] which deals with random
boundary value problems for a disc and a half-plane.

2 Elastostatics equations and the Poisson formula for
the half-plane.

Let us consider the Dirichlet problem for the system of Lamé equations in the domain Dt C R?,
the upper half-plane with the boundary I' = {y : y = 0}:

Au(x) + agraddivu(x) =0, x€ D', u(2')=g(@’) 2/ €l =0D", (1)
where u(x) = (u1(z,y),us(z,9))T is a column vector of displacements, and g = (g1, g2)" is the
vector of displacements prescribed on the boundary. The elastic constant o = % is expressed

through the Lamé constants of elasticity A and pu.
The Poisson formula for the problem (1) has the form [18]

[e.e]

u@w)zl/fwwn£Mgmvdf, 2)

where P(z — 2',y) = K(z — 2/, y)Q(x — 2, y) is defined via

Y
wll@ =P+

K(x_x/)y) =

the kernel of the well-known Poisson formula, for the Dirichlet problem for the Laplace equation
in the half-plane, (e.g., see [14], [18]), and

Qlz—a'y) =T+ B [ (z —a)? — y? 2z — ')y 2 ] ’ (3)

G PR | 2oy (- -
where I is the identity matrix, and 8 = /\)‘Jj—gi )

3 Stochastic boundary value problem.

3.1 Correlation tensor of the displacements.

Assume the prescribed boundary displacements g;, i = 1,2 are homogeneous random processes
defined on the whole line R. Then, the solution u(z,y) is a random field, and our goal is to find
its main statistical characteristics, e.g., the correlation tensor of the displacements, the strain
and elastic energy tensors. Here we note that from the Poisson formula (2) it can be easily found
that (u) = (g), so without loss of generality we assume that (g) = 0. For simplicity, we deal
here with Gaussian random fields, so we suppose that g; are Gaussian random processes, which
implies due to (2) that u(x,y) is also a Gaussian random field. Then, this zero mean random
field is uniquely defined by its correlation tensor.
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From the Poisson formula (2) for u, the correlation tensor B, (z1,y1; z2,y2) for the displacements
can be written as follows

Bu(w1,y1;72,92) = (u(21,y1) @ u(22,92)) = (u(w1, y1)u’ (z2,92)) (4)
= / / P(xy — :c'l,yl)Bg(xll; xé)PT(azg — xh, o) dx'y dxly . (5)

We use here the notation ® for the direct product of vectors u(zi,y;) and u(xa,y2), and
By(x1;22) for the correlation tensor of the random boundary vector g

By(zy;25) = (g(ah) @ g(a3)) -
We deal in this paper with the case when g is a Gaussian white noise. This implies that
{Bg(xllvxé)}lj = (52](5(.%',1 - x,Q) , Ly =12.

Here we use standard notations, d;; for the Kronecker symbol, and 6(z} — z5) for the Dirac
0-function. In this case, (4) simplifies to

o0
Byu(x1,y1522,y2) = /P(l“l -z, y1)P(xg — 2, y2) da’
— 00

where we used the fact that P = PT. To integrate the right-hand side we use the Fourier
transformation, so we rewrite the last equality in the form of a convolution. The change of
variables z = x1 — 2} yields
o
Bu(w1,y1;72,y2) = / P(z,y1)P1(71 — 22 — 2,y2) dz = P(,y1) * P1(-, y2) , (6)
—0o0

where the matrix kernel P is defined by Pi(z,y) = P(—z,y).

Thus (6) has the form of convolution, and we can use the Fourier property for convolutions.
Note that By (z1,y1; T2, y2) depends on the difference, 7 = x1 — x2, so we will write B, (7, y1,y2)
instead of B, (z1,%2;y1,Y2).

The Fourier transform property for convolutions yields

FUB) = FHP(y)l FTHPI( y2)] -

So we have to find the inverse transforms F~![P(-,y1)] and F~1[Pi(-,92)].

Notice that F71[Py(-,42)](&,y) = F7LP(-,y1)](=€,y), so using the Fourier transform formulae
given in the Appendix, (see also [5]), we get

(7S [ DICEE™ el DR

The correlation tensor B, is now obtained by converting these equalities by the relevant Fourier
transforms. Indeed, using the Fourier transform formulae (see Appendix) we finally get the
desired representation for the tensor B,

Y1+ Y2

I 8
w7+ + ) )
Blyr + y2) [ 72— (y1 +y2)? 27(y1 — y2) ]

m(r2+ i +12)2)2 L 21 —w2)  —(7 = (1 +12)?)

4y1y25° [ (1 + v2) (1 + y2)* — 37%) T(3(y1 + y2)* — 7°) ]
(T2 + (11 +y2)?)? T3y +y2)> = 7)) (y1 +y2) (1 +y2)* - 37%)

Bu(Tv Y1, y2) -




3.2 Correlation function of the vorticity

Using the Poisson formula (2), we can analogously derive the correlation function for the vorticity

w(z,y) which is defined by

Ouy (.%', y) _ 8“2('7;7 y)
oy Oz

w(x,y) =

Indeed, by definition,

Bu(x1,y1;22,52) = (w(xy, y1)w(z, y2))

By the Poisson formula (2)

[ 0Py 0P oPy 0P,
o0 8P11 6P21 i 17 6P12 8P22 y " "
X/( oy - Ox )(xl—x,yg)gl(x)—i-( oy - Ox )(xl_xvy2)g2(x)dm >
For g; is a white noise, we get
7 oP 0P OP OP.
B, = / ( 8yll _ 8;1)(561—33/’%)( 8; _ aj)(azg—x/,yz)d:c’
T 0P, OP 9P, P
+ / ( 8;2 B 852)(561 —x/ayl)( 8;2 B a;2>(x2 — ) e ()

By the change of integration variable 2’ to z = x1 — 2/, and recalling that 7 = x1 — 9, we rewrite
(9) in a convolution form,

(0P 0Py 0Py 0Pxn
Bw(7_7y17y2) - ( 6y 8.%' >(Z, 1)*( 8y 8.%' >7(T zva)

<8P12 @>(z,y1) § (822 B 3;3;2)7 (7 — 2, 9)

where we use the notation (G(z,y))_- meaning that a function G is taken at —z, i.e., (G(z,y))- =

Applying now the Fourier transform with respect to the variable 7, and using the Fourier trans-
form property for convolutions we get

FBu)(&y1,92) = F_l{(apn - 6P21>(-,y1)} F_l[(apn - 8P21)7 (o 1)]

dy ox

Oy Ox dy ox
o (- T ew] (- )] a0

To write down it in a more compact form, we introduce the notation:

Gl('ay) = (851 - 6;;21>(.’y)’ G2('ay) = (852 - 6552>(ay) (11)




Then, we get from (10):

FUBW(& y1,y2) = FHG(& ) - F7HGH(=E, w2)
+ PG (& 1) - FHG2)(—€, 12) (12)

To find the Fourier transforms of G; and G9, we turn from the derivatives with respect to x
to the derivatives with respect to 7, so that we can use directly the Fourier transform formulae
given in the Appendix. This yields

FYB,] = 2(1 + B)22eelmntue) (13)

Converting the Fourier transform we obtain the exact representation for the vorticity correlation
function ) )
(y1 +y2)° — 37

B,=4 (1 + 5)2 (yl + y2) 7_(_(7_2 T (y1 + y2)2)3 :

3.3 Correlation functions of the strain
By definition ¢;;(x,y) is

Ouy (.%', y)
Ox ’

6“2('7;7 y)

611(36,2/) = 622(%21) = By s

and

6’11,1(.%', y) i 8“2('%'7 y))

1
812(x7y) = 621(xay) = 5( 8y 6.1'

The correlation B, is
Bz (w1, 51322, 92) = (1121, y1)e11 (w2, 92))

Further steps are quite analogous to that of the evaluation of the vorticity correlation function
we have presented above in section 3.2. Indeed, we have the convolution representation

T P OP
By (ryn) = [ Sy (St) (r—zp)dz
r 0P 0P12
ax (Z,?/l)( ax )_(T_Z,?D)dz

To take the Fourier transform of both sides of this convolution, we just notice that the result

will coincide with (12) if the functions Gy and Gs in (11) are substituted by G1(-,y) = Z21(., y)

ox
and Go(-,y) = 85;2 (,y), respectively. So we can use the formula (12) with these functions G

and G4, which after some calculations with the help of Fourier formulae given in the Appendix
yields

FY(B,] = 279000 [1 — ey +2) + 2871987 (14
The inverse Fourier transform results in the exact representation:

B.. = 2y -+ ) [ ((y1 + y2)* — 37°) 35 (Y1 +y2)" + 78— 6(y1 +12)%7°
o (T2 + (y1 +12)%)° m(T2 + (1 + 42)*)*
(y1 + y2)* + 571 — 10(y1 + 92)*7°

(T + (1 + 42)*)°

+ 246%y19
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The case of B.,, is treated exactly the same, we just have to substitute G1(-,y) = 8(5;1 (,y) and

Ga(+y) = 85;2 (,y), respectively. So it remains only to calculate the relevant Fourier transforms
which is done by the use of Fourier transform formulae of the Appendix

F—l[B€22] — g e—‘f‘(y1+y2) [ﬁ2 + (1 _ 6)2 + (ﬁ _ 262)(91 +y2)‘€’ + 262y1y2€2 ’ (15)
and to take the Fourier inverse:
2 3 2
B€22 = 2(y1 + y2) [(ﬁ2 + (1 - ﬁ)Q)WE?TJ; i?{;z + y2)72)3

(1 +y2)* + 71 — 6(y1 + y2)*7°
(72 4 (y1 +y2)?)!

(y1 +y2)* +57% —10(y1 + yg)QTQ}
(12 + (y1 + 42)?)° '

+ 3(3-28%

+  243%y1ys

Since the calculations of B,,, are very similar, especially to the derivation of vorticity correlation
function, we simply present the final result:

_ 1.5 _
F 1[3612] — 55 e €] (y1+y2) |:1 +ﬁ2 +452y1y2§2 —52\5!(,@1 +y2)} ] (16)
Hence,
(yi +y2)* = 37> 652 (ULt y2)* + 71 — 6(y1 + y2)?7°
(12 + (y1 +12)?)? (72 + (y1 + 2)?)*
(y1 +y2)* 4+ 57 — 10(y1 + y2)°7?
(72 4+ (31 + y2)?)°

Beyy = (n + 1) [(1+ 57)

+48 By1 92

3.4 The mean deformation energy

Let us consider the mean elastic energy (E(x,y)) defined by

(Bl = (5 (e +en)’ + 1Y)

.3
Using the Poisson formula (2), we obtain
AT OP1p | 0Py N\2 | (OP1y  0Pxn)\2 /
E — _
< (967y)> 9 / ( Or + 8y> +( Ox + ay) (m—x’,y)dx
I OP11\2  (0P12\2  (OPx1\2 = (0Px»\? /
+ “/(ax) () + 8y> +( 8y) ooty ™
7 r 0Py | OPy\2 (0P 0Py\?2 /
~ dx .
After some algebra we arrive at
20N+ 2u i dax’' S\ + p)%y? T dx’
(E(z,y)) = 2( )/ Nz ,n2 T 2 )2/ — N2 1 42)3
A +3p) J (=22 +y?)? 0 w4302 J (& -2 +¢?)

which can be evaluated explicitly

u (A+2u (A+u)2).

(Blwy) =3 A+3u (A +3p)?



4 Karhunen-Loéve expansions and simulation algorithm

As seen from the previous section, exact results can be obtained for the correlation functions of
vorticity, strain, and some other functions like the mean elastic energy. For more complicated
statistical characteristics this would be impossible. Therefore, it is very important to construct
simulation formulae for the random fields itself, say for the displacements, strain and stress
tensors. In [18], we have constructed the Karhunen-Loéve expansions for the displacements. We
will use these expansions to construct the relevant expansions for the vorticity, strains, and the
elastic energy.

The K-L expansion for the displacement vector u(x,y) has the form [18]:

()

Q

Tk (¢ sin[r ka/R] — , cos[r k z/R])

;”—ky(nk cos[m kx/R]| + iy sin[m k x/R])
[—(1 —i—%”—Rky)(nk sin[r kz/R] — 7, cos[ﬂk:x/R])] ] (17)

1 = o~y (1 — B=Ey) (¢ cos[r ka/R] + (. sin[r k z/R])
Vi (555 )

where (i and 7, are independent gaussian random variables such that

(CGj) =0k, (memy) =k s () =0, (G) =0,

and the same for the family {Ek, 7k} which is independent of {(x, nx}. As mentioned in the
Introduction, the rate of convergence of this kind of approximations, as R — 00, is proportional
to R/nL where n is the number of terms, and L is a characteristic correlation length of the
random field. For brevity, we will write in what follows the equality sign ” =" instead of " ~"
which is understood in the same sense as (17).

Taking the derivatives termwise in (17) we get the desired expansions for the strain tensor and
vorticity:

ez, y) = LRZ%CGW; {(( 1+ﬂ )Czﬁﬂ ym;)sm W]Zx
k=1
F( =TG5 Ty cos TR (18)
Tk _xk k k k
eas(2,y) = LR S e[ - Zhyse+ (0 - 1- 8 g sin T
k=1
k ~ k k
(14 TZyBG+ (B— 1= By cos 2] . (19)
ciafany) = = Y Tre [((—1 3428 G+ (8- 1287y sin TET
k=1
F((1 = 0428 )G (1 5428 Ty cos T27] (20)
w(x,y):(ﬁ—i—l)%;%e?y [gksinng_i_nkcosﬂgﬂf} (21)

Remark. It should be noted that the random fields given by the K-L expansions (18)- (21) all
have the following structure: they consist of two independent random fields, say, V1 and Vs, whose

9



partial spectral functions are F~1[G1](&,y1)F 1 [G1](—&,y2) and F~G2)(&, y1) F 1 [G2](—&, y2)
, respectively, where G1 and G are defined as described above (e.g., in the case of vorticity, see
(11)). This follows directly from the formula (12). Indeed, let us present this in more details
which by the way will simplify the simulation formulae (18)- (21).

Let us introduce the notation for the "discrete wave number" by &, = ”—é“. We split the expansions
(18)-(21) in the form €;; = V1 4+ Vo where Vi, V5 are independent random fields. Then, using the
symmetry property of the Gaussian distribution we obtain for (18),

Vi(z,y) = LR Zik e Y (1 — B¢ y) [Cr sin(& @) + G cos(&x )]

Vao(z,y) = \/—252 e Y [ sin(&g x) + 7k cos(&g z)] - (22)

From these representations, it is clearly seen by comparing with (14) that the random fields
€11 = V1 + V5 has the desired spectral function.

Similar calculations give, for €90 =V + Va:

Vi(z,y) = % ka e Y (1 - &y) [ sin(& ) + Cr cos(&x )],
k=1
Va(z,y) = % S €GeSV (1= B+ Bgy) e sin(€pn) + 7 cos(@en)] . (23)

T
I

for e19 = V1 + Vo:
Vi(z,y) = % ka e kY (14 B — 288, y) [ sin(&r ) +  cos(ék )]

Va(z,y) = 2\/— ka e kY (1 — B+ 288, y) [0k sin(& x) + 7 cos(&z)] | (24)

and for the vorticity,

V2 S g (G sin(E ) + G cos(en)] (25)

w(z,y) = (6+1)\/§k:1

From these representations it follows that V; and V5 are the Karhunen-Loéve expansions over the
eigen-functions which solve the eigen-value problem for the relevant correlation functions having
the corresponding partial spectral functions.

We use these expansions in numerical simulations presented in the next section.

5 Numerical results

In the next series of panels we present the correlations as functions of the longitudinal variable
x, for fixed points y; = 0.7, yo = 0.4, for increasing values of the elastic parameter a.

In Figure 1, left panel, we plot the vorticity correlation function B,,, and the strain correlation
function B, versus the coordinate z, for a = 1/3, for fixed y1, y2. In the right panel of Figure
1 we present the same curves but for « = 2. It is seen that the fluctuation intensities are

10
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Figure 1: The correlation functions By, Be,,, Be,,, and Be,, for o = 1/3 (left panel), and oo = 2
(right panel), y; = 0.7, yo = 0.4.

considerably increased. The impact of the further increase of the elasticity parameter o on the
correlation functions is shown in Figure 2. It is clearly seen that the larger the value of «,
the higher the fluctuation intensities. However after this parameter reaches the value 20, the
curves rapidly converge to some stable functions not depending on «. Indeed, when o > 50 the
calculation results for B, converge to the upper curve shown in Figure 3 (left panel). Here we
show also the correlation functions B.,,, B:,,, and B.,, for a = 50. It is seen that these three
functions are practically coincident. This can be explained as follows. Note that the case a = oo
corresponds to the case of the Stokes flow regime (see [16] for explanation). The calculations
show that beginning from o = 50, we are practically in the Stokes regime. It can be shown
that in this regime, B;,, = B.,, = B,,. This is seen also by comparing their partial spectral
functions (13), (14), (15), and (16) at a = oo, which corresponds to § = 1. We show the limit
curves at a = 50, for y; = 4,y» = 2 in Figure 3, right panel.

To check both the derived formulae for the correlation functions and the K-L expansions we have
made comparative calculations with different k, the number of the Fourier harmonics. Typical
results of such calculations are given in the Figure 4. In the left panel, the Monte Carlo error was
less than 0.1% in the region of large and moderate small correlations, when choosing R = 300,
and the number of harmonics n = 200. For small correlation values (less than 5%), the error was
about 1%. In the right panel of Figure 4, we illustrate the convergence rate of the Karhunen-
Lo’*eve expansion. Here we compare the calculations of B, for kK = 50,75, and k = 100 with the
exact result. It is seen that in this case, a 1%-error was achieved for &k = 100. Note that for the
mean energy (E(o,y)) plotted versus the transverse coordinate y in the left panel of Figure 5,
the number of terms needed to achieve the error of 1% was larger, approximately, k ~ 600 — 700.

This can be explained by the fact that close to y = 0, the mean energy increases as ~ y~°.

The dependence of the vorticity correlation function on the transverse coordinate y (fixed vy,
varying y = ys) is shown in the right panel of the Figure 5. It is clearly seen that with the depth,
i.e., when ys increases, the fluctuation intensities are rapidly decreasing while the correlation
length is increasing.
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Figure 2: The same as in Figure 1, but for « = 7 (left panel), and « = 20 (right panel).
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Figure 3: The correlation functions By, Be,,, Be,,, and Be,, for « = 1/3,2,7,20 and 50 (left
panel), and y; = 0.7, y2 = 0.4. Right panel: illustrating the decrease of fluctuation intensity and
increase of the correlation length, as y increases (y; = 0.7, yo = 0.4).
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Figure 4: Comparison of the Monte Carlo simulations (MC) against the exact result for the case
of white noise boundary excitations, for the vorticity correlation function B, (left panel). The
correlation function B, (z) for different values of the value yq, while fixed y; = 0.1 is shown in
the right panel, at o = 50.
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Figure 5: Comparison of the Monte Carlo simulations (MC) against the exact result for the case
of white noise boundary excitations, for the vorticity correlation function B, (left panel). The
correlation function B, (z) for different values of the value yo, while fixed y; = 0.1 is shown in
the right panel, at o = 50.
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6 Appendix: Some Fourier transform formulae

We use the notation ¢(7,y) = F[h](7,y) for the Fourier transform of a function h(&,y) with
respect to its first variable &, and F~1[g](¢,y) for its inverse:

[e. o] [e.9]

F[h)(1,y) = /e”éh(&y)d& F’l[gl(f,y):% /e”gg(T,y)dT-

—0o0 —0oQ
We use the following simple property of the Fourier transform

FDMg(r,y)] = (&)™ F gl ) ,
FDy g(r,y)] = Dy F gl ) - (26)

The next list of Fourier transforms we used in the paper can be found in [5], and extended by
using the property (26):

-1 Y ] _ -k
Pl = o
[T 1[0 Y ] — ek
E {77(7'2+y2)2]_F [8y(77(7—2+y2))_ = —lgle™™, (27)
-1 —27y _ o1 3 Y 1 —|¢]
F [7‘((7’2+y2)2]_F |:3T(7T(T2+y2)) = Wt
a2y(y? =372 g 02 Y B e
g 1[7T(72+y2)3} =F 1[8—y2(m)} = et
2By =) _ e O y _ ~lel
F [W}_F [8y87(7r(72+y2))} = glgle ™,
and
R N et ) R I y _ el
F { (12 + y2)4 }__F [Tf(m)} = &
i r24y(yt 4+ 57t — 10272 1 9 y el
e At N T Y
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