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Abstra
t. In this paper we study the metastable behavior of one of the simplest disor-dered spin system, the random �eld Curie-Weiss model. We will show how the potentialtheoreti
 approa
h 
an be used to prove sharp estimates on 
apa
ities and metastableexit times also in the 
ase when the distribution of the random �eld is 
ontinuous. Pre-vious work was restri
ted to the 
ase when the random �eld takes only �nitely manyvalues, whi
h allowed the redu
tion to a �nite dimensional problem using lumping te
h-niques. Here we produ
e the �rst genuine sharp estimates in a 
ontext where entropy isimportant.
1. INTRODUCTION AND MAIN RESULTSThe simplest example of disordered mean �eld models is the random �eld Curie-Weissmodel. Here the state spa
e is SN = {−1, 1}N , where N is the number of parti
les of thesystem. Its Hamiltonian is

HN [ω](σ) ≡ −N
2

(
1

N

∑

i∈Λ

σi

)2

−
∑

i∈Λ

hi[ω]σi, (1.1)where Λ ≡ {1, . . . , N} and hi, i ∈ Λ, are i.i.d. random variables on some probabilityspa
e (Ω,F ,Ph). For sake of 
onvenien
e, we will assume throughout this paper that the
ommon distribution of h has bounded support.The dynami
s of this model has been studied before: dai Pra and den Hollander stud-ied the short-time dynami
s using large deviation results and obtained the analog of theM
Keane-Vlasov equations [16℄. Mathieu and Pi

o [15℄ and Fontes, Mathieu, and Pi

o[12℄, 
onsidered 
onvergen
e to equilibrium in a parti
ularly simple 
ase where the random�eld takes only the two values ±ε. Finally, Bovier et al. [6℄ analyzed this model in the
ase when h takes �nitely many values, as an example of the use of the potential theoreti
approa
h to metastability. In this arti
le we extend this analysis to the 
ase of random�elds with 
ontinuous distributions, while at the same time improving the results by givingsharp estimates of transition times between metastable states.The present paper should be seen, beyond the interest presented by the model as su
h, asa �rst 
ase study in the attempt to derive pre
ise asymptoti
s of metastable 
hara
teristi
sin kineti
 Ising models in situations where neither the temperature tends to zero nor anexa
t redu
tion to low-dimensional models is possible. While the RFCW model is 
ertainlyone of the simplest examples of this 
lass, we feel that the general methodology developedhere will be useful in a mu
h wider 
lass of systems.
1.1. Gibbs measure and order parameter. The static picture. The equilibrium statisti-
al me
hani
s of the RFCW model was analyzed in detail in [1℄ and [13℄. We give a verybrief review of some key features that will be useful later. As usual, we de�ne the Gibbsmeasure of the model as the random probability measure

µβ,N [ω](σ) ≡ 2−Ne−βHN [ω](σ)

Zβ,N [ω]
, (1.2)where the partition fun
tion is de�ned as

Zβ,N [ω] ≡ Eσe
−βHN [ω](σ) ≡ 2−N

∑

σ∈SN

e−βHN [ω](σ). (1.3)We de�ne the total magnetization as
mN (σ) ≡ 1

N

∑

i∈Λ

σi. (1.4)
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The magnetization will be the order parameter of the model, and we de�ne its distributionunder the Gibbs measures as the indu
ed measure,
Qβ,N ≡ µβ,N ◦m−1

N , (1.5)on the set of possible values ΓN ≡ {−1,−1 + 2/N, . . . , 1}.Let us begin by writing
Zβ,N [ω]Qβ,N [ω](m) = exp

(
Nβ

2
m2

)
Z1

β,N [ω](m) (1.6)where
Z1

β,N [ω](m) ≡ Eσ exp

(
β
∑

i∈Λ

hiσi

)1{N−1
P

i∈Λ σi=m} ≡ E
h
σ1{N−1

P
i∈Λ σi=m}. (1.7)For simpli
ity we will in the sequel identify fun
tions de�ned on the dis
rete set ΓN withfun
tions de�ned on [−1, 1] by setting f(m) ≡ f([2Nm]/2N). Then, for m ∈ (−1, 1),

Z1
N (m) 
an be expressed, using sharp large deviation estimates [10℄, as

Z1
β,N [ω](m) =

exp (−NIN [ω](m))√
Nπ
2 /I ′′N [ω](m)

(1 + o(1)) , (1.8)where o(1) goes to zero as N ↑ ∞. This means that we 
an express the right-hand side in(1.6) as
Zβ,N [ω]Qβ,N [ω](m) =

√
2I′′N [ω](m)

Nπ exp (−NβFβ,N [ω](m)) (1 + o(1)) , (1.9)where
Fβ,N [ω](m) ≡ −1

2
m2 +

1

β
IN [ω](m). (1.10)Here IN [ω](y) is the Legendre-Fen
hel transform of the log-moment generating fun
tion

UN [ω](t) ≡ 1

N
ln E

h
σ exp

(
t
∑

i∈Λ

σi

)
(1.11)

=
1

N

∑

i∈Λ

ln cosh (t+ βhi) .Above we have indi
ated the random nature of all fun
tions that appear by making theirdependen
e on the random parameter ω expli
it. To simplify notation, in the sequel thisdependen
e will mostly be dropped.We are interested in the behavior of this fun
tion near 
riti
al points of Fβ,N . An important
onsequen
e of Equations (1.6) through (1.11) is that if m∗ is a 
riti
al point of Fβ,N , thenfor |v| ≤ N−1/2+δ,
Qβ,N (m∗ + v)

Qβ,N (m∗)
= exp

(
−βN

2
a(m∗)v2

)
(1 + o(1)) , (1.12)with

a(m∗) ≡ F ′′
β,N (m∗) = −1 + β−1I ′′N (m∗). (1.13)Now, if m∗ is a 
riti
al point of Fβ,N , then

m∗ = β−1I ′N (m∗) ≡ β−1t∗, (1.14)or
βm∗ = I ′N (m∗) = t∗. (1.15)
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Sin
e IN is the Legendre-Fen
hel transform of UN , I ′N (x) = U ′−1
N (x), so that

m∗ = U ′
N (βm∗) ≡ 1

N

∑

i∈Λ

tanh(β(m∗ + hi))). (1.16)Finally, using that at a 
riti
al point, I ′′N,ℓ(m
∗) = 1

U ′′
N,ℓ(t

∗) , we get the alternative expression
a(m∗) = −1 +

1

βU ′′
N (βm∗)

= −1 +
1

β
N

∑
i∈Λ

(
1 − tanh2(β(m∗ + hi))

) . (1.17)We see that, by the law of large numbers, the set of 
riti
al points 
onverges, Ph-almostsurely, to the set of solutions of the equation
m∗ = Eh tanh (β (m∗ + h)) , (1.18)and the se
ond derivative of Fβ,N (m∗) 
onverges to

lim
N→∞

F ′′
β,N (m∗) = −1 +

1

βEh

(
1 − tanh2(β(m∗ + h))

) . (1.19)Thus, m∗ is a lo
al minimum if
βEh

(
1 − tanh2(β(m∗ + h))

)
< 1, (1.20)and a lo
al maximum if

βEh

(
1 − tanh2(β(m∗ + h))

)
> 1. (1.21)(The 
ases where βEh

(
1 − tanh2(β(m∗ + h))

)
= 1 
orrespond to se
ond order phase tran-sitions and will not be 
onsidered here).

Proposition 1.1. Let m∗ be a critical point of Qβ,N . Then, Ph-almost surely, for all but
finitely many values of N ,

Zβ,NQβ,N (m∗) =
exp (−βNFβ,N (m∗)) (1 + o(1))√

Nπ
2

∣∣E
(
1 − tanh2(β(m∗ + h))

)∣∣
(1.22)

with

Fβ,N (m∗) =
(m∗)2

2
− 1

βN

∑

i∈Λ

ln cosh (β(m∗ + hi)) . (1.23)From this dis
ussion we get a very pre
ise pi
ture of the distribution of the order parameter.
1.2. Glauber dynamics. We will 
onsider for de�niteness dis
rete time Glauber dynami
swith Metropolis transition probabilities

pN [ω](σ, σ′) ≡ 1

N
exp

(
−β[HN [ω](σ′) −HN [ω](σ)]+

)
, (1.24)if σ and σ′ di�er on a single 
oordinate,

pN [ω](σ, σ) ≡ 1 −
∑

σ′∼σ

1

N
exp

(
−β[HN [ω](σ′) −HN [ω](σ)]+

)
, (1.25)and pN (σ, σ′) = 0 in all other 
ases. We will denote the Markov 
hain 
orresponding tothese transition probabilities σ(t) and write Pν[ω] ≡ Pν , for the law of this 
hain withinitial distribution ν, and we will set Pσ ≡ Pδσ . As is well known, this 
hain is ergodi
and reversible with respe
t to the Gibbs measure µβ,N [ω], for ea
h ω. Note that we mightalso study 
hains with di�erent transition probabilities that are reversible with respe
tto the same measures. Details of our results will depend on this 
hoi
e. The transitionmatrix asso
iated with these transition probabilities will be 
alled PN , and we will denoteby LN ≡ PN − 1 the (dis
rete) generator of the 
hain.
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Our main result will be sharp estimates for mean hitting times between minima of thefun
tion Fβ,N (m) de�ned in (1.10).More pre
isely, for any subset A ⊂ SN , we de�ne the stopping time
τA ≡ inf{t > 0|σ(t) ∈ A}. (1.26)We also need to de�ne, for any two subsets A,B ⊂ SN , the probability measure on A givenby

νA,B(σ) =
µβ,N (σ)Pσ[τB < τA]∑

σ∈A µβ,N (σ)Pσ[τB < τA]
. (1.27)We will be mainly 
on
erned with sets of 
on�gurations with given magnetization. Forany I ∈ ΓN , we thus introdu
e the notation S[I] ≡ {σ ∈ SN : mN (σ) ∈ I} and state thefollowing:

Theorem 1.2. Assume that β and the distribution of the magnetic field are such that there
exist more than one local minimum of Fβ,N . Let m∗ be a local minimum of Fβ,N , M ≡
M(m∗) be the set of minima of Fβ,N such that Fβ,N (m) < Fβ,N (m∗), and z∗ be the minimax
between m and M , i.e. the lower of the highest maxima separating m from M to the left
respectively right. Then, Ph-almost surely, for all but finitely many values of N ,

EνS[m∗],S[M]
τS[M ] = exp (βN [Fβ,N (z∗) − Fβ,N (m∗)]) (1.28)

× 2πN

β|γ̄1|

√
βEh

(
1 − tanh2 (β(z∗ + h))

)
− 1

1 − βEh

(
1 − tanh2 (β(m∗ + h))

) (1 + o(1)) ,

where γ̄1 is the unique negative solution of the equation

Eh


(1 − tanh(β(z∗ + h))) exp (−2β [z∗ + h]+)

exp (−2β[z∗+h]+)

β(1+tanh(β(z∗+h))) − 2γ


 = 1. (1.29)

Note that we have the explicit representation for the random quantity

Fβ,N (z∗) − Fβ,N (m∗) =
(z∗)2 − (m∗)2

2
(1.30)

− 1

βN

∑

i∈Λ

[ln cosh (β(z∗ + hi)) − ln cosh (β(m∗ + hi))] .The proof of this result on mean transition times relies on the following result on 
apa
ities(for a de�nition see Eq. (2.5) in Se
tion 2 below).
Theorem 1.3. With the same notation as in Theorem 1.2 we have that

Zβ,N
ap (S[m∗], S[M ]) =
β|γ̄1|
2πN

exp (−βNFβ,N (z∗)) (1 + o(1))√
βEh

(
1 − tanh2 (β(z∗ + h))

)
− 1

. (1.31)The proof of Theorem 1.3 is the 
ore of the present paper. As usual, the proof of anupper bound of the form (1.31) will be relatively easy. The main di�
ulty is to prove a
orresponding lower bound. The main 
ontribution of this paper is to provide a method toprove su
h a lower bound in a situation where the entropy of paths 
annot be negle
ted.Before dis
ussing the methods of proof of these results, it will be interesting to 
omparethis theorem with the predi
tion of the simplest un
ontrolled approximation.The naive approximation. A widespread heuristi
 pi
ture for metastable behavior ofsystems like the RFCW model is based on repla
ing the full Markov 
hain on SN by ane�e
tive Markov 
hain on the order parameter, i.e. by a nearest neighbor random walk on
ΓN with transition probabilities that are reversible with respe
t to the indu
ed measure,
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Qβ,N . The ensuing model 
an be solved exa
tly. In the absen
e of a random magneti
 �eld,this repla
ement is justi�ed sin
e the image of σ(t), m(t) ≡ mN (σ(t)), is a Markov 
hainreversible w.r.t. Qβ,N ; unfortunately, this fa
t relies on the perfe
t permutation symmetryof the Hamiltonian of the Curie-Weiss model and fails to hold in the presen
e of random�eld.A natural 
hoi
e for the transition rates of the heuristi
 dynami
s is
rN [ω](m,m′) ≡ 1

Qβ,N [ω](m)

∑

σ:mN (σ)=m

µβ,N [ω](σ)
∑

σ′:mN (σ′)=m′

pN [ω](σ, σ′), (1.32)whi
h are di�erent from zero only if m′ = m ± 2/N or if m = m′. The ensuing Markovpro
ess is a one-dimensional nearest neighbor random walk for whi
h most quantities ofinterest 
an be 
omputed quite expli
itly by elementary means (see e.g. [17, 3℄). Inparti
ular, it is easy to show that for this dynami
s,
EνS[m∗],S[M]

τS[M ] = exp (βN [Fβ,N (z∗) − Fβ,N (m∗)])

× 2πN

β|a(z∗)|

√
βEh

(
1 − tanh2 (β(z∗ + h))

)
− 1

1 − βEh

(
1 − tanh2 (β(m∗ + h))

) (1 + o(1)) ,where a(z∗) is de�ned in (1.19).The predi
tion of the naive approximation is slightly di�erent from the exa
t answer, albeitonly by a wrong prefa
tor. One may of 
ourse 
onsider this as a striking 
on�rmation ofthe quality of the naive approximation; from a di�erent angle, this shows that a trueunderstanding of the details of the dynami
s is only rea
hed when the prefa
tors of theexponential rates are known (see [14℄ for a dis
ussion of this point).The pi
ture above is in some sense generi
 for a mu
h wider 
lass of metastable systems:on a heuristi
 level, one wants to think of the dynami
s on metastable time s
ales to be welldes
ribed by a di�usion in a double (or multi) well potential. While this 
annot be maderigorous, it should be possible to �nd a family of mesos
opi
 variables with 
orresponding(dis
rete) di�usion dynami
s that asymptoti
ally reprodu
e the metastable behavior of thetrue dynami
s. The main message of this paper is that su
h a pi
ture 
an be made rigorouswithin the potential theoreti
 approa
h.
Acknowledgments. The authors thank Alexandre Gaudillière, Frank den Hollander, andCristian Spitoni for useful dis
ussions on metastability.

2. SOME BASIC CONCEPTS FROM POTENTIAL THEORYOur approa
h to the analysis of the dynami
s introdu
ed above will be based on the ideasdeveloped in [6, 7, 8℄ to analyze metastability through a systemati
 use of 
lassi
al potentialtheory. Let us re
all the basi
 notions we will need.For two disjoint sets A,B ⊂ SN , the equilibrium potential, hA,B, is the harmoni
 fun
tion,i.e. the solution of the equation
(LhA,B)(σ) = 0, σ 6∈ A ∪B, (2.1)with boundary 
onditions
hA,B(σ) =

{
1, if σ ∈ A

0, if σ ∈ B
. (2.2)The equilibrium measure is the fun
tion

eA,B(σ) ≡ −(LhA,B)(σ) = (LhB,A)(σ), (2.3)

5



whi
h 
learly is non-vanishing only on A and B. An important formula is the dis
reteanalog of the �rst Green's identity: Let D ⊂ SN and Dc ≡ SN \D. Then, for any fun
tion
f , we have

1

2

∑

σ,σ′∈SN

µ(σ)pN (σ, σ′)[f(σ) − f(σ′)]2 (2.4)

= −
∑

σ∈D

µ(σ)f(σ)(Lf)(σ) −
∑

σ∈Dc

µ(σ)f(σ)(Lf)(σ).In parti
ular, for f = hA,B , we get that
1

2

∑

σ,σ′∈SN

µ(σ)pN (σ, σ′)[hA,B(σ) − hA,B(σ′)]2 (2.5)

=
∑

σ∈A

µ(σ)eA,B(σ) ≡ 
ap(A,B),where the right-hand side is 
alled the 
apa
ity of the 
apa
itor A,B. The fun
tionalappearing on the left-hand sides of these relations is 
alled the Diri
hlet form or energy,and denoted
ΦN (f) ≡ 1

2

∑

σ,σ′∈SN

µ(σ)pN (σ, σ′)[f(σ) − f(σ′)]2. (2.6)As a 
onsequen
e of the maximum prin
iple, the fun
tion hA,B is the unique minimizer of
ΦN with boundary 
onditions (2.2), whi
h implies the Diri
hlet prin
iple:
ap(A,B) = inf

h∈HA,B

ΦN (h), (2.7)where HA,B denotes the spa
e of fun
tions satisfying (2.2).Equilibrium potential and equilibrium measure have an immediate probabilisti
 interpre-tation, namely
Pσ[τA < τB] =

{
hA,B(σ), ifσ 6∈ A ∪B
eB,A(σ), ifσ ∈ B.

(2.8)An important observation is that equilibrium potentials and equilibrium measures alsodetermine the Green's fun
tion. In fa
t (see e.g. [7, 4℄),
hA,B(σ) =

∑

σ′∈A

GSN \B(σ, σ′)eA,B(σ′) (2.9)In the 
ase then A is a single point, this relation 
an be solved for the Green's fun
tion togive
GSN\B(σ, σ′) =

µ(σ′)hσ,B(σ)

µ(σ)eσ,B(σ)
. (2.10)This equation is perfe
t if the 
ardinality of the state spa
e does not grow too fast. In our
ase, however, it is of limited use, sin
e both numerator and denominator tend to be very
lose to zero for the wrong reason. However, (2.9) remains useful. In parti
ular, it givesthe following representation for mean hitting times

∑

σ∈A

µ(σ)eA,B(σ)EστB =
∑

σ′∈SN

µ(σ′)hA,B(σ′), (2.11)or, using de�nition (1.27)
EνA,B

τB =
1
ap(A,B)

∑

σ′∈SN

µ(σ′)hA,B(σ′). (2.12)
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From these equations we see that our main task will be to obtain pre
ise estimates on
apa
ities and some reasonably a

urate estimates on equilibrium potentials. In previousappli
ations [6, 7, 8, 9, 5℄, three main ideas were used to obtain su
h estimates:(i) Upper bounds on 
apa
ities 
an be obtained using the Diri
hlet variational prin
iplewith judi
iously 
hosen test fun
tions.(ii) Lower bounds were usually obtained using the monotoni
ity of 
apa
ities in thetransition probabilities (Raighley's prin
iple). In most appli
ations, redu
tion ofthe network to a set of parallel 1-dimensional 
hains was su�
ient to get goodbounds.(iii) The simple renewal estimate hA,B(x) ≤ 
ap(x,A)
ap(x,B) was used to bound the equilibriumpotential through 
apa
ities again.These methods were su�
ient in previous appli
ations essentially be
ause entropy werenot an issue there. In the models at hand, entropy is important, and due to the absen
eof any symmetry, we 
annot use the tri
k to deal with entropy by a mapping of the modelto a low-dimensional one, as 
an be done in the standard Curie-Weiss model and in theRFCW model when the magneti
 �eld takes only �nitely many values [15, 6℄.Thus we will need to improve on these ideas. In parti
ular, we will need a new approa
hto lower bounds for 
apa
ities. This will be done by exploiting a dual variational repre-sentation of 
apa
ities in terms of �ows, due to Berman and Konsowa [2℄. Indeed, one ofthe main messages of this paper is to illustrate the power of this variational prin
iple.Random path representation and lower bounds on 
apa
ities. It will be 
onvenientto think of the quantities µ(σ)pN (σ, σ′) as 
ondu
tan
es, c(σ, σ′), asso
iated to the edges
e = (σ, σ′) of the graph of allowed transitions of our dynami
s. This interpretation isjusti�ed sin
e, due to reversibility, c(σ, σ′) = c(σ′, σ) is symmetri
.For purposes of the exposition, it will be useful to abstra
t from the spe
i�
 model and to
onsider a general �nite 
onne
ted graph, (S, E) su
h that whenever e = (a, b) ∈ E , thenalso −e ≡ (b, a) ∈ E . Let this graph be endowed with a symmetri
 fun
tion, c : E → R+,
alled 
ondu
tan
e.Given two disjoint subsets A,B ⊂ S de�ne the 
apa
ity,
ap(A,B) =

1

2
min

h|A=0, h|B=1

∑

e=(a,b)∈E
c(a, b) (h(b) − h(a))2 . (2.13)

Definition 2.1. Given two disjoint sets, A,B ⊂ S, a non-negative, cycle free unit flow, f ,
from A to B is a function f : E → R+∪{0}, such that the following conditions are verified:

(i) if f(e) > 0, then f(−e) = 0;
(ii) f satisfies Kirchoff ’s law, i.e. for any vertex a ∈ S \ (A ∪B),

∑

b

f(b, a) =
∑

d

f(a, d); (2.14)

(iii)
∑

a∈A

∑

b

f(a, b) = 1 =
∑

a

∑

b∈B

f(a, b); (2.15)

(iv) any path, γ, from A to B such that f(e) > 0 for all e ∈ γ, is self-avoiding.

We will denote the space of non-negative, cycle free unit flows from A to B by UA,B.
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An important example of a unit �ow 
an be 
onstru
ted from the equilibrium potential,
h∗, i.e. the unique minimizer of (2.13). Sin
e h∗ satis�es, for any a ∈ S \ (A ∪B),

∑

b

c(a, b)(h∗(b) − h∗(a)) = 0, (2.16)one veri�es easily that the fun
tion, f∗, de�ned by
f∗(a, b) ≡ 1
ap(A,B)

c(a, b) (h∗(a) − h∗(b))+ , (2.17)is a non-negative unit �ow from A to B. We will 
all f∗ the harmoni
 �ow.The key observation is that any f ∈ UA,B gives rise to a lower bound on the 
apa
ity
ap(A,B), and that this bound be
omes sharp for the harmoni
 �ow. To see this we
onstru
t from f a stopped Markov 
hain X = (X0, . . . ,Xτ ) as follows: For ea
h a ∈ S \Bde�ne F (a) =
∑

b f(a, b).We de�ne the initial distribution of our 
hain as P
f (a) = F (a), for a ∈ A, and zerootherwise. The transition probabilities are given by

qf (a, b) =
f(a, b)

F (a)
, (2.18)for a 6∈ B, and the 
hain is stopped on arrival in B. Noti
e that by our 
hoi
e of the initialdistribution and in view of (2.18) X will never visit sites a ∈ S \B with F (a) = 0.Thus, given a traje
tory X = (a0, a1, . . . , ar) with a0 ∈ A, ar ∈ B and aℓ ∈ S \ (A∪B) for

ℓ = 0, . . . , r − 1,
P

f (X = X ) =

∏r−1
ℓ=0 f(eℓ)∏r−1
ℓ=0 F (aℓ)

, (2.19)where eℓ = (aℓ, aℓ+1) and we use the 
onvention 0/0 = 0. Note that, with the abovede�nitions, the probability that X passes through an edge e is
P

f (e ∈ X) =
∑

X
P

f (X )1{e∈X} = f(e). (2.20)Consequently, we have a partition of unity,1{f(e)>0} =
∑

X

P
f (X )1{e∈X}

f(e)
. (2.21)We are ready now to derive our f -indu
ed lower bound: For every fun
tion h with h|A = 0and h|B = 1,

1

2

∑

e

c(e) (∇eh)
2 ≥

∑

e:f(e)>0

c(e) (∇eh)
2

=
∑

X

∑

e∈X
P

f (X )
c(e)

f(e)
(∇eh)

2 .As a result, inter
hanging the minimum and the sum,
ap(A,B) ≥
∑

r

∑

X=(a0,...,ar)

P
f (X ) min

h(a0)=0, h(ar)=1

r−1∑

0

c(aℓ, aℓ+1)

f(aℓ, aℓ+1)
(h(aℓ+1) − h(aℓ))

2

=
∑

X
P

f (X )

[
∑

e∈X

f(e)

c(e)

]−1

. (2.22)
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Sin
e for the equilibrium �ow, f∗,
∑

e∈X

f∗(e)
c(e)

=
1
ap(A,B)

, (2.23)with P
f∗-probability one, the bound (2.22) is sharp.Thus we have proven the following result from [2℄:

Proposition 2.2. Let A,B ⊂ S. Then, with the notation introduced above,
ap(A,B) = sup
f∈UA,B

E
f

[
∑

e∈X

f(e)

c(e)

]−1

(2.24)

3. COARSE GRAINING AND THE MESOSCOPIC APPROXIMATIONThe problem of entropy for
es us to investigate the model on a 
oarse grained s
ale. Whenthe random �elds take only �nitely many values, this 
an be done by an exa
t mapping toa low-dimensional 
hain. Here this is not the 
ase, but we 
an will 
onstru
t a sequen
e ofapproximate mappings that in the limit allow to extra
t the exa
t result.
3.1. Coarse graining. Let I denote the support of the distribution of the random �elds.Let Iℓ, with ℓ ∈ {1, . . . , n}, be a partition of I su
h that, for some C < ∞ and for all ℓ,
|Iℓ| ≤ C/n ≡ ε.Ea
h realization of the random �eld {hi[ω]}i∈N indu
es a random partition of the set
Λ ≡ {1, . . . , N} into subsets

Λk[ω] ≡ {i ∈ Λ : hi[ω] ∈ Ik}. (3.1)We may introdu
e n order parameters
mk[ω](σ) ≡ 1

N

∑

i∈Λk[ω]

σi. (3.2)We denote by m [ω] the n-dimensional ve
tor (m1[ω], . . . ,mn[ω]). In the sequel we willuse the 
onvention that bold symbols denote n-dimensional ve
tors and their 
omponents,while the sum of the 
omponents is denoted by the 
orresponding plain symbol, e.g. m ≡∑n
ℓ=1 mℓ. m takes values in the set

Γn
N [ω] ≡ ×n

k=1

{
−ρN,k[ω],−ρN,k[ω] + 2

N , . . . , ρN,k[ω] − 2
N , ρN,k[ω]

}
, (3.3)where

ρk ≡ ρN,k[ω] ≡ |Λk[ω]|
N

. (3.4)We will denote by eℓ, ℓ = 1, . . . , n, the latti
e ve
tors of the set Γn
N , i.e. the ve
tors oflength 2/N parallel to unit ve
tors.Note that the random variables ρN,k 
on
entrate exponentially (in N) around their meanvalues EhρN,k = Ph[hi ∈ Ik] ≡ pk.Notational warning: To simplify statements in the remainder of the paper, we willhen
eforth assume that all statements involving random variables on (Ω,F ,Ph) hold truewith Ph-probability one, for all but �nitely many values of N .We may write the Hamiltonian in the form

HN [ω](σ) = −NE(m[ω](σ)) +

n∑

ℓ=1

∑

i∈Λℓ

σih̃i[ω], (3.5)
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where E : R
n → R is the fun
tion

E(x) ≡ 1

2

(
n∑

k=1

xk

)2

+

n∑

k=1

h̄kxk, (3.6)with
h̄ℓ ≡

1

|Λℓ|
∑

i∈Λℓ

hi, and h̃i ≡ hi − h̄ℓ. (3.7)Note that if hi = h̄ℓ for all i ∈ Λℓ, whi
h is the 
ase when h takes only �nitely many valuesand the partition Iℓ is 
hosen suitably, then the Glauber dynami
s under the family offun
tions mℓ is again Markovian. This fa
t was exploited in [15, 6℄. Here we will 
onsiderthe 
ase where this is not the 
ase. However, the idea behind our approa
h is to exploitthat by 
hoosing n large we 
an get to a situation that is rather 
lose to that one.Let us de�ne the equilibrium distribution of the variables m[σ]

Qβ,N [ω](x) ≡ µβ,N [ω](m[ω](σ) = x) (3.8)

=
1

ZN [ω]
eβNE(x)

Eσ1{m[ω](σ)=x}e
Pn

ℓ=1

P
i∈Λℓ

σi(hi−h̄ℓ)where ZN [ω] is the normalizing partition fun
tion. Note that with some abuse of notation,we will use the same symbols Qβ,N , Fβ,N as in Se
tion 1 for fun
tions de�ned on the
n-dimensional variables x. Sin
e we distinguish the ve
tors from the s
alars by use of boldtype, there should be no 
onfusion possible. Similarly, for a mesos
opi
 subset A ⊆ Γn

N [ω],we de�ne its mi
ros
opi
 
ounterpart,
A = SN [A] = {σ ∈ SN : m(σ) ∈ A} . (3.9)

3.2. The landscape near critical points. We now turn to the pre
ise 
omputation ofthe behavior of the measures Qβ,N [ω](x) in the neighborhood of the 
riti
al points of
Fβ,N [ω](x). We will see that this goes very mu
h along the lines of the analysis in theone-dimensional 
ase in Se
tion 1.Let us begin by writing

Zβ,N [ω]Qβ,N [ω](x) = exp


Nβ


1

2

(
n∑

ℓ=1

xℓ

)2

+
n∑

ℓ=1

xℓh̄ℓ






n∏

ℓ=1

Zℓ
β,N [ω](xℓ/ρℓ),

(3.10)where
Zℓ

β,N [ω](y) ≡ EσΛℓ
exp


β

∑

i∈Λℓ

h̃iσi


1n

|Λℓ|−1
P

i∈Λℓ
σi=y

o ≡ E
h̃
σΛℓ

1n
|Λℓ|−1

P
i∈Λℓ

σi=y
o.

(3.11)For y ∈ (−1, 1), these Zℓ
N 
an be expressed, using sharp large deviation estimates [10℄, as

Zℓ
β,N [ω](y) =

exp (−|Λℓ|IN,ℓ[ω](y))√
π
2 |Λℓ|/I ′′N,ℓ[ω](y)

(1 + o(1)) , (3.12)where o(1) goes to zero as |Λℓ| ↑ ∞. Note that as in the one-dimensional 
ase, we identifyfun
tions on Γn
N with their natural extensions to R

n. This means that we 
an express theright-hand side in (3.10) as
Zβ,N [ω]Qβ,N [ω](x) =

n∏

ℓ=1

√
(I′′N,ℓ[ω](xℓ/ρℓ)/ρℓ)

Nπ/2 exp (−NβFβ,N [ω](x)) (1 + o(1)) , (3.13)
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where
Fβ,N [ω](x) ≡ −1

2

(
n∑

ℓ=1

xℓ

)2

−
n∑

ℓ=1

xℓh̄ℓ +
1

β

n∑

ℓ=1

ρℓIN,ℓ[ω](xℓ/ρℓ). (3.14)Here IN,ℓ[ω](y) is the Legendre-Fen
hel transform of the log-moment generating fun
tion,
UN,ℓ[ω](t) ≡ 1

|Λℓ|
ln E

h̃
σΛℓ

exp


t
∑

i∈Λℓ

σi


 (3.15)

=
1

|Λℓ|
∑

i∈Λℓ

ln cosh
(
t+ βh̃i

)
.We again analyze our fun
tions near 
riti
al points, z∗, of Fβ,N . Equations (3.10)-(3.15)imply: if z∗ is a 
riti
al point, then, for ‖v‖ ≤ N−1/2+δ ,

Qβ,N (z∗ + v)

Qβ,N (z∗)
= exp

(
−βN

2
(v,A(z∗)v)

)
(1 + o(1)) , (3.16)with

(A(z∗))kℓ =
∂2Fβ,N (z∗)

∂zk∂zℓ
= −1 + δk,ℓβ

−1ρ−1
ℓ I ′′N,ℓ(z

∗
ℓ/ρℓ) ≡ −1 + δℓ,kλ̂ℓ. (3.17)Now, if z∗ is a 
riti
al point of Fβ,N ,

n∑

j=1

z∗
j + h̄ℓ = β−1I ′N,ℓ(z

∗
ℓ/ρℓ) ≡ β−1t∗ℓ , (3.18)or, with z∗ =

∑n
j=1 z∗

ℓ ,
β
(
z∗ + h̄ℓ

)
= I ′N,ℓ(z

∗
ℓ/ρℓ) = t∗ℓ . (3.19)By standard properties of Legendre-Fen
hel transforms, we have that I ′N,ℓ(x) = U ′−1

N,ℓ (x),so that
z∗

ℓ/ρℓ = U ′
N,ℓ(β(z∗ + hℓ)) ≡

1

|Λℓ|
∑

i∈Λℓ

tanh(β(z∗ + hi))). (3.20)Summing over ℓ, we see that z∗ must satisfy the equation
z∗ =

1

N

∑

i∈Λ

tanh(β(z∗ + hi)), (3.21)whi
h ni
ely does not depend on our 
hoi
e of the 
oarse graining (and hen
e on n).Finally, using that at a 
riti
al point I ′′N,ℓ(z
∗
ℓ/ρℓ) = 1

U ′′
N,ℓ(t

∗
ℓ ) , we get the expli
it expressionfor the random numbers λ̂ℓ on the right hand side of (3.17)

λ̂ℓ =
1

βρℓU
′′
N,ℓ(β(z∗ + h̄ℓ))

=
1

β
N

∑
i∈Λℓ

(
1 − tanh2(β(z∗ + hi))

) . (3.22)The determinant of the matrix A(z∗) has a simple expression of the form
det (A(z∗)) =

(
1 −

n∑

ℓ=1

1

λ̂ℓ

)
n∏

ℓ=1

λ̂ℓ (3.23)

=

(
1 − β

N

∑

i∈Λ

(
1 − tanh2(β(z∗ + hi))

)
)

n∏

ℓ=1

λ̂ℓ

=
(
1 − βEh

(
1 − tanh2(β(z∗ + h))

)) n∏

ℓ=1

λ̂ℓ (1 + o(1)) ,
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where o(1) ↓ 0, a.s., as N ↑ ∞. Combing these observations, we arrive at the followingproposition.
Proposition 3.1. Let z∗ be a critical point of Qβ,N . Then z∗ is given by (3.20) where z∗ is a
solution of (3.21). Moreover,

Zβ,NQβ,N (z∗) =

√
|det(A(z∗))|√(

Nπ
2β

)n ∣∣βEh

(
1 − tanh2(β(z∗ + h))

)
− 1
∣∣

(3.24)

× exp

(
βN

(
−(z∗)2

2
+

1

βN

∑

i∈Λ

ln cosh (β(z∗ + hi))

))
(1 + o(1)) .

Proof. We only need to examine (3.13) at a critical point z∗. The equation for the prefactor
follows by combining (3.12) with (3.23). As for the exponential term, Fβ,N , notice that
by convex duality

IN,ℓ(z
∗
ℓ/ρℓ) = t∗ℓz

∗
ℓ/ρℓ − UN,ℓ(t

∗
ℓ) = β(z∗ + h̄ℓ)z

∗
ℓ/ρℓ − UN,ℓ

(
β(z∗ + h̄ℓ)

)
. (3.25)

Hence (3.14) equals

−1

2
(z∗)2 −

n∑

ℓ=1

z∗
ℓ h̄ℓ +

1

β

n∑

ℓ=1

[
ρℓβ(z∗ + h̄ℓ)z

∗
ℓ/ρℓ − ρℓUN,ℓ

(
β(z∗ + h̄ℓ)

)]

= −1

2
(z∗)2 −

n∑

ℓ=1


z∗

ℓ h̄ℓ − z∗z∗
ℓ − h̄z∗

ℓ +
1

βN

∑

i∈Λℓ

ln cosh (β(z∗ + hi))




=
1

2
(z∗)2 − 1

βN

∑

i∈Λ

ln cosh (β(z∗ + hi)) . (3.26)

�

Remark. The form given in Proposition 3.1 is highly suitable for our purposes as the de-
pendence on n appears only in the denominator of the prefactor. We will see that this is
just what we need to get a formula for capacities that is independent of the choice of the
partition of I and has a limit as n ↑ ∞.Eigenvalues of the Hessian. We now des
ribe the eigenvalues of the Hessian matrix
A(z∗).
Lemma 3.2. Let z∗ be a solution of the equation (3.21). Assume in addition that all numbers

λ̂k are distinct. Then γ is an eigenvalue of A(z∗) if and only if it is a solution of the equation
n∑

ℓ=1

1
1

β
N

P
i∈Λℓ

(1−tanh2(β(z∗+hi)))
− γ

= 1. (3.27)

Moreover, (3.27) has at most one negative solution, and it has such a negative solution if and
only if

β

N

N∑

i=1

(
1 − tanh2 (β (z∗ + hi))

)
> 1. (3.28)

Remark. To analyze the case when some λ̂k coincide is also not difficult. See [6].

Proof. To find the eigenvalues of A, just replace λ̂k by λ̂k − γ in the first line of (3.23).
This gives

det (A(z∗) − γ)) =

(
1 −

n∑

ℓ=1

1

λ̂ℓ − γ

)
n∏

ℓ=1

(λ̂ℓ − γ), (3.29)
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FIGURE 1. Correspondence of one and n-dimensional landscape

provided none of the λ̂ℓ − γ = 0. (3.27) is then just the demand that the first factor on
the right of (3.29) vanishes. It is easy to see that, under the hypothesis of the lemma, this
equation has n solutions, and that exactly one of them is negative under the hypothesis
(3.28). �Topology of the lands
ape. From the analysis of the 
riti
al points of Fβ,N it followsthat the lands
ape of this fun
tion is 
losely slaved to the one-dimensional lands
apedes
ribed in Se
tion 1. We 
olle
t the following features:(i) Let m∗

1 < z∗1 < m∗
2 < z∗2 < · · · < z∗k < m∗

k+1 be the sequen
e of minima resp.maxima of the one-dimensional fun
tion Fβ,N de�ned in (1.10). Then to ea
hminimum, m∗
i , 
orresponds a minimum, m∗

i of Fβ,N , su
h that ∑n
ℓ=1 m∗

i,ℓ = m∗
i ,and two ea
h maximum, z∗i , 
orresponds a saddle point, z∗

i of Fβ,N , su
h that∑n
ℓ=1 z∗

i,ℓ = z∗i .(ii) For any value m of the total magnetization, the fun
tion Fβ,N (x) takes its relativeminimum on the set {y :
∑

yℓ = m} at the point x̂ ∈ R
n determined (
oordinate-wise) by the equation

x̂ℓ(m) =
1

N

∑

i∈Λℓ

tanh (β (m+ a+ hi)) , (3.30)where a = a(m) is re
overed from
m =

1

N

∑

i∈Λ

tanh (β (m+ a+ hi)) . (3.31)Moreover,
Fβ,N (m) ≤ Fβ,N (x̂) ≤ Fβ,N (m) +O(n lnN/N). (3.32)

Remark. Note that the minimal energy curves x̂(·) defined by (3.30) pass through the min-
ima and saddle points, but are in general not the integral curves of the gradient flow con-
necting them. Note also that since we assume that random fields {hi(ω)} have bounded
support, for every δ > 0 there exist two universal constants 0 < c1 ≤ c2 <∞, such that

c1ρℓ ≤
dx̂ℓ(m)

dm
≤ c2ρℓ, (3.33)

uniformly in N , m ∈ [−1 + δ, 1 − δ] and in ℓ = 1, . . . , n.
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4. UPPER BOUNDS ON CAPACITIESThis and the next se
tion are devoted to proving Theorem 1.3. In this se
tion we deriveupper bounds on 
apa
ities between two lo
al minima. The pro
edure to obtain thesebounds has two steps. First, we show that using test fun
tions that only depend on theblo
k variables m(σ), we 
an always get upper bounds in terms of a �nite dimensionalDiri
hlet form. Se
ond, we produ
e a good test fun
tion for this Diri
hlet form.
4.1. First blocking. Let us 
onsider two sets, A,B ⊂ SN , that are de�ned in terms ofblo
k variables m. This means that for some A,B ⊆ Γn

N , A = SN [A] and B = SN [B].Later we will be interested in pre-images of two minima of the fun
tion Fβ,N . We get theobvious upper bound
ap(A,B) = inf
h∈HA,B

1

2

∑

σ,σ′∈SN

µβ,N [ω](σ)p(σ, σ′)
[
h(σ) − h(σ′)

]2

≤ inf
u∈GA,B

1

2

∑

σ,σ′∈SN

µβ,N [ω](σ)p(σ, σ′)
[
u(m(σ)) − u(m(σ′))

]2

= inf
u∈GA,B

∑

x,x′∈Γn
N

[
u(x) − u(x′)

]2 ∑

σ∈SN [x]

µβ,N [ω](σ)
∑

σ′∈SN [x′]

p(σ, σ′)

≡ inf
u∈GA,B

∑

x,x′∈Γn
N

Qβ,N [ω](x)rN (x,x′)
[
u(x) − u(x′)

]2

≡ Capn
N (A,B). (4.1)with

rN (x,x′) ≡ 1

Qβ,N [ω](x)

∑

σ∈SN [x]

µβ,N [ω](σ)
∑

σ′∈SN [x′]

p(σ, σ′). (4.2)Here
HA,B ≡ {h : SN → [0, 1] : ∀σ ∈ A,h(σ) = 1,∀σ ∈ B,h(σ) = 0} (4.3)and

GA,B ≡ {u : Γn
N → [0, 1] : ∀x ∈ A, u(x) = 1,∀x ∈ B, u(x) = 0}. (4.4)

4.2. Sharp upper bounds for saddle point crossings. Let now z∗ be a saddle point, i.e.a 
riti
al point of Qβ,N su
h that the matrix A(z∗) has exa
tly one negative eigenvalue andthat all its other eigenvalues are stri
tly positive. Let A,B be two disjoint neighborhoodsof minima of Fβ,N that are 
onne
ted through z∗, i.e. A and B are stri
tly 
ontained intwo di�erent 
onne
ted 
omponents of the level set {x : Fβ,N (x) < Fβ,N (z∗)}, and thereexists a path γ from A to B su
h that maxx∈γ Fβ,N (x) = Fβ,N (z∗).To estimate su
h 
apa
ities it su�
es to 
ompute the 
apa
ity of some small set nearthe saddle point (see e.g. [3℄ or [8℄ for an explanation). For a given (small) 
onstant
ρ = ρ(N) ≪ 1, we de�ne

DN (ρ) ≡ {x ∈ Γn
N : |z∗

ℓ − xℓ| ≤ ρ,∀1 ≤ ℓ ≤ n}, (4.5)In this se
tion we will later 
hoose ρ = C
√

lnN/N , with C <∞. DN (ρ) is the hyper
ubein Γn
N 
entered in z∗ with sidelenght 2ρ. For a �xed ve
tor, v ∈ Γn

N , 
onsider three disjointsubsets,
W0 = {x ∈ Γn

N : |(v, (x − z∗))| < ρ}
W1 = {x ∈ Γn

N : (v, (x − z∗)) ≤ −ρ}
W2 = {x ∈ Γn

N : (v, (x − z∗)) ≥ ρ}. (4.6)We will 
ompute the 
apa
ity of the Diri
hlet form restri
ted to the set DN (ρ) with bound-ary 
onditions zero and one, respe
tively, on the sets W1 ∩DN (ρ) and W2 ∩DN (ρ). This
14



will be done by exhibiting an approximately harmoni
 fun
tion with these boundary 
on-ditions. Before doing this, it will however be useful to slightly simplify the Diri
hlet formwe have to work with.Cleaning of the Diri
hlet form. One problem we are fa
ed with in our setting is thatthe transition rates rN (x,x′) are given in a somewhat unpleasant form. At the same timeit would be ni
er to be able to repla
e the measure Qβ,N by the approximation given in(3.18). That we are allowed to do this follows from the simple assertion below, that isan immediate 
onsequen
e of the positivity of the terms in the Diri
hlet form, and of theDiri
hlet prin
iple.
Lemma 4.1. Let ΦN , Φ̃N be two Dirichlet forms defined on the same space, Γ, corresponding

to the measure Q and transition rates r, respectively Q̃ and r̃. Assume that, for all x,x′ ∈ Γ,
∣∣∣∣∣
Q(x)

Q̃(x)
− 1

∣∣∣∣∣ ≤ δ, ,

∣∣∣∣
r(x,x′)
r̃(x,x′)

− 1

∣∣∣∣ ≤ δ. (4.7)

Then for any sets A,B

(1 − δ)2 ≤ Capn
N (A,B)

C̃ap
n

N (A,B)
≤ (1 − δ)−2. (4.8)

Proof. Note that Capn
N (A,B) ≡ infu∈GA,B

ΦN (u) = ΦN (u∗), and

C̃ap
n

N (A,B) ≡ infu∈GA,B
Φ̃N (u) = Φ̃N (ũ∗). But clearly

ΦN (u∗) =
1

2

∑

x,x′∈Γ

Q̃(x)
Q(x)

Q̃(x)
r̃(x,x′)

r(x,x′))
r̃(x,x′)

(
u∗(x) − u∗(x′)

)
(4.9)

≥ 1

2

∑

x,x′∈Γ

Q̃(x)(1 − δ)r̃(x,x′)(1 − δ)
(
u∗(x) − u∗(x′)

)

≥ (1 − δ)2 inf
u∈GA,B

1

2

∑

x,x′∈Γ

Q̃(x)r̃(x,x′)
(
u(x) − u(x′)

)

= (1 − δ)2C̃ap
n

N (A,B).

By the same token,

Φ̃N (u∗) ≥ (1 − δ)2Capn
N (A,B). (4.10)

The claimed relation follows. �To make use of this observation, we need to 
ontrol the rates rN (x,x′) and the measure
Qβ,N (x) in terms of suitable modi�ed rates and measures. In fa
t, we see easily that

Q̃β,N (x) ≡ Qβ,N (z∗) exp

(
−βN

2
((x − z∗),A(z∗)(x − z∗))

)
, (4.11)so that, for all x ∈ DN (ρ) and for some K <∞, it holds

∣∣∣∣∣
Qβ,N (x)

Q̃β,N (x)
− 1

∣∣∣∣∣ ≤ KNρ3. (4.12)For that 
on
erns the rates, let us �rst de�ne, for σ ∈ SN ,
Λ±

k (σ) ≡ {i ∈ Λk : σ(i) = ±1} . (4.13)
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For all x ∈ Γn
N , we then have

rN (x,x + eℓ) = Qβ,N (x)−1
∑

σ∈SN [x]

µβ,N [ω](σ)
∑

i∈Λ−
ℓ (σ)

p(σ, σi) (4.14)

= Qβ,N (x)−1
∑

σ∈SN [x]

µβ,N [ω](σ)
∑

i∈Λ−
ℓ (σ)

1
N e

−2β
h
m(σ)− 1

N +hi

i

+ .Noti
e that for all σ ∈ SN (x), |Λ−
ℓ (σ)| is a 
onstant just depending on x. Using that

hi = h̄ℓ + h̃i, with h̃i ∈ [−ε, ε], we get the bounds
rN (x,x + eℓ) =

|Λ−
ℓ (x)|
N e

−2β[m(σ)+h̄ℓ]+(1 +O(ε)). (4.15)It follows easily that, for all x ∈ DN (ρ),
∣∣∣∣
rN (x,x + eℓ)

rN (z∗,z∗ + eℓ)
− 1

∣∣∣∣ ≤ β(ε+ nρ) (4.16)With this in mind, we let L̃N be the generator of the dynami
s on DN (ρ) with rates
r̃(x,x + eℓ) ≡ rN (z∗,z∗ + eℓ) ≡ rℓ and r̃(x + eℓ,x) ≡ rℓ

eQβ,N (x)
eQβ,N (x+eℓ)

, and thus withreversible measure Q̃β,N (x). For u ∈ GA,B, we write the 
orresponding Diri
hlet form as
Φ̃DN

(u) ≡ Qβ,N (z∗)
∑

x∈DN (ρ)

n∑

ℓ=1

rℓe
−βN((x−z∗),A(z∗)(x−z∗)) (u(x) − u(x + eℓ))

2 . (4.17)

4.3. Approximately harmonic functions for Φ̃DN
. We will now des
ribe a fun
tion thatwe will show to be almost harmoni
 with respe
t to the Diri
hlet form Φ̃DN

. De�ne thematrix B(z∗) ≡ B with elements
Bℓ,k ≡ √

rℓA(z∗)ℓ,k
√
rk. (4.18)Let v̂(i), i = 1, . . . , n be the normalized eigenve
tors of B, and γ̂i be the 
orrespondingeigenvalues. We denote by γ̂1 the unique negative eigenvalue of B, and 
hara
terize it inthe following lemma.

Lemma 4.2. Let z∗ be a solution of the equation (3.21) and assume in addition that

β

N

N∑

i=1

(
1 − tanh2 (β (z∗ + hi))

)
> 1. (4.19)

Then, z∗ defined through (3.20) is a saddle point and the unique negative eigenvalue of B(z∗)
is the unique negative solution, γ̂1 ≡ γ̂1(N,n), of the equation

n∑

ℓ=1

ρℓ

1
|Λℓ|
∑

i∈Λℓ
(1 − tanh(β(z∗ + hi))) exp (−2β

[
z∗ + h̄ℓ

]
+
)

1
|Λℓ|

P
i∈Λℓ

(1−tanh(β(z∗+hi))) exp (−2β[z∗+h̄ℓ]+)

β
|Λℓ|

P
i∈Λℓ

(1−tanh2(β(z∗+hi)))
− 2γ

= 1. (4.20)

Moreover, we have that

lim
n↑∞

lim
N↑∞

γ̂1(N,n) ≡ γ̄1, (4.21)

where γ̄1 is the unique negative solution of the equation

Eh


(1 − tanh(β(z∗ + h))) exp (−2β [z∗ + h]+)

exp (−2β[z∗+h]+)

β(1+tanh(β(z∗+h))) − 2γ


 = 1. (4.22)
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Proof. The particular form of the matrix B allows to obtain a simple characterization of all
eigenvalues and eigenvectors. The eigenvalue equations can be written as

−
n∑

ℓ=1

√
rℓrkuℓ + (rkλ̂k − γ)uk = 0,∀1 ≤ k ≤ n. (4.23)

Assume for simplicity that all rkλ̂k take distinct values. Then there is no non-trivial solu-

tion of these equation with γ = rkλ̂k, and thus
∑n

ℓ=1

√
rℓuℓ 6= 0. Thus,

uk =

√
rk
∑n

ℓ=1

√
rℓuℓ

rkλ̂k − γ
. (4.24)

Multiplying by
√
rk and summing over k, uk is a solution if and only if γ satisfies the

equation
n∑

k=1

rk

rkλ̂k − γ
= 1. (4.25)

Using (4.15) and noticing that
|Λ−

k |
N = 1

2(ρk − z∗
k), we get

rk = 1
2(ρk − z∗

k) exp
(
−2β

[
m(σ) + h̄k

]
+

)
(1 +O(ε)). (4.26)

Inserting the expressions for z∗
k/ρk and λ̂k given by (3.20) and (3.22) into (4.26) and

substituting the result into (4.25), we recover (4.20).

Since the left-hand side of (4.25) is monotone decreasing in γ as long as γ ≥ 0, it follows
that there can be at most one negative solution of this equation, and such a solution exists
if and only if left-hand side is larger than 1 for γ = 0. The claimed convergence property
(4.21) follows easily. �We 
ontinue our 
onstru
tion de�ning the ve
tors v(i) by

v
(i)
ℓ ≡ v̂

(i)
ℓ /

√
rℓ, (4.27)and the ve
tors v̌(i) by

v̌
(i)
ℓ ≡ v̂

(i)
ℓ

√
rℓ = rℓv

(i)
ℓ . (4.28)We will single out the ve
tors v ≡ v(1) and v̌ ≡ v̌(1). The important fa
ts about theseve
tors is that

Av̌(i) = γ̂iv
(i), (4.29)and that

(v̌(i),v(j)) = δij . (4.30)This implies the following non-orthogonal de
omposition of the quadrati
 form A,
(y,Ax) =

n∑

i=1

γ̂i(y,v
(i))(x,v(i)). (4.31)A 
onsequen
e of the 
omputation in the proof of Lemma 4.2, on whi
h we shall rely inthe sequel, is the following:

Lemma 4.3. There exists a positive constant δ > 0 such that independently of n,

δ ≤ min
k

vk ≤ max
k

vk ≤ 1

δ
. (4.32)
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Proof. Due to our explicit computations,

rkλ̂k =
1

2

(
1 − z∗

k

ρk

)
β 1

|Λk|
∑

i∈Λk

(
1 − tanh2 (β(z∗ + hi))

)


−1

e
−2β[z∗+h̄k]+ . (4.33)

Consequently, the quantities φk ≡ rkλ̂k−γ̂1(N,n) are bounded away from zero and infinity,
uniformly in N , n and k = 1, . . . , n. Since by (4.27) and (4.24) the entries of v are given
by

vk =
1

φk

{
∑

ℓ

rℓ
φ2

ℓ

}−1/2

, (4.34)

the assertion of the lemma follows. �Finally, de�ne the fun
tion f : R → R+ by
f(a) =

∫ a
−∞ e−βN |γ̂1|u2/2du∫∞
−∞ e−βN |γ̂1|u2/2du

(4.35)

=

√
βN |γ̂1|

2π

∫ a

−∞
e−βN |γ̂1|u2/2du.We 
laim that the fun
tion

g(x) ≡ f((v,x)) (4.36)is the desired approximately harmoni
 fun
tion.Noti
e �rst, that g(x) = o(1) for all x ∈ W1 ∩ DN (ρ), while g(x) = 1 − o(1) for all
x ∈W2 ∩DN (ρ). Moreover, the following holds:
Lemma 4.4. Let g be defined in (4.36). Then, for all x ∈ DN (ρ), there exists a constant
c <∞ such that

∣∣∣
(
L̃Ng

)
(x)
∣∣∣ ≤

(√
β|γ̂1|
2πN

e−βN |γ̂1|(x,v)2/2
n∑

ℓ=1

rℓvℓ

)
cρ2. (4.37)

Remark. The point of the estimate (4.37) is that it is by a factor ρ2 smaller than what we
would get for an arbitrary choice of the parameters v and γ1. We will actually use this
estimate in the proof of the lower bound.

Proof. To simplify the notation we will assume throughout the proof that coordinates are
chosen such that z∗ = 0. We also set A ≡ A(z∗). Using the detailed balance condition, we
get

r̃(x,x − eℓ) =
Q̃β,N (x − eℓ)

Q̃β,N (x)
r̃(x − eℓ,x) =

Q̃β,N (x − eℓ)

Q̃β,N (x)
rℓ. (4.38)

Moreover, from the definition of Q̃β,N and using that we are near a critical point, we have
that

Q̃β,N (x − eℓ)

Q̃β,N (x)
= exp

(
−βN

2

[(
x,Ax

)
−
(
(x − eℓ),A(x − eℓ)

)])
(4.39)

= exp
(
−β
(
eℓ,Ax

)) (
1 +O

(
N−1

))
.

From (4.38) and (4.39), the generator can be written as

(
L̃Ng

)
(x) =

n∑

ℓ=1

rℓ (g(x + eℓ) − g(x)) (4.40)

×
(

1 − exp
(
−β
(
eℓ,Ax

)) g(x) − g(x − eℓ)

g(x + eℓ) − g(x)

(
1 +O(N−1)

))
.
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Now we use the explicit form of g to obtain

g(x + eℓ) − g(x) = f((x,v) + vℓ/N) − f((x,v) (4.41)

= f ′((x,v))vℓ/N + v2
ℓN

−2f ′′(x,v)/2 + v3
ℓN

−3f ′′′((x̃,v))/6

= vℓ

√
β|γ̂1|
2πN

e−βN |γ̂1|(x,v)2/2
(
1 − vℓβ|γ̂1|(x,v)/2 +O

(
ρ2
))
.

In particular, we get from here that

g(x) − g(x − eℓ)

g(x + eℓ) − g(x)
= exp

(
−βN |γ̂1|

[
(x − eℓ,v)2 − (x,v)2

]
/2
)

(4.42)

×1 − vℓβ|γ̂1|[(x,v) − vℓ/N ]/2 +O
(
ρ2
)

1 − vℓβ|γ̂1|(x,v)/2 +O (ρ2)

= exp (−β|γ̂1|vℓ(x,v))

(
1 +

v2
ℓβ|γ̂1|/2N +O

(
ρ2
)

1 − vℓβ|γ̂1|(x,v) +O (ρ2)

)

= exp (−β|γ̂1|vℓ(x,v))
(
1 +O(ρ2)

)

Let us now insert these equations into (4.40):

(
L̃Ng

)
(x) =

√
β|γ̂1|
2πN

e−βN |γ̂1|(x,v)2/2
n∑

ℓ=1

rℓvℓ

(
1 − vℓβ|γ̂1|(x,v)/2 +O

(
ρ2
))
.

×
(
1 − exp

{
−β
(
eℓ,Ax

)
− β|γ̂1|vℓ(x,v)

} (
1 +O(ρ2)

))
. (4.43)

Now

1 − exp
(
−β
(
eℓ,Ax

)
− β|γ̂1|vℓ(x,v)

) (
1 +O(ρ2)

)

= β
(
eℓ,Ax

)
+β|γ̂1|vℓ(x,v) +O(ρ2). (4.44)

Using this fact, and collecting the leading order terms, we get

(
L̃Ng

)
(x) =

√
β|γ̂1|
2πN

e−βN |γ̂1|(x,v)2/2

×
n∑

ℓ=1

rℓvℓ

[(
β
(
eℓ,Ax

)
+β|γ̂1|vℓ(x,v)

)
+O(ρ2)

]
. (4.45)

Thus we will have proved the lemma provided that
n∑

ℓ=1

rℓvℓ

((
eℓ,Ax

)
−γ̂1vℓ(x,v)

)
= 0. (4.46)

But note that from (4.31) we get that

(
eℓ,Ax

)
− γ̂1vℓ(x,v) =

n∑

j=2

γ̂jv
(j)
ℓ (x,v(j)). (4.47)

Hence using that by (4.28) rℓvℓ = v̌ℓ and that by (4.30) v̌ is orthogonal to v(j) with j ≥ 2,
(4.46) follows and the lemma is proven. �Having established that g is a good approximation of the equilibrium potential in a neigh-borhood of z∗, we 
an now use it to 
ompute a good upper bound for the 
apa
ity. Fixnow ρ = C

√
lnN/N .

Proposition 4.5. With the notation introduced above and for every n ∈ N, we get
ap(A,B) ≤ Qβ,N (z∗)
β|γ̂1|
2πN

(
πN

2β

)n/2 n∏

ℓ=1

√
rℓ
|γ̂j |

(
1 +O(ε+

√
(lnN)3/N)

)
. (4.48)
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Proof. The upper bound on 
ap(A,B) is inherited from the upper bound on the mesoscopic
capacity Capn

N (A,B). As for the latter, we first estimate the energy of the mesoscopic
neighborhood DN ≡ DN (ρ) of the saddle point z∗. By Lemma 4.1, this can be controlled

in terms of the modified Dirichlet form Φ̃DN
in (4.17). Thus, let g the function defined in

(4.36) and choose coordinates such that z∗ = 0. Then

Φ̃DN
(g) ≡ Q̃β,N (0)

∑

x∈DN

n∑

ℓ=1

e−βN((x,Ax))/2rℓ (g(x + eℓ) − g(x))2 (4.49)

= Q̃β,N (0)
β|γ̂1|
2πN

∑

x∈DN

e−βN |γ̂1|(x,v)2e−βN((x,Ax))/2
n∑

ℓ=1

rℓv
2
ℓ

×
(
1 − vℓβ|γ̂1|(x,v) +O

(
N−1 lnN

))2

= Q̃β,N (0)
β|γ̂1|
2πN

∑

x∈DN

e−βN |γ̂1|(x,v)2e−βN((x,Ax))/2
(
1 +O

(√
lnN/N

))
.

Here we used that
∑

ℓ rℓv
2
ℓ =

∑
ℓ v̂2

ℓ = 1. It remains to compute the sum over x. By a
standard approximation of the sum by an integral we get

∑

x∈DN

e−βN |γ̂1|(x,v)2e−βN((x,Ax))/2 (4.50)

=

(
N

2

)n ∫
dnxe−βN |γ̂1|(x,v)2e−βN((x,Ax))/2

(
1 +O(

√
lnN/N)

)

=

(
N

2

)n
(

n∏

ℓ=1

√
rℓ

)∫
dnye−βN |γ̂1|(y,v̂)2e−βN((y,By))/2

(
1 +O(

√
lnN/N )

)

=

(
N

2

)n
(

n∏

ℓ=1

√
rℓ

)∫
dnye−βN(|γ̂1|(y,v̂)2+

Pn
j=1 γ̂j(v̂

(j),y)2/2)
(
1 +O(

√
lnN/N)

)

=

(
N

2

)n
(

n∏

ℓ=1

√
rℓ

)∫
dnye−βN

Pn
j=1 |γ̂j |(v̂(j),y)2/2

(
1 +O(

√
lnN/N )

)

=

(
N

2

)n
(

n∏

ℓ=1

√
rℓ

)(
2π

βN

)n/2 1√∏n
j=1 |γ̂j |

(
1 +O(

√
lnN/N)

)

=

(
πN

2β

)n/2 n∏

ℓ=1

√
rℓ
|γ̂ℓ|

(
1 +O(

√
lnN/N)

)
.

Inserting (4.50) into (4.49) we see that the left-hand side of (4.49) is equal to the right-
hand side of (4.48) up to error terms.

It remains to show that the contributions from the sum outside DN in the Dirichlet form
do not contribute significantly to the capacity. To do this, we define a global test function
g̃ given by

g̃(x) ≡





0, x ∈W1

1, x ∈W2

g(x), x ∈W0

(4.51)

Clearly, the only non-zero contributions to the Dirichlet form ΦN (g̃) come from W 0 ≡
W0 ∪ ∂W0, where ∂W0 denotes the boundary of W0. Let us thus consider the sets W in

0 =

W0∩DN and W out
0 = W0∩Dc

N (see Figure 4.3). We denote by Φ
||
W in

0
(g̃) the Dirichlet form

of g̃ restricted to W in
0 and to the part of its boundary contained in DN , i.e. to W

in
0 ∩DN ,
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FIGURE 2. Domains for the construction of the test function in the upper bound

and by Φ�

W out
0

(g̃) the Dirichlet form of g̃ restricted to W
out
0 . With this notation, we have

ΦN (g̃) = Φ
||
W in

0
(g̃) + Φ�

W out
0

(g̃) (4.52)

= Φ̃
||
W in

0
(g̃)
(
1 +O

(√
lnN/N

))
+ Φ�

W out
0

(g̃)

=
(
Φ̃
||
W in

0
(g) −

(
Φ̃
||
W in

0
(g) − Φ̃

||
W in

0
(g̃)
))(

1 +O
(√

lnN/N
))

+ Φ�

W out
0

(g̃).

The first term in (4.52) satisfies trivially the bound

Φ̃D′
N

(g) ≤ Φ̃
||
W in

0
(g) ≤ Φ̃DN

(g), (4.53)

where D′
N ≡ DN (ρ′) is defined as in (4.53) but with constant ρ′ = C ′√lnN/N such that

D′
N ⊂ W in

0 . Performing the same computations as in (4.49) and (4.50) it is easy to show

that Φ̃D′
N

(g) = Φ̃DN
(g)(1 + o(1)), and then from (4.52) it follows that

Φ̃
||
W in

0
(g) = Φ̃DN

(g)(1 − o(1)). (4.54)

Consider now the second term in (4.52). Since g̃ ≡ g on W0, we get

Φ̃
||
W in

0
(g) − Φ̃

||
W in

0
(g̃) =

∑

x∈∂W in
0 ∩W1

n∑

ℓ=1

Q̃(x)rℓ

[
(g(x + eℓ) − g(x))2 − g(x)2

]

+
∑

x∈∂W in
0 ∩W2

n∑

ℓ=1

Q̃(x)rℓ

[
(g(x + eℓ) − g(x))2 − (1 − g(x))2

]
, (4.55)

where we also used that the function g̃ has boundary conditions zero and one respectively
on W1 and W2. By symmetry, let us just consider the first sum in the r.h.s. of (4.55). For

x ∈ ∂W in
0 ∩W1 it holds that (x,v) ≤ −ρ = −C

√
lnN/N , and hence

g(x)2 ≤ 1√
2πβ|γ̂1|C

√
lnN

e−βN |γ̂1|ρ2
. (4.56)
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Using this bound together with inequality (4.41) to control (g(x + eℓ) − g(x))2, we get

∑

x∈∂W in
0 ∩W1

n∑

ℓ=1

Q̃(x)rℓ

[
(g(x + eℓ) − g(x))2 − g(x)2

]

≤ β|γ̂1|
2πN

e−βN |γ̂1|ρ2
∑

x∈∂W in
0 ∩W1

Q̃(x)

(
1 +

cN√
lnN

)

≤ Q̃β,N (0)
β|γ̂1|
2πN

e−βN |γ̂1|ρ2
∑

x∈∂W in
0 ∩W1

e−βN((x,Ax))/2

(
1 + c

N√
lnN

)
(4.57)

for some constant c independent on N . The sum over x ∈ ∂W in
0 ∩W1 in the last term

can then be computed as in (4.50). However, in this case the integration runs over the
(n− 1)-dimensional hyperplane orthogonal to v and thus we have

∑

x∈∂W in
0 ∩W1

e−βN((x,Ax))/2

=

(
N

2

)n−1 ∫
dn−1xe−βN((x,Ax))/2

=

(
N

2

)n−1
(

n∏

ℓ=2

√
rℓ

)∫
dn−1ye−βN((y,By))/2

≤
(
N

2

)n−1
(

n∏

ℓ=2

√
rℓ

)
e−βNγ̂1ρ2/2

∫
dn−1ye−βN(

Pn
j=2 γ̂j(v̂

(j),y)2/2)

=

(
πN

2β

)n−1
2

n∏

ℓ=2

√
rℓ
|γ̂ℓ|

e−βNγ̂1ρ2/2. (4.58)

Inserting (4.58) in (4.57), and comparing the result with Φ̃DN
(g), we get that the l.h.s of

(4.57) is bounded as
(

1 + c
N

lnN

)√
Ne−βN |γ̂1|ρ2/2Φ̃DN

(g) = o(N−K)Φ̃DN
(g), (4.59)

with K = β|γ̂1|C−1
2 , which is positive if C is large enough. A similar bound can be obtained

for the second sum in (4.55), so that we finally get
∣∣∣Φ̃||

W in
0

(g) − Φ̃
||
W in

0
(g̃)
∣∣∣ ≤ o(N−K)Φ̃DN

(g). (4.60)

The last term to analyze is the Dirichlet form Φ�

W out
0

(g̃). But it is easy to realize that this

is negligible with respect to the leading term. Indeed, since for all x ∈ Dc
N it holds that

Fβ,N (x) ≥ Fβ,N (z∗) +K ′ lnN/N , for some positive K ′ <∞ depending on C, we get

Φ�

W out
0

(g̃) ≤ Z−1
β,Ne

−βNFβ,N (z∗)N−(K ′−n) = o(N−K ′′
)Φ̃DN

(g). (4.61)

From (4.52) and the estimates given in (4.54), (4.59) and (4.61), we get that ΦN (g̃) =

Φ̃DN
(g)(1 + o(1)) provides the claimed upper bound. �Combining this proposition with Proposition 3.1, yields, after some 
omputations, thefollowing more expli
it representation of the upper bound.

Corollary 4.6. With the same notation of Proposition 4.5,

Zβ,N
ap(A,B) ≤ β|γ̄1|
2πN

exp (−βNFβ,N (z∗)) (1 + o(1))√
βNEh

(
1 − tanh2 (β (z∗ + h))

)
− 1

, (4.62)
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where γ̄1 is defined through Eq. (4.22).

Proof. First, we want to show that

|det(A(z∗))| =

(
n∏

ℓ=1

rℓ

)−1 n∏

ℓ=1

γ̂ℓ. (4.63)

To see this, note that

B = RA(z∗)R,

where R is the diagonal matrix with elements Rℓ,k = δk,ℓ
√
rℓ. Thus

n∏

ℓ=1

|γ̂ℓ| = |det(B)| = |det(RA(z∗)R)| = |det(A(z∗))|det(R2) = |det(A(z∗))|
n∏

ℓ=1

rℓ.

(4.64)
as desired. Substituting in (4.48) the expression of Qβ,N (z∗) given in Proposition (3.1),
and after the cancellation due to (4.63), we obtain an upper bound which is almost in
the form we want. The only n-dependent quantity is the eigenvalue γ̂1 of the matrix
B. Taking the limit of n → ∞ and using the second part of Lemma 4.2, we recover the
assertion (4.62) of the corollary. �This 
orollary 
on
ludes the �rst part of the proof of Theorem 1.3. The se
ond part,namely the 
onstru
tion of a mat
hing lower bound, will be dis
ussed in the next se
tion.

5. LOWER BOUNDS ON CAPACITIESIn this se
tion we will exploit the variational prin
iple form Proposition 2.24 to derive lowerbounds on 
apa
ities. Our task is to 
onstru
t a suitable non-negative unit �ow. This willbe done in two steps. First we 
onstru
t a good �ow for the 
oarse grained Diri
hlet formin the mesos
opi
 variables and then we use this to 
onstru
t a �ow on the mi
ros
opi
variables.
5.1. Mesoscopic lower bound: The strategy. Let A and B be mesos
opi
 neighborhoodsof two minima mA and mB of Fβ,N , exa
tly as in the pre
eding se
tion, and let z∗ bethe highest 
riti
al point of Fβ,N whi
h lies between mA and mB. It would be 
onvenientto pretend that mA,z

∗,mB ∈ Γn
N : In general we should substitute 
riti
al points bytheir 
losest approximations on the latter grid, but the proofs will not be sensitive to the
orresponding 
orre
tions. Re
all that the energy lands
ape around z∗ has been des
ribedin Subse
tion 3.2.Re
all that the mesos
opi
 
apa
ity, Capn

N (A,B), is de�ned in (4.1). We will 
onstru
t aunit �ow, fA,B, from A to B of the form
fA,B(x,x′) =

Qβ,N (x)rN (x,x′)

ΦN (g̃)
φA,B(x,x′), (5.1)su
h that the asso
iated Markov 
hain, (P

fA,B

N ,XA,B

), satis�es
P

fA,B

N


 ∑

e∈XA,B

φA,B(e) = 1 + o(1) = 1 − o(1). (5.2)
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In view of the general lower bound (2.22), Eq. (5.2) implies that the mesos
opi
 
apa
itiessatisfy
Capn

N (A,B) ≥ E
fA,B

N





∑

e=(x,x′)∈X

fA,B(e)

Qβ,N (x)rN (e)





−1

≥ ΦN (g̃) (1 − o(1)) , (5.3)whi
h is the lower bound we want to a
hieve on the mesos
opi
 level.We shall 
hannel all of the �ow fA,B through a 
ertain (mesos
opi
) neighborhood GN of
z∗ . Namely, our global �ow, fA,B, in (5.1) will 
onsist of three (mat
hing) parts, fA, fand fB, where fA will be a �ow from A to ∂GN , f will be a �ow through GN , and fB willbe a �ow from ∂GN to B. We will re
over (5.2) as a 
onsequen
e of the three estimates

P
f
N

(
∑

e∈X
φ(e) = 1 + o(1)) = 1 − o(1), (5.4)whereas,

P
fA
N


∑

e∈XA

φA(e) = o(1) = 1−o(1) and P
fB
N


∑

e∈XB

φB(e) = o(1) = 1−o(1). (5.5)The 
onstru
tion of f through GN will be by far the most di�
ult part. It will rely 
ru
iallyon Lemma 4.4.
5.2. Neighborhood GN . We 
hose again mesos
opi
 
oordinates in su
h a way that z∗ =
0. Set ρ = N−1/2+δ and �x a (small) positive number, ν > 0. De�ne

GN ≡ GN (ρ, ν) ≡ DN (ρ) ∩ {x : (x, v̌) ∈ (−νρ, νρ)} , (5.6)where v̌ ≡ v̌(1) is de�ned in (4.28), andDN is the same as in (4.5). Note that in view of thedis
ussion in Se
tion 4, within the region GN we may work with the modi�ed quantities,
Q̃β,N and rℓ; ℓ = 1, . . . , n, de�ned in (4.11) and (4.17).The boundary ∂GN of GN 
onsists of three disjoint pie
es, ∂GN = ∂AGN ∪∂BGN ∪∂rGN ,where
∂AGN = {x ∈ ∂GN : (x, v̌) ≤ −νρ} and ∂BGN = {x ∈ ∂GN : (x, v̌) ≥ νρ} . (5.7)We 
hoose ν in (5.6) to be so small that there exists K > 0, su
h that

Fβ,N (x) > Fβ,N (0) +Kρ2, (5.8)uniformly over the remaining part of the boundary x ∈ ∂rGN .Let g̃ be the approximately harmoni
 fun
tion de�ned in (4.36) and (4.51). Pro
eedingalong the lines of (4.49) and (4.50) we infer that,
ΦN (g̃) (1 + o(1)) =

∑

x∈GN∪∂AGN

Q̃β,N (x)
∑

ℓ∈IGN
(x)

rℓ (g̃(x + eℓ) − g̃(x))2 , (5.9)where IGN
(x) ≡ {ℓ : x + eℓ ∈ GN}. For fun
tions, φ, on oriented edges, (x,x + eℓ), of

DN , we use the notation φℓ(x) = φ(x,x + eℓ), and set
Fℓ[φ](x) ≡ Q̃β,N (x)rℓφℓ(x),

dF [φ](x) ≡
n∑

ℓ=1

(Fℓ[φ](x) −Fℓ[φ](x − eℓ)) .In parti
ular, the left hand side of (4.37) 
an be written as |dF [∇g̃]|/Q̃β,N (x).
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Let us sum by parts in (5.9). By (5.8) the 
ontribution 
oming from ∂rGN is negligibleand, 
onsequently, we have, up to a fa
tor of order (1 + o(1)),
∑

x∈GN

g̃(x)dF [∇g̃](x) +
∑

x∈∂AGN

∑

ℓ∈IGN
(x)

Fℓ[∇g](x). (5.10)Furthermore, 
omparison between the 
laim of Lemma 4.4 and (4.49) (re
all that ρ2 =

N2δ−1 ≪ N−1/2) shows that the �rst term above is also negligible with respe
t to ΦN (g̃).Hen
e,
ΦN (g̃) (1 + o(1)) =

∑

x∈∂AGN

∑

ℓ∈IGN
(x)

Fℓ[∇g̃](x). (5.11)

5.3. Flow through GN . The relation (5.11) is the starting point for our 
onstru
tion ofa unit �ow of the form
fℓ(x) =

c

ΦN (g̃)
Fℓ[φ](x) (5.12)through GN . Above c = 1 + o(1) is a normalization 
onstant. Let us �x 0 < ν0 ≪ ν smallenough and de�ne,

G0
N = GN ∩

{
x :

∣∣∣∣x − (x, v̌)v̌

‖v̌‖2

∣∣∣∣ < ν0ρ

}
. (5.13)Thus, G0

N is a narrow tube along the prin
ipal v̌-dire
tion (Figure 5.3). We want to
onstru
t φ in (5.12) su
h that the following properties holds:
P1: f is 
on�ned to GN , it runs from ∂AGN to ∂BGN and it is a unit �ow. That is,

∀x ∈ GN , dF [φ](x) = 0 and ∑

x∈∂AGN

∑

ℓ∈IGN
(x)

fℓ[φ](x) = 1. (5.14)

P2: φ is a small distortion of ∇g̃ inside G0
N ,

φℓ(x) = ∇ℓg̃(x) (1 + o(1)) , (5.15)uniformly in x ∈ G0
N and ℓ = 1, . . . , n.

P3: The �ow f is negligible outside G0
N in the following sense: For some κ > 0,

max
x∈GN\G0

N

max
ℓ

fℓ(x) ≤ 1

Nκ
. (5.16)On
e we are able to 
onstru
t f whi
h satis�es P1-P3 above, the asso
iated Markov 
hain(

P
f
N ,X

) obviously satis�es (5.4).The most natural 
andidate for φ would seem to be ∇g̃. However, sin
e g̃ is not stri
tlyharmoni
, this 
hoi
e does not satis�es Kir
ho�'s law, and we would need to 
orre
t this byadding a (hopefully) small perturbation, whi
h in prin
iple 
an be 
onstru
ted re
ursively.It turns out, however, to be more 
onvenient to use as a starting 
hoi
e
φ

(0)
ℓ (x) ≡ vℓ

√
β|γ̂1|
2πN

exp
(
−βN |γ̂1|(x,v)2/2

)
, (5.17)whi
h, by (4.41), satis�es

φ
(0)
ℓ (x) = (g̃(x + eℓ) − g̃(x)) (1 +O(ρ)) , (5.18)uniformly in GN . Noti
e that, by (5.12), this 
hoi
e 
orresponds to the Markov 
hain withtransition probabilities

q(x,x + eℓ) =
v̌ℓ∑
k v̌k

(1 + o(1)) ≡ qℓ(1 + o(1)). (5.19)
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From (3.16) and the de
omposition (4.31) we see that
1 +O(ρ)

Q̃N,β(0)
Fℓ[φ

(0)] = rℓvℓ

√
β|γ̂1|
2πN

exp
(
−βN

2

(
|γ̂1|(x,v)2 + (x,Ax)

))

= v̌ℓ

√
β|γ̂1|
2πN

exp


−βN

2




n∑

j=2

γ̂j(x,v
(j))2




 .In parti
ular, there exists a 
onstant χ1 > 0 su
h that

Fℓ[φ
(0)](x)

Q̃N,β(0)
≤ exp

(
−χ1N

2δ
)
, (5.20)uniformly in x ∈ GN \G0

N and l = 1, . . . , n.Next, by inspe
tion of the proof of Lemma 4.4, we see that there exists χ2, su
h that,∣∣∣dF [φ(0)](x)
∣∣∣ ≤ χ2ρ

2Fℓ[φ
(0)](x), (5.21)uniformly in x ∈ GN and ℓ = 1, . . . , n. Noti
e that we are relying on the stri
t uniform (in

n) positivity of the entries vℓ, as stated in Lemma 4.3Trun
ation of ∇g, 
on�nement of f and property P1. Let C+ be the positive 
onespanned by the axis dire
tions e1, . . . ,en. Note that the ve
tor v̌ lies in the interior of C+.De�ne (see Figure 5.3)
G1

N = int (∂BG
0
N − C+

)
∩GN and G2

N =
(
∂AG

1
N + C+

)
∩GN . (5.22)We assume that the 
onstants ν and ν0 in the de�nition of GN and, respe
tively, in thede�nition of G0

N are tuned in su
h a way that G2
N ∩ ∂rGN = ∅. Let φ̃(0) be the restri
tion

PSfrag repla
ements
GN

G0
N

G1
N

G2
N

z∗

v̌

∂AGN

∂BGN

FIGURE 3. Narrow tube G0
N and sets G1

N and G2
Nof φ(0) to G1

N ,
φ̃

(0)
ℓ (x) ≡ φ

(0)
ℓ (x)1{x∈G1

N}. (5.23)Now we turn to the 
onstru
tion of the full �ow. To this end we start by setting the valuesof φℓ on ∂AGN equal to φ̃(0) if ℓ ∈ IGN
(x) and zero otherwise. By (5.11) and the bound

(5.20), the se
ond of the relations in (5.14) is satis�ed.
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In order to satisfy Kir
ho�'s law inside GN , we write φ as φ = φ̃(0) + u with u satisfyingthe re
ursion,
n∑

ℓ=1

Fℓ[u](x) =
n∑

ℓ=1

Fℓ[u](x − eℓ) − dF [φ̃(0)](x). (5.24)Sin
e φ̃(0) ≡ 0 on GN \G1
N , we may trivially take u ≡ 0 on GN \G2

N and then solve (5.24)on G2
N using the latter as an insulated boundary 
ondition on ∂G2

N ∩GN .Interpolation of the �ow inside G2
N . We �rst solve (5.24) inside G1

N . By 
onstru
tion,if x ∈ G1
N then x − eℓ ∈ G1

N ∪ ∂AG
1
N , for every ℓ = 1, . . . , n. A

ordingly, let us sli
e G1

Ninto layers Lk as follows: Set
L0 = ∂AG

1
N , (5.25)and, for k = 0, 1, . . . ,

Lk+1 =



x ∈ GN : x − eℓ ∈

k⋃

j=0

Lj for all ℓ = 1, . . . , n



 . (5.26)Sin
e all entries of v are positive, there exists χ3 = c3(n) and M ≤ χ3/ρ, su
h that

G1
N =

M⋃

j=0

Lj. (5.27)Now de�ne re
ursively, for ea
h x ∈ Lk+1,
Fℓ[u](x) = qℓ




n∑

j=1

Fj [u](x − ej) − dF [φ̃(0)](x)


 , (5.28)where the probability distribution, q1, . . . , qn, is de�ned as in (5.19). Obviously, thisprodu
es a solution of (5.24). The parti
ular 
hoi
e of the 
onstants qℓ in (5.19) leads toa rather mira
ulous looking 
an
ellation we will en
ounter below.Properties P2 and P3. We now prove re
ursively a bound on u that will imply thatProperties P2 and P3 hold. Let ck be 
onstants su
h that, for all y ∈ Lk,

|Fℓ[u](y)| ≤ ckρ
2Fℓ[∇g̃](y). (5.29)Then, for x ∈ Lk+1, we get by 
onstru
tion (5.28) and in view of (5.21) that

|Fℓ[u](x)|
Fℓ[φ̃(0)](x)

≤ qℓ
∑

j

|Fj [u](x − ej)|
Fℓ[φ̃(0)](x)

+ χ2ρ
2 (5.30)

≤ ρ2


ckqℓ

∑

j

Fj [φ̃
(0)](x − ej)

Fℓ[φ̃(0)](x)
+ χ2


 .By our 
hoi
e of φ(0) in (5.23),

Fj [φ̃
(0)](x − ej)

Fℓ[φ̃(0)](x)
=

v̌j

v̌ℓ
exp

{
βN

2

n∑

i=2

γ̂i

(
(x,v(i))2 − (x − ej,v

(i))2
)}

(5.31)

=
v̌j

v̌ℓ
exp

{
βN

n∑

i=2

γ̂i(x,v
(i))(ej,v

(i))

}
(1 +O (1/N))

=
v̌j + 2β(ej , v̂)

∑n
i=2(ej , v̂

(i))(x,v(i))

v̌ℓ

(
1 +O(ρ2)

)
.
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However, for ea
h i = 2, . . . , n,
n∑

j=1

(ej , v̂)(ej , v̂
(i)) = 0. (5.32)Therefore, with the 
hoi
e qℓ = v̌ℓP

k v̌k
(1 + o(1)), we get

qℓ
∑

j

Fj [φ̃
(0)](x − ej)

Fℓ[φ̃(0)](x)
= 1 +O(ρ2), (5.33)uniformly in x ∈ G1

N and l = 1, . . . , n. Thus, the 
oe�
ients ck satisfy the re
ursive bound
ck+1 ≤ ck

(
1 +O(ρ2)

)
+ χ2ρ

2, (5.34)with c0 = 0. Consequently, there exists a 
onstant, c, su
h that
ck ≤ kρ2cekcρ2

, (5.35)and hen
e, sin
e M ≤ χ3/ρ, cM = O(ρ). As a result, we have 
onstru
ted u on G1
N su
hthat

|Fℓ[u](x)| = O (ρ)Fℓ[∇g](x), (5.36)uniformly in x ∈ G1
N and ℓ = 1, . . . , n. In parti
ular, (5.15) holds uniformly in x ∈ G1

Nand hen
e, by (5.20), P3 is satis�ed on G1
N \G0

N . Moreover, sin
e by 
onstru
tion φ ≡ 0on GN \G2
N , P3 is trivially satis�ed in the latter domain. Hen
e both P2 and P3 hold on

G1
N ∪

(
GN \G2

N

).It remains to re
onstru
t u on G2
N \G1

N . Sin
e we have trun
ated ∇g outside G1
N , Kir
ho�'sequation (5.24), for x ∈ G2

N \ G1
N , takes the form F [u](x) = 0. Therefore, whatever wedo in order to re
onstru
t φ, the total �ow through G2

N \G1
N equals

1 + o(1)
ΦN (g̃)

∑

x∈G1
N

n∑

ℓ=1

Fℓ[φ](x)1{x+eℓ 6∈G1
N}. (5.37)By (5.36) and (5.20), the latter is of the order O (ρ1−ne−χ1N2δ
). Thus, P3 is established.

5.4. Flows from A to ∂AGN and from ∂BGN to B. Let f be the unit �ow through GN
onstru
ted above. We need to 
onstru
t a �ow
fA(x,y) = (1 + o(1))Qβ,N (x)rN (x,y)

ΦN (g̃)
φA(x,y) (5.38)from A to ∂AGN and, respe
tively, a �ow

fB(x,y) = (1 + o(1))Qβ,N (x)rN (x,y)

ΦN (g̃)
φB(x,y) (5.39)from ∂BGN to B, su
h that (5.5) holds and, of 
ourse, su
h that the 
on
atenation

fA,B = {fA, f, fB} 
omplies with Kir
ho�'s law. We shall work out only the fA-
ase, the
fB-
ase is 
ompletely analogous.The expressions for ΦN (g̃) and Qβ,N (x) appear on the right-hand sides of (4.48) and
(3.13). For the rest we need only rough bounds: There exists a 
onstant L = L(n), su
hthat we are able to rewrite (5.38) as,

φA(x,y) =
(1 + o(1))ΦN (g̃)fA(x,y)

Qβ,N (x)rN (x,y)
≤ LNn/2+1e−N(Fβ,N (z∗)−Fβ,N (x)). (5.40)
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This would imply a uniform stret
hed exponentially small upper bound on φA at points
x whi
h are mesos
opi
ally away from z∗ in the dire
tion of ∇Fβ,N , for example for xsatisfying

Fβ,N (z∗) − Fβ,N (x) > cN2δ−1. (5.41)With the above dis
ussion in mind let us try to 
onstru
t fA in su
h a way that it
harges only bonds (x,y) for whi
h (5.41) is satis�ed. A
tually we shall do mu
h bet-ter and give a more or less expli
it 
onstru
tion of the part of fA whi
h �ows through
G0

N : Namely, with ea
h point x ∈ ∂AG
0
N we shall asso
iate a nearest neighbor path

γx = (γx(−kA(x)), . . . , γx(0)) on Γn
N su
h that (5.41) holds for all y ∈ γx and,

γx(−kA(x)) ∈ A, γx(0) = x and m(γx(· + 1)) = m(γx(·)) + 2/N. (5.42)The �ow from A to ∂AG
0
N will be then de�ned as
fA(e) =

∑

x∈∂AG0
N

1{e∈γx}
∑

ℓ∈IGN
(x)

fℓ(x). (5.43)By 
onstru
tion fA above satis�es the Kir
ho�'s law and mat
hes with the �ow f through
GN on ∂AG

0
N . Stri
tly speaking, we should also spe
ify how one extends f on the remainingpart ∂AGN \∂AG

0
N . But this is irrelevant: Whatever we do the P

fA,B

N -probability of passingthrough ∂AGN \ ∂AG
0
N is equal to

∑

x∈∂AGN\∂AG0
N

∑

ℓ

fℓ(x) = o(1). (5.44)It remains, therefore, to 
onstru
t the family of paths {γx} su
h that (5.41) holds.Ea
h su
h path γx will be 
onstru
ted as a 
on
atenation γx = γ̂ ∪ ηx.STEP 1 Constru
tion of γ̂. Pi
k δ su
h that δ − 1 < mA = m(mA) and 
onsider the part
x̂[δ−1, z∗] of the minimal energy 
urve as des
ribed in (3.30). Let γ be a nearest neighbor
Γn

N -approximation of x̂[δ− 1, z∗], whi
h in addition satis�es m(γ̂(·+ 1)) = m(γ̂(·)) + 2/N .Sin
e by (3.33) the 
urve x̂[δ− 1, z∗] is 
oordinate-wise in
reasing, the Hausdor� distan
ebetween γ̂ and x̂[δ − 1, z∗] is at most 2
√
n/N . Let xA be the �rst point where γ hitsthe set DN (ρ), and let uA be the last point where γ hits A (we assume now that theneighborhood A is su�
iently large so that uA is well de�ned). Then γ̂ is just the portionof γ from uA to xA.STEP 2 Constru
tion of ηx. At this stage we assume that the parameter ν in (5.6) is sosmall that GN lies deeply inside DN (ρ). In parti
ular, we may assume that

Fβ,N (xA) < min
{
Fβ,N (x) : x ∈ ∂AG

0
N

}
,and, in view of (3.33), we may also assume that

xA

ℓ < xℓ ∀x ∈ ∂AG
0
N and ℓ = 1, . . . , n. (5.45)Therefore, x − xA has stri
tly positive entries and, as it now follows from (4.29),

(
Av̌,x − xA

)
=
(
v,x − xA

)
> 0.By 
onstru
tion G0

N is a small tube in the dire
tion of v̌. A

ordingly, we may assumethat (Ax,x − xA
)
> 0 uniformly on ∂AG

0
N . But this means that the fun
tion

t : [0, 1] 7→
(
A(xA + t(x − xA), (xA + t(x − xA)

)is stri
tly in
reasing. Therefore, Fβ,N is, up to negligible 
orre
tions, in
reasing on thestraight line segment, [xA,x] ⊂ R
n whi
h 
onne
ts xA and x. Then, our target path ηx isa nearest neighbor Γn

N -approximation of [xA,x] whi
h runs from xA to x . In view of thepre
eeding dis
ussion it is possible to prepare ηx in su
h a way that Fβ,N (z∗)− Fβ,N (·) >
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cN2δ−1 along ηx. Moreover, by (5.45) it is possible to ensure that the total magnetizationis in
reasing along ηx .This 
on
ludes the 
onstru
tion of a �ow fA,B satisfying 5.3. �In the sequel we shall index verti
es of γx = γ̂ ∪ ηx as,
γx = (γ̂x(−kA), . . . γ̂x(0)) . (5.46)Sin
e,

Fβ,N (y) ≤ Fβ,N (z∗) − c1 (y − z∗,v)2 , (5.47)for every y lying on the minimal energy 
urve x̂[δ − 1, z∗] and sin
e the Hessian of Fβ,Nis uniformly bounded on x̂[δ − 1, z∗], we 
on
lude that if ν0 is 
hosen small enough, thenthere exists c2 > 0 su
h that
Fβ,N (γx(·)) ≤ Fβ,N (z∗) − c2 (γx(·) − z∗,v)2 , (5.48)uniformly in x ∈ ∂AG
0
N . Finally, sin
e the entries of v are uniformly stri
tly positive, itfollows from (5.48) that,
Fβ,N (γx(−k)) ≤ Fβ,N (z∗) − c3

(N1/2+δ + k)2

N2
, (5.49)uniformly in x ∈ ∂A and k ∈ {0, . . . , kA(x)}.

5.5. Lower bound on 
ap(A,B) via microscopic flows. Re
all that A and B are meso-s
opi
 neighborhoods of two minima of Fβ,N , z∗ is the 
orresponding saddle point, and
A = SN [A], B = SN [B] are the mi
ros
opi
 
ounterparts of A and B. Let fA,B =
{fA, f, fB} be the mesos
opi
 �ow from A to B 
onstru
ted above. In this se
tion we aregoing to 
onstru
t a subordinate mi
ros
opi
 �ow, fA,B, from A to B. In the sequel, givena mi
ros
opi
 bond, b = (σ, σ′), we use e(b) = (m(σ),m(σ′)) for its mesos
opi
 pre-image.Our subordinate �ow will satisfy

fA,B(e) =
∑

b:e(b)=e

fA,B(b). (5.50)In fa
t, we are going to employ a mu
h more stringent notion of subordination on the levelof indu
ed Markov 
hains: Let us label the realizations of the mesos
opi
 
hain XA,B as
x = (x−ℓA

, . . . ,xℓB
), in su
h a way that x−ℓA

∈ A, xℓB
∈ B, and m(x0) = m(z∗). If eis a mesos
opi
 bond, we write e ∈ x if e = (xℓ,xℓ+1) for some ℓ = −ℓA, . . . , ℓB − 1. Toea
h path, x, of positive probability, we asso
iate a subordinate mi
ros
opi
 unit �ow, fx,su
h that

fx(b) > 0 if and only if e(b) ∈ x. (5.51)Then the total mi
ros
opi
 �ow, fA,B, 
an be de
omposed as
fA,B =

∑

x

P
fA,B

N (XA,B = x) fx. (5.52)Evidently, (5.50) is satis�ed: By 
onstru
tion,
∑

b:e(b)=e

fx(b) = 1 for every x and ea
h e ∈ x. (5.53)On the other hand, fA,B(e) =
∑

x
P

fA,B

N (XA,B = x)1{e∈x}.Therefore, (5.52) gives rise to the following de
omposition of unity,1{fA,B(b)>0} =
∑

x∋e(b)

∑

σ∋b

P
fA,B

N (XA,B = x) P
x (Σ = σ)

fA,B(e(b))fx(b)
, (5.54)
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where (Px,Σ) is the mi
ros
opi
 Markov 
hain from A to B whi
h is asso
iated to the �ow
fx.Consequently, our general lower bound (2.24) implies that
ap(A,B) ≥

∑

x

P
fA,B

N (XA,B = x) E
x





ℓB−1∑

ℓ=−ℓA

fA,B(xℓ,xℓ+1)f
x(σℓ, σℓ+1)

µβ,N (σℓ)pN (σℓ, σℓ+1)





−1

≥
∑

x

P
fA,B

N (XA,B = x)



E

x

ℓB−1∑

ℓ=−ℓA

fA,B(xℓ,xℓ+1)f
x(σℓ, σℓ+1)

µβ,N (σℓ)pN (σℓ, σℓ+1)





−1

(5.55)We need to re
over ΦN (g̃) from the latter expression. In view of (5.1), write,
fA,B(xℓ,xℓ+1)f

x(σℓ, σℓ+1)

µβ,N(σℓ)pN (σℓ, σℓ+1)
=

φA,B(xℓ,xℓ+1)

ΦN (g̃)
(5.56)

× Qβ,N (xℓ)rN (xℓ,xℓ+1)f
x(σℓ, σℓ+1)

µβ,N(σℓ)pN (σℓ, σℓ+1)
.Sin
e we prove lower bounds, we may restri
t attention to a subset of good realizations xof the mesos
opi
 
hain XA,B whose P

fA,B

N -probability is 
lose to one. In parti
ular, (5.4)and (5.5) insure that the �rst term in the above produ
t is pre
isely what we need. Theremaining e�ort, therefore, is to �nd a judi
ious 
hoi
e of fx su
h that the se
ond fa
tor in
(5.56) is 
lose to one. To this end we need some additional notation: Given a mesos
opi
traje
tory x = (x−ℓA

, . . . ,xℓB
), de�ne k = k(ℓ) as the dire
tion of the in
rement of ℓ-thjump. That is, xℓ+1 = xℓ +ek. On the mi
ros
opi
 level su
h a transition 
orresponds to a�ip of a spin from the Λk slot. Thus, re
alling the notation Λ±

k (σ) ≡ {i ∈ Λk : σ(i) = ±1},we have that, if σℓ ∈ SN [xℓ] and σℓ+1 ∈ SN [xℓ+1], then σℓ+1 = θ+
i σℓ for some i ∈ Λ−

k(ℓ)(σℓ).By our 
hoi
e of transition probabilities, pN , and their mesos
opi
 
ounterparts, rN , in
(4.2),

rN (xℓ,xℓ+1)

pN (σℓ, σℓ+1)
=
∣∣∣Λ−

k(ℓ)(σℓ)
∣∣∣ (1 +O(ǫ)) , (5.57)uniformly in ℓ and in all pairs of neighbors σℓ, σℓ+1. Note that the 
ardinality, ∣∣∣Λ−

k(ℓ)(σℓ)
∣∣∣,is the same for all σℓ ∈ SN [xℓ].For x ∈ Γn

N , de�ne the 
anoni
al measure,
µx

β,N (σ) =
1{σ∈SN [x]}µβ,N (σ)

Qβ,N (x)
. (5.58)The se
ond term in (5.56) is equal to

fx(σℓ, σℓ+1)

µxℓ
β,N (σℓ) · 1/

∣∣∣Λ−
k(ℓ)(σℓ)

∣∣∣
(1 +O(ǫ)) . (5.59)If the magneti
 �elds, h, were 
onstant on ea
h set Ik, then we 
ould 
hose the �ow

fx(σℓ, σℓ+1) = µxℓ
β,N (σℓ) ·1/

∣∣∣Λ−
k(ℓ)(σℓ)

∣∣∣, and 
onsequently we would be done. In the general
ase of 
ontinuous distribution of h, this is not the 
ase. However, sin
e the �u
tuations of
h are bounded by 1/n, we 
an hope to 
onstru
t fx in su
h a way that the ratio in (5.59)is kept very 
lose to one.Constru
tion of fx. We 
onstru
t now a Markov 
hain, P

x, on mi
ros
opi
 traje
tories,
Σ = {σ0, . . . , σℓB

}, from S[x0] to B, su
h that σℓ ∈ S[xℓ], for all ℓ = 0, . . . , ℓB . Themi
ros
opi
 �ow, fx, is then de�ned through the identity P
x (b ∈ Σ) = fx(b).
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The 
onstru
tion of a mi
ros
opi
 �ow from A to S[x0] is 
ompletely similar (it is just thereversal of the above) and we will omit it.We now 
onstru
t P
x.STEP 1. Marginal distributions: For ea
h ℓ = 0, . . . , ℓB we use νx

ℓ to denote the marginaldistribution of σℓ under P
x. The measures νx

ℓ are 
on
entrated on S[xℓ]. The initialmeasure, νx

0 , is just the 
anoni
al measure µx0
β,N . The measures ν

x

ℓ+1 are then de�nedthrough the re
ursive equations
ν

x

ℓ+1(σℓ+1) =
∑

σℓ∈S[xℓ]

ν
x

ℓ (σ)qℓ(σℓ, σℓ+1). (5.60)STEP 2. Transition probabilities. The transition probabilities, qℓ(σℓ, σℓ+1), in (5.60) arede�ned in the following way: As we have already remarked, all the mi
ros
opi
 jumps areof the form σℓ 7→ θ+
j σℓ, for some j ∈ Λ−

k(ℓ)(σ), where θ+
j �ips the j-th spin from −1 to 1.For su
h a �ip de�ne

qℓ(σℓ, θ
+
j σℓ) =

e2βh̃j

∑
i∈Λ−

k (σℓ)
e2βh̃i

. (5.61)Then the mi
ros
opi
 �ow through an admissible bound, b = (σℓ, σℓ+1), is equal to
fx(σℓ, σℓ+1) = P

x (b ∈ Σ) = ν
x

ℓ (σℓ)qℓ(σℓ, σℓ+1) =
ν

x

ℓ (σℓ)∣∣∣Λ−
k(ℓ)(σℓ)

∣∣∣
(1 +O(ǫ)) . (5.62)Consequently, the expression in (5.59), and hen
e the se
ond term in (5.56), is equal to

ν
x

ℓ (σℓ)

µxℓ
β,N(σℓ)

(1 +O(ǫ)) ≡ Ψℓ(σℓ) (1 +O(ǫ)) . (5.63)Main result. We 
laim that there exists a set, TA,B, of good mesos
opi
 traje
tories from
A to B, su
h that

P
fA,B

N (XA,B ∈ TA,B) = 1 − o(1), (5.64)and, uniformly in x ∈ TA,B,
E

x




ℓB−1∑

ℓ=−ℓA

Ψℓ(σℓ)φA,B(xℓ,xℓ+1)


 ≤ 1 +O(ǫ). (5.65)This will imply that, 
ap(A,B) ≥ ΦN (g̃) (1 −O(ǫ)) , (5.66)whi
h is the lower bound ne
essary to prove Theorem 1.3.The rest of the Se
tion is devoted to the proof of (5.65). First of all we derive re
ursiveestimates on Ψℓ for a given realization, x, of the mesos
opi
 
hain. After that it will beobvious how to de�ne TA,B.

5.6. Propagation of errors along microscopic paths. Let x be given. Noti
e that µxℓ
β,Nis the produ
t measure,

µxℓ
β,N =

n⊗

j=1

µ
xℓ(j)
β,N , (5.67)where µxℓ(j)

β,N is the 
orresponding 
anoni
al measure on the mesos
opi
 slot S(j)
N = {−1, 1}Λj .On the other hand, a

ording to (5.61), the big mi
ros
opi
 
hain Σ splits into a di-re
t produ
t of n small mi
ros
opi
 
hains, Σ(1), . . . ,Σ(n), whi
h independently evolve on

S(1)
N , . . . ,S(n)

N . Thus, k(ℓ) = k means that the ℓ-th step of the mesos
opi
 
hain indu
es astep of the k-th small mi
ros
opi
 
hain Σ(k). Let τ1[ℓ], . . . , τn[ℓ] be the numbers of steps
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performed by ea
h of the small mi
ros
opi
 
hains after ℓ steps of the mesos
opi
 
hainor, equivalently, after ℓ steps of the big mi
ros
opi
 
hain Σ. Then the 
orre
tor, Ψℓ, in
(5.63) equals

Ψℓ (σℓ) =

n∏

j=1

ψ
(j)
τj [ℓ]

(σ
(j)
ℓ ), (5.68)where σ(j)

ℓ is the proje
tion of σℓ on S(j)
N . Therefore we are left with two separate tasks:On the mi
ros
opi
 level we need to 
ontrol the propagation of errors along small 
hainsand, on the mesos
opi
 level, we need to 
ontrol the statisti
s of τ1[ℓ], . . . , τn[ℓ]. The lattertask is related to 
hara
terizing the set, TA,B, of good mesos
opi
 traje
tories and it isrelegated to Subse
tion 5.7Small mi
ros
opi
 
hains. It would be 
onvenient to study the propagation of errorsalong small mi
ros
opi
 
hains in the following slightly more general 
ontext: Fix 1 ≪

M ∈ N and 0 ≤ ǫ ≪ 1. Let g1, . . . , gM ∈ [−1, 1]. Consider spin 
on�gurations, ξ ∈ SM =

{−1, 1}M , with produ
t weights
w(ξ) = eǫ

P
i giξ(i). (5.69)As before, let Λ±(ξ) = {i : ξ(i) = ±1}. De�ne layers of �xed magnetization, SM [K] =

{ξ ∈ SM : |Λ+(ξ)| = K}. Finally, �x δ0, δ1 ∈ (0, 1), su
h that δ0 < δ1.Set K0 = ⌊δ0M⌋ and r = ⌊(δ1−δ0)M⌋. We 
onsider a Markov 
hain, Ξ = {Ξ0,Ξ1, . . . ,Ξr}on SM , su
h that Ξτ ∈ SM [K0 + τ ] ≡ Sτ
M for τ = 0, 1, . . . , r. Let µτ be the 
anoni
almeasure,

µτ (ξ) =
w(ξ)1{ξ∈Sτ

M}
Zτ

. (5.70)We take ν0 = µ0 as the initial distribution of Ξ0 and, following (5.61), we de�ne transitionrates,
qτ (ξτ , θ

+
j ξτ ) =

e2ǫgj

∑
i∈Λ−(ξτ ) e2ǫgi

. (5.71)We denote by P the law of this Markov 
hain and let ντ be the distribution of Ξτ (whi
h is
on
entrated on Sτ
M ), that is, ντ (ξ) = P (Ξτ = ξ). The propagation of errors along pathsof our 
hain is then quanti�ed in terms of ψτ (·) ≡ ντ (·)/µτ (·).

Proposition 5.1. For every τ = 1, . . . , r and each ξ ∈ Sτ
M define

Bτ (ξ) ≡
M∑

i=1

e2ǫgi1{i∈Λ−(ξ)} and Aτ = µτ (Bτ (·)) =

M∑

i=1

e2ǫgiµτ

(
i ∈ Λ−(·)

)
. (5.72)

Then there exists c = c(δ0, δ1) such that the following holds: For any trajectory, ξ =
(ξ0, . . . , ξr), of positive probability under P, it holds that

ψτ (ξτ ) ≤
[ A0

B0(ξ0)

]τ

ecǫτ2/M , (5.73)

for all τ = 0, 1, . . . , r.

Proof. By construction, ψ0 ≡ 1. Let ξτ+1 ∈ Sτ+1
M . Since ντ satisfies the recursion

ντ+1(ξτ+1) =
∑

j∈Λ+(ξτ+1)

ντ (θ
−
j ξτ+1)qτ (θ

−
j ξτ+1, ξτ+1), (5.74)
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it follows that ψτ satisfies

ψτ+1(ξτ+1) =
∑

j∈Λ+(ξτ+1)

ντ (θ−j ξτ+1)qτ (θ
−
j ξτ+1, ξτ+1)

µτ+1(ξτ+1)

=
∑

j∈Λ+(ξτ+1)

µτ (θ
−
j ξτ+1)qτ (θ

−
j ξτ+1, ξτ+1)

µτ+1(ξτ+1)
ψτ (θ

−
j ξτ+1).

By our choice of transition probabilities in (5.71),

µτ (θ
−
j ξτ+1)qτ (θ

−
j ξτ+1, ξτ+1)

µτ+1(ξτ+1)
=
Zτ+1

Zτ





∑

i∈Λ−(θ−j ξτ+1)

e2ǫgi





−1

. (5.75)

Recalling that |Λ+(ξτ )| ≡ |Λ+
τ | = K0 + τ does not depend on the particular value of ξτ ,

Zτ+1

Zτ
=

1

Zτ

∑

ξ∈Sτ+1
M

w(ξ) =
1

Zτ

∑

ξ∈Sτ+1
M

1

|Λ+(ξ)|
∑

j∈Λ+(ξ)

w(θ−j ξ)e
2ǫgj

=
1

Zτ

∑

ξ∈Sτ
M

w(ξ) · 1∣∣Λ+
τ+1

∣∣
∑

j∈Λ−(ξ)

e2ǫgj = µτ


 1

|Λ+(ξτ+1)|
∑

j∈Λ−(·)
e2ǫgj


 .

We conclude that the right hand side of (5.75) equals

1

|Λ+(ξτ+1)|
·
µτ

(∑
i∈Λ−(·) e2ǫgi

)

∑
i∈Λ−(θ−j ξτ+1)

e2ǫgi
=

1

|Λ+(ξτ+1)|
· Aτ

Bτ (θ
−
j ξτ+1)

. (5.76)

As a result,

ψτ+1(ξτ+1) =
1

|Λ+(ξτ+1)|
∑

j∈Λ+(ξτ+1)

Aτ

Bτ (θ
−
j ξτ+1)

ψτ (θ−j ξτ+1). (5.77)

Iterating the above procedure we arrive to the following conclusion: Consider the set,
D(ξτ+1), of all paths, ξ = (ξ0, . . . , ξτ , ξτ+1), of positive probability from S0

M to Sτ+1
M to

ξτ+1. The number, Dτ+1 ≡ |D(ξτ+1)|, of such paths does not depend on ξτ+1. Then, since
ψ0 ≡ 1,

ψτ+1(ξτ+1) =
1

Dτ+1

∑

ξ∈D(ξτ+1)

τ∏

s=0

As

Bs(ξs)
. (5.78)

We claim that
As

Bs(ξs)
=

(
1 +

O(ǫ)

M

) As−1

Bs−1(ξs−1)
, (5.79)

uniformly in all the quantities under consideration. Once (5.79) is verified,

ψτ (ξτ ) ≤ eO(ǫ)τ2/M max
ξ0∼ξτ

[ A0

B0(ξ0)

]τ

, (5.80)

where for ξ0 ∈ S0
M , the relation ξ0 ∼ ξτ means that there is a path of positive probability

from ξ0 to ξτ . But all such ξ0’s differ at most in 2τ coordinates. It is then straightforward
to see that if ξ0 ∼ ξτ and ξ′0 ∼ ξτ , then

B0(ξ0)

B0(ξ′0)
≤ eO(ǫ)τ/M , (5.81)

and (5.73) follows.

It remains to prove (5.79). Let ξ ∈ Ss
M and ξ′ = θ−j ξ ∈ Ss−1

M . Notice, first of all, that

Bs−1(ξ
′) − Bs(ξ) = e2ǫgj = 1 +O(ǫ). (5.82)
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Similarly,

As−1 −As =

M∑

i=1

e2ǫgi
{
µs−1(i ∈ Λ−) − µs(i ∈ Λ−)

}

= 1 +
M∑

i=1

(
e2ǫgi − 1

) {
µs−1(i ∈ Λ−) − µs(i ∈ Λ−)

}
.

By usual local limit results for independent Bernoulli variables,

µs−1(i ∈ Λ−) − µs(i ∈ Λ−) = O

(
1

M

)
, (5.83)

uniformly in s = 1, . . . , r − 1 and i = 1, . . . ,M . Hence, As−1 −As = 1 +O(ǫ).

Finally, both As−1 and Bs−1(ξ
′) are (uniformly ) O(M), whereas,

As−1 − Bs−1(ξ
′) =

M∑

i=1

(
e2ǫgi − 1

) {
µs−1(i ∈ Λ−) − 1{i∈Λ−(ξ′)}

}
= O(ǫ)M. (5.84)

Hence,

As

Bs(ξ)
=

As−1 − 1 +O(ǫ)

Bs−1(ξ′) − 1 +O(ǫ)
=

As−1

Bs−1(ξ′)

(
1 +

O(ǫ)

M

)
, (5.85)

which is (5.79). �Ba
k to the big mi
ros
opi
 
hain. Going ba
k to (5.68) we infer that the 
orre
torof the big 
hain Σ satis�es the following upper bound: Let σ = (σ0, σ1, . . . ) be a traje
toryof Σ (as sampled from Px). Then, for every ℓ = 0, 1, . . . , ℓB − 1,
Ψℓ(σℓ) ≤ exp



cǫ

n∑

j=1

τj [ℓ]
2

Mj





n∏

j=1

[
A(j)

0

B(j)
0 (σ

(j)
0 )

]τj [ℓ]

, (5.86)where Mj = |Λj | = ρjN ,
A(j)

0 =
∑

i∈Λj

e2h̃iµ
x0(j)
β,N

(
i ∈ Λ−

j

)
, and B(j)

0 (σ
(j)
0 ) =

∑

i∈Λj

e2h̃i1n
i∈Λ−

j (σ
(j)
0 )

o. (5.87)Of 
ourse, A(j)
0 = µ

x0(j)
β,N

(
B(j)

0

). It is enough to 
ontrol the �rst order approximation,
[

A(j)
0

B(j)
0 (σ

(j)
0 )

]τj [ℓ]

≈ exp

{
−τj[ℓ]

B(j)
0 (σ

(j)
0 ) −A(j)

0

B(j)
0 (σ

(j)
0 )

}
≡ exp (τj[ℓ]Yj) . (5.88)The variables Y1, . . . , Yn are independent on
e x0 is �xed. Thus, in view of our target,

(5.65), we need to derive an upper bound of order (1 +O(ǫ)) for
E

x

ℓB−1∑

ℓ=0

exp



cǫ

n∑

j=1

τj[ℓ]
2

Mj
+

n∑

j=1

τj [ℓ]Yj



φA,B(xℓ,xℓ+1)

=

ℓB−1∑

ℓ=0

exp



cǫ

n∑

j=1

τj[ℓ]
2

Mj





n∏

1

µ
x0(j)
β,N

(
eτj [ℓ]Yj

)
φA,B(xℓ,xℓ+1), (5.89)whi
h holds with P

fA,B

N -probability of order 1 −O(ǫ).
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5.7. Good mesoscopic trajectories. A look at (5.89) reveals what is to be expe
ted fromgood mesos
opi
 traje
tories. First of all, we may assume that it passes through the tube
G0

N (see (5.13)) of z∗. In parti
ular, x0 ∈ G0
N . Next, by our 
onstru
tion of the mesos
opi

hain P

fA,B

N , and in view of (3.20) and (3.21), the step frequen
ies, τj [ℓ]/ℓ, are, on average,proportional to ρj. Therefore, there exists a 
onstant, C1, su
h that, up to exponentiallynegligible P
fA,B

N -probabilities,
max

j

τj[ℓB ]

Mj
≤ C1 (5.90)holds.A bound on mi
ros
opi
 moment-generating fun
tions. We will now use theestimate (5.90) to obtain an upper bound on the produ
t terms in (5.89). Clearly,

B(j)
0 (σ

(j)
0 ) = (1 +O(ǫ))Mj , uniformly in j and σ(j)

0 . Thus, by (5.88),
Yj(1 +O(ǫ)) =

1

Mj

∑

i∈Λj

(
1 − e2ehi

)(1{σ(i)=−1} − µ
x0(j)
β,N (σ(i) = −1)

)
≡ Ỹj . (5.91)Now, for any t ≥ 0,

lnµ
x0(j)
β,N

(
eteYj

)
≤ t2

2M2
j

max
s≤t

V
x0(j),s
β,N


∑

i∈Λj

(
1 − e2ehi

)1{σ(i)=−1}


 , (5.92)where V

x0(j),s
β,N is the varian
e with respe
t to the tilted 
onditional measure, µx0(j),s

β,N , de�nedthrough
µ

x0(j),s
β,N (f) ≡

µ
x0(j)
β,N

(
feseYj

)

µ
x0(j)
β,N

(
eseYj

) . (5.93)However, µx0(j),s
β,N (·) is again a 
onditional produ
t Bernoulli measure on S(j)

N , i.e.,
µ

x0(j),s
β,N (·) =

⊗

i∈Λj

Bpi(ǫ,s)


 ·

∣∣∣
∑

i∈Λj

σ(i) = Nx0(j)


 , (5.94)where

pi(ǫ, s) =
e

ehi

eehi + e
−ehi+

s
Mj

(1−e2
ehi )
. (5.95)By (5.90) we need to 
onsider only the 
ase s/Mj ≤ C1. Evidently, there exists δ1 > 0,su
h that,

δ1 ≤ min
j

min
s≤C1Mj

min
i∈Λj

pi(ǫ, s) ≤ max
j

max
s≤C1Mj

max
i∈Λj

pi(ǫ, s) ≤ 1 − δ1. (5.96)On the other hand, sin
e x0 ∈ G0
N , there exists δ2 > 0, su
h that

δ2 ≤ min
j

Nx0(j)

Mj
≤ max

j

Nx0(j)

Mj
≤ 1 − δ2. (5.97)We use the following general 
ovarian
e bound for produ
t of Bernoulli measures, whi
h
an be derived from lo
al limit results in a straightforward, albeit painful manner.

Lemma 5.2. Let δ1 > 0 and δ2 > 0 be fixed. Then, there exists a constant, C = C(δ1, δ2) <
∞, such that, for all conditional Bernoulli product measures on SM , M ∈ N, of the form

M⊗

i=1

Bpi

(
·
∣∣∣

M∑

k=1

ξk = 2M0

)
, (5.98)
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with p1, . . . , pM ∈ (δ1, 1− δ1) and 2M0 ∈ (−M(1− δ2),M(1 − δ2)), and for all 1 ≤ k < l ≤
M , it holds that

∣∣Cov
(1{ξk=−1};1{ξl=−1}

)∣∣ ≤ C

M
. (5.99)Going ba
k to (5.92) we infer from this that

n∏

1

µ
x0(j)
β,N

(
eτj [ℓ]Yj

)
≤ exp



O(ǫ2)

n∑

j=1

τj[ℓ]
2

Mj



 , (5.100)uniformly in ℓ = 0, . . . , ℓB .Statisti
s of mesos
opi
 traje
tories. (5.89) together with the bound (5.100) suggeststhe following notion of goodness of mesos
opi
 traje
tories x:

Definition 5.3. We say that a mesoscopic trajectory x = (x−ℓA
, . . . ,xℓB

) is good, and

write x ∈ TA,B, if it passes through G0
N , satisfies (5.90) (and its analog for the reversed

chain) and, in addition, it satisfies

ℓB−1∑

ℓ=−ℓA

exp



O(ǫ)

n∑

j=1

τj [ℓ]
2

Mj



φA,B(xℓ,xℓ+1) ≤ 1 +O(ǫ). (5.101)By 
onstru
tion (5.65) automati
ally holds for any x ∈ TA,B. Therefore, our target lowerbound (5.66) on mi
ros
opi
 
apa
ities will follow from

Proposition 5.4. Let fA,B be the mesoscopic flow constructed in Subsections 5.3 and 5.4,
and let the set of mesoscopic trajectories TA,B be as in Definition 5.3. Then (5.64) holds.

Proof. By (5.49) we may assume that there exists C > 0 such that, for all x under consid-
eration and for all ℓ = −ℓA, . . . , ℓB − 1,

φA,B(xℓ,xℓ+1) ≤ e−Cℓ2/N . (5.102)

In view of (5.2) it is enough to check that

ℓB−1∑

ℓ=0


exp



O(ǫ)

n∑

j=1

τj [ℓ]
2

Mj



− 1


φA,B(xℓ,xℓ+1) = O(ǫ), (5.103)

with P
fA,B

N -probabilities of order 1−o(1). Fix δ > 0 small and split the sum on the left hand

side of (5.103) into two sums corresponding to the terms with ℓ ≤ N1/2−δ and ℓ > N1/2−δ

respectively. Clearly,
n∑

j=1

τj[ℓ]
2

Mj
= o(1), (5.104)

uniformly in 0 ≤ ℓ ≤ N1/2−δ. On the other hand, from our construction of the mesoscopic
flow fA,B, namely from the choice (5.19) of transition rates inside G0

N , and from the
property (3.33) of the minimizing curve x̂(·), it follows that there exists a universal (ǫ-
independent) constant, K <∞, such that

P
fA,B

N

(
max

j
max

ℓ>N1/2−δ

τj[ℓ]

ℓρj
> K

)
= o(1). (5.105)

Therefore, up to P
fA,B

N -probabilities of order o(1), the inequality

O(ǫ)

n∑

j=1

τ2
j [ℓ]

Mj
≤ O(ǫ)K2ℓ2

n∑

j=1

ρ2
j

Mj
= K2O(ǫ)

ℓ2

N
, (5.106)

holds uniformly in ℓ > N1/2−δ . A comparison with (5.102) yields (5.103). �
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The last proposition leads to the inequality (5.66), whi
h, together the upper bound givenin (4.62), 
on
ludes the proof of Theorem 1.3.
6. SHARP ESTIMATES ON THE MEAN HITTING TIMESIn this se
tion we 
on
lude the proof of Theorem 1.2. To do this we will use Equation(2.12) with A = S[m∗

0] and B = S[M ], where m∗
0 is a lo
al minimum of Fβ,N and M isthe set of minima deeper than m∗

0. The denominator on the right-hand side of (2.12), the
apa
ity, is 
ontrolled by Theorem 1.3. What we want to prove now is that the equilibriumpotential, hA,B(σ), is 
lose to one in the neighborhood of the starting set A, and so smallelsewhere that the 
ontributions from the sum over σ away from the valley 
ontaining theset A 
an be negle
ted. Note that this is not generally true but depends on the 
hoi
e ofsets A and B: the 
ondition that all minima m of Fβ,N su
h that Fβ,N (m) < Fβ,N (m∗
0)belong to the target set B is 
ru
ial.In earlier work (see [4℄) the standard way to estimate the equilibrium potential hA,B(σ)was to use the renewal inequality hA,B(σ) ≤ 
ap(A,σ)
ap(B,σ) and bounds on 
apa
ities. Thisbound 
annot be used here, sin
e the 
apa
ities of single points are too small. We willtherefore use another method to 
ope with this problem.

6.1. Mean hitting time and equilibrium potential. Let us start by 
onsidering a lo
alminimum m∗
0 of the one-dimensional fun
tion Fβ,N , and denote by M the set of minima

m su
h that Fβ,N (m) < Fβ,N (m∗
0). We then 
onsider the disjoint subsets A ≡ S[m∗

0] and
B ≡ S[M ], and write Eq. (2.12) as

∑

σ∈A

νA,B(σ)EστB =
1
ap(A,B)

∑

m∈[−1,1]

∑

σ∈S[m]

µβ,N (σ)hA,B(σ). (6.1)We want to estimate the right-hand side of (6.1). This is expe
ted to be of order Qβ,N (m∗
0),thus we 
an readily do away with all 
ontributions where Qβ,N is mu
h smaller. Morepre
isely, we 
hoose δ > 0 in su
h a way that, for all N large enough, there is no 
riti
alpoint z of Fβ,N with Fβ,N (z) ∈ [Fβ,N (m∗

0), Fβ,N (m∗
0) + δ], and de�ne

Uδ ≡ {m : Fβ,N (m) ≤ Fβ,N (m∗
0) + δ}. (6.2)Denoting by Uc

δ the 
omplement of Uδ, we obviously have
Lemma 6.1. ∑

m∈Uc
δ

∑

σ∈S[m]

µβ,N(σ)hA,B(σ) ≤ Ne−βNδQβ,N (m∗
0). (6.3)The main problem is to 
ontrol the equilibrium potential hA,B(σ) for 
on�gurations σ ∈

S[Uδ]. To do that, �rst noti
e that
Uδ = Uδ(m

∗
0)
⋃

m∈M

Uδ(m), (6.4)where Uδ(m) is the 
onne
ted 
omponent of Uδ 
ontaining m (see Fig. 6.1). Note that it
an happen that Uδ(m) = Uδ(m
′) for two di�erent minima m,m′ ∈M .With this notation we have the following lemma.

Lemma 6.2. There exists a constant, c > 0, such that,

(i) for every m ∈M ,
∑

σ∈S[Uδ(m)]

µβ,N(σ)hA,B(σ) ≤ e−βNcQβ,N (m∗
0), (6.5)
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PSfrag repla
ements
m∗

0 z m1m2

Uδ(m
∗
0) Uδ(m

∗
1)Uδ(m

∗
2)

Fβ,N (m)

Fβ,N (m∗
0) + δ

−1 1

FIGURE 4. Decomposition of the magnetization space [−1, 1]: U c
δ is repre-

sented by dotted lines, while the continuous lines correspond Uδ ≡
Uδ(m

∗
0)
⋃

m∈M Uδ(m).

and
(ii) ∑

σ∈S[Uδ(m∗
0)]

µβ,N(σ) [1 − hA,B(σ)] ≤ e−βNcQβ,N (m∗
0). (6.6)The treatment of points (i) and (ii) is 
ompletely similar, as both rely on a rough estimateof the probabilities to leave the starting well before visiting its minimum, and it will bedis
ussed in the next se
tion.Assuming Lemma 6.2, we 
an readily 
on
lude the proof of Theorem 1.2. Indeed, using(6.5) together with (6.3), we obtain the upper bound

∑

σ∈SN

µβ,N (σ)hA,B(σ) ≤
∑

m∈Uδ(m∗
0)

Qβ,N (m) +O
(
Qβ,N (m∗

0)e
−βNc

)

= Qβ,N (m∗
0)

√
πN

2βa(m∗
0)

(1 + o(1)), (6.7)where a(m∗
0) is given in (1.19). On the other hand, using (6.6), we get the 
orrespondinglower bound∑

σ∈SN

µβ,N (σ)hA,B(σ) ≥
∑

m∈Uδ(m∗
0)

∑

σ∈S[m]

µβ,N (σ) [1 − (1 − hA,B(σ))]

≥
∑

m∈Uδ(m∗
0)

Qβ,N (m) −O(Qβ,N (m∗
0)e

−βNc)

= Qβ,N (m∗
0)

√
πN

2βa(m∗
0)

(1 + o(1)). (6.8)From Equation (1.12) for Qβ,N (m∗
0) and Equation (1.31) for 
ap(A,B), we �nally obtain

EνA,B
τB =

∑

σ∈SN

µβ,N(σ)hA,B(σ)
ap(A,B)

= exp (βN (Fβ,N (z∗) − Fβ,N (m∗
0)))

× 2πN

β|γ̂1|

√
βEh

(
1 − tanh2 (β(z∗ + h))

)
− 1

1 − βEh

(
1 − tanh2 (β(m∗

0 + h))
)(1 + o(1)), (6.9)
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m∗
0

A = {x : m(x) = m∗
0}

U δ(m
∗
0)

U δ ≡ U δ(m
∗)

∂AGθ

∂BGθ

m∗
Gθ

B = {x : m(x) = m∗}

∂AU δ

∂BU δ

FIGURE 5. Neighborhoods of m∗
0 and m∗ in the space Γn

N . Here we de-
noted by U δ(m

∗
0) the mesoscopic counterpart of U(m∗

0).whi
h proves Theorem 1.2.
6.2. Upper bounds on harmonic functions. We now prove Lemma 6.2 giving a detailedproof only for (i), the proof of (ii) being 
ompletely analogous. This requires, for the �rsttime in this paper, to get an estimate on the minimizer of the Diri
hlet form, the harmoni
fun
tion hA,B(σ).First note that, sin
e hA,B(σ) ≡ Pσ(τA < τB) for all σ /∈ A ∪B, the only non zero 
ontri-butions to the sum in (i) 
ome from those sets Uδ(m) (at most two) whose 
orresponding
m is su
h that there are no minima of M between m∗

0 and m. By symmetry we 
an justanalyze one of these two sets, denoted by Uδ(m
∗), assuming for de�niteness that m∗

0 < m∗.Note also that sin
e hA,B(σ) = 0 for all σ su
h that m∗ ≤ m(σ), the problem 
an beredu
ed further on to the set
U−

δ ≡ Uδ(m
∗) ∩ {m : m < m∗}. (6.10)De�ne the mesos
opi
 
ounterpart of U−
δ , namely, for �xed m∗ ∈ M and n ∈ N, let

m∗ ∈ Γn
N be the minimum of Fβ,N (x) 
orrespondent to m∗, and de�ne

U δ ≡ U δ(m
∗) ≡ {x ∈ Γn

N : m(x) ∈ U−
δ }. (6.11)We write the boundary of U δ as ∂U δ = ∂AU δ ⊔ ∂BU δ, where ∂BU δ = ∂U δ ∩ B, andobserve that, for all σ ∈ S[U δ]

hA,B(σ) = Pσ[τA < τB ] ≤ Pσ[τS[∂AUδ] < τS[∂BUδ]]. (6.12)Let maxℓ ρℓ ≪ θ(ε) ≪ 1, and for θ ≡ θ(ε) de�ne
Gθ ≡

{
m ∈ U δ :

n∑

ℓ=1

(mℓ − m∗
ℓ)

2

ρℓ
≤ ε2

θ

}
. (6.13)As before, we denote by ∂Gθ the boundary of Gθ, and write ∂Gθ = ∂AGθ ⊔ ∂BGθ, where

∂BGθ = ∂Gθ ∩ B (see Fig. 6.2).The strategy to 
ontrol the equilibrium potential, Pσ(τA < τB), 
onsists in estimating theprobabilities Pσ[τA < τS[∂AGθ]∪B ], for σ ∈ S[U δ \ Gθ], and Pσ[τS[∂AGθ ] < τB ], for σ ∈ Gθ,in order to apply a renewal argument and to get from these estimates a bound on theprobability of the original event.Pro
eeding on this line, we state the following:
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Proposition 6.3. For any α ∈ (0, 1), there exists n0 ∈ N, such that the inequality

Pσ(τA < τS[∂AGθ]∪B) ≤ e−(1−α)βN[Fβ,N (m∗
0)+δ−Fβ,N (m(σ))] (6.14)

holds for all σ ∈ S[U δ \ Gθ], n ≥ n0, and for all N sufficiently large.Proof of Proposition 6.3: Super-harmoni
 barrier fun
tions. Throughout the next
omputations, c, c′ and c′′ will denote positive 
onstants whi
h are independent on n butmay depend on β and on the distribution of h. The parti
ular value of c and c′ may 
hangefrom line to line as the dis
ussion progresses.We �rst observe that, for all σ ∈ S[U δ \ Gθ],
Pσ[τA < τS[∂AGθ ]∪B] ≤ Pσ[τS[∂AUδ] < τS[∂AGθ ]∪B]. (6.15)The probability in the r.h.s. of (6.15) is the main obje
t of investigation here. The ideawhi
h is beyond the proof of bound (6.14) is quite simple. Suppose that ψ is a boundedsuper-harmoni
 fun
tion de�ned on S[U δ \ Gθ], i.e.

(Lψ)(σ) ≤ 0 for all σ ∈ S[U δ \ Gθ]. (6.16)Then ψ(σt) is a supermartingale, and T ≡ τS[∂AUδ ] ∧ τS[∂AGθ]∪B is an integrable stoppingtime, so that, by Doob's optional stopping theorem, ∀σ ∈ S[U δ \ Gθ],
Eσψ(σT ) ≤ ψ(σ). (6.17)On the other hand,

Eσψ(σT ) ≥ min
σ′∈S[∂AUδ ]

ψ(σ′)Pσ(τS[∂AUδ ] < τS[∂AGθ]∪B), (6.18)and hen
e
Pσ(τS[∂AUδ] < τS[∂AGθ ]∪B) ≤ max

σ′∈S[∂AUδ]

ψ(σ)

ψ(σ′)
. (6.19)The problem is to �nd a super-harmoni
 fun
tion in order to get a suitable bound in (6.19).

Proposition 6.4. For any α ∈ (0, 1), there exists n0 ∈ N such that the function ψ(σ) ≡
φ(m(σ)), with φ : R

n 7→ R defined as

φ(x) ≡ e(1−α)βNFβ,N (x), (6.20)

is super-harmonic in S[U δ \ Gθ] for all n ≥ n0 and N sufficiently large.The proof of Proposition 6.4 will involve 
omputations with di�eren
es of the fun
tions
Fβ,N . We therefore �rst 
olle
t some elementary properties that we will use later. Firstwe need some 
ontrol on the se
ond derivative of this fun
tion. From (3.14) we infer that

∂2Fβ,N (x)

∂x2
ℓ

=
2

N

(
−1 +

1

βρℓ
I ′′N,ℓ(xℓ/ρℓ)

)
. (6.21)Thus all the potential problems 
ome from the fun
tion IN,ℓ.

Lemma 6.5. For any y ∈ (−1, 1),

tanh−1(y) − βε ≤ I ′N,ℓ(y) ≤ tanh−1(y) + βε, (6.22)

In particular, as y → ±1, I ′N,ℓ(y) → ±∞.

Proof. Recall that I ′N,ℓ(y) = U ′−1
N,ℓ (y). Set I ′N,ℓ(y) ≡ t. Then

y =
1

|Λℓ|
∑

i∈Λℓ

tanh(t+ βh̃i) (6.23)

and hence

tanh(t− βε) ≤ y ≤ tanh(t+ βε), (6.24)
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or, equivalently, (6.22), which proves the lemma. �

Lemma 6.6. For any y ∈ (−1, 1) we have that

0 ≤ I ′′N,ℓ(y) ≤
1

1 − (|y| + εβ(1 − y2))2
. (6.25)

In particular, for all y ∈ [−1 + ν, 1 − ν], with ν ∈ (0, 1/2),

0 ≤ I ′′N,ℓ(y) ≤
1

2ν + ν2 +O(ε)
≤ c, (6.26)

and, for all y ∈ (−1,−1 + ν] ∪ [1 − ν, 1),

0 ≤ I ′′N,ℓ(y) ≤
1

1 − |y| . (6.27)

Proof. We consider only the case y ≥ 0, the case y < 0 is completely analogous. Using

the relation I ′′N,ℓ(x) =
(
U ′′

N,ℓ(I
′
N,ℓ(x))

)−1
and setting tℓ ≡ I ′N,ℓ(y)arctanh(y), and using

Lemma 6.5, we obtain

I ′′N,ℓ(y) =
1

1
|Λℓ(x)|

∑
i∈Λℓ(x)(1 − tanh2(βh̃i + tℓ))

≤ 1

1 − tanh2(εβ + tℓ)

≤ 1

1 − tanh2(tanh−1(y) + 2εβ)

≤ 1

1 −
(
y + 2εβ tanh′(tanh−1(y))

)2

=
1

1 − (y + 2εβ(1 − y2))2
, (6.28)

where we used that tanh is monotone increasing. The remainder of the proof is elementary
algebra. �Let us de�ne, for all m su
h that xℓ/ρℓ ∈ [−1, 1 − 2/N ],

gℓ(x) ≡ N
2 (FN,β(x + eℓ) − FN,β(x)) . (6.29)Lemma 6.6 has the following 
orollary.

Corollary 6.7. (i) If xℓ/ρℓ ∈ [−1 + ν, 1 − ν], with ν > 0, then

gℓ(x) = −x− h̄ℓ + 1
β I

′
N,ℓ(xℓ/ρℓ) +O(1/N). (6.30)

(ii) If xℓ/ρℓ ∈ [−1,−1 + ν] ∪ [1 − ν, 1 − 2/N ], then

gℓ(x) = −x− h̄ℓ + 1
β I

′
N,ℓ(xℓ/ρℓ) +O(1), (6.31)

where O(1) is independent of N,n, and ν.
(iii) If xℓ/ρℓ ∈ [−1 + ν, 1 − ν], with ν > 0, then there exists c < ∞, independent of N ,

such that

|gℓ(x) − gℓ(x − eℓ)| ≤
c

N
. (6.32)

(iv) If xℓ/ρℓ ∈ [−1,−1 + ν] ∪ [1 − ν, 1 − 2/N ], then

|gℓ(x) − gℓ(x − eℓ)| ≤ C, (6.33)

where C is a numerical constant independent of N,n, and ν.
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The proof of this 
orollary is elementary and will not be detailed.The usefulness of (ii) results from the fa
t that |I ′N,ℓ| is large on that domain. Morepre
isely, we have the following lemma.
Lemma 6.8. There exists ν > 0, independent of N and n, such that, if xℓ/ρℓ > 1 − ν, then
gℓ(x) is strictly increasing in xℓ and tends to +∞ as xℓ/ρℓ ↑ +1; similarly if xℓ/ρℓ < −1+ν,
then gℓ(x) is strictly decreasing in xℓ and tends to −∞ as xℓ/ρℓ ↓ −1.

Proof. Combine (ii) of Corollary 6.7 with Lemma 6.5 and note that h̄ℓ is bounded by
hypothesis. �The next step towards the proof of Proposition 6.4 is the following lemma.
Lemma 6.9. Let m ∈ U δ \ Gθ and denote by S(m) = {ℓ : mℓ/ρℓ 6= 1}. Then there exists a
constant c ≡ c(β, h) > 0, independent of N and n, such that the following holds. If

∑

ℓ 6∈S(m)

ρℓ ≤
ε2

8θ
, (6.34)

then
∑

ℓ∈S(m)

ρℓ (gℓ(m))2 ≥ c
ε2

θ
, (6.35)

Proof. From the relation I ′N,ℓ(x) = U ′−1
N,ℓ (x), we get that, for all ℓ ∈ S(m),

mℓ =
1

N

∑

i∈Λℓ

tanh (β (gℓ(m)(1 + o(1)) +m+ hi)) . (6.36)

Here o(1) tends to zero as N → ∞.

We are concerned about small gℓ(m). Subtracting 1
N

∑
i∈Λℓ

tanh (β (m+ hi)) on both sides

of (6.36) and expanding the right-hand side to first order in gℓ(m), and then summing
over ℓ ∈ S(m) , we obtain

∣∣∣∣∣∣
m− 1

N

N∑

i=1

tanh (β (m+ hi)) −
∑

ℓ 6∈S(m)


mℓ −

1

N

∑

i∈Λℓ

tanh (β(m+ hi))



∣∣∣∣∣∣

≤ c
∑

ℓ∈S(m)

ρℓ |gℓ(m)| ≤ c


 ∑

ℓ∈S(m)

ρℓg
2
ℓ (m)




1/2

. (6.37)

Notice that the function m 7→ m − 1
N

∑N
i=1 tanh (β (m+ hi)) has, by (1.20), non-zero

derivative atm∗. Moreover, by construction,m∗ is the only zero of this function in U−
δ (m∗).

From this observations, together with (6.37), we conclude that

(
n∑

ℓ=1

ρℓg
2
ℓ (m)

)1/2

≥ c|m−m∗| − 2
∑

ℓ 6∈S(m)

ρℓ, (6.38)

for some constant c <∞. Here we used the triangle inequality and the fact that∣∣∣mℓ − 1
N

∑
i∈Λℓ

tanh (β(m+ hi))
∣∣∣ ≤ 2ρℓ. Under the hypothesis of the lemma, this gives

the desired bound if |m −m∗| ≥ c′′ε/
√
θ for some constant c′′ < ∞. On the other hand,
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we can write, for ℓ ∈ S(m),

|mℓ − m∗
ℓ | ≤ 1

N

∑

i∈Λℓ

|tanh (β (gℓ(m)(1 + o(1)) +m+ hi)) − tanh (β (m+ hi))|

+
1

N

∑

i∈Λℓ

|tanh (β (m+ hi)) − tanh (β (m∗ + hi))|

≤ cρℓ|m−m∗| + c′ρℓ|gℓ(m)|. (6.39)

Hence we get the bound

 ∑

ℓ∈S(m)

ρℓg
2
ℓ (m)




1/2

≥ c


 ∑

ℓ∈S(m)

(mℓ−m∗
ℓ )2

ρℓ




1/2

− c′|m−m∗|

= c




n∑

ℓ=1

(mℓ−m∗
ℓ )2

ρℓ
−

∑

ℓ 6∈S(m)

(mℓ−m∗
ℓ )2

ρℓ




1/2

− c′|m−m∗|

≥ c


ε2/θ − 4

∑

ℓ 6∈S(m)

ρℓ




1/2

− c′|m−m∗|

≥ cε/
√

2θ − c′|m−m∗| (6.40)

where in the last line we just used that m 6∈ Gθ. The inequalities (6.38) and (6.40) now
yield (6.35), concluding the proof of the lemma. �

Proof of Proposition 6.4. Let σ ∈ S[U δ \ Gθ] and set x ≡ m(σ), so that, for ψ as in Propo-
sition 6.4, Lψ(σ) = Lφ(x). Let σi be the configuration obtained from σ after a spin-flip at
i, and introduce the notation

Lφ(x) =
n∑

ℓ=1

Lℓφ(x), (6.41)

where

Lℓφ(x) =
∑

i∈Λ−
ℓ (x)

pN (σ, σi)[φ(x+eℓ)−φ(x)]+
∑

i∈Λ+
ℓ (x)

pN (σ, σi)[φ(x−eℓ)−φ(x)]. (6.42)

Notice that when xℓ/ρℓ = ±1, then Λ±
ℓ (x) = ∅ and the summation over Λ±

ℓ (x) in (6.42)
disappears.

We define the probabilities

P
σ
±,ℓ ≡

∑

i∈Λ∓
ℓ (x)

pN (σ, σi), (6.43)

and observe that they are uniformly close to the mesoscopic rates defined in (4.2), namely

e−cε ≤
P

σ
±,ℓ

rN (x,x ± eℓ)
≤ ecε, (6.44)

for some c > 0 and ε = 1/n. Notice also that

cρℓ ≤ P
σ
+,ℓ + P

σ
−,ℓ ≤ c′ρℓ. (6.45)

With the above notation and using the convention 0/0 = 0, we get

Lℓφ(x) = φ(x)Pσ
+,ℓ [exp (2β(1 − α)gℓ(x)) − 1]

+φ(x)Pσ
−,ℓ [exp (−2β(1 − α)gℓ(x − eℓ)) − 1]

= φ(x)
(1{Pσ

+,ℓ≥Pσ
−,ℓ}P

σ
+,ℓG

+
ℓ (x) + 1{Pσ

−,ℓ>Pσ
+,ℓ}P

σ
−,ℓG

−
ℓ (x)

)
(6.46)

44



where we introduced the functions

G+
ℓ (x) = exp (2β(1 − α)gℓ(x)) − 1 +

Pσ
−,ℓ

Pσ
+,ℓ

(exp (−2β(1 − α)gℓ(x − eℓ)) − 1) (6.47)

G−
ℓ (x) = exp (−2β(1 − α)gℓ(x − eℓ)) − 1 +

Pσ
+,ℓ

Pσ
−,ℓ

(exp (2β(1 − α)gℓ(x)) − 1) (6.48)

If xℓ/ρℓ = ±1, the local generator takes the simpler form

Lℓφ(x) =

{
φ(x)Pσ

−,ℓ [exp (−2β(1 − α)gℓ(x − eℓ)) − 1] if xℓ/ρℓ = 1

φ(x)Pσ
+,ℓ [exp (2β(1 − α)gℓ(x)) − 1] if xℓ/ρℓ = −1

(6.49)

From Lemma 6.8 and inequalities (6.45), it follows that, for all ℓ such that xℓ/ρℓ = ±1,

Lℓφ(x) ≤ −(1 + o(1))ρℓφ(x). (6.50)

Let us now return to the case when x is not a boundary point. By the detailed balance
conditions, it holds that

rN (x,x + eℓ) = exp (−2βgℓ(x))rN (x + eℓ,x)
rN (x,x − eℓ) = exp (2βgℓ(x − eℓ))rN (x − eℓ,x),

(6.51)

which implies, together with (6.44),

exp (−2βgℓ(x) − cε) ≤ Pσ
+,ℓ

Pσ
−,ℓ

≤ exp (−2βgℓ(x) + cε)

exp (2βgℓ(x − eℓ) − cε) ≤ Pσ
−,ℓ

Pσ
+,ℓ

≤ exp (2βgℓ(x − eℓ) + cε)
(6.52)

Inserting the last bounds in (6.47) and (6.48), and with some computations, we obtain

G+
ℓ (x) ≤ (exp (2β(1 − α)gℓ(x)) − 1) (1 − exp (2βαgℓ(x − eℓ) ∓ cε)) (6.53)

+ exp (2βgℓ(x − eℓ) ∓ cε) (exp 2β(1 − α) (gℓ(x) − gℓ(x − eℓ)) − 1)

G−
ℓ (x) ≤ (exp (−2β(1 − α)gℓ(x − eℓ)) − 1) (1 − exp (−2βαgℓ(x) ∓ cε)) (6.54)

+ exp (−2βgℓ(x) ∓ cε) (exp 2β(1 − α) (gℓ(x) − gℓ(x − eℓ)) − 1)

where ∓ ≡ −sign (gℓ(x)) = −sign (gℓ(x − eℓ)).

For all ℓ such that xℓ/ρℓ ∈ [−1 + ν, 1 − ν], we can use (6.32) to get

G+
ℓ (x) ≤ (exp (2β(1 − α)gℓ(x)) − 1) (1 − exp (2αβgℓ(x) ∓ cε)) + c/N (6.55)

G−
ℓ (x) ≤ (exp (−2β(1 − α)gℓ(x)) − 1) (1 − exp (−2αβgℓ(x) ∓ cε)) + c/N. (6.56)

The right hand sides of both (6.55) and (6.56) are negative if and only if |gℓ| > cε
2αβ . Let

us define the index sets

S< ≡ {ℓ : xℓ/ρℓ ∈ [−1 + ν, 1 − ν], |gℓ(x)| ≤ cε
αβ} (6.57)

S> ≡ {ℓ : xℓ/ρℓ ∈ [−1 + ν, 1 − ν], |gℓ(x)| > cε
αβ}. (6.58)

If ℓ ∈ S<, we get immediately that

max{G+
ℓ (x), G−

ℓ (x)} ≤ c
αε

2, (6.59)

and thus, from (6.46) and (6.45),

Lℓφ(x) ≤ c′

α ε
2ρℓφ(x). (6.60)

To control the r.h.s. of (6.55) and (6.56) when ℓ ∈ S>, set

yℓ ≡ min
{
β |gℓ(x)| , 1

2

}
≤ β |gℓ(x)| . (6.61)

If gℓ(x) > cε
αβ , then

exp (2β(1 − α)gℓ(x)) − 1 ≥ exp (2(1 − α)yℓ) − 1 ≥ 2(1 − α)yℓ (6.62)

and

1 − exp (2βαgℓ(x) − cε) ≤ 1 − exp (αyℓ) ≤ −αyℓ, (6.63)
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so that the product in the r.h.s. of (6.55) is bounded from above by −2(1−α)αy2
ℓ . On the

other hand, if gℓ(x) < − cε
αβ ,

exp (2β(1 − α)gℓ(x)) − 1 ≤ exp (−2(1 − α)yℓ) − 1 ≤ −(1 − α)yℓ (6.64)

and

1 − exp (2βαgℓ(x) + cε) ≥ 1 − exp (−αyℓ) ≥ 3
4αyℓ, (6.65)

and the product in the r.h.s. of (6.55) is bounded from above by −3
4(1−α)αy2

ℓ . Altogether,

this proves that, for all ℓ ∈ S>,

G+
ℓ (x) ≤ −3

4(1 − α)αy2
ℓ , (6.66)

and with a similar computation, that

G−
ℓ (x) ≤ −3

4(1 − α)αy2
ℓ . (6.67)

If ℓ ∈ S>, then we have

Lℓφ(x) ≤ −cαρℓy
2
ℓφ(x). (6.68)

It remains to control the case when xℓ/ρℓ ∈ (−1,−1 + ν] ∪ [1 − ν, 1). From Lemma 6.8 it

follows that, while the positive contribution to G+
ℓ (x) and G−

ℓ (x) remains bounded by a
constant, the negative contribution becomes very large as soon as ν is small enough. More
explicitly, for all ν small enough, we have

G+
ℓ (x) ≤ −(exp(±C ′) − 1)2 + exp(±C ′)(exp(2β(1 − α)c) − 1) ≤ −(1 + o(1))

G−
ℓ (x) ≤ −(1 − exp(∓C ′))2 + exp(∓C ′′)(exp(2β(1 − α)c) − 1) ≤ −(1 + o(1))

(6.69)

where C ′ and C ′′ are positive constants tending to +∞ as ν ↓ 0, and the sign ± is equal to
the sign of xℓ. Together with (6.45) and (6.46), we finally get

Lℓφ(x) ≤ −(1 + o(1))ρℓφ(x). (6.70)

From (6.50), (6.60), (6.68) and (6.70), it turns out that the positive contribution to the
generator Lφ(x) =

∑n
ℓ=1 Lℓφ(x), comes at most from the indexes ℓ ∈ S<, and can be

estimated by
c′

α ε
2
∑

ℓ∈S<

ρℓ ≤ c′

α ε
2. (6.71)

Now we distinguish two cases according to whether the hypothesis of Lemma 6.9 are
satisfied or not.

Case 1:
∑

ℓ 6∈S(x) ρℓ >
ε2

8θ . By (6.50), we get

n∑

ℓ=1

Lℓφ(x) ≤
∑

ℓ 6∈S(x)

Lℓφ(x) +
∑

ℓ∈S<

Lℓφ(x) (6.72)

≤ − ε
2

8θ
(1 + o(1))φ(x) + c′

αε
2,

which is negative as desired if θ is small enough, that is, with our choice, if ε is small
enough.

Case 2:
∑

ℓ 6∈S(x) ρℓ ≤ ε2

8θ . In this case, the assertion of Lemma 6.9 holds.

By (6.50), (6.68), and (6.70), we have that, for all ℓ ∈ S(x) \ L<,

Lℓφ(x) ≤ −ρℓφ(x)min{cαy2
ℓ , 1} ≤ −cαρℓy

2
ℓφ(x), (6.73)

where the last inequality holds for α < 4/c. Let us write the generator as

Lφ(x) ≤
∑

ℓ∈S(x)\S<

Lℓφ(x) +
∑

ℓ∈S<

Lℓφ(x). (6.74)
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The first sum in (6.74) is bounded from above by

−cαφ(x)
∑

ℓ∈S(x)\S<

ρℓy
2
ℓ ≤ −cαφ(x)

∑

ℓ∈s(x)\S<

ρℓ min
{
β2g2

ℓ (x); 1
4

}

≤ −cαφ(x)min



β

2
∑

ℓ∈S(x)\S<

ρℓg
2
ℓ (x); 1

4



 . (6.75)

But from Lemma 6.9, we know that, for all x ∈ U δ \ Gθ,

∑

ℓ∈S(x)\S<

ρℓg
2
ℓ (x) ≥ c

ε2

θ
− c′

α2
ε2 ≥ c′′

ε2

θ
, (6.76)

where c′′ is a positive constant provided that α ≥ cθ. Taking n large enough, it holds that

min



β

2
∑

ℓ∈s(x)\S<

ρℓg
2
ℓ (x); 1

4



 ≥ min

{
c′′
ε2

θ
; 1

4

}
= c′′

ε2

θ
, (6.77)

and then, from (6.71) and (6.75), we get

Lψ(σ) ≤ −ε2(1 − α)φ(x)(c′′αθ−1 − c′α−1). (6.78)

By our choice of θ and taking n large enough, the condition c′′αθ−1 − c′α−1 > 0 ⇔ α > cθ
is satisfied for any α ∈ (0, 1). Hence, for such n’s and for N large enough, we get that
Lψ(σ) = Lφ(x) ≤ 0 concluding the proof of Proposition 6.4. �Substituting the expression of the super-harmoni
 fun
tion (6.20) in (6.19), and togetherwith (6.15), we obtain that, for all σ ∈ S[U δ \ Gθ],

Pσ[τA < τS[∂AGθ]∪B ] ≤ max
σ′∈S[∂AUδ]

e−(1−α)βN[Fβ,N(m(σ′))−Fβ,N (m(σ))]

≤ e−(1−α)βN[Fβ,N(m∗
0)+δ−Fβ,N (m(σ))], (6.79)where the last inequality follows from the de�nition of U δ together with the bounds in(3.32). This 
on
ludes the proof of Proposition 6.3.Renewal estimates on es
ape probabilities. Let us now 
ome ba
k to the proof ofLemma 6.2. An easy 
onsequen
e of Eq. (6.14) is that, for all σ ∈ S[∂AGθ],

Pσ(τA < τS[∂AGθ]∪B) ≤ e−(1−α)βN(Fβ,N(m∗
0)+δ) max

m∈∂AGθ

e(1−α)βNFβ,N (m), (6.80)while obviously Pσ(τA < τS[∂AGθ]∪B) ≡ 0 for all σ ∈ S[Gθ \ ∂AGθ]. To 
ontrol the r.h.s.of (6.80), we need the following lemma:
Lemma 6.10. There exists a constant c <∞, independent of n, such that, for all m ∈ Gθ,

Fβ,N (m) ≤ Fβ,N (m∗) + cε. (6.81)

Proof. Fix m ∈ Gθ and set m − m∗ ≡ v. Notice that, from the definition of Gθ,

‖v‖2
2 ≤ max

ℓ
ρℓ

n∑

ℓ=1

(mℓ − m∗
ℓ)

2

ρℓ
≤ ε2. (6.82)

Using Taylor’s formula, we have

Fβ,N (m) = Fβ,N (m∗) +
1

2
(v,A(m∗)v) +

1

6
D3Fβ,N (x)v3, (6.83)
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where A(m∗) is the positive-definite matrix described in Sect. 3.2 (see Eq. (3.16)) and
x is a suitable element of the ball around m∗. From the explicit representation of the
eigenvalues of A(m∗), we see that ‖A(m∗)‖ ≤ cε−1, and hence

(v,A(m∗)v) ≤ cε−1‖v‖2
2 ≤ cε. (6.84)

The remainder is given in explicit form as

D3Fβ,N (x)v3 =

n∑

ℓ=1

∂3Fβ,N

∂x3
ℓ

(x)v3
ℓ =

1

β

n∑

ℓ=1

1

ρ2
ℓ

I ′′′N,ℓ(xℓ/ρℓ)v
3
ℓ (6.85)

= − 1

β

n∑

ℓ=1

1

ρ2
ℓ

U ′′′
N,ℓ(tℓ)(

U ′′
N,ℓ(tℓ)

)3 v3
ℓ

= − 1

β

n∑

ℓ=1

1

ρ2
ℓ

|Λℓ|−1
∑

i∈Λℓ
tanh(tℓ + βh̃i)(1 − tanh2(tℓ + βh̃i))

(
|Λℓ|−1

∑
i∈Λℓ

(1 − tanh2(tℓ + βh̃i))
)3 v3

ℓ ,

where tℓ = I ′N,ℓ(xℓ/ρℓ). Thus

∣∣D3Fβ,N (x)v3
∣∣ ≤ c

n∑

ℓ=1

1

ρ2
ℓ

v3
ℓ ≤ c′ε−1‖v‖2

2 ≤ c′ε, (6.86)

where we used that |vℓ/ρℓ| ≤ 1. Hence, for some c <∞, independent of n,

Fβ,N (m) ≤ Fβ,N (m∗) + cε (6.87)

which proves the lemma. �Inserting the result of Lemma 6.10 into (6.80), and re
alling that Fβ,N (m∗) = Fβ,N (m∗),we get that for all σ ∈ S[∂AGθ]

Pσ(τA < τS[∂AGθ ]∪B) ≤ e−(1−α)βN(Fβ,N (m∗
0)+δ−Fβ,N (m∗)−cε). (6.88)The last needed ingredient in order to get a suitable estimate on Pσ(τA < τB), is stated inthe following lemma.

Lemma 6.11. For any δ2 > 0, there exists n0 ∈ N, such that, for all n ≥ n0, for all
σ ∈ S[∂AGθ], and for all N large enough,

Pσ(τB < τS[∂AGθ]) ≥ e−Nβδ2 . (6.89)

Proof. Fix σ ∈ S[∂AGθ] and set m(0) ≡ m(σ). As pointed out in the proof of Lemma 6.10,
every m(0) ∈ ∂AGθ can be written in the form m(0) = m∗ + v, with v ∈ Γn

N such that
‖v‖2 ≤ ε. Then, let m = (m(0),m(1), . . . ,m(‖v‖1N) ≡ m∗) be a nearest neighbor path
in Γn

N from m(0) to m∗, of length N‖v‖1, with the following property: Denoting by ℓt the
unique index in {1, . . . , n} such that mℓt(t) 6= mℓt(t− 1), it holds that

mℓt(t) = mℓt(t− 1) + 2
N st, ∀t ≥ 1, (6.90)

where we define

st ≡ sign (m∗
ℓt
− mℓt(t− 1)

)
. (6.91)

Note that, by property (6.90), m(t) ∈ Gθ for all t ≥ 0. Thus, all microscopic paths,
(σ(t))t≥0, such that σ(0) = σ and m(σ(t)) = m(t), for all t ≥ 1, are contained in the event
{τB < τS[∂AGθ]}. Thus we get that
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Pσ(τB < τS[∂AGθ ]) ≥ Pσ(m(σ(t)) = m(t),∀t = 1, . . . , ‖v‖1N)

=

‖v‖1N∏

t=1

Pσ(m(σ(t)) = m(t)
∣∣m(σ(t− 1)) = m(t− 1))

=

‖v‖1N∏

t=1

∑

i∈Λ
st
ℓt

pN (σ(t− 1), σi(t− 1)). (6.92)

Note that Λst
ℓt

is the set of sites in which a spin-flip corresponds to a step from m(t− 1) to

m(t).

The sum of the probabilities in the r.h.s. of (6.92) corresponds to the quantity P
σ(t−1)
st,ℓt

de-

fined in (6.43). From the inequalities (6.44) and (4.15), it follows that, for some constant
c > 0 depending on β and on the distribution of the field,

P
σ(t−1)
st,ℓt

≥ c|Λst
ℓt

(m(t− 1))|/N ≥ c|Λst
ℓt

(m∗)|/N, (6.93)

where the second inequality follows by our choice of the path m. Now, since |Λ±
ℓ (m∗)|/N =

1
2 (ρℓ ± m∗

ℓ ), using the expression (3.20) for m∗
ℓt

and continuing from (6.93), we obtain

P
σ(t−1)
st,ℓt

≥ c′ρℓt . (6.94)

Inserting the last inequality in (6.92), and using that, by definition of the path m, the
number of steps corresponding to a spin-flip in Λℓ is equal to |vℓ|N , for all ℓ = {1, . . . , n}
, we get

Pσ(τB < τS[∂AGθ]) ≥
‖v‖1N∏

t=1

c′ρℓt

= e‖v‖1N ln(c′)
n∏

ℓ=1

ρ
|vℓ|N
ℓ

≥ eN
√

ε ln(c′)e−N
Pn

ℓ=1 vℓ ln(1/ρℓ)

≥ eN
√

ε ln(c′)e−N
Pn

ℓ=1 vℓ/
√

ρ
ℓ

≥ eNε ln(c′)e−N(
Pn

ℓ=1 v2
ℓ/ρℓ)

1/2
ε−1/2

≥ e
−N

“q
ε
θ−

√
ε ln(c′)

”

, (6.95)

where in the third line we used the inequality ‖v‖1 ≤ ε−1/2‖v‖2 ≤ √
ε, and in the last line

we used that m(0) = m∗ + v ∈ Gθ. By our choice of θ ≫ ε, there exists n0 ∈ N such

that, for all n ≥ n0,
√

ε
θ −

√
ε ln(c′) ≤ βδ2. For such n’s, inequality (6.95) yields the bound

(6.89) and concludes the proof of the Lemma. �We �nally state the following proposition:
Proposition 6.12. For all σ ∈ S[U δ] it holds that

Pσ(τA < τB) ≤ e−βN((1−α)(Fβ,N(m∗
0)+δ−Fβ,N (m∗)−cε)−δ2)(1 + o(1)) (6.96)

49



Proof. Let us first consider a configuration σ ∈ S[∂AGθ]. Then it holds

Pσ(τA < τB) ≤ Pσ(τA < τS[∂AGθ ]∪B) +
∑

η∈S[∂AGθ]

Pσ(τA < τB, τη ≤ τS[∂AGθ]∪A∪B)

≤ Pσ(τA < τS[∂AGθ ]∪B) + max
η∈S[∂AGθ]

Pη(τA < τB)Pσ(τS[∂AGθ] < τB)

≤ Pσ(τA < τS[∂AGθ ]∪B) + max
η∈S[∂AGθ]

Pη(τA < τB)
(
1 − e−βNδ2

)
,

(6.97)

where in the second line we applied the Markov property, and in the last line we insert
the result (6.12). Taking the maximum over σ ∈ S[∂AGθ] on both sides of (6.97), and
rearranging the summation, we get

max
σ∈S[∂AGθ]

Pσ(τA < τB) ≤ max
σ∈S[∂AGθ∪B]

Pσ(τA < τS[∂AGθ])e
βNδ2

≤ e−βN((1−α)(Fβ,N(m∗
0)+δ−Fβ,N (m∗)−cε)−δ2), (6.98)

where in the last line we used the bound (6.88). This concludes the proof of (6.96) for
σ ∈ S[∂AGθ].

Then, let us consider σ ∈ S[U δ \ ∂AGθ]. As before, it holds

Pσ(τA < τB) ≤ Pσ(τA < τS[∂AGθ]∪B) +
∑

η∈S[∂AGθ ]

Pσ(τA < τB , τη ≤ τS[∂AGθ ]∪A∪B)

≤ Pσ(τA < τS[∂AGθ]∪B) + max
η∈S[∂AGθ ]

Pη(τA < τB)Pσ(τS[∂AGθ] < τB)

≤ Pσ(τA < τS[∂AGθ]∪B) + max
η∈S[∂AGθ ]

Pη(τA < τB), (6.99)

where Pσ(τA < τS[∂aGθ]∪B) is 0 for all σ ∈ S[Gθ \ ∂AGθ], and exponentially small in N
for all σ ∈ S[U δ \ Gθ] (due to Proposition 6.3). Inserting the bound (6.98) in the last
equation, provides Eq. (6.96) for σ ∈ S[U δ \ ∂AGθ] and concludes the proof. �The proof of formula (6.5) now follows straightforwardly. From (6.96), we get

∑

σ∈S[Uδ(m∗)]

µβ,N (σ)Pσ(τA < τB)

≤ e−βN[(1−α)(Fβ,N(m∗
0)+δ−Fβ,N (m∗)−cε)−δ2]

∑

m∈Uδ

Qβ,N (m)

= Qβ,N (m∗
0)e

βN[αFβ,N (m∗
0)−(1−α)(δ−Fβ,N (m∗)−cε)+δ2]

∑

m∈Uδ

e−βNFβ,N (m)

≤ Qβ,N (m∗
0)N

neβN[α(Fβ,N(m∗
0)−Fβ,N (m∗))−(1−α)(δ−cε)+δ2], (6.100)where in the se
ond inequality we used the expression (1.9) for Qβ,N (m∗

0), while in thelast line we applied the bound Fβ,N (m) ≤ Fβ,N (m∗) = Fβ,N (m∗), and then bounded the
ardinality of U δ by Nn. Finally, 
hoosing α small enough, namely
α <

δ − cε− δ2
Fβ,N (m∗

0) − Fβ,N (m∗) + δ − cε
, (6.101)we 
an easily ensure that (6.100) implies (6.5).In exa
tly the same way one proves (6.6). This 
on
ludes the proof of Lemma 6.2 and thusof Theorem 1.2.
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