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ABSTRACT. In this paper we study the metastable behavior of one of the simplest disor-
dered spin system, the random field Curie-Weiss model. We will show how the potential
theoretic approach can be used to prove sharp estimates on capacities and metastable
exit times also in the case when the distribution of the random field is continuous. Pre-
vious work was restricted to the case when the random field takes only finitely many
values, which allowed the reduction to a finite dimensional problem using lumping tech-
niques. Here we produce the first genuine sharp estimates in a context where entropy is
important.

1. INTRODUCTION AND MAIN RESULTS

The simplest example of disordered mean field models is the random field Curie-Weiss
model. Here the state space is Sy = {—1,1}", where N is the number of particles of the
system. Its Hamiltonian is

2
Hyw](o) = —g (% ch) - Zhi[w]ai, (1.1)

(IS 1EA
where A = {1,...,N} and h;, i € A, are i.i.d. random variables on some probability

space (Q, F,Pp). For sake of convenience, we will assume throughout this paper that the
common distribution of h has bounded support.

The dynamics of this model has been studied before: dai Pra and den Hollander stud-
ied the short-time dynamics using large deviation results and obtained the analog of the
McKeane-Vlasov equations [16]. Mathieu and Picco [15] and Fontes, Mathieu, and Picco
[12], considered convergence to equilibrium in a particularly simple case where the random
field takes only the two values +e. Finally, Bovier et al. |6] analyzed this model in the
case when h takes finitely many values, as an example of the use of the potential theoretic
approach to metastability. In this article we extend this analysis to the case of random
fields with continuous distributions, while at the same time improving the results by giving
sharp estimates of transition times between metastable states.

The present paper should be seen, beyond the interest presented by the model as such, as
a first case study in the attempt to derive precise asymptotics of metastable characteristics
in kinetic Ising models in situations where neither the temperature tends to zero nor an
exact reduction to low-dimensional models is possible. While the RFCW model is certainly
one of the simplest examples of this class, we feel that the general methodology developed
here will be useful in a much wider class of systems.

1.1. Gibbs measure and order parameter. The static picture. The equilibrium statisti-
cal mechanics of the RFCW model was analyzed in detail in [1] and [13]. We give a very
brief review of some key features that will be useful later. As usual, we define the Gibbs
measure of the model as the random probability measure

9—N o= BHy[w](0)

wl(o) = , (1.2)
M@N[ ]( ) ZB7N[W]
where the partition function is defined as
Zsn[w] = E,e PHNII(O) = o=N Z e~ BHN[w](o) (1.3)
oESN

We define the total magnetization as

mx () = %Zai. (1.4)
€A



The magnetization will be the order parameter of the model, and we define its distribution
under the Gibbs measures as the induced measure,

Qp.N = Hg.N oMy (1.5)
on the set of possible values I'y = {—1,—-1+2/N, ..., 1}.
Let us begin by writing

N
2316l Qalellim) = exp (% m ) 25 ) (1.6)
where
Zj nlwl(m) = Eq exp (/3 > hm) LN s omm) = ER1 (V15 o) (D)
€A

For simplicity we will in the sequel identify functions defined on the discrete set I'y with
functions defined on [—1,1] by setting f(m) = f([2Nm]/2N). Then, for m € (—1,1),
Z};(m) can be expressed, using sharp large deviation estimates [10], as
exp (—NIy|w](m
Zj nlwl(m) = ngv V) (1 4 oy, (1.8)
S /ylwl(m)

where o(1) goes to zero as N T oo. This means that we can express the right-hand side in
(1.6) as

75 N[w]Qp v [w](m) = \/ A exp (- NBF wlw](m)) (1 +0(1)),  (1.9)
where
1, 1
Fg n[w](m) = —5m + BIN[w](m). (1.10)
Here In[w](y) is the Legendre-Fenchel transform of the log-moment generating function
1
Unlw](t) = NlnE(};exp (tZa,) (1.11)
i€
1
= ¥ Zlncosh (t+ Bh;) .
LIS

Above we have indicated the random nature of all functions that appear by making their
dependence on the random parameter w explicit. To simplify notation, in the sequel this
dependence will mostly be dropped.

We are interested in the behavior of this function near critical points of Fj3 ;. An important
consequence of Equations (1.6) through (1.11) is that if m™ is a critical point of Fp y, then
for [v] < N—1/2+9,

Qp.n(m* + ) < BN 2)
s L —exp| ——a(m)v 1+0(1)), (1.12)
& iy = e (~gratme? ) (14 o(1)
with
a(m”) = Fj y(m™) = =1+ BN (m"). (1.13)
Now, if m* is a critical point of Fg x , then
m* = B N (m*) = 871, (1.14)
or
pm* = Iy(m*) = t*. (1.15)



Since I is the Legendre-Fenchel transform of Uy, Iy (z) = Uy '(z), so that
m* = Un(Bm*) = Ztanh (m* + hy))). (1.16)
ZEA

Finally, using that at a critical point, I} ,(m*) = W we get the alternative expression
’ N,L

1 1
a(m*) = -1+ ——=—c = -1+ . (1.17)
BUN (Bm*) 5 Yien (1= tanh®(B(m* + hy)))
We see that, by the law of large numbers, the set of critical points converges, Pp-almost
surely, to the set of solutions of the equation

m* = Ej, tanh (G (m* + h)), (1.18)

and the second derivative of Fj n(m*) converges to

1
i (") = =1+ BE, (1 — tanh?®(3(m* + h)))’ (1.19)
Thus, m* is a local minimum if
BE, (1 — tanh?(B(m* + h))) < 1, (1.20)
and a local maximum if
BEy, (1 — tanh?(B(m* + h))) > 1. (1.21)

(The cases where SEj, (1 — tanh?(3(m* + h))) = 1 correspond to second order phase tran-
sitions and will not be considered here).

Proposition 1.1. Let m* be a critical point of Qg n. Then, Pp-almost surely, for all but
finitely many values of N,

exp (=N Fpn(m”)) (14 0(1))

ZsnQ = (1.22)
o Qo \/N7r |E (1 — tanh?(3(m* + h)))|

with

Fg n(m*) = (m2*) — ﬁLN Zlncosh (B(m™ + hy)) . (1.23)

From this discussion we get a very precise picture of the distribution of the order parameter.

1.2. Glauber dynamics. We will consider for definiteness discrete time Glauber dynamics
with Metropolis transition probabilities

pxlwl(, o) = %exp (—BlHNWI(") — Hy[w](@)]4), (1.24)
if 0 and ¢’ differ on a single coordinate,
pnlw)(o,0) =1 — Z —eXp —BlHy[w](0") — Hx[w](o)4) (1.25)

and py(o,0’) = 0 in all other cases. We will denote the Markov chain corresponding to
these transition probabilities o(¢) and write P,[w] = P,, for the law of this chain with
initial distribution v, and we will set P, = Ps_. As is well known, this chain is ergodic
and reversible with respect to the Gibbs measure pg y[w], for each w. Note that we might
also study chains with different transition probabilities that are reversible with respect
to the same measures. Details of our results will depend on this choice. The transition
matrix associated with these transition probabilities will be called Py, and we will denote
by Ly = Py — 1 the (discrete) generator of the chain.



Our main result will be sharp estimates for mean hitting times between minima of the
function Fj y(m) defined in (1.10).

More precisely, for any subset A C Sy, we define the stopping time
T4 = inf{t > 0lo(t) € A}. (1.26)
We also need to define, for any two subsets A, B C Sy, the probability measure on A given
by
1N (0)PolT < T4l
> ocabgN(0)Po[TB < 74
We will be mainly concerned with sets of configurations with given magnetization. For

any I € I'y, we thus introduce the notation S[I] = {0 € Sy : mn(0) € I} and state the
following:

(1.27)

vap(o) =

Theorem 1.2. Assume that 3 and the distribution of the magnetic field are such that there
exist more than one local minimum of Fg . Let m* be a local minimum of Fgn, M =
M (m*) be the set of minima of Fg y such that Fz x(m) < Fg y(m*), and z* be the minimax
between m and M, i.e. the lower of the highest maxima separating m from M to the left
respectively right. Then, Py-almost surely, for all but finitely many values of N,

By sonTsin) = exp (BN [Fp n (%) — F.n(m™)]) (1.28)
27N | BE; (1 — tanh? (B(z* + h))) — 1

X
B\ 1 — BEy (1 — tanh? (B(m* + h)))

where 71 is the unique negative solution of the equation

(1+0(1)),

(1 —tanh(B(2* + h))) exp (=28 [z* + h], )

h exp (—25[2*+h]+) ) =1. (129)
B(+tanh (B ) <7
Note that we have the explicit representation for the random quantity
N2 w2
Fi n(2") — Fg,n(m") M (1.30)
1 . .
_ ﬁ—N Z [In cosh (B(z* + h;)) — Incosh (B(m™ + h;))] .
1EA

The proof of this result on mean transition times relies on the following result on capacities
(for a definition see Eq. (2.5) in Section 2 below).

Theorem 1.3. With the same notation as in Theorem 1.2 we have that
~ Bml exp(=BNFzn(2")) (1 +0(1))

2N \/BEh (1 — tanh? (B(z* + h))) — 1

Zg ncap (S[m’], S[M]) (1.31)

The proof of Theorem 1.3 is the core of the present paper. As usual, the proof of an
upper bound of the form (1.31) will be relatively easy. The main difficulty is to prove a
corresponding lower bound. The main contribution of this paper is to provide a method to
prove such a lower bound in a situation where the entropy of paths cannot be neglected.

Before discussing the methods of proof of these results, it will be interesting to compare
this theorem with the prediction of the simplest uncontrolled approximation.

The naive approximation. A widespread heuristic picture for metastable behavior of
systems like the RFCW model is based on replacing the full Markov chain on Sy by an
effective Markov chain on the order parameter, i.e. by a nearest neighbor random walk on
I'ny with transition probabilities that are reversible with respect to the induced measure,



Qg n. The ensuing model can be solved exactly. In the absence of a random magnetic field,
this replacement is justified since the image of o(t), m(t) = my(o(t)), is a Markov chain
reversible w.r.t. Qg n; unfortunately, this fact relies on the perfect permutation symmetry
of the Hamiltonian of the Curie-Weiss model and fails to hold in the presence of random

field.

A natural choice for the transition rates of the heuristic dynamics is

/ 1 /
ryw](m,m’) m Z p,N[w] (o) Z IPN[W](@U), (1.32)

which are different from zero only if m’ = m £ 2/N or if m = m’. The ensuing Markov
process is a one-dimensional nearest neighbor random walk for which most quantities of
interest can be computed quite explicitly by elementary means (see e.g. [17, 3]). In
particular, it is easy to show that for this dynamics,

o:mpy(o)=m o':mpy(c’)=m

v s Tsian) = 5 (N [Fyn(2") = By x(m"))
2nN ﬁEh 1 — tanh2 (ﬁ(Z* + h))) _1
ﬁ|a )l \/1 - 5Eh 1 — tanh? (B(m* + h))) (I+o0(1)),

where a(z*) is defined in (1.19).

The prediction of the naive approximation is slightly different from the exact answer, albeit
only by a wrong prefactor. One may of course consider this as a striking confirmation of
the quality of the naive approximation; from a different angle, this shows that a true
understanding of the details of the dynamics is only reached when the prefactors of the
exponential rates are known (see [14] for a discussion of this point).

The picture above is in some sense generic for a much wider class of metastable systems:
on a heuristic level, one wants to think of the dynamics on metastable time scales to be well
described by a diffusion in a double (or multi) well potential. While this cannot be made
rigorous, it should be possible to find a family of mesoscopic variables with corresponding
(discrete) diffusion dynamics that asymptotically reproduce the metastable behavior of the
true dynamics. The main message of this paper is that such a picture can be made rigorous
within the potential theoretic approach.

Acknowledgments. The authors thank Alexandre Gaudilliére, Frank den Hollander, and
Cristian Spitoni for useful discussions on metastability.

2. SOME BASIC CONCEPTS FROM POTENTIAL THEORY

Our approach to the analysis of the dynamics introduced above will be based on the ideas
developed in |6, 7, 8] to analyze metastability through a systematic use of classical potential
theory. Let us recall the basic notions we will need.

For two disjoint sets A, B C Sy, the equilibrium potential, h4 g, is the harmonic function,
i.e. the solution of the equation

(Lhapg)(o) =0, o¢AUB, 2.1
with boundary conditions
1, ifced
h =<7 . 2.2
45() {0, if o€ B (2-2)
The equilibrium measure is the function
6A7B(O') = —(LhAJg)(O') = (thyA)(O'), (23)



which clearly is non-vanishing only on A and B. An important formula is the discrete
analog of the first Green’s identity: Let D C Sy and D¢ = Sy \ D. Then, for any function
f, we have

5 Y @)l (0) — £ 2.4

o,0' €SN
==Y u)f)Lf) (o) = Y wo)f(@)(Lf)(o).
oceD oeD¢c
In particular, for f = ha g, we get that
1

5 D H@)pn(0.0)hap(@) = hap(o)? (2.5)
o,0' €SN

=Y u(o)ean(o) = cap(A, B),
c€eA

where the right-hand side is called the capacity of the capacitor A, B. The functional
appearing on the left-hand sides of these relations is called the Dirichlet form or energy,

and denoted
an(f)=5 3 uon(o.d)i(o) - Fo) (2.6)

o,0' €SN

As a consequence of the mazimum principle, the function h4 p is the unique minimizer of
& with boundary conditions (2.2), which implies the Dirichlet principle:

cap(A, B) = hei71—tl,£ N O (h), 2.7)

where H 4 p denotes the space of functions satisfying (2.2).

Equilibrium potential and equilibrium measure have an immediate probabilistic interpre-
tation, namely

hap(o), ifo¢gAUB

2.8
ep.a(o), ifoe B. (2.8)

Pylra < 18] = {
An important observation is that equilibrium potentials and equilibrium measures also
determine the Green’s function. In fact (see e.g. [7, 4])

Y

hap(o) =Y Ggnp(o.0)ean(0) 2.9)
o'€A

In the case then A is a single point, this relation can be solved for the Green’s function to
give
p(0’)he,(0)
p(o)es(o)
This equation is perfect if the cardinality of the state space does not grow too fast. In our
case, however, it is of limited use, since both numerator and denominator tend to be very

close to zero for the wrong reason. However, (2.9) remains useful. In particular, it gives
the following representation for mean hitting times

Z,u(a)eAB(a)EUTB = Z (o Vha p(a'), (2.11)

ocA o’eSN

Gsy\g(o,0') = (2.10)

or, using definition (1.27)

1 / /
BurnTs = oA B) > wl(o")has(o”). (2.12)

o’eSn



From these equations we see that our main task will be to obtain precise estimates on
capacities and some reasonably accurate estimates on equilibrium potentials. In previous
applications [6, 7, 8, 9, 5|, three main ideas were used to obtain such estimates:

(i) Upper bounds on capacities can be obtained using the Dirichlet variational principle
with judiciously chosen test functions.

(ii) Lower bounds were usually obtained using the monotonicity of capacities in the
transition probabilities (Raighley’s principle). In most applications, reduction of
the network to a set of parallel 1-dimensional chains was sufficient to get good
bounds.

(iii) The simple renewal estimate hg p(z) < cap(z,A)

cap(z.B) Was used to bound the equilibrium

potential through capacities again.

These methods were sufficient in previous applications essentially because entropy were
not an issue there. In the models at hand, entropy is important, and due to the absence
of any symmetry, we cannot use the trick to deal with entropy by a mapping of the model
to a low-dimensional one, as can be done in the standard Curie-Weiss model and in the
RFCW model when the magnetic field takes only finitely many values [15, 6].

Thus we will need to improve on these ideas. In particular, we will need a new approach
to lower bounds for capacities. This will be done by exploiting a dual variational repre-
sentation of capacities in terms of flows, due to Berman and Konsowa [2|. Indeed, one of
the main messages of this paper is to illustrate the power of this variational principle.

Random path representation and lower bounds on capacities. It will be convenient
to think of the quantities u(o)pn(o,0’) as conductances, c(o,0’), associated to the edges
e = (o,0") of the graph of allowed transitions of our dynamics. This interpretation is
justified since, due to reversibility, ¢(o,0’) = ¢(o’, o) is symmetric.

For purposes of the exposition, it will be useful to abstract from the specific model and to
consider a general finite connected graph, (S,€) such that whenever e = (a,b) € £, then
also —e = (b,a) € €. Let this graph be endowed with a symmetric function, ¢ : &€ — R4,
called conductance.

Given two disjoint subsets A, B C S define the capacity,

cap(A, B) = min > cla,b) (h(b) — h(a)®. (2.13)

1
2 h|a=0, h|g=1
4 |5 e=(a,b)e€

Definition 2.1. Given two disjoint sets, A, B C S, a non-negative, cycle free unit flow, f,
from A to B is a function f : £ — R U{0}, such that the following conditions are verified:

@) if f(e) > 0, then f(—e) = 0;
(ii) f satisfies Kirchoff’s law, i.e. for any vertexa € S\ (AU B),

D fba) =) fla,d); (2.14)
b d

(iii)

DY flab)y=1=3"%" f(ab); (2.15)

acA b a beB

(iv) any path, v, from A to B such that f(e) > 0 for all e € ~, is self-avoiding.

We will denote the space of non-negative, cycle free unit flows from A to B by Uy p.



An important example of a unit flow can be constructed from the equilibrium potential,
h*, i.e. the unique minimizer of (2.13). Since h* satisfies, for any a € S\ (AU B),

> " c(a,b)(h*(b) — h*(a)) =0, (2.16)
b
one verifies easily that the function, f*, defined by
* 1 * *
f (CL, b) = WC(CL, b) (h (CL) —h (b))+ s (217)

cap
is a non-negative unit flow from A to B. We will call f* the harmonic flow.

The key observation is that any f € Ua p gives rise to a lower bound on the capacity
cap(A, B), and that this bound becomes sharp for the harmonic flow. To see this we
construct from f a stopped Markov chain X = (X, ...,X;) as follows: For each a € S\ B

define F(a) =), f(a,b).

We define the initial distribution of our chain as P/(a) = F(a), for a € A, and zero
otherwise. The transition probabilities are given by

f(a,b)
F(a)’

g’ (a,b) = (2.18)

for a ¢ B, and the chain is stopped on arrival in B. Notice that by our choice of the initial
distribution and in view of (2.18) X will never visit sites a € S\ B with F'(a) = 0.

Thus, given a trajectory X = (ag,a1,...,a,) with ag € A, a, € Band ay € S\ (AU B) for
£=0,...,r—1,

f _ _ H f(eé)
P (X=X)= Z:éF(aé) (2.19)

where ey = (ay,ap11) and we use the convention 0/0 = 0. Note that, with the above
definitions, the probability that X passes through an edge e is

P/ (e € X) pr ) ieery = fle). (2.20)

Consequently, we have a partition of unity,

P/ (x)1
Life)>0} = D % (2.21)

X

We are ready now to derive our f-induced lower bound: For every function h with h|4 = 0
and h’B = 1,

S (Ve =Y o) (Ve)?

e:f(e)>0

= Y > Pl % (Veh)?.

X ecX

As a result, interchanging the minimum and the sum,

cap(4,B) > Z > B, i Z f‘”’“’f“ (h(ags1) — h(ar))?
-1

az, aé—l—l
(‘7'07 - r)

- pr(;c) [Z %] . (2.22)
X e



Since for the equilibrium flow, f*,

f*e 1
2; _prB) (2.23)

with P/"-probability one, the bound (2.22) is sharp.

Thus we have proven the following result from |2]:
Proposition 2.2. Let A, B C S. Then, with the notation introduced above,

—1
}:fZ] (2.24)

cap(A,B) = sup E/
f€Ua,m

3. COARSE GRAINING AND THE MESOSCOPIC APPROXIMATION

The problem of entropy forces us to investigate the model on a coarse grained scale. When
the random fields take only finitely many values, this can be done by an exact mapping to
a low-dimensional chain. Here this is not the case, but we can will construct a sequence of
approximate mappings that in the limit allow to extract the exact result.

3.1. Coarse graining. Let I denote the support of the distribution of the random fields.
Let Iy, with £ € {1,...,n}, be a partition of I such that, for some C' < oo and for all ¢,
|| <C/n=e¢.

Each realization of the random field {h;|w]}ien induces a random partition of the set
A={1,...,N} into subsets

Ak[w] = {Z eA: h,[w] € Ik} (3.1)
We may introduce n order parameters
1
mylw](o) = N Z o;. (3.2)
iEAk[UJ}
We denote by m [w] the n-dimensional vector (mj[w],..., m,[w]). In the sequel we will

use the convention that bold symbols denote n-dimensional vectors and their components,
while the sum of the components is denoted by the corresponding plain symbol, e.g. m =
> p—qy M. m takes values in the set

Iyw] = xioy {—pnvalw], —pnvplw]l + &, .- pvelw] — 2, ovelw] ) (3.3)
where Ao
kW
Pr = PNEW] = — (3.4)
We will denote by ey, £ = 1,...,n, the lattice vectors of the set I'};, i.e. the vectors of

length 2/N parallel to unit vectors.
Note that the random variables py j concentrate exponentially (in N) around their mean

values Ehp]\mg = ]P’h[hi S [k] = pg-

Notational warning: To simplify statements in the remainder of the paper, we will
henceforth assume that all statements involving random variables on (2, F,P) hold true
with Pp-probability one, for all but finitely many values of N.

We may write the Hamiltonian in the form

Hy|w](c) = —NE(m +§:§:mz (3.5)

l=11€Ay



where F : R™ — R is the function

n

n 2
1 _
E(x) = 3 ( E wk> + hrxp, (3.6)
k=1

k=1

with
_ 1 - _
hy= — Z hi;, and h; = h; — hy. 3.7)
|A£| €Ay

Note that if h; = hy for all i € A,, which is the case when h takes only finitely many values
and the partition I is chosen suitably, then the Glauber dynamics under the family of
functions my is again Markovian. This fact was exploited in [15, 6]. Here we will consider
the case where this is not the case. However, the idea behind our approach is to exploit
that by choosing n large we can get to a situation that is rather close to that one.

Let us define the equilibrium distribution of the variables m|o]

Lnwl(@®) = ppnlwl(mlwl(o) = =) (3.8)
_ 1 nE@E S Sien, ilhi—he)

Zyl] "
where Zy[w] is the normalizing partition function. Note that with some abuse of notation,
we will use the same symbols Qg n, Fj n as in Section 1 for functions defined on the
n-dimensional variables x. Since we distinguish the vectors from the scalars by use of bold
type, there should be no confusion possible. Similarly, for a mesoscopic subset A C I} [w],
we define its microscopic counterpart,

A=S8n[A]={c €Sy : m(o) € A}. (3.9

[w](0)=a}€

3.2. The landscape near critical points. We now turn to the precise computation of
the behavior of the measures Qg y[w](x) in the neighborhood of the critical points of
Fg n|w](x). We will see that this goes very much along the lines of the analysis in the
one-dimensional case in Section 1.

Let us begin by writing

n

n 2 n

Zg N w]Qp n[w](x) =exp [ NS % (Z me) + Y wehe | | [] Z6.nlwl(@e/pe),
/=1 /=1 /=1

(3.10)

where

Zé’N[w](y) =E,,, exp 8 Z hio; ]1{\Az|’1

Z- \ o¢=y} EEZAZH{\Azrl Z A UiZy}.
iEA, 1€ENp 1€y

For y € (—1,1), these Z% can be expressed, using sharp large deviation estimates [1((:);],121-8)
exp (—|Ad Iy elwl(y))
VTR )
where o(1) goes to zero as |[Ay| T co. Note that as in the one-dimensional case, we identify

functions on Iy with their natural extensions to R". This means that we can express the
right-hand side in (3.10) as

25wl (y) = (1+0(1), (3.12)

Z3 N[£1QsN 1) H\/ SN @02 oy (-NFp wlel(@)) (14 0(1)), (3.13)

10



where

n n
- 1
Fg N[ = —= (Za}g) Z:thz—i— BZpZINvZ[w](wZ/pZ)' (3.14)
=1 =1
Here Iy ¢[w](y) is the Legendre-Fenchel transform of the log-moment generating function,
Unyewl(t) = m lnEh e (1 Z o (3.15)
1€Ay

= ’Az\ Z In cosh <t + Bh; )

We again analyze our functions near critical pomts, z*, of Fjg . Equations (3.10)-(3.15)

imply: if z* is a critical point, then, for |Jv| < N—1/2+9,
N (2" +v) < BN )
e —exp| ——(v,A(z")v) ) (1 +0(1)), (3.16)
2= 0o (<0G (1 ol1)
with
N O?Fz (2" 4 . N
(A(z ))kf = %(Zg) =—-1+ 5k7gﬁ 1,()( 1[%7Z(z€/pg) =-1+ 5@7]@)\(. (3.17)
Now, if 2* is a critical point of Fj x ,
N2+ he =B (25 /o) = BN, (3.18)
or, with z* = Y71, 27,
B (" +he) = In (2 /pe) = 1. (3.19)

By standard properties of Legendre-Fenchel transforms, we have that Iy ,(z) = Un (),
so that

z;/pe = U o(B(2" + he)) |A | > tanh(8(z* + hy))). (3.20)
€Ny
Summing over £, we see that z* must satisfy the equation
1 .
=¥ > tanh(B(z" + hy)), (3.21)

i€
which nicely does not depend on our choice of the coarse graining (and hence on n).

Finally, using that at a critical point I} (2 /p¢) = T, ( =5, We get the explicit expression

for the random numbers 5\5 on the right hand side of (3.17)

A 1 1
Mo = . 3.22
¢ 8oy (B + he)) 2 Yien, (1 —tanh?(B(z* + hy))) (3.22)

The determinant of the matrix A(z*) has a simple expression of the form
n 1 n R
det (A(z* = 1-— — by (3.23)
s = (B
= (1——2 — tanh?(B(z* + h;)) >H5\
)

1EA

n

= (1—ﬁEh(1—tanh2 B(z* + h)) H (1+o(1

11



where o(1) | 0, a.s., as N | oco. Combing these observations, we arrive at the following
proposition.

Proposition 3.1. Let z* be a critical point of Qp n. Then z* is given by (3.20) where z* is a
solution of (3.21). Moreover,

ZsnQin(z") = | det(A(z"))] (3.24)

V(év—éf)” |BEy, (1 — tanh?(B(2* + h))) — 1]

)2
exp <6N <— (z2) + ﬁLN ;ln cosh (B(z* + hl))>> (I4+0(1)).

Proof. We only need to examine (3.13) at a critical point z*. The equation for the prefactor
follows by combining (3.12) with (3.23). As for the exponential term, F y, notice that
by convex duality

[N7g(zz/pg) = tzzz/pz — UN,z(tz) = ﬂ(z* + i_lg)zZ/pg —Uny (ﬂ(z* + i_lg)) . (3.25)
Hence (3.14) equals

X

Zzghg

[Péﬁ(»’«”* + he)z;/pe — peUne (B(z* + he))]

QIH

n

1 - - 1
= —— (") - Z zZyhy — 2"z) —hz) + —— Z In cosh (B(z* + hy))
2 (=1 pN €A
1ENy
1
=5 (2 Zlncosh 2+ hy)). (3.26)
ZGA
O

Remark. The form given in Proposition 3.1 is highly suitable for our purposes as the de-
pendence on n appears only in the denominator of the prefactor. We will see that this is
just what we need to get a formula for capacities that is independent of the choice of the
partition of I and has a limit as n 1 co.

Eigenvalues of the Hessian. We now describe the eigenvalues of the Hessian matrix
A(z").
Lemma 3.2. Let z* be a solution of the equation (3.21). Assume in addition that all numbers
Ay are distinct. Then  is an eigenvalue of A(z*) if and only if it is a solution of the equation
= 1
T =1. (3.27)
/=1 % EiEAl (l—tanhQ(ﬁ(z*—i-hi))) -7

Moreover, (3.27) has at most one negative solution, and it has such a negative solution if and
only if

N
% EZ: (1 — tanh? (8 (2 + hy))) > 1. (3.28)

Remark. To analyze the case when some )\k coincide is also not difficult. See [6].

Proof To find the eigenvalues of A, just replace \, by A\, — v in the first line of (3.23).
This gives

det (A(z*) — 7)) = <1 -y 3 1 > [T . (3.29)
=1 M7/ =1

=1

12



FIGURE 1. Correspondence of one and n-dimensional landscape

provided none of the A, — v = 0. (3.27) is then just the demand that the first factor on
the right of (3.29) vanishes. It is easy to see that, under the hypothesis of the lemma, this
equation has n solutions, and that exactly one of them is negative under the hypothesis
(3.28). U

Topology of the landscape. From the analysis of the critical points of Fj y it follows
that the landscape of this function is closely slaved to the one-dimensional landscape
described in Section 1. We collect the following features:

(i) Let m] < 27 < mj < z3 < - < z; < mj; be the sequence of minima resp.
maxima of the one-dimensional function Fp n defined in (1.10). Then to each
minimum, m?, corresponds a minimum, m; of Fg y, such that >, _, m;'k,e =m;,
and two each maximum, 2], corresponds a saddle point, 2z; of Fj n, such that
> =1 Z:,e =z

(ii) For any value m of the total magnetization, the function Fj y () takes its relative
minimum on the set {y : >y, = m} at the point & € R™ determined (coordinate-
wise) by the equation

Zo(m) = % S tanh (8 (m + a + hy)) (3.30)
1€EANy

where a = a(m) is recovered from

m = %iezj\tanh(ﬁ(m+a+hi)). (3.31)
Moreover,
Fg’N(m) < Fg’N(@) < Fg’N(m) + O(n In N/N) (332)

Remark. Note that the minimal energy curves &(-) defined by (3.30) pass through the min-
ima and saddle points, but are in general not the integral curves of the gradient flow con-
necting them. Note also that since we assume that random fields {h;(w)} have bounded
support, for every 6 > 0 there exist two universal constants 0 < ¢; < ¢p < 00, such that

d@g(m)
dm

c1pe < < capy, (3.33)

uniformlyin N,m € [-1+4§,1—¢d]andinl=1,...,n.
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4. UPPER BOUNDS ON CAPACITIES

This and the next section are devoted to proving Theorem 1.3. In this section we derive
upper bounds on capacities between two local minima. The procedure to obtain these
bounds has two steps. First, we show that using test functions that only depend on the
block variables m(c), we can always get upper bounds in terms of a finite dimensional
Dirichlet form. Second, we produce a good test function for this Dirichlet form.

4.1. First blocking. Let us consider two sets, A, B C Sy, that are defined in terms of
block variables m. This means that for some A, B C I'};, A = Sy[A] and B = Sy[B].
Later we will be interested in pre-images of two minima of the function Fjg . We get the
obvious upper bound

cap(4,B) = inf 5 S upnlwl(0)p(o,0') [h(o) — h(o)]?
AB o,0'€SN
. 1
< infoo 3 pgnfel(0)p(o,0”) [u(m(e) — u(m(e'))]?
uca,p 2 0,0’ €SN
= uei_CI/lf Z [u(x) Z ,uﬁ Nw Z p(o,d)
4B 5 &' el'y; ceSN |z o’'eSn[x’]
= ueléljB Zezl'\n QIB N TN(:B x ) [U(m) B ’Z,L(w,)]2
= Capy(A,B). 4.1)
with
ry(z,x’) = @ Z pe.N|w Z p(o,d’). (4.2)
s.vw JESN (] o' €Sn 2]
Here
Hap={h:Sv — 0,1 : Vo € A,h(c) =1,Vo € B,h(o) =0} (4.3)
and
Gap={u:Ty —[0,1]:Vx € A, u(x) =1,V € B, u(x) = 0}. 4.4)

4.2. Sharp upper bounds for saddle point crossings. Let now z* be a saddle point, i.e.
a critical point of Qg n such that the matrix A(z*) has exactly one negative eigenvalue and
that all its other eigenvalues are strictly positive. Let A, B be two disjoint neighborhoods
of minima of Fj x that are connected through z*, i.e. A and B are strictly contained in
two different connected components of the level set {x : Fjg n(x) < Fgn(2*)}, and there
exists a path v from A to B such that maxzey Fg n(x) = Fg n(2).

To estimate such capacities it suffices to compute the capacity of some small set near
the saddle point (see e.g. [3] or [8] for an explanation). For a given (small) constant
p=p(N) <1, we define

Dn(p) ={x € I'y : |27 —m¢| < p,V1 < € <}, (4.5)
In this section we will later choose p = C'\/In N/N, with C' < co. Dy(p) is the hypercube

in I} centered in z* with sidelenght 2p. For a fixed vector, v € I'};, consider three disjoint
subsets,

Wo = {zel}:|(v, (@ - 2")) < p}
Wi = {zel}:(v,(@—2%)) <—p}
Wy = {xel}: (v,(x—2"))>p} (4.6)

We will compute the capacity of the Dirichlet form restricted to the set Dy (p) with bound-
ary conditions zero and one, respectively, on the sets W1 N Dy (p) and Wo N Dy (p). This

14



will be done by exhibiting an approximately harmonic function with these boundary con-
ditions. Before doing this, it will however be useful to slightly simplify the Dirichlet form
we have to work with.

Cleaning of the Dirichlet form. One problem we are faced with in our setting is that
the transition rates ry(z,2’) are given in a somewhat unpleasant form. At the same time
it would be nicer to be able to replace the measure Qg y by the approximation given in
(3.18). That we are allowed to do this follows from the simple assertion below, that is
an immediate consequence of the positivity of the terms in the Dirichlet form, and of the
Dirichlet principle.

Lemma 4.1. Let @, ®x be two Dirichlet forms defined on the same space, T', corresponding
to the measure Q and transition rates r, respectively Q and 7. Assume that, for all x,x' € T,

A2) o5 |H@2) —1‘ <. (4.7)
Q) (@, ')
Then for any sets A, B
(1-0)°< w <(1-0)72 (4.8)
CapN(A7B)

Proof. Note that Caply(A, B) = infyeg, 5z Pn(u) = ®n(u*), and
Capy(A, B) = infyeg, p Oy (u) = (). But clearly

* 1 A Q(w) ~ / T(ZI},ZI}/)) * P
Oy(u*) = = Qz) =7z, ") =——r (u"(x) — u*(z) 4.9)
N 2 wgér Q(x) m(zx,x’) ( )
> % Y. Q@)1 - o)z, a)(1 - ) (u(@) — u*(a))
xz,x' el
> (102 inf 5 Y O@)ile.a) (u() - u(a)
’ x,x' el
= (1-0)*Capy(A, B).
By the same token,
Oy (u*) > (1—0)°Capy(A,B). (4.10)
The claimed relation follows. O

To make use of this observation, we need to control the rates ry(x, ') and the measure
Qp.n(x) in terms of suitable modified rates and measures. In fact, we see easily that

~ N
Qs n(x) = Qs n(2")exp (—%((m —2"),A(z")(x — z*))) , (4.11)
so that, for all & € Dy(p) and for some K < oo, it holds
Qon(@) < KNp®. (4.12)
Qs N ()

For that concerns the rates, let us first define, for o € Sy,

A(o)={i€ Ay : o(i) = +1}. (4.13)

15



For all & € I'};, we then have

rn(z o te) = Qn@) ™ DY pgnlwlo) Y plo,o’) (4.14)
oE€SN ] i€A; (o)
28] m(o)— = +h;
= o@D k) 30 g el
oESN ] i€A; (o)

Notice that for all o € Sy(x), [A, (0)| is a constant just depending on . Using that
h; = hy + h;, with h; € [—e,¢], we get the bounds

rN(ar:, _— 6@) _ ‘AZZ\(;B)’ e—2ﬁ[m(O)+Bl]+(1 + 0(6)) (4.15)

It follows easily that, for all x € Dy(p),

TN(ZB, x + e@)
ry(z*, z* + ey)

- 1' < B(e +np) (4.16)

With this in mind, we let EN be the generator of the dynamics on Dy(p) with rates

M, and thus with
Qp, N (z+er)

reversible measure @5 ~n(x). For u € Ga B, we write the corresponding Dirichlet form as

(e, +e) = ry(z*,2" + e) = rp and 7(x + ey, x) = 1y

Opy(u) = Qs n(z Z ZWG N((@=2) A= @=2") (y(z) — u(x + €7))*.  (4.17)

a:GDN )

4.3. Approximately harmonic functions for &, v+ We will now describe a function that

we will show to be almost harmonic with respect to the Dirichlet form <T>DN- Define the
matrix B(z*) = B with elements

B&k = \/T—ZA(Z*)Z,k\/E- (418)
Let fj(i), i = 1,...,n be the normalized eigenvectors of B, and 4; be the corresponding

eigenvalues. We denote by 47 the unique negative eigenvalue of B, and characterize it in
the following lemma.

Lemma 4.2. Let z* be a solution of the equation (3.21) and assume in addition that

N
g .
= > (1 —tanh? (3 (2" + ) > 1. (4.19)
i=1
Then, z* defined through (3.20) is a saddle point and the unique negative eigenvalue of B(z*)
is the unique negative solution, v, = 41 (N, n), of the equation

- ﬁ Yiea, (1= tanh(B(z* + hy))) exp (=26 [2* + he] )

! =1. 4.20
ZZ:; pe \Tle\ ZieAl(l_tanh(ﬁ(z*—‘rhi))) exp (_26[Z*+h‘3]+) _9 ( :
e, (23 1) !
Moreover, we have that
lim lim 91(N,n) = 71, 4.21
i Jim 51 (N, ) =7 @20
where 71 is the unique negative solution of the equation
1 — tanh(B(=* + h B Gl
- ( anh(8(z ))) exp (=20 [z ]—I—) -1 (4.22)

oxp (—2B[="+h],)
B(I-Ftanh(B(=+1)))
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Proof. The particular form of the matrix B allows to obtain a simple characterization of all
eigenvalues and eigenvectors. The eigenvalue equations can be written as

" Vg + (kA — Y)ue = 0,¥1 < k < n. (4.23)
/=1

Assume for simplicity that all rj,\;, take distinct values. Then there is no non-trivial solu-
tion of these equation with v = r; )\, and thus _,_; /reus # 0. Thus,

VDM SRV (4.24)
TEAE — 7Y

Ug

Multiplying by ,/7; and summing over k, wy is a solution if and only if v satisfies the

equation

n
Tk

— =1 (4.25)
o1 TkAR —

Using (4.15) and noticing that % = %(Pk — z}), we get
rr = 3ok — 25) exp (—25 [m(o) + EkL) (1+ 0(2)). (4.26)
Inserting the expressions for z} /p;, and e given by (3.20) and (3.22) into (4.26) and

substituting the result into (4.25), we recover (4.20).

Since the left-hand side of (4.25) is monotone decreasing in « as long as v > 0, it follows
that there can be at most one negative solution of this equation, and such a solution exists
if and only if left-hand side is larger than 1 for v = 0. The claimed convergence property
(4.21) follows easily. O

We continue our construction defining the vectors v by

v\ =0l (4.27)
and the vectors 9% by
132i) = 'f)él)\/r—g = rgvgi). (4.28)

We will single out the vectors v = v and ® = ®). The important facts about these
vectors is that

A = 3,00 (4.29)
and that
®W, vy = 5ij- (4.30)

This implies the following non-orthogonal decomposition of the quadratic form A,
n
(v, Az) = Ay, v')(x, D). (4.31)
i=1

A consequence of the computation in the proof of Lemma 4.2, on which we shall rely in
the sequel, is the following:

Lemma 4.3. There exists a positive constant 6 > 0 such that independently of n,

1
< mi < < —. .32
5_m]§nvk_m]§1ka_ 5 (4.32)
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Proof. Due to our explicit computations,
~1

3 _1 . o 2 * ) —25[2*-‘1-?%]
TEAL = 5 <1 Pk> \Ak’ Z 1 tanh” (6(z —i—hz))) e +. (4.33)
1€EAL

Consequently, the quantities ¢y, = 7, \s—1 (N, n) are bounded away from zero and infinity,
uniformly in N, n and k = 1,...,n. Since by (4.27) and (4.24) the entries of v are given
by

. ~1/2
Ty
v = — — , (4.34)
T {%: o }
the assertion of the lemma follows. O

Finally, define the function f: R — R, by
fa e—BNI1Iu?/2 g,

f((l) = T)O _ﬁNI,yl‘UZ/Qdu (4-35)

— ,/6Nh/1 / e~ BNPlu®/2g,,

g9(x) = f((v,)) (4.36)
is the desired approximately harmonic function.

Notice first, that g(x) = o(1) for all @ € Wi N Dy(p), while g(x) = 1 — o(1) for all
x € WoN Dy(p). Moreover, the following holds:

Lemma 4.4. Let g be defined in (4.36). Then, for all * € Dy(p), there exists a constant
¢ < oo such that

(Zng) @) < (x/gljjv' ~BNFi (@) ”me) . (4.37)

Remark. The point of the estimate (4.37) is that it is by a factor p? smaller than what we
would get for an arbitrary choice of the parameters v and ;. We will actually use this
estimate in the proof of the lower bound.

We claim that the function

Proof. To simplify the notation we will assume throughout the proof that coordinates are
chosen such that z* = 0. We also set A = A(z*). Using the detailed balance condition, we
get

o Q@ el Qenl@—el) (4.38)

éﬁ,N(w) s, ()

Moreover, from the definition of Q@ ~ and using that we are near a critical point, we have
that

r(x,x — ey

Qs ( — ef)

3 = exp (=2 [(z,Az) — ((x — er), Az — e )
Qs n(x) p( el ) = (( 0)s A( é))]) (4.39)

— oxp (—flen Az)) (1+0 (N7Y)).
From (4.38) and (4.39), the generator can be written as

(LNg) Z T‘g ac + eg g(a:)) (4.40)

x (1 ~ exp (—B(es, Ax)) gg);eig‘”_ ;(‘Zi (1+ o<N—1))> .
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Now we use the explicit form of ¢ to obtain
g@+e)—glx) = fl(x,v)+ve/N)— f((z,v) (4.41)
= f((z,0)ve/N +viN 2 f"(x,0)/2 + 0N f"((&,v))/6

5”}’1’ — 1] (x,v 2
v ,/% e INII@ (1 vgBl (@, 0) /24 0 (7))

In particular, we get from here that
o) 9@ €0 oy (AN (@ — er.0)? — (@.0)%] /2) (4.4

g(x+ep) — g(x)
1 —vBhl[(=,v) —ve/N|/2+ O (p?)
1 —vBnl(z,v)/2 + O (p?)

23141] /2N + O (p?
o At v) <1 o i%y’l/\(m v) +(£ (),02)>

= exp (—B1|ve(z,v)) (1+O(p?))
Let us now insert these equations into (4.40):

<EN9> (x) = Vi'?]iz' —ANn|(@v) /2277114 (1 —veBlnl(z,v)/2+ O (p%)).

=1
x (1 —exp {—B(ew, Az) — Bl |ve(z, v)} (14 O(p?))). (4.43)

Now

I —exp (—ﬂ(ee,Aw) — By |ve(, v)) (1 + O(pz))
= B(ew, Az)+ 531 [ve(, v) + O(p%). (4.44)

Using this fact, and collecting the leading order terms, we get

(Ivg) @ = /% BN l(0)?/2
X ngvg [(ﬁ(eg,Aa:) +ﬁ|%|fvg(a:,'v)) + O(p2)] . (4.45)

Thus we will have proved the lemma provided that

Z revp ((eg, Am) —Hrve(, 'v)) =0. (4.46)
(=1

But note that from (4.31) we get that
(eg,Aaz) F1ve(x, v) Z’yj'vz (z,v (@) (4.47)

Hence using that by (4.28) r,v, = ¥, and that by (4.30) © is orthogonal to v) with j > 2,
(4.46) follows and the lemma is proven. O

Having established that g is a good approximation of the equilibrium potential in a neigh-
borhood of z*, we can now use it to compute a good upper bound for the capacity. Fix

now p =Cy/InN/N.

Proposition 4.5. With the notation introduced above and for every n € N, we get

N N n/

%(14—0(54— WMN?/N)).  (448)
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Proof. The upper bound on cap(A, B) is inherited from the upper bound on the mesoscopic
capacity Cap} (A, B). As for the latter, we first estimate the energy of the mesoscopic
neighborhood Dy = Dy(p) of the saddle point z*. By Lemma 4.1, this can be controlled
in terms of the modified Dirichlet form & Dy i (4.17). Thus, let g the function defined in
(4.36) and choose coordinates such that z* = 0. Then

Boul) = Gon(0) X0 3NN 2 (a1 ) — gla))? (4.49)
xeDpy (=1
= éﬁ’N(O)i':]iz' Z e—ﬁN|“71\(m,v)2e—6N((m,Aa;))/2ZWU%
:BEDN /=1

x (1 =B (@, v) + O (N In N))?
— 3yn(0 )SV’Y;[\ 3 eIVl N @A (110 (VI N/N) ).

xEDN

Here we used that >, rw? = 3,97 = 1. It remains to compute the sum over z. By a
standard approximation of the sum by an integral we get

Z e~ BNl(=,v)? ,—BN((z,Ax))/2 (4.50)
xeDN
— g <H \/ﬁ) dnye—ﬁNlﬁll(yvﬁ)Qe—ﬁN((y,By))/Z (1 +0(y/In N/N)>
' (H \/r_> /d”ye BN (Inl(y,0)°+ 3252 35 (01 1) /2) (1 +O(v/In N/N)>
N\" (T n, o~ BN S0 15100 )22 AN
E H\/_ d"ye” j=117i (1—|—O( IHN/N))

n or \ /2 1

j=117j

(25>n/2ﬁm 14 0( lnN/N))

Inserting (4.50) into (4.49) we see that the left-hand side of (4.49) is equal to the right-
hand side of (4.48) up to error terms.

It remains to show that the contributions from the sum outside D in the Dirichlet form
do not contribute significantly to the capacity. To do this, we define a global test function
g given by

0, x e W
gx) =19 1, x e Wy (4.51)
g(x), =W

Clearly, the only non-zero contributions to the Dirichlet form ®y(g) come from W, =
Wo U OW,, where 0W, denotes the boundary of Wj. Let us thus consider the sets Wi =

WoN Dy and W% = WO N DS (see Figure 4.3). We denote by ol ( ) the Dirichlet form

of g restricted to W™ and to the part of its boundary contained in DN, i.e. to WZO" N Dy,
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FIGURE 2. Domains for the construction of the test function in the upper bound

and by (I)Wout (g) the Dirichlet form of g restricted to ng. With this notation, we have
N = Py @)+ V(@) (4.52)

= 3,..(9) (140 (VIN/N) ) + 0}.0:()
_ (cbuvm( ) - (ﬂbuvm( ) — 513%1(5))) (140 (VIN/N) ) + 000 ().
The first term in (4.52) satisfies trivially the bound
Dy, (9) < Pypinl9) < By (9), (4.53)

where DY, = Dy(p) is defined as in (4.53) but with constant p’ = C’\/In N/N such that
DYy C Woi". Performing the same computations as in (4.49) and (4.50) it is easy to show

that ®p, (g) = ®p, (9)(1 + o(1)), and then from (4.52) it follows that

Py (9) = Doy (9)(1 — o(1). (4.54)

Consider now the second term in (4.52). Since g = g on Wy, we get

P (9) = @ = D0 D 0@ (gl + er) — 9(@)? — g(@)?]

xeoWirnw, £=1
b B [+ e) - g@)? - (1 - g(@))]. (4.55)
oW NW, =1

where we also used that the function g has boundary conditions zero and one respectively
on Wi and Ws. By symmetry, let us just consider the first sum in the r.h.s. of (4.55). For
x € OW/™ N W it holds that (z,v) < —p = —C+/In N/N, and hence

2 1 ~BN | [o?
< R 4.56
9@)” < \/27Tﬁ|&1|0\/1nN6 ( )
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Using this bound together with inequality (4.41) to control (g(x + e;) — g(x))?, we get

Y Y G e [(g(@ + e) = g(@))* — g(@)?]

zeOW{nnNw, £=1

ﬁ|71| - 1 ~ cN
< 27TN BN |41 |p? Z Q(x) (1 + —lnN>

xeOW{nNWy

< Gyl montit S N2 <1+c

2N ,
ZEOW I NW,

N
)
) @

for some constant ¢ independent on N. The sum over x € OW{™ N W in the last term
can then be computed as in (4.50). However, in this case the integration runs over the
(n — 1)-dimensional hyperplane orthogonal to v and thus we have

T N2

oW "W,

n—1

_ (g) / 1 BN (@A) /2

N n—1 n
= <_> <H m) /dn—lye—ﬁl\f((y,ﬂi%y))/2

2 (=2

N\" (& o ZAN(S A (D) )2 /2
< <§> H\/ﬁ e BNA1p /2/dn—1ye BN (25— (01.9)%/2)

(=2

n—1 pn

TN "L ~BNALP/2

=|—=— —e . (4.58)
(25> [l e

Inserting (4.58) in (4.57), and comparing the result with o Dy (g), we get that the Lh.s of
(4.57) is bounded as

<1+CF> VNe PN 28  (g) = o(N~K) ), (g), (4.59)

with K = %, which is positive if C' is large enough. A similar bound can be obtained
for the second sum in (4.55), so that we finally get

(‘ngm( ) = Dy (@)] < o)y (9): (4.60)

The last term to analyze is the Dirichlet form <I>Wm( ). But it is easy to realize that this
0

is negligible with respect to the leading term. Indeed, since for all € DY, it holds that
Fs n(x) > Fg n(2*) + K'In N/N, for some positive K’ < oo depending on C, we get

Blpout (§) < Zg e PNIENEINTIT = o(NTK D (g), (4.61)
From (4.52) and the estimates given in (4.54), (4.59) and (4.61), we get that ®n(g) =
®p,(9)(1+0o(1)) provides the claimed upper bound. O

Combining this proposition with Proposition 3.1, yields, after some computations, the
following more explicit representation of the upper bound.

Corollary 4.6. With the same notation of Proposition 4.5,

Bl exp(=BNFgn(z")) (1+0(1))
~ 2N \/ﬁNEh 1— tanh? (8 (2* + h))) —

Zﬁ Ncap(A B) 5 (462)
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where 71 is defined through Eq. (4.22).

Proof. First, we want to show that

n -1 n
|det(A(z"))| = (H m) H Y. (4.63)
/=1

To see this, note that
B = RA(z")R,

where R is the diagonal matrix with elements Ry, = 6j ¢/7¢. Thus

H 9| = |det(B)| = |det(RA(2*)R)| = | det(A(2*))| det(R?) = |det(A Hrg

(4 64)
as desired. Substituting in (4.48) the expression of Qg y(z*) given in Proposition (3.1),
and after the cancellation due to (4.63), we obtain an upper bound which is almost in
the form we want. The only n-dependent quantity is the eigenvalue 4; of the matrix
B. Taking the limit of n — oo and using the second part of Lemma 4.2, we recover the
assertion (4.62) of the corollary. O

This corollary concludes the first part of the proof of Theorem 1.3. The second part,
namely the construction of a matching lower bound, will be discussed in the next section.

5. LOWER BOUNDS ON CAPACITIES

In this section we will exploit the variational principle form Proposition 2.24 to derive lower
bounds on capacities. Our task is to construct a suitable non-negative unit flow. This will
be done in two steps. First we construct a good flow for the coarse grained Dirichlet form
in the mesoscopic variables and then we use this to construct a flow on the microscopic
variables.

5.1. Mesoscopic lower bound: The strategy. Let A and B be mesoscopic neighborhoods
of two minima m 4 and mp of Fj y, exactly as in the preceding section, and let z* be
the highest critical point of Fjg ;v which lies between m 4 and mp. It would be convenient
to pretend that m4,2*, mp € I'y: In general we should substitute critical points by
their closest approximations on the latter grid, but the proofs will not be sensitive to the
corresponding corrections. Recall that the energy landscape around z* has been described
in Subsection 3.2.

Recall that the mesoscopic capacity, CapR; (A, B), is defined in (4.1). We will construct a
unit flow, fa B, from A to B of the form

faB(z,x') = QB’N(;:)VT(%(:B’JJ )qﬁA,B(az,w'), (5.1)

such that the associated Markov chain, <]P’§(,"B,XA73>, satisfies

Pe? | S gamle)=1+0(1) | =1-o(1). (5.2)

eEXA,B
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In view of the general lower bound (2.22), Eq. (5.2) implies that the mesoscopic capacities
satisfy
-1

Capy (A, B) > El4 3 _Jasle) U g @a-on), 63

e:(w,w’)eX QﬁvN(m)rN(e)

which is the lower bound we want to achieve on the mesoscopic level.

We shall channel all of the flow fa g through a certain (mesoscopic) neighborhood Gy of

*

z* . Namely, our global flow, fa g, in (5.1) will consist of three (matching) parts, fa,f
and g, where f4 will be a flow from A to Gy, f will be a flow through Gy, and fg will
be a flow from OGN to B. We will recover (5.2) as a consequence of the three estimates

Pl (Z ple) =1+ 0(1)) =1—0(1), (5.4)

ecX

whereas,

PR | D dale)=o(1) | =1-0(1) and P | Y ¢ple)=0(1) | =1—0o(1). (5.5)

ecXy ecXp

The construction of f through G will be by far the most difficult part. It will rely crucially
on Lemma 4.4.

5.2. Neighborhood G . We chose again mesoscopic coordinates in such a way that z* =
0. Set p = N~1/2+9 and fix a (small) positive number, v > 0. Define

Gy =Gn(p,v) =Dn(p)N{x : (x,0) € (—vp,vp)}, (5.6)

where © = () is defined in (4.28), and Dy is the same as in (4.5). Note that in view of the
discussion in Section 4, within the region Gy we may work with the modified quantities,

Qs and rg; £ =1,...,n, defined in (4.11) and (4.17).

The boundary Gy of G consists of three disjoint pieces, 0Gy = 0aGNUIBGNUO,G N,
where

0AGN ={x € Gy : (x,0) < —vp} and OpGn ={x €GN : (x,D) > vp}. (5.7)
We choose v in (5.6) to be so small that there exists K > 0, such that
Fsn(x) > Fgn(0) + Kp?, (5.8)
uniformly over the remaining part of the boundary « € 9,Gy.

Let g be the approximately harmonic function defined in (4.36) and (4.51). Proceeding
along the lines of (4.49) and (4.50) we infer that,

oG (L+o) = > Qgn(x) Y. re(Gx+e)—glx))?, (5.9)

zEGNUIAGN telgy ()

where Ig, () = {{ : *+ e, € Gn}. For functions, ¢, on oriented edges, (x,x + e/), of
Dy, we use the notation ¢y(x) = ¢(x,x + e;), and set

Fil)(@) = Qpn (x)regu(a),
dF(gl(2) = ) (Filel(x) — Feldl(z - e)).

(=1

In particular, the left hand side of (4.37) can be written as [dF[V3]|/Qp.n ().
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Let us sum by parts in (5.9). By (5.8) the contribution coming from 0,Gp is negligible
and, consequently, we have, up to a factor of order (1 + o(1)),

Y d@dF v + Y. Y AV (5.10)

zeGN 2€DAGN LelG ()

Furthermore, comparison between the claim of Lemma 4.4 and (4.49) (recall that p? =
N?=1 « N=1/2) shows that the first term above is also negligible with respect to ®y(g).
Hence,

On@ (Lo = > > FlVi=). (5.11)

x€0aGn ZGIGN (:13)

5.3. Flow through Gy. The relation (5.11) is the starting point for our construction of

a unit flow of the form
c

fo(x) = mﬂkﬁ](m) (5.12)

through G. Above ¢ = 1+ o(1) is a normalization constant. Let us fix 0 < vy < v small
enough and define,

(x, D)0
5]
Thus, G?V is a narrow tube along the principal @-direction (Figure 5.3). We want to

construct ¢ in (5.12) such that the following properties holds:

€T —

GY :GNﬁ{m :

< Vop} . (5.13)

P1: fis confined to Gy, it runs from 4Gy to OgGy and it is a unit flow. That is,

Vo € Gy, dF[gl(@) =0 and > > f¢l(m) =1. (5.14)

x€dAGN LelG ()

P2: ¢ is a small distortion of Vg inside G(])V,
(ﬁg(m) = Vgﬁ(:c) (1 + 0(1)) s (5.15)
uniformly in @ € G?V and £ =1,...,n.

P3: The flow f is negligible outside G?V in the following sense: For some x > 0,

1
max max f;(x)

< —. 5.16
zeGN\GY, ! A (>-16)

Once we are able to construct f which satisfies P1-P3 above, the associated Markov chain
<]P’EV,X) obviously satisfies (5.4).

The most natural candidate for ¢ would seem to be Vg. However, since g is not strictly
harmonic, this choice does not satisfies Kirchoff’s law, and we would need to correct this by
adding a (hopefully) small perturbation, which in principle can be constructed recursively.
It turns out, however, to be more convenient to use as a starting choice

(0) 0y — o1 | B0 .
¢Z (m) =y 27'(—N exXp (—5N")/1‘(ZB, ’U)2/2) s (5.17)
which, by (4.41), satisfies

0 ~ ~
0 (@) = (3 + er) = §(@)) (1 +0(p)). (5.18)
uniformly in Gy. Notice that, by (5.12), this choice corresponds to the Markov chain with
transition probabilities
Uy

Zk Dy,

g(z,x+e) = (1+0(1)) = qe(1 + o(1)). (5.19)
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From (3.16) and the decomposition (4.31) we see that

L+00) 0 — Bl v
mﬂwo] - %—NeXp<_T(|’Yl|(w,v)2+(m,Am))>

. Bl N[ N2
- /e (2 (Satme)

In particular, there exists a constant x; > 0 such that
Felp ()
Qn,5(0)

uniformly in z € Gy \ G and [ =1,...,n.

< exp (—X1N26> , (5.20)

Next, by inspection of the proof of Lemma 4.4, we see that there exists x2, such that,
dF[V](2)| < x2p*FelpV) (), (5.21)

uniformly in x € Gy and £ = 1,...,n. Notice that we are relying on the strict uniform (in
n) positivity of the entries vy, as stated in Lemma 4.3

Truncation of Vg, confinement of f and property P1. Let C; be the positive cone

spanned by the axis directions ey, ..., e,. Note that the vector ¥ lies in the interior of C,..
Define (see Figure 5.3)
Gy =int (9pGY —C1) NGN and G = (904G} +Cy) NGy. (5.22)

We assume that the constants v and 1 in the definition of G and, respectively, in the
definition of G?\f are tuned in such a way that G%V N9,.Gy = 0. Let (9 be the restriction

' v

0AGN

FIGURE 3. Narrow tube G% and sets G, and G%

of ¢ to G,
0 (@) = 8" (@)1 e} (5.23)

Now we turn to the construction of the full flow. To this end we start by setting the values
of ¢y on aG N equal to ¢ if £ € Igy(x) and zero otherwise. By (5.11) and the bound
(5.20), the second of the relations in (5.14) is satisfied.
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In order to satisfy Kirchoft’s law inside G, we write ¢ as ¢ = 5(0) + w with u satisfying
the recursion,

Zn:fz[U] Z Folul(z — eg) — dF[pO) (). (5.24)

Since 5(0) =0 on Gy \ GY, we may trivially take u = 0 on Gy \ G% and then solve (5.24)
on G?V using the latter as an insulated boundary condition on 8G?\, NGn.

Interpolation of the flow inside G%. We first solve (5.24) inside G%;. By construction,
ifxe G]lv then & — ey € G]lv U 8AG}V, for every £ = 1,...,n. Accordingly, let us slice G]l\,
into layers LLg as follows: Set

Lo = 0aGY, (5.25)
and, for k=0,1,...,
k
Liyi =2 €Gy : w—e €| JLjforall £{=1,...,np. (5.26)
=0

Since all entries of v are positive, there exists x3 = c3(n) and M < x3/p, such that
M
Gy =JL;. (5.27)
Now define recursively, for each @ € Ly,
Folu)(x) = q Z}" (x —e;) — dF[pO)(x) | , (5.28)

where the probability distribution, qi,...,qn, is defined as in (5.19). Obviously, this
produces a solution of (5.24). The particular choice of the constants gy in (5.19) leads to
a rather miraculous looking cancellation we will encounter below.

Properties P2 and P3. We now prove recursively a bound on u that will imply that
Properties P2 and P3 hold. Let ¢, be constants such that, for all y € L,

|\ Folul(y)| < crp® Fo[V3l(y). (5.29)
Then, for € Ly, 1, we get by construction (5.28) and in view of (5.21) that
| Fe[u] ()] |Fj[ul(x — €))] 2
—= S + X2p (5.30)
Fe[p0](x) ZJ: Tl ¢(0 (z)

o, ~FEENe )
- (WEJ-: AN

By our choice of qﬁ(o) in (5.23),

FildO)(@ —ej) _ B AN o (0@ (e o2
= %GXP{BN Yi(z,v")(ej, Z'))}(1+O(1/N))
=2




However, for each i = 2,...,n,

n

> (e, d)(e;, 87) = 0. (5.32)
j=1

Uy

Therefore, with the choice gy = Y (1+0(1)), we get

Fi[60](z — e,
w3y T Jf) D o1iop), (5.33)
Fol¢O] ()
uniformly in x € G}V and [ = 1,...,n. Thus, the coefficients ¢y, satisfy the recursive bound
k1 <o (1+ O(Pz)) + x20%, (5.34)

with ¢g = 0. Consequently, there exists a constant, ¢, such that
cp < l{:pzcekq’?, (5.35)

and hence, since M < xs3/p, cpr = O(p). As a result, we have constructed u on G}V such
that

[Felul(x)] = O (p) Fe[Vgl(x), (5.36)
uniformly in x € G}V and £ = 1,...,n. In particular, (5.15) holds uniformly in x € G]lv
and hence, by (5.20), P3 is satisfied on G}V \ G?V. Moreover, since by construction ¢ = 0
on Gy \ G?\,, P3 is trivially satisfied in the latter domain. Hence both P2 and P3 hold on
GL U (GN \ G?\,)

It remains to reconstruct u on G?V\G]l\,. Since we have truncated Vg outside G]l\,, Kirchoff’s
equation (5.24), for ¢ € G% \ G, takes the form F[u](x) = 0. Therefore, whatever we
do in order to reconstruct ¢, the total flow through G?V \ G}V equals

1+0(1) r
e 2 2 F@) ey (5.37)

zeGL =1

By (5.36) and (5.20), the latter is of the order O (pl_"e_X1N26). Thus, P3 is established.

5.4. Flows from A to 04Gy and from dpGy to B. Let f be the unit flow through Gy

constructed above. We need to construct a flow

Qp.n(x)rn(z,y)
PN (9)

fA(mv y) = (1 + 0(1)) ¢A(m7 y) (538)

from A to daGn and, respectively, a flow

Qg (x)rn (x, y)
PN (9)
from OgGyn to B, such that (5.5) holds and, of course, such that the concatenation

faB = {fa,f,fB} complies with Kirchoff’s law. We shall work out only the fa-case, the
fB-case is completely analogous.

fB(@,y) = (1+0(1))

¢B(x,y) (5.39)

The expressions for ®n(g) and Qs ny(x) appear on the right-hand sides of (4.48) and
(3.13). For the rest we need only rough bounds: There exists a constant L = L(n), such
that we are able to rewrite (5.38) as,

balz.y) = (A + o)) PN (G)fA(®,Y) _ 1 \imj21 ~N (s n (=) —Fp (@) (5.40)
’ O n(@)ry(z,y)
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This would imply a uniform stretched exponentially small upper bound on ¢4 at points
x which are mesoscopically away from z* in the direction of VFjp x, for example for x
satisfying

Fg’N(Z*) - Fg’N(m) > cN20-1, (5.41)
With the above discussion in mind let us try to construct f4 in such a way that it
charges only bonds (x,y) for which (5.41) is satisfied. Actually we shall do much bet-
ter and give a more or less explicit construction of the part of f4 which flows through
G%;: Namely, with each point * € 9aG% we shall associate a nearest neighbor path
v® = (y*(—ka(x)),...,7*(0)) on I'} such that (5.41) holds for all y € 4* and,

V¥(—ka(z)) € A, v*(0) =2 and m(y*(- +1)) = m(y*(-)) +2/N. (5.42)
The flow from A to 8AG9V will be then defined as

fae)= D Teeysy >, fel@). (5.43)

x€04GY, Lelgy ()

By construction {4 above satisfies the Kirchoff’s law and matches with the flow § through
Gy on daGY;. Strictly speaking, we should also specify how one extends f on the remaining

part aAGN\(‘)AGS]V. But this is irrelevant: Whatever we do the ]P’E\‘,"B—probability of passing
through 0aG N \8AG9V is equal to

S D (@) =o(1). (5.44)
4

:DE@AG'N\QAG(])\,
It remains, therefore, to construct the family of paths {7*} such that (5.41) holds.

Each such path 4* will be constructed as a concatenation v* =4 Un®.

STEP 1 Construction of 4. Pick § such that 6 — 1 < m4 = m(ma) and consider the part
&[0 — 1, z*] of the minimal energy curve as described in (3.30). Let 7 be a nearest neighbor
I -approximation of &[§ — 1, z*], which in addition satisfies m(y(- +1)) = m(%(-)) +2/N.
Since by (3.33) the curve &[d — 1, z*] is coordinate-wise increasing, the Hausdorff distance
between 4 and &[§ — 1,2*] is at most 2\/n/N. Let £ be the first point where v hits
the set Dy (p), and let u“ be the last point where 7 hits A (we assume now that the
neighborhood A is sufficiently large so that u? is well defined). Then # is just the portion

of v from u? to 4.

STEP 2 Construction of . At this stage we assume that the parameter v in (5.6) is so
small that G lies deeply inside Dy(p). In particular, we may assume that

Fyn(xz?) < min {Fpn(z) : & € 0aGY},
and, in view of (3.33), we may also assume that
zr <axy Voed G and L=1,...,n. (5.45)

Therefore, & — x4 has strictly positive entries and, as it now follows from (4.29),
(A'D,w - ar:A) = (v,:c — :cA) > 0.

By construction G(])V is a small tube in the direction of ¥. Accordingly, we may assume
that (Am, T — :BA) > 0 uniformly on 94G%;. But this means that the function

t:00,1] > (Ax? + ta — z4), (@ + tx — z4))

is strictly increasing. Therefore, Fjg y is, up to negligible corrections, increasing on the
straight line segment, [x4, 2] C R” which connects 4 and . Then, our target path n® is
a nearest neighbor I} -approximation of [£4, 2] which runs from “ to « . In view of the
preceeding discussion it is possible to prepare 7 in such a way that Fj y(2*) — Fa n(-) >
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cN2°=1 along n®. Moreover, by (5.45) it is possible to ensure that the total magnetization
is increasing along n®

This concludes the construction of a flow f4 g satisfying 5.3. (]

In the sequel we shall index vertices of v* =4 U n® as,
v = (3% (=ka),...4%(0)). (5.46)
Since,
Fyn(y) < Fpn(2) — e (y — 2% 0)°, (5.47)
for every y lying on the minimal energy curve &[0 — 1,2*] and since the Hessian of Fj

is uniformly bounded on &[0 — 1,2*], we conclude that if 14 is chosen small enough, then
there exists co > 0 such that

Fpn(7%()) < Fpn () —e2 (77() — 2%, 0)°, (5.48)

uniformly in & € 9aGY;. Finally, since the entries of v are uniformly strictly positive, it
follows from (5.48) that,

(N1/2+6 + ]{:)2

- (5.49)

Fg n(v*(=k)) < Fpn(2%) —c3

uniformly in @ € d4 and k € {0,...,ka(x)}.

5.5. Lower bound on cap(A, B) via microscopic flows. Recall that A and B are meso-
scopic neighborhoods of two minima of Fj p, z* is the corresponding saddle point, and
A = Sny[A], B = Sy[B| are the microscopic counterparts of A and B. Let fap =
{fa,f,fB} be the mesoscopic flow from A to B constructed above. In this section we are
going to construct a subordinate microscopic flow, f4 g, from A to B. In the sequel, given
a microscopic bond, b = (0,0”), we use e(b) = (m(c), m(c’)) for its mesoscopic pre-image.
Our subordinate flow will satisfy

fa,B(e Z fa,B(b (5.50)

b:e(b)=e

In fact, we are going to employ a much more stringent notion of subordination on the level
of induced Markov chains: Let us label the realizations of the mesoscopic chain X4 g as
= (x_yg,,...,%e,), in such a way that x_y, € A, x;, € B, and m(zg) = m(z*). If e
is a mesoscopic bond, we write e € x if e = (xy, xyyq1) for some { = —ly, ..., ¢l —1. To
each path, x, of positive probability, we associate a subordinate microscopic unit flow, fZ,
such that

f2(b) > 0 if and only if e(b) € x. (5.51)
Then the total microscopic flow, fa g, can be decomposed as
fap =Y PY” (Xap =) f* (5.52)
x
Evidently, (5.50) is satisfied: By construction,
Z f2() =1 for every  and each e € . (5.53)
b:e(b)=e

On the other hand, fa,B(e) = ZQ]P’;‘}"B (XaB=21x) Ifeca}-

Therefore, (5.52) gives rise to the following decomposition of unity,

PiAB (Xap =) P2 (X = 0)
1 5.5
V@20 Z(b D VTG &9
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where (P2, Y) is the microscopic Markov chain from A to B which is associated to the flow
re.
Consequently, our general lower bound (2.24) implies that

-1

i C fa (@i @) 200, 0041)
cap(4,B) > PP (Xap = x) EZ B\LE ’
o 22: o ) ZZE_;A pp.N(00)pN (00, 0e41)
{p—1 -1

2 e Y faB(@e, 1) fE(00, 0041) (5.55)

fa,B
> Py~ (XaB
2PN (¥ ps.N(o0)pn (00, 0041)

x ZZ—ZA
We need to recover ®p(g) from the latter expression. In view of (5.1), write,

faB(@e o) f®(on0001)  _ 0aB(@ETe41) (5.56)
g N(oe)pN (o0, 00y1) oN(9) '
QN (xe)rn(Te, Toi1) 200, 0011)

wa.N(oe)pn(oe, oes1)

Since we prove lower bounds, we may restrict attention to a subset of good realizations x

of the mesoscopic chain X4 g whose IP)E\‘?'B -probability is close to one. In particular, (5.4)
and (5.5) insure that the first term in the above product is precisely what we need. The
remaining effort, therefore, is to find a judicious choice of fZ such that the second factor in
(5.56) is close to one. To this end we need some additional notation: Given a mesoscopic
trajectory & = (x_g,,...,%¢,), define k = k(¢) as the direction of the increment of ¢-th
jump. That is, ¢+1 = s+ e. On the microscopic level such a transition corresponds to a
flip of a spin from the Ay, slot. Thus, recalling the notation Af(a) ={ie Ay : o(i) = £1},
we have that, if oy € Sy [z and 041 € Sy[xe41], then o1 = 0; 0y for some i € A];(Z)(Jg).
By our choice of transition probabilities, py, and their mesoscopic counterparts, ry, in
(4.2),

TN(:BZu w@—i—l) . _
pn(oe o) ‘Akw)(”f)‘ (1+0(e), (5.57)

uniformly in ¢ and in all pairs of neighbors gy, 0411. Note that the cardinality, ‘A;(Z) (00)|,
is the same for all o, € Sy[x].

For € I'};, define the canonical measure,

1
- {oesSn[a N (0)

o) = . (5.58)
#5.v(7) Qp.n(x)

The second term in (5.56) is equal to

=00, 0011) (1+0(e)). (5.59)
iy (00) 1/ [ A (o)

If the magnetic fields, h, were constant on each set I, then we could chose the flow
f&(op,0041) = MEZN(UZ) -1/ ‘A;(Z)(ag)‘, and consequently we would be done. In the general

case of continuous distribution of h, this is not the case. However, since the fluctuations of
h are bounded by 1/n, we can hope to construct fZ in such a way that the ratio in (5.59)
is kept very close to one.

Construction of fZ. We construct now a Markov chain, PZ, on microscopic trajectories,
Y = {o0,...,00,}, from S[xg] to B, such that oy € Sz, for all £ = 0,...,¢p. The
microscopic flow, fZ is then defined through the identity PZ (b € ¥) = fZ(b).
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The construction of a microscopic flow from A to S[xg] is completely similar (it is just the
reversal of the above) and we will omit it.

We now construct PZ.

STEP 1. Marginal distributions: For each £ =0,...,¢p we use V% to denote the marginal
distribution of o, under PZ. The measures IJZ2 are concentrated on S[zy]. The initial
measure, I/OQ, is just the canonical measure /‘z?N' The measures Vﬁl are then defined
through the recursive equations

Vﬁ1(05+1)= Z Vf(U)QZ(U&UzH). (5.60)
00 €S[x¢]

STEP 2. Transition probabilities. The transition probabilities, q;(og, 0p11), in (5.60) are
defined in the following way: As we have already remarked, all the microscopic jumps are
of the form oy — 9;"0(, for some j € A];(Z)(U), where 9]'-" flips the j-th spin from —1 to 1.
For such a flip define

(00,67 o) G (5.61)
qe(0¢, 05 0¢0) = .
ZieA; (00) e20hi
Then the microscopic flow through an admissible bound, b = (o4, 0¢11), is equal to
T x z VZQ(O'Z)
o, 0041) =P2(b € X) = v, (00)qe(0¢,0041) = ———— (L + O(e)) . (5.62)
‘Ak(z)(aé’)‘
Consequently, the expression in (5.59), and hence the second term in (5.56), is equal to
x
v, (o
# (1+0(e)) = Py(op) (1 + O(e)) . (5.63)
Nﬁ,N(W)

Main result. We claim that there exists a set, 74, B, of good mesoscopic trajectories from
A to B, such that

PiAB (Xap € Tap) =1—o(1), (5.64)
and, uniformly in € 74 B,
Ip—1
EZ | > Wy(o))paB(@eme) | <1+ 0(e). (5.65)
l=—tl4
This will imply that,
cap(A,B) > ®n(9) (1 — O(e)), (5.66)

which is the lower bound necessary to prove Theorem 1.3.

The rest of the Section is devoted to the proof of (5.65). First of all we derive recursive
estimates on W, for a given realization, x, of the mesoscopic chain. After that it will be
obvious how to define 74 B.

5.6. Propagation of errors along microscopic paths. Let x be given. Notice that ,usz
is the product measure,

n
i = Q) 56
j=1
where u?}vj) is the corresponding canonical measure on the mesoscopic slot S](\?) ={-1, 1}Aj.

On the other hand, according to (5.61), the big microscopic chain ¥ splits into a di-
rect product of n small microscopic chains, ¥, ... 2 which independently evolve on

S](\;), . ,S](\?). Thus, k(¢) = k means that the ¢-th step of the mesoscopic chain induces a
step of the k-th small microscopic chain (). Let 71[f],...,7,[¢] be the numbers of steps
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performed by each of the small microscopic chains after ¢ steps of the mesoscopic chain
or, equivalently, after £ steps of the big microscopic chain 3. Then the corrector, Wy, in

(5.63) equals

U (o) = [T (o), (5.68)
j=1

where o) is the projection of gy on S](\?). Therefore we are left with two separate tasks:
On the microscopic level we need to control the propagation of errors along small chains
and, on the mesoscopic level, we need to control the statistics of 71[¢],...,7,[¢]. The latter
task is related to characterizing the set, 74 B, of good mesoscopic trajectories and it is
relegated to Subsection 5.7

Small microscopic chains. It would be convenient to study the propagation of errors
along small microscopic chains in the following slightly more general context: Fix 1 <
M eNand 0 <e< 1. Let g1,...,9m € [-1,1]. Consider spin configurations, { € Sy =
{-1, 1}M, with product weights

w(E) = e 290, (5.69)
As before, let A*(¢) = {i : £(i) = £1}. Define layers of fixed magnetization, Sy/[K] =
{€e 8y : |AT(§)] = K}. Finally, fix dg,d1 € (0,1), such that dy < d1.

Set Koy = [6oM | and r = [ (01 — )M |. We consider a Markov chain, = = {Zy,Z1,...,5,}
on Sy, such that 2, € Sy[Ko+ 7] = Sf; for 7 = 0,1,...,7r. Let pu, be the canonical
measure,

w(é)1 €eST
pr(§) = Z{ M

We take vy = pg as the initial distribution of =y and, following (5.61), we define transition
rates,

(5.70)

e2sgj

¢ (&, 076) = (5.71)

e2€9; ’

> ieA— (&)

We denote by P the law of this Markov chain and let v be the distribution of Z; (which is
concentrated on S7;), that is, v-(§) = P(Z; = ). The propagation of errors along paths
of our chain is then quantified in terms of ¥, (-) = v (-)/p-(-).

Proposition 5.1. For every 7 = 1,...,r and each £ € S}, define

M M
B-(&) =) e lpen-ey and Ay =pr (B(-) =Y ®p, i€ A()).  (5.72)
i=1 =1

Then there exists ¢ = c(do,01) such that the following holds: For any trajectory, { =
(o, - - -, &), of positive probability under P, it holds that

"40 T cet? /M
brlen) < | g | e, (5.73)

forallT=0,1,...,r.
Proof. By construction, g = 1. Let {11 € S]TV;FI. Since v, satisfies the recursion
vii(Gr) = Y vr(05641)0 (0] &, &), (5.74)

JEAT(€741)
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it follows that ¢, satisfies

Z VT(QJ-_ST-i-l)QT(Hj_ST-i-h§T+1)

T,Z)q—+1(f7—+1) =
JEAF (Erpa) ,U"r-i-l(ffr-i-l)
/LT(H'_£7'+1)(]T(0'_£T+1> £T+1) _
= Z - (gj ) 1/}7'(9‘7 S’T‘f‘l)'
JEAT (r41) Brt1lsrl
By our choice of transition probabilities in (5.71),
—1
MT(QJ‘_gT-Fl)QT(Qj_gT-i—la5’7‘-{-1) . Z’T-‘rl Z eZEg’L' (5.75)

T T - ZT
v’ +1(§ +1) 1€A™ (0] &r11)

Recalling that [AT(&,)| = |Af| = KO + 7 does not depend on the particular value of £,

Zr+1 o L — 2¢eg;
T n X0 X g X o

gesyt esyl JEAT(S)
_ L 1 2egj_ 2eg]
= 2 X0 g X |y X4
T gesy, T+ jea-(¢) JEAT

We conclude that the right hand side of (5.75) equals
1 fir (Zie/\f(-)ezegi> 1 A,

= . — ) (5.76)
[ AT (&r41)] ZieAf(ejngH)e%gi AT (&) Br (05 &rv1)
As a result,
AN, p— A (07 6) (5.77)
T+1\S7+1 TA 7 N\ V" a— ~ NPT P ST+1)- .

Iterating the above procedure we arrive to the following conclusion: Consider the set,
D(&741), of all paths, £ = (&, ..., &, &r+1), of positive probability from SY; to S]ijrl to
&r+1. The number, D1 = |D(&7+1)], of such paths does not depend on &, ;. Then, since

Py =1,

1
¢T+1(£T+1) = = (578)
£€’D (rq1) 8= 0
We claim that 4 00 4
s € s—1
= (14 , (5.79)
Bs(gs) < M ) Bs—l(gs—l)
uniformly in all the quantities under consideration. Once (5.79) is verified,
./4 T
(£.) < (O©T/M [ 0 } , (5.80)
vrlr) < D2 | Bo(&)

where for &, € SY,, the relation & ~ ¢, means that there is a path of positive probability
from &, to &.. But all such &y’s differ at most in 27 coordinates. It is then straightforward
to see that if {y ~ & and ¢, ~ &, then

0 < OT/M (5.81)

and (5.73) follows.
It remains to prove (5.79). Let { € S3; and &' = ;¢ € S]SVI_I. Notice, first of all, that

Bo_1(&) — Bs(£) = €299 = 14+ O(e). (5.82)
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Similarly,

M
A=Ay = > &9 {p (i€ A7) — psi € A7)}

M
= 14> (* —1) {pe1(i € A7) — ps(i € A7)}

i=1
By usual local limit results for independent Bernoulli variables,

1
s—1(i €EAT) —pus(i € A7) =0 <M> , (5.83)

uniformlyins=1,...,r—1andi=1,..., M. Hence, 4;_1 — A; = 1+ O(e).
Finally, both A;_; and Bs_1({’) are (uniformly ) O(M), whereas,

M
e =2 (@ =D {ma(i € A7)~ Tgea@p} = OOM.  (5.84)
=1
Hence,
As o As—l -1+ 0(5) o As—l <1 O(E)) 5 85
B Boa(@)—1+0() Ba@)\ M) (5.85)
which is (5.79). -

Back to the big microscopic chain. Going back to (5.68) we infer that the corrector
of the big chain X satisfies the following upper bound: Let ¢ = (09, 01,...) be a trajectory
of ¥ (as sampled from Py). Then, for every £ =0,1,...,¢p — 1,

- n A(] Tj [Z]
il
Uy(op) < exp cez H B(] ] , (5.86)
j=1 j=1 00 )
where M; = |Aj| = p; N
2h; wo(J 2h;
Z e (z e A > , and Bo Z e ]l{ EA;(U(()]»))}. (5.87)
i€ i€A;
Of course, A ,ugoj(\j,) (Bé”). It is enough to control the first order approximation,
17t () (5 ) ()
Agj) ] J { B J ( J )_ 'AO
— ~ exp { —7;[¢] =2 = exp (7;[]Y;) . (5.88)
[Béj)(aéj)) B(J)( (j ))
The variables Y7,...,Y,, are independent once xg is fixed. Thus, in view of our target,

(5.65), we need to derive an upper bound of order (1 + O(e)) for

(p—1

EZ Z exp {cez i ZT] } dA,B(Te, Te41)

Ip—1 2 n
¢ woi) {
Zexp{cez ]\[43 } u@}@”( 7Y >¢AB(-’B£7-’BZ+1) (5.89)
1

7=1

which holds with P4 -probability of order 1 — O(e).
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5.7. Good mesoscopic trajectories. A look at (5.89) reveals what is to be expected from
good mesoscopic trajectories. First of all, we may assume that it passes through the tube
G?V (see (5.13)) of z*. In particular, &y € G?V. Next, by our construction of the mesoscopic
chain IP);‘?'B, and in view of (3.20) and (3.21), the step frequencies, 7;[¢]/¢, are, on average,
proportional to p;. Therefore, there exists a constant, C, such that, up to exponentially
negligible P22 -probabilities,

7i[¢B]

<y (5.90)

holds.

A bound on microscopic moment-generating functions. We will now use the
estimate (5.90) to obtain an upper bound on the product terms in (5.89). Clearly,

B((]j)(aéj)) (14 O(e))M;, uniformly in j and 0’(]). Thus, by (5.88),

V(1+0) = 37 2 (1 =) (oo 15K (0l = D) =T 59D

’iEAj

Now, for any ¢ > 0,

x0(j V. t2 20(7).s
I 557 <eﬂ/])§—2M2r?3§(VBOZEf])’ > (1) L=y | - (5.92)
i€EA;
)s

where Vﬁojs,] is the variance with respect to the tilted conditional measure, 1g, ( ) , defined

through
N fesY )
x0(J), ’BN < 5.93
Hg N (f)_—,ugo()(sya) . (5.93)
However, Mgoj&[j)#(_) is again a conditional product Bernoulli measure on S](\Z), i.e.,
29() = R Byes ‘ Y o(i) = Nao(j) | (5.94)
zEA i€A;
where B
ehi
pie,8) = ————= —. (5.95)

By (5.90) we need to consider only the case s/M; < C;. Evidently, there exists §; > 0,
such that,

01 <min min minp;(e,s) < max max maxp;(e,s) <1—9 5.96
L Jj s<C1Mjiel; pl( ) J  s<C1Mj iel; pl( ) L ( )

On the other hand, since xgy € GN, there exists do > 0, such that

Nxo(j) Ny (j)
0o < min ———* <max ——>> <1 — do. (5.97)
2 ! M, : M, 2
We use the following general covariance bound for product of Bernoulli measures, which
can be derived from local limit results in a straightforward, albeit painful manner.

Lemma 5.2. Let 01 > 0 and 02 > 0 be fixed. Then, there exists a constant, C = C(d1,02) <
0o, such that, for all conditional Bernoulli product measures on Sy, M € N, of the form

M M
QBy, ( - ( > &= 2M0> : (5.98)
=1 k=1
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with Ply---sPM € ((51, 1-— (51) and 2M, € (—M(l — (52),M(1 — (52)), andfor alll1 <k<l<
M, it holds that

C
[Cov (=13 Lig=—1))| < 37 (5.99)

Going back to (5.92) we infer from this that

HM <wm>gexp O(e?) Y Tjﬂ[ff

(5.100)
j=1

uniformly in £ =0,...,¢p.

Statistics of mesoscopic trajectories. (5.89) together with the bound (5.100) suggests

the following notion of goodness of mesoscopic trajectories x:

Definition 5.3. We say that a mesoscopic trajectory & = (x_g,,...,&,) is good, and
write x € T4 B, if it passes through GY,, satisfies (5.90) (and its analog for the reversed
chain) and, in addition, it satisfies

{p—1 n 2
e
E exp ¢ O(e) E % da,B(Te, xer1) <1+ O0(e). (5.101)
=—tl4 j=1 7

By construction (5.65) automatically holds for any € 74 g. Therefore, our target lower
bound (5.66) on microscopic capacities will follow from

Proposition 5.4. Let fa g be the mesoscopic flow constructed in Subsections 5.3 and 5.4,
and let the set of mesoscopic trajectories 74 g be as in Definition 5.3. Then (5.64) holds.

Proof. By (5.49) we may assume that there exists C' > 0 such that, for all £ under consid-
eration and for all £ = —{y,...,¢p — 1,

daB(@e,2011) < OO, (5.102)
In view of (5.2) it is enough to check that

Ip—1 n

2
> | exp O(E)E:M — 1| ¢aB(xr,011) = O(e), (5.103)

, M;
/=0 j=1

with ]P’k,"B -probabilities of order 1—o(1). Fix § > 0 small and split the sum on the left hand
side of (5.103) into two sums corresponding to the terms with ¢ < N1/2-9 and ¢ > N1/2-9

respectively. Clearly,
n

1012
Z " _ o(1), (5.104)
—  M;
7j=1

uniformlyin0 </ < N 1/2=6 On the other hand, from our construction of the mesoscopic
flow fa B, namely from the choice (5.19) of transition rates inside GY%, and from the
property (3.33) of the minimizing curve &(-), it follows that there exists a universal (e-
independent) constant, K < oo, such that

[4
]P’?(,"B max max I il > K ) =o(1). (5.105)
J ¢>N1/2-6 Ep]
Therefore, up to ]P’fA’B -probabilities of order o(l), the inequality
J 208 P 2 &
Z €) K2/ T K*0(e) 5+ (5.106)
7=1
holds uniformly in ¢ > N 1/ 2=0 A comparison with (5.102) yields (5.103). O
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The last proposition leads to the inequality (5.66), which, together the upper bound given
n (4.62), concludes the proof of Theorem 1.3.

6. SHARP ESTIMATES ON THE MEAN HITTING TIMES

In this section we conclude the proof of Theorem 1.2. To do this we will use Equation
(2.12) with A = S[m{] and B = S[M], where m{ is a local minimum of Fj x and M is
the set of minima deeper than mg. The denominator on the right-hand side of (2.12), the
capacity, is controlled by Theorem 1.3. What we want to prove now is that the equilibrium
potential, hg p(0), is close to one in the neighborhood of the starting set A, and so small
elsewhere that the contributions from the sum over ¢ away from the valley containing the
set A can be neglected. Note that this is not generally true but depends on the choice of
sets A and B: the condition that all minima m of Fg x such that Fg y(m) < Fg n(mg)
belong to the target set B is crucial.

In earlier work (see [4]) the standard way to estimate the equilibrium potential ha g(o)
cap(A,0)
cap(B.a)
bound cannot be used here, since the capacities of single points are too small. We will

therefore use another method to cope with this problem.

was to use the renewal inequality ha p(o) < and bounds on capacities. This

6.1. Mean hitting time and equilibrium potential. Let us start by considering a local
minimum mg of the one-dimensional function Fp n, and denote by M the set of minima
m such that Fj n(m) < F@N(mg). We then consider the disjoint subsets A = S[m{] and
B = S[M], and write Eq. (2.12) a

ZVA,B(U)EUTB—CapAB S Y wpn(0)has(o). (6.1)

c€A me[-1,1] c€S[m]

We want to estimate the right-hand side of (6.1). This is expected to be of order Qg n(m),
thus we can readily do away with all contributions where Qg n is much smaller. More
precisely, we choose & > 0 in such a way that, for all N large enough, there is no critical
point z of Fg n with Fg n(2) € [Fgn(mg), Fpn(mg) + 6], and define

Us = {m : F@N(m) < Fg,N(mS) + 5} (6.2)
Denoting by Us the complement of Us, we obviously have

Lemma 6.1.

> Y psn(0)hap(o) < Ne?™0Q4 y(my). (6.3)

melg ceS[m)

The main problem is to control the equilibrium potential hy p(o) for configurations o €
S[Us). To do that, first notice that

Us =Us(my) | Us(m), (6.4)
meM

where Us(m) is the connected component of Us containing m (see Fig. 6.1). Note that it
can happen that Us(m) = Us(m’) for two different minima m,m’ € M.

With this notation we have the following lemma.
Lemma 6.2. There exists a constant, ¢ > 0, such that,
(i) forevery m € M,
Y. upn(0)hap(o) < e PNQpn(mf), (6.5)

o€S[Us(m)]
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AA /.

meo mg z mi

Us(ms) Us(m) Us(m7)

FIGURE 4. Decomposition of the magnetization space [—1, 1]: U is repre-
sented by dotted lines, while the continuous lines correspond Us; =

Us(m§) Upnens Us(m).
and
(i)
ST (o) [1 - hap(0)] < e NQg i (mp). (6.6)
€St (m3)]

The treatment of points (i) and (ii) is completely similar, as both rely on a rough estimate
of the probabilities to leave the starting well before visiting its minimum, and it will be
discussed in the next section.

Assuming Lemma 6.2, we can readily conclude the proof of Theorem 1.2. Indeed, using
(6.5) together with (6.3), we obtain the upper bound

> wan@han@) < >0 Quwlm) +0 (Qan(mp)e ™)
cESN meUs(mf)
N
= Qgn(mg) m(lJrO(l))’ (6.7)

where a(mg) is given in (1.19). On the other hand, using (6.6), we get the corresponding
lower bound

S wan(@hase) > > D psn(e)[1— (1 —hap(o))

cESN meUs(mf) c€S[m]
> Y Qaw(m) — 0(Qan(mp)e M)
meUs(mg)
TN
= Ny —(1 1)). 6.8
From Equation (1.12) for Qg x(m{) and Equation (1.31) for cap(A, B), we finally obtain
ppN(0)ha,B(0)
Buvanms = Z ca B)
oceSN p

= exp (BN (Fﬁ,N(z*) — Fgn(mg)))

2eN | BBy (1~ tanh? (3" + 1)) =1
B\ 1= BE, (1 — tanh® (B(m3 + h))) (14 0(1)), (6.9)
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A ={x:m(x) =mj} B ={x :m(x) =m"}

FIGURE 5. Neighborhoods of m{ and m* in the space I'};. Here we de-
noted by Us(m;) the mesoscopic counterpart of I/ (m))

which proves Theorem 1.2.

6.2. Upper bounds on harmonic functions. We now prove Lemma 6.2 giving a detailed
proof only for (i), the proof of (ii) being completely analogous. This requires, for the first
time in this paper, to get an estimate on the minimizer of the Dirichlet form, the harmonic
function ha (o).

First note that, since ha p(0) = Py(74 < 7p) for all 0 ¢ AU B, the only non zero contri-
butions to the sum in (i) come from those sets Us(m) (at most two) whose corresponding
m is such that there are no minima of M between mg and m. By symmetry we can just
analyze one of these two sets, denoted by Us(m™*), assuming for definiteness that mg < m*.

Note also that since hy p(o) = 0 for all o such that m* < m(c), the problem can be
reduced further on to the set

Uy =Us(m™)N{m:m <m™}. (6.10)

Define the mesoscopic counterpart of U; , namely, for fixed m* € M and n € N, let
m* € I}, be the minimum of Fp () correspondent to m*, and define

Us=Us(m™)={x 'y :m(x) U }. (6.11)

We write the boundary of Us as 0Us = 04U U 0gU g, where 0gUs = OUs N B, and
observe that, for all o € S[Uy]

hA7B(O') = PJ[TA < TB] < ]P’J[TS[QAU(S} < TS[BBU(g}]' (6.12)
Let maxy py < 0(e) < 1, and for § = 0(e) define
n _ *)2 2
ng{meUg:ng%}. (6.13)
(4
(=1

As before, we denote by Gy the boundary of Gy, and write 0Gy = 041Gy LI Gy, where
0pGy = 0Gy N B (see Fig. 6.2).

The strategy to control the equilibrium potential, P, (74 < 7p), consists in estimating the
probabilities Py [T4 < Tg5,c,)uB], for 0 € S[Us \ Gy|, and Py[r519,6,) < 78], for o € Gy,
in order to apply a renewal argument and to get from these estimates a bound on the
probability of the original event.

Proceeding on this line, we state the following:
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Proposition 6.3. For any « € (0, 1), there exists ng € N, such that the inequality

Po(Ta < Ts[paGeluB) < ¢~ (1=a)BN[Fs v (m{5)+3—F, v (m(0))] (6.14)

holds for all o € S[Us \ Gy|, n > ng, and for all N sufficiently large.

Proof of Proposition 6.3: Super-harmonic barrier functions. Throughout the next
computations, ¢, ¢ and ¢’ will denote positive constants which are independent on n but
may depend on 3 and on the distribution of h. The particular value of ¢ and ¢/ may change
from line to line as the discussion progresses.

We first observe that, for all 0 € S[Us \ Gy]

Py (T4 < 759,608l < PolTsi0,us) < TsjaaGe)uBl- (6.15)

The probability in the r.h.s. of (6.15) is the main object of investigation here. The idea
which is beyond the proof of bound (6.14) is quite simple. Suppose that v is a bounded
super-harmonic function defined on S[U; \ Gy, i.e.
(Ly)(0) <0 for all o € S[U; \ Gyl (6.16)
Then (o) is a supermartingale, and T = TS[94U;) /\ TS[94GyluB 18 an integrable stopping
time, so that, by Doob’s optional stopping theorem, Vo € S[U;s \ Gy],
Eotp(or) < 9(0). (6.17)
On the other hand,

Es¢p(or) > o,eg'[laii}Ua]¢(0/)PJ(TS[8AU5] < TS[94Gy)UB)> (6.18)

and hence

(6.19)

Y(o)
P, < '
(TS[ﬁAUé] < TS[aAG@}UB) - J’EISn[SZ{Ua} Y(o’)

The problem is to find a super-harmonic function in order to get a suitable bound in (6.19).

Proposition 6.4. For any o € (0, 1), there exists ng € N such that the function (o) =
¢(m(o)), with ¢ : R™ — R defined as

p(x) = L VBNFs N (@), (6.20)
is super-harmonic in S[Us \ Gy| for all n > ng and N sufficiently large.
The proof of Proposition 6.4 will involve computations with differences of the functions

Fs n. We therefore first collect some elementary properties that we will use later. First
we need some control on the second derivative of this function. From (3.14) we infer that

PFyn() 2 (

1
= -1+ —1I . 21
Rl G ) (621

Thus all the potential problems come from the function Iy .
Lemma 6.5. Forany y € (—1,1),
tanh™' (y) — Be < Iy ,(y) < tanh™'(y) + fe, (6.22)

In particular, as y — +1, I}y ,(y) — £oc.

Proof. Recall that I} ,(y) = Uy (y). Set Iyy ,(y) = t. Then
1

Y= Z tanh(t + ﬁﬁz) (6.23)
‘Ad 1€Ay
and hence
tanh(t — fe) <y < tanh(t + fBe), (6.24)
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or, equivalently, (6.22), which proves the lemma. O

Lemma 6.6. For any y € (—1,1) we have that
1

0 <INy < : (6.25)
’ L= (ly +eB(1 - y?)?
In particular, forall y € [-1+v,1 — v], with v € (0,1/2),
1
< < —— < .
0<In,y) < W12+ 00) C, (6.26)
and, forally € (-1, -1+ v]U [l —1,1),
1
0< Ip(y) € -—- (6.27)
N,Z(y) 1— ’y‘

Proof. We consider only the case y > 0, the case y < 0 is completely analogous. Using
the relation I ,(z) = (UJ/\/I’Z([EVJ(TL’))) and setting t, = Iy ,(y)arctanh(y), and using
Lemma 6.5, we obtain

Ie(y) : L
[Ag(@)] Zz’eAl(w)(l — tanh®(Bh; + t¢))
1
<
= 1 —tanh®(ef + )
1

< T > —
1 — tanh*(tanh™ " (y) + 2¢03)

< 1

- ! -1 2
1 — (y + 2¢f tanh/(tanh ' (y)))

1

- 6.28
T (6:26)

where we used that tanh is monotone increasing. The remainder of the proof is elementary
algebra. O

Let us define, for all m such that x,/p; € [-1,1 — 2/N],
gg(a:) = % (FNﬂ(:IZ + eg) — FNﬁ(a:)) . (6.29)
Lemma 6.6 has the following corollary.

Corollary 6.7. 1) Ifxe/pr € [-1+v,1 —v], with v > 0, then

gg(ac) = —x — f_lg + %I],\M(mg/pg) + O(l/N) (6.30)
(i) If xe/pe € -1, -1+ v]U[l —v,1 —2/N], then
gg(a:) = —x — f_lg + %IEV,Z(mZ/pZ) + O(l), (6.31)

where O(1) is independent of N,n, and v.
(iii) If x¢/pe € [-1+ v,1 — v], with v > 0, then there exists ¢ < oo, independent of N,

such that .
|9e(2) = ge(x — eo)] < - (6.32)
(v) If x¢/pe € [-1,—-1+v]U[1l —v,1 —2/N], then
lge(x) — ge(x — eg)] < C, (6.33)

where C'is a numerical constant independent of N, n, and v.
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The proof of this corollary is elementary and will not be detailed.

The usefulness of (ii) results from the fact that I ,| is large on that domain. More
precisely, we have the following lemma.

Lemma 6.8. There exists v > 0, independent of N and n, such that, if x;/py > 1 — v, then
ge() is strictly increasing in xy and tends to +oc as xy/p; T +1; similarly if xy/ps < —1+v,
then gy(x) is strictly decreasing in x; and tends to —oo as x;/py | —1.

Proof. Combine (ii) of Corollary 6.7 with Lemma 6.5 and note that h, is bounded by
hypothesis. O
The next step towards the proof of Proposition 6.4 is the following lemma.

Lemma 6.9. Let m € U; \ Gy and denote by S(m) = {{ : my/py # 1}. Then there exists a
constant ¢ = ¢(3, h) > 0, independent of N and n, such that the following holds. If

62
o o< (6.34)
86
¢S (m)
then
2 €2
Y. pelg(m)’ = e, (6.35)
teS(m)

Proof. From the relation I}y ,(z) = Up (), we get that, for all £ € S(m),

my = % Z tanh (8 (ge(m)(1 +o(1)) + m+ hy)) . (6.36)
ieAy

Here o(1) tends to zero as N — oc.

We are concerned about small g,(m). Subtracting 4 >, A, tanh (B (m + h;)) on both sides
of (6.36) and expanding the right-hand side to first order in g,(m), and then summing
over { € S(m) , we obtain

N
m — %Ztamh (B(m+ hy)) — Z my — % Ztanh (B(m + hi))
i=1

0¢5(m) i€,
1/2
<c Y pelgem) <ec| D pgi(m)| (6.37)
£eS(m) ¢eS(m)

Notice that the function m — m — + sz\il tanh (8 (m + h;)) has, by (1.20), non-zero
derivative at m*. Moreover, by construction, m* is the only zero of this function in ¢/ (m*).
From this observations, together with (6.37), we conclude that

n 1/2
(Zpegﬂm)) >dm-—m -2 Y o (6.38)
=1

0¢S(m)

for some constant ¢ < co. Here we used the triangle inequality and the fact that
mp— % >iea, tanh (B(m + hi))‘ < 2pg. Under the hypothesis of the lemma, this gives

the desired bound if [m — m*| > ¢’¢/+/0 for some constant ¢ < co. On the other hand,
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we can write, for ¢ € S(m),

iy —mi| < %Z\tanh(ﬁ(gg(m)(l—i-o(l))+m+h,~))—tanh(ﬁ(m+hi))]

1€EAy
1 *
t 5 Z [tanh (3 (m + hy)) — tanh (8 (m" + hy))|
1€EAy
< cpelm —m*| + ¢ pelge(m)]. (6.39)

Hence we get the bound

1/2 1/2
_ *)2
> pegi(m) > o Y mem ) -
LeS(m) LeS(m,)
. 1/2
= C Z (’rnl;i[mﬁ _ Z W) _ c,\m _ m*
(=1 0¢S(m)
1/2
> c|e?/0—4 Z pg) —dm —m¥|
¢S (m)
> cs/\/%—c'|m—m*| (6.40)
where in the last line we just used that m ¢ Gy. The inequalities (6.38) and (6.40) now
yield (6.35), concluding the proof of the lemma. O

Proof of Proposition 6.4. Let o € S[Us \ Gy| and set * = m(0), so that, for ¢ as in Propo-
sition 6.4, L1)(0) = L¢(x). Let o* be the configuration obtained from o after a spin-flip at
1, and introduce the notation

Lo(z) =Y Lig(), (6.41)
/=1
where
Lig(x) = D pnlo,0))g@+e) @)+ Y pn(o,0")p(@—er)—o(@)]. (6.42)
i€A, (x) ieA?(w)

Notice that when x,/p, = +1, then Af(m) = () and the summation over Azt(a:) in (6.42)
disappears.

We define the probabilities
0= > pnloal), (6.43)
i€ ()
and observe that they are uniformly close to the mesoscopic rates defined in (4.2), namely
po
e €< Wiil:e@ < e, (6.44)
for some ¢ > 0 and € = 1/n. Notice also that
cpp <PT,+P7, < cpe. (6.45)
With the above notation and using the convention 0/0 = 0, we get
Leg(x) = ¢(x)P] , exp (26(1 — a)ge(x)) — 1]
+¢(x)P? , [exp (=28(1 — a)ge(x — er)) — 1]

= ¢(z) (1{15»1,22?5,2}]?1,5(;;(5'3) + H{PZYZ>P1YZ}]P):£GZ_(CB)) (6.46)
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where we introduced the functions
IEDO'
G () = exp (26(1 — a)gu(@)) — 1+ 5= (exp (~20(1 — a)gu(w — ) = 1) (6:47)

G7 (@) = exp (~28(1 — a)ge(@ — er) — 1+ 5= (exp (26(1 — a)gu(®)) = 1) (6.48)

If xy/pe = £1, the local generator takes the simpler form

| d(@)P7 ,fexp (—26(1 — a)ge(x —er)) — 1] ifxe/pe=1
Legl) = { 6(@)P, lexp (26(1 - a)ge(@)) — 1 ifa /=1 (049
From Lemma 6.8 and inequalities (6.45), it follows that, for all ¢ such that x,/p, = +1,
Lip(x) < —(1+0(1))ped(). (6.50)

Let us now return to the case when « is not a boundary point. By the detailed balance
conditions, it holds that

ry(x,x + eg) = exp (—20g¢(x))rn(x + e, ) (6.51)
ry(x,x —ep) = exp (2Bg¢e(x — ep))rn(x — ep, ), )
which implies, together with (6.44),
exp (—28ge(x) — ce) < JP’S’E < exp (—28g.(x) + cg)

. (6.52)
exp (20ge(x — ep) — ce) < Pi'z < exp (28g¢(x — e¢) + ce)

2]
+9

=

Inserting the last bounds in (6.47) and (6.48), and with some computations, we obtain

GHa) < (exp (2801 — a)ge(@) — 1) (1 — exp (2Bage(@ —ef) Fee))  (6.53)
+exp (28g¢(x — e¢) F ce) (exp2B(1 — a) (ge(x) — ge(x — €r)) — 1)
(exp (~20(1 — a)gel — e)) — 1) (1 — exp (~26agi(w) F ) (6.54)
+exp (—28g¢(x) F ce) (exp26(1 — @) (ge(x) — ge(x — €7)) — 1)
where F = —sign (g:(z)) = —sign (g(@ — e)).
For all ¢ such that x,/p; € [-1 + v,1 — v], we can use (6.32) to get

GF (@) < (exp (28(1 — a)ge(@)) — 1) (1 — exp (208gs(@) F e2) +¢/N  (6.55)

G; (@) < (exp (—28(1 — a)ge(@)) — 1) (1 — exp (—20g,(x) F c2)) + ¢/N. (6.56)
The right hand sides of both (6.55) and (6.56) are negative if and only if |g,| > % Let
us define the index sets

IN

Gy (z)

S< = {l:zy/pr€[-1+v,1—v]|g(x) <5t (6.57)
S = {l:zy/pr€[-1+v,1 -] |g(x)| > St (6.58)
If ¢ € S<, we get immediately that
max{G; (z), G, (z)} < <2, (6.59)
and thus, from (6.46) and (6.45),
Lyp(z) < %Engqﬁ(w). (6.60)
To control the r.h.s. of (6.55) and (6.56) when ¢ € S~, set
Y¢ = min {ﬂ\gg(w)\,%} < Blge(x)]. (6.61)
If go(x) > 55, then
exp (20(1 —a)ge(x)) —1 > exp(2(1 —a)y)) —1>2(1 — a)ye (6.62)
and
1 —exp (2Bagi(x) —ce) < 1—exp(ayy) < —ayy, (6.63)
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so that the product in the r.h.s. of (6.55) is bounded from above by —2(1 — a)ay?. On the
other hand, if g¢(x) < —£5,
exp (26(1 —a)g(x)) =1 < exp(—2(1—a)y) —1<-(1—-a)ye  (6.64)
and
1 —exp (2Bage(x) +ce) > 1—exp(—ayp) > %ayg, (6.65)

and the product in the r.h.s. of (6.55) is bounded from above by — % (1—a)ay?. Altogether,
this proves that, for all / € S~,

Gy (x) < —3(1 - a)ayy, (6.66)
and with a similar computation, that

G, (z) < —3(1 - a)ay;. (6.67)
If ¢ € S~, then we have

Lig(x) < —cappy?o(x). (6.68)

It remains to control the case when xy/py € (—1,—1 + v]U [l — v,1). From Lemma 6.8 it
follows that, while the positive contribution to G} (x) and G, () remains bounded by a
constant, the negative contribution becomes very large as soon as v is small enough. More
explicitly, for all » small enough, we have

G (@) < —(exp(£C") — 1) + exp(£C") (exp(26(1 — a)e) — 1) < —(1+o(1))

G, (z) < —(1 — exp(FC"))? + exp(FC") (exp(2B(1 — a)c) — 1) < —(1 4+ o(1))
where C’ and C” are positive constants tending to +oo as v | 0, and the sign =+ is equal to
the sign of x,. Together with (6.45) and (6.46), we finally get

Lig(a) < —(1+o(1))pro(@). (6.70)
From (6.50), (6.60), (6.68) and (6.70), it turns out that the positive contribution to the

generator Lo(xz) = >, Ly¢(x), comes at most from the indexes ¢ € S<, and can be
estimated by

(6.69)

%52 Z e < %52. (6.71)
LeS<

Now we distinguish two cases according to whether the hypothesis of Lemma 6.9 are
satisfied or not.

Case 1: > ygg(z) PL > g—z. By (6.50), we get

> Lig(w)
=1

IN

Y Lep(a) + ) Led(x) (6.72)
£25(ax) £eS<
2

< ——(1+o()e(@) + £,

which is negative as desired if 6 is small enough, that is, with our choice, if ¢ is small
enough.

Case 2: 3 yog(z) Pr < g—z. In this case, the assertion of Lemma 6.9 holds.

By (6.50), (6.68), and (6.70), we have that, for all ¢ € S(x) \ L=,

Lyg(x) < —peg(@) min{cay}, 1} < —capeyid(), (6.73)
where the last inequality holds for a < 4/c. Let us write the generator as
Lo(@) < > Lglx)+ > Lep(x). (6.74)
LeS(x)\S< LeS<
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The first sum in (6.74) is bounded from above by
—cag(x) > pw; < —cag(x) Y pemin{Fg;(x);}}

LeS(x)\S< Les(x)\S<
< —cap(z)min{ 7 DY pgi(x)ii . (6.75)
teS(z)\S<
But from Lemma 6.9, we know that, for all z € U \ Gy,
2 / 2
2 € C 2 n€
>cet - 2> )
Z pegi(x) > ¢ 7 oz2€ > ¢ 7 (6.76)

teS(x)\S<

where ¢” is a positive constant provided that o > cf. Taking n large enough, it holds that

2 2
min { (2 Z peg? (x); 15 > min {c"%; %} = c”%, (6.77)
tes(m)\S<
and then, from (6.71) and (6.75), we get
Lp(o) < —2(1 — a)p(z)("abf™ — da™t). (6.78)

By our choice of ¢ and taking n large enough, the condition ¢’af~' —ca™! > 0 < a > cf
is satisfied for any « € (0,1). Hence, for such n’s and for N large enough, we get that
Li(o) = Lo(x) < 0 concluding the proof of Proposition 6.4. O

Substituting the expression of the super-harmonic function (6.20) in (6.19), and together
with (6.15), we obtain that, for all o € S[Ujs \ Gy,

Polra < TsppsGeuBl < J/eg}gi(w]e_(l_o‘)ﬁN[Fﬁ’N(m("))_FﬁvN(m("))]

< e—(l—a)ﬁN[Fﬁ,N(ma)+5—Fﬁ’N(m(o))], (6.79)

where the last inequality follows from the definition of Uy together with the bounds in
(3.32). This concludes the proof of Proposition 6.3.

Renewal estimates on escape probabilities. Let us now come back to the proof of
Lemma 6.2. An easy consequence of Eq. (6.14) is that, for all o € S[04GYy],

—(1=)BN (Fp n(m§)+0)  ax e(l=)BNEsN(m) (6.80)

P,(ta < T, <e
0( A S[aAGQ}UB) — medaGy

while obviously Py (74 < Tsj9,G,up) = 0 for all 0 € S[Gy \ daGy]. To control the r.h.s.
of (6.80), we need the following lemma:

Lemma 6.10. There exists a constant ¢ < oo, independent of n, such that, for all m € Gy,

Fg n(m) < Fg y(m™) + ce. (6.81)
Proof. Fix m € Gy and set m — m* = v. Notice that, from the definition of Gy,

n *\2
my —m
ol < g - P <2 (6.82)
(=1

Using Taylor’s formula, we have

1 1
Fg n(m) = Fg n(m™) + 3 (v, A(m™)v) + EDgFﬁvN(az)'v?’, (6.83)
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where A(m*) is the positive-definite matrix described in Sect. 3.2 (see Eq. (3.16)) and
x is a suitable element of the ball around m*. From the explicit representation of the
eigenvalues of A(m*), we see that ||[A(m*)|| < ce~!, and hence

(v, A(m*)v) < ce w3 < ce. (6.84)

The remainder is given in explicit form as

3
D*Fyn(zpv® = > —(z)v] = IN (e/ po)v} (6.85)

where ty = I}y ,(x¢/p¢). Thus
"1
|D?Fg y (z)v?| < CZ p—%vf < de Yw|3 < e, (6.86)
=1
where we used that |v,/p;| < 1. Hence, for some ¢ < oo, independent of n,
Fgn(m) < Fgn(m®)+ce (6.87)

which proves the lemma. O

Inserting the result of Lemma 6.10 into (6.80), and recalling that Fj y(m*) = Fg n(m*),
we get that for all o € S[04Gy]

Py (74 < Tspuayup) < € mIN(Fon(m)+o-—Fon(m*)—cs), (6.88)

The last needed ingredient in order to get a suitable estimate on P, (74 < 75), is stated in
the following lemma.

Lemma 6.11. For any o > 0, there exists ng € N, such that, for all n > ng, for all
o € S§[04Gy), and for all N large enough,

P, (1B < TS[aAGQ}) > e NPz, (6.89)

Proof. Fix o € S[04Gy] and set m(0) = m(c). As pointed out in the proof of Lemma 6.10,
every m(0) € 04Gy can be written in the form m(0) = m* + v, with v € I'}; such that
[v]ls < =. Then, let m = (m(0), m(1),...,m(|v|;N) = m*) be a nearest neighbor path
in I}, from m(0) to m*, of length N||v||;, with the following property: Denoting by ¢; the
unique index in {1,...,n} such that my, (t) # my, (t — 1), it holds that

my,(t) = my,(t — 1) + 25, VE>1, (6.90)
where we define
s¢ = sign (mj, — my, (t — 1)). (6.91)

Note that, by property (6.90), m(t) € Gy for all ¢ > 0. Thus, all microscopic paths,
(o(t))t>0, such that 0(0) = o and m(o(t)) = m(t), for all ¢ > 1, are contained in the event
{78 < Tsja.c,)}- Thus we get that
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Po(TB <7sipacs) = Po(m(o(t)) =m(t), vt =1,....[[v[1N)

o)l N

- H Py ( m(t)|m(o(t—1)) = m(t — 1))
nvnlN ,

= I D pnle(t-1),0'(t-1)). (6.92)
t=1 ZGAét

Note that AZ is the set of sites in which a spin-flip corresponds to a step from m(¢ — 1) to
m(t).

The sum of the probabilities in the r.h.s. of (6.92) corresponds to the quantity ]P’S tzt U de-

fined in (6.43). From the inequalities (6.44) and (4.15), it follows that, for some constant
¢ > 0 depending on (3 and on the distribution of the field,

P74 > | A3 (m(t — 1)|/N > ¢| AT (m*)|/N, (6.93)

st,lt

where the second inequality follows by our choice of the path m. Now, since |Azt (m*)|/N =]
% (pe £ mj), using the expression (3.20) for my, and continuing from (6.93), we obtain

PG = pu (6.94)
Inserting the last inequality in (6.92), and using that, by definition of the path m, the
number of steps corresponding to a spin-flip in A, is equal to |v,|N, for all ¢ = {1,...,n}
, we get
l[vlli v

Po(TB < TsgaGy) = H  pe,

n
/ N
= eHleNln(c) H plé’vll
/=1

NVEI() ~N 7, v n(1/py)
6N\/EIH(CI)6—NZZL:1 ’Ul/\/ﬁl

1/2 _
Nen(e) ;=N (i, v3/pe) "1/

o N(5-vEme). (6.95)

(A\VARAYS

v

Y

where in the third line we used the inequality ||v; < e~ /?||v||2 < v/, and in the last line
we used that m(0) = m* + v € Gy. By our choice of § > ¢, there exists ny € N such
that, for all n > ng, \/g —+/eln(d’) < B65. For such n’s, inequality (6.95) yields the bound
(6.89) and concludes the proof of the Lemma. O

We finally state the following proposition:

Proposition 6.12. For all 0 € S[Uj] it holds that

P,(t4 < 7B) < e_ﬁN((1_0‘)(Fﬁ'N(mS)M_Fﬁ'N(m*)_C&)_62)(1 +0(1)) (6.96)
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Proof. Let us first consider a configuration o € S[04Gy]. Then it holds

Po(ra <78) < Po(ta<Tspagoun)+ . Polta <78, 7 < Tsp.gyuavs)
nNES[04 Gy)

< P, < P < P, <
< Po(ra TS[E)AGQ}UB)""??E};IF&XGQ} n(Ta < 7B)Ps(Ts0,G,) < TB)

< Pylra < P < 1— e BNOz)
< Po(7a < Tsppacy)uB) + e n(TA < TB) ( e )

(6.97)
where in the second line we applied the Markov property, and in the last line we insert

the result (6.12). Taking the maximum over o € S[04Gy| on both sides of (6.97), and
rearranging the summation, we get

P, (14 < < P, (74 < NGz
Ueg[lg;\XGe} (TA TB) - UGS%}&\aéeuB} (TA TS[ﬁAGe])e
< e BN((A=a)(Fa,n(mg)+3-Fp,n(m7)=cs)=02) (g 98)

where in the last line we used the bound (6.88). This concludes the proof of (6.96) for
ces [8AG9].

Then, let us consider o € S[Us \ 04Gy]. As before, it holds

Po(ta <78) < Po(ta <Tspucue) + . Pol7a <78, Ty < T5/92GyJuauB)

nES[04Gy)
< P, < P < P, <
< Py(ra TS[aAG@]uB)JrnEg[la&;XGG} n(Ta < 78)Ps(Ts[9,6,) < TB)
< P, < P < , 6.99
< Py(ra TS[aAG@]uB)JrnEg[la&;XGG} n(Ta < 7B) (6.99)

where Py (74 < Tspg,,un) is 0 for all 0 € S[Gy \ 094Gy, and exponentially small in N
for all o € S[Us \ Gy] (due to Proposition 6.3). Inserting the bound (6.98) in the last
equation, provides Eq. (6.96) for o € S[Us \ 04Gy| and concludes the proof. O

The proof of formula (6.5) now follows straightforwardly. From (6.96), we get

> upn(0)Ps(ra < 7B)
o€S[Us(m*)]

Se—ﬁN[(l—a)(Fﬁ,N(mS)+5—Fﬁ,N(m*)—C€)—52] Z Qﬁ,N(m)

meUj;
:Q@N(mg)eﬁN[aFﬁ,N(mé)—(l—a)@—Fﬁ,N(m*)—06)+52] Z e BNFp,n(m)
meUs
< Qg (my) NN [0 Fo.x () —F (™)) ~(1—0) (5—e2) 2] (6.100)

where in the second inequality we used the expression (1.9) for Qg n(m{), while in the

last line we applied the bound Fp ny(m) < Fg n(m*) = Fg y(m*), and then bounded the
cardinality of Ugs by N™. Finally, choosing a small enough, namely
0 —ce — 52

a< , (6.101)
FB,N(ma) — F@N(m*) + 0 —ce

we can easily ensure that (6.100) implies (6.5).

In exactly the same way one proves (6.6). This concludes the proof of Lemma 6.2 and thus
of Theorem 1.2.
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