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1. Introduction 

We consider a mathematical model of polymerization which in the language of chemistry 
is called emulsion polymerization. Roughly speaking, polymerization is the formation 
of huge molecules (-the molecules of the polymer-) from smaller ones (-the molecules 
of the monomer). In the case of emulsion polymerization this process takes place in an 
aqueous medium in the presence of appropriate auxiliary substances. As an example we 
mention that the well-known polymer polyvinyl chloride (PVC) can be produced in this 
way starting from the monomer vinyl chloride. 
There are different possibilities to operate a polymerization reactor. One distinguishes 
batch (or discontinuous) and continuous reactors. The batch reactor is one where all 
ingredients are charged at the beginning of the polymerization and the reaction proceeds 
over a certain interval of time. Continuous reactors run with a continuous inflow and out-
flow of material. Mixed types of reactor operating are possible, e.g. the semibatch mode 
where part of the ingredients are added during the polymerization process. A general 
assumption is that the content of the reaction vessel is well stirred so that local inhomo-
geneities can be neglected. 
The mathematical model presented here was proposed in the seventies by Min and Ray 
([12], [13], [14]). It has been modified and extended in the research group of Dr. Tauer 
([20], [21] , [22]) at the (former) Institute of Polymer Chemistry (Teltow-Seehof). At the 
(former) Karl·Weierstrass Institute of Mathematics (Berlin) the model has been investi-
gated from the mathematical and numerical point of view during several years ([4], [5], 
[6], [7]). 

2. The mathematical model 
To describe the polymerization process we introduce a particle size distribution function 
f = f ( t, v) depending on time t ;::: 0 and a volume variable v ;::: 0 . The ·physical 
interpretation of f may be given in a heuristic way as follows: The differential f ( t, v )dv 
is the average number of particles (or proportional to ·the average number of particles) 
whose volumes at time t belong to the infinitesimal volume interval ( v, v + dv) . That 
is, we make the usual assumption of statistical physics that the particle number has a 
density - which is justified by the large number of particles. 

The time evolution of f is is influenced by chemical and physical processes like par-
ticle growth, particle coalescence, particle nucleation, the effect of additional substances 
(e.g. catalyzers and emulsifiers) and the reaction conditions. For the more chemical and 
physical side of the quite complicated interplay of all these factors we refer to the papers 
mentioned in the introduction. 

Important quantities to characterize the particle size distribution function f are the 
moments Ma. of order a , defined by 
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Especially, we interpret 

Mo(!) ( t) {" f ( t, v) dv as particle number , 

M1 (!) ( t) - fo 00 

v f ( t, v) dv as mean particle volume , 

M2; 3 (f)(t) fo 00 

v2! 3 f(t, v) dv as mean particle surface . 

For the comparison with experiments the essential quantity is 

lav wf(t, w) dw 
Q(t, V) = laooo , 

wf(t,w) dw 
0 

i.e. the relative contribution of particles of volume :::; v to the mean particle volume at 
time t. 

The model equation is formally a first order partial differential equation for f of the 
form 

8ft +a~!) +a(! - g) = K(f), (2.1) 

which we consider on t > 0 , v > 0 with the initial condition 

f(O,v) = fo(v), v ~ 0, (2.2) 

and the boundary condition 
f(t, 0) = 0, t ~ 0. (2.3) 

The initial value / 0 is a given nonnegative function satisfying the compatibility condition 
/ 0 (0) = 0 ; the boundary condition (2.3) simply says that there are no particles of volume 
zero. By physical reasons one has to claim f(t, v) ~ 0 for v ~ 0 , t ~ 0 ; and the 
asymptotic behaviour f(t, v) 4' 0 for v 4' oo . 
The main constituents in the model equation are 

r = r( v, f) the particle growth rate, 
K (!) the coalescence term, 
g = g( v) the given seed particle number distribution function. 

The constant a is proportional to the reciprocal of the mean residence time. 

The particle growth rate r = r( v, f) is an expression of the form 

r(v, f) = ro(Mo(f), Mi(f))(b1v + b2v413
)

1l2 (2.4) 

where b1 , b2 are given nonnegative constants and r0 is a given nonnegative function. 
This is an empirical formula describing particle growth by chemical reactions between 
monomer and polymer particles. 

The coalescence term is defined by 

1 r . roo K(f)(v) = 2 Jo k(v - w,w)f(v -w)f(w)dw - J(v) Jo k(v,w)f(w)dw (2.5) 
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with a given coalescence kernel k . Following the proposals in [12], [13], [14], [20], [21] 
we take 

k = k(v,w) = G(vwt1l3
, v,w > 0, (2.6) 

i.e., a symmetric, positive and weakly singular (integrable) kernel with a given coalescence 
constant G. 

All these terms show that the model (in its simplest form) is a nonlocal first- order partial 
integro-differential equation. 

3. Discussion of the model 

To see that the model works properly it is instructive to consider several special cases. 
Putting the constant a= 0 we have the case of a batch reactor described by 

A simple calculation shows that the coalescence term K(f) satisfies 

f K(f)(v)dv 

fo 00 

vK(f)(v)dv 

1 2 - 2[M-1;3(/)] , 

0. 

(3.1) 

Using this and assuming J nonnegative, we obtain from (3.1) by a simple calculation, 
taking into account the boundary condition (2.3) and the asymptotics as v--+ .oo : 

. d 
Mo(t) = dt Mo(t) ~ 0, 

This is just the expected behaviour - the particle number decreases, the average par-
ticle volume increases with growing time. Reducing the model further by omitting the 
coalescence term we obtain with the simplified growth rate 

r = ro(Mo(f), Mi(!)) 

the model equation 

(3.2) 

In this case the particle number is conserved, i.e., with appropriate scaling we have 

Mo(f)(t) = Mo(fo) = 1. 

With the initial condition J (0, v) = Jo( v) , continued formally by Jo( v) = 0 for v < 0 , 
we can solve (3.2) by the method of characteristics. We get 

J(t,v) = Jo(v - (M1(t) -1)), 
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where Mi is the solution of the initial value problem 

Mi = ro(l, Mi), Mi (0) = 1. 

Another reduced version of the model equation we obtain by putting r = 0 , i.e. the case 
of pure coalescence. Then (3.1) becomes 

8ft =K(f), f(O,v)=fo(v). (3.3) 

This is the well-known integro-differential equation of coagulation which describes a lot 
of processes where particles are lumped together (beyond colloid chemistry e.g. in biology, 
meteorology). Formal integration gives 

Mo(t) ~ o, Mi(t) = o, 
i.e. the number of particles decr~ases and the mean particle volume Mi is conserved. 
Equation (3.3) has been considered e.g. in [1], [2], [8], [9], [10], [11 J, [15], [17], [18], 
[19].This equation allows to clarify the role of the coalescence term 

1 !av !aoo K(f)(v) = - k(v -w,w)f(v -w)f(w)dw - J(v) k(v,w)f(w)dw. 
2 0 0 

Speaking heuristically, the left hand side of (3.3) is the time rate of change of the number 
of particles of volume v . The right hand side says that particles of volume v are formed 
from particles of volume w < v and of volume v - w in a symmetric manner (which 
explains the factor 1/2 ), and they disappear if particles of volume v agglomerate with 
particles of volume w > 0 , where the intensity of agglomeration is characterized by the 
coalescence kernel k = k(v,w) . This interpretation of the balance equation (3.3) for 
pure coalescence goes back to Smoluchowski (see e.g. [16]). 

4. Model extensions 

For the actual calculations the simplified model described above has to be extended. We 
discuss two variants, without going too deep into the quite involved chemical details. The 
main additional ingredient is the so called nucleation term which takes into account the 
more physical process of nucleation. By nucleation appear particles of a definite size by 
transformation of water soluble oligomers into particles. 

Variant 1. The model equation has the form 

~~ + 8(r~2f) +a(! - g) = K(f) + N(f; v) 

where N (f; v) is denotes the nucleation term. This term depends on the 
initiator concentration I , 
emulsifier concentration E , 
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water volume fraction V, 
which are functions of the time. The nucleation term has the form 

N(f; v) = c1(l - I(t)) V(t) (1 + E(t)) 8(v - v0 ) 
C2 

where 8( v - vo) denotes Dirac's Delta-distribution with support v0 • 

The initiator is a substance which furnishes the radicals necessary to initiate the polymer-
ization reaction, the emulsifier is a substance necessary to stabilize the growing polymer 
particles. The initiator concentration is assumed to satisfy the simple differential equation 

which gives 

The total emulsifier concentration S = S(t) is given by 

S(t) = So(l - e-at) 

and splits into the free emulsifier concentration in water E = E ( t) and emulsifier covering 
the polymer particles. Introducing the quantity A = ~(t) - the degree of coverage of 
particle surface with emulsifier-, we have the balance equation 

E(t) +Po A(t) M2;3(f) = S(t). 

Here appears the moment of order 2/3 which can be interpreted as mean particle surface 
(see Section 2). The free emulsifier in water and the emulsifier on the particle surface are 
linked by an adsorption isotherme 

A= P1E 
1 +P2 E 

of Langmuire type. 
The water volume fraction V = V(t) satisfies the balance equation 

V(t) + H0 (t)[l - x(l - q)] = 1, where H0 (t) = B(l - exp(-t/T)). 

Here denotes x = x(t) = R(M1(f)) the conversion, where R is the rational function 

R(z) = aoz , 
boz +Co 

and q = dm/ dp is the ratio of .monomer and polymer density. The constant B and the 
mean residence time T are given constants as well as the quantities Po , P1 , P2 , So , ao , bo , 
co , c1 , c2 , c3 , C4 used above. 
The part r0 in the factorized form of the particle growth rate (see (2.4)) has the form 

(4.2) 
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where 

with 
1-x A2(x) =Cs--. 

qx 
The constant c5 is given and we have the continuity condition 

Ai= A2(Ro). 

Variant 2. Compared with variant 1 we modify the nucleation term and the particle 
growth rate. Both become conversion dependent and also the coalescence constant is 
substituted by a conversion dependent quantity. This modification allows to take into 
account the gel effect and the glass effect. These effects appear as the polymerization 
progresses and are a consequence of the growing viscosity of the reactor ·content. If the 
conversion is sufficiently high, both particle growth rate and coalescence term disappear. 
The nucleation term gets the form 

N(f; v) = ciP(t) V(t) (1 + E(t)) 8(v - v0 ), 
C2 

where .P = P(t) denotes the concentration of water soluble oligomers which satisfies -the 
initial value problem 

dP (Mo(!)) i/3 dt = cs I - { c1 [ 1 - A(t)] M213(f) Mi(!) + cs} P, 

The term r0 in ( 4.2) is substituted by 

where 

ro(Mo(f), Mi(!))= Co(x) AJM,(f)), 
Mo(!) 

1 if x ~Ro' 

Cg 
1 - x(l - q} if Ro< x < Ri, 

Co(x) = 1-x 

1-x if R~ ~ x < R2, 

0 if R2 ~ x. 

P(O) = 0. (4.3) 

The coalescence constant C which appears in the coalescence kernel (see (2.6)) is sub-
stituted by a conversion dependent function C = C( x) of the following form: 

1 if x ~Ro, 

C(x) = 1-x 
Cg 1 - X (1 - q) if Ro< x <Qi' 

0 if Qi~ x. 
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Again are cs , cs , c1, c8 , cg Ro , R2 , Q1 given constants. 

5. Numerics 

We sketch only the main ideas. For the approximate solution of the model equation ( 4.1) 
we use a difference method. Instead of the volume variable v we take the diameter D 
as one of the independent variables, linked with v by v = ( 7r /6)D3 . We discretize the 
time variable t and the diameter variable D by the· (not necessarily equidistant) grid 
_ (ti, Dk) where 

and denote the corresponding step size by Ti = ti+l - ti and hk = Dk+l - Dk , 
respectively. We put Ji for the value of a function defined on the grid in the grid point 
( ti, Dk) and take 

as an approximation of (e.g.) the particle density in ( ti, Dk) . We split the coalescence 
term (2.5) (omitting the time variable) 

K(f)(v) = H(f)(v) - f(v)G(f)(v), where G(f)(v) = f(v) fo 00 

k(v,w)f(w)dw. 

To formulate a difference method, we follow the philosophy of "as implicit as possible, as 
explicit as necessary". Denoting by· 

approximations of the particle growth rate, the nucleation term and the splits of the 
coalescence term, we discretize the model equation by 

i+l i 
fk - A + 1 (Ri .,ci+l Ri .,ci+l) +a ( .,ci+l g ) - Ni+ Hi .,ci+iai -h k Jk - k-1 Jk-1 Jk - k - k k - Jk k Ti k-1 

(5.1) 

for k = 1, 2, ... , N ; the boundary condition (2.3) gives J~+l = f~ = 0 . The computa-
tional scheme runs as follows: Assume that all quantities are calculated in the grid points 
Dk; k = 0, 1, ... , N on the time level ti. From the difference approximation (5.1) and the 
boundary condition we find (first) approximations for Jt+l on the new time level ti+l 
in a knitting-like manner for k = 0, 1, .. , N. Then we compute by numerical integration 
the nonlocal quantities like moments and the components of the coalescence term. An 
implicit difference scheme (Euler backward) is used to find an approximate solution of 
( 4.3) on the time level ti+i : 

po= 0, (5.2) 
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where <I? is an approximation 

(
Mo(f)(ti+i)) 

113 

<I?(ti+i) ~ C7 [ 1 - A(ti+i)] M2/3(!).(ti+1) Ml(f)(ti+i) + Cg 

calculated from the values available at this stage of the calculation. Using the pi+i in 
(5.1) we find a second approximation for the Jt+1 • This procedure is iterated until the 
differences between corresponding quantities are sufficiently small. That is, we solve (5.1), 
(5.2) by a quite simple iteration method. If certain convergence criteria are satisfied, we 
update and go on to the next time level ti+2 . The stopping criteria for the iteration 
process as well as the step size for the time and the diameter variable were found by 
numerical experiments, supported by heuristics from polymer chemistry. 

REMARK 1. The most complex term is the convolution part H of the coalescence 
term: 

H(f)(v) = ~ rv k(v -w,w)f(v -w)f(w)dw. 
2 Jo 

Transformed to the diameter scale its value at the grid point Dk, k 2:: 1, 1s 

where ek = 2-1/ 3 Dk and simple symmetry prop~rties of the convolution are used. This 
expression is approximated using a quadrature formula of trapezoidal type - we omit the 
details. 
Another possibility to calculate H assumes an equidistant grid in the volume variable 
v , given by Vk = kfl.v, k = 0, 1, ... N. Then a natural approximation of H is given by 

fl.v k 
(H(f))k ~ 2 L Fk-jFj, k = 1, 2, ... ; (H(f))o = 0 

j=O 

where F0 = 0, Fk = vk, 113 fk for k > 1 . The convolution sum on the right hand side 
can be calculated using the fast Fourier transform (FFT). Unfortunately, the necessary 
switching from a non-equidistant D -grid to an equidistant v -grid spoils somewhat the 
advantages of FFT. 

6. Asymptotics 

In the following considerations we deal exclusively with Variant 1. In the case of a 
continuous reactor one expects that the time evolution leads to an asymptotic state as 
t --+ oo , i.e. all quantities involved in the process assume their corresponding asymptotic 
values. Especially we have S(t) ---+ S0 , H(t) --+ B, I(t) --+ c3 / c4 as t--+ oo . Denote 
by Eoo, Voo the asymptotic values of E(t), V(t) and by Mo,00 , Ml,oo, M2/3,oo the 
asymptotic values of the corresponding moments. In addition we assume that 

b1=0, g(v)=O, 
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i.e. the particle growth rate has a special structure and there is no seed. (This is the 
situation met in all examples.) Multiplying the model equation ( 4.1) by v and integrating 
over (0, oo) we get 

C = c1 ( f - ~:) Voo ( 1 + ~:) . 
Here is C the (asymptotic) factor in the nucleation term and v0 the support of the 
Dirac distribution. 
If we in addition assume that there is no coalescence, the asymptotic model equation 
corresponding to ( 4.1) becomes 

8(v213J) A (M ) 
P Bv + af = CJ(v-vo), P = ~ ~- (6.1) 

Mo,oo 
This equation has the solution 

f( v) = ~ v-2!3 exp(~ (v~13 - v113)) H(v - v0 ), 

where H denotes Heaviside's function 

H ( y) = { 0 ~f y < 0, 
1 if y > 0. 

These relations are useful tools to control the computation. 

7. Regularization of singular initial states 

(6.2) 

It is quite natural to start from the "reactor filled with initiator water", which corresponds 
in the mathematical model to the assumption of a vanishing initial distribution: 

fo(v)=O. 
In this case we have a singularity in the growth term ( 4.2) resulting from M0 (!0 ) = 0 . 
To overcome this d!ffi.culty W6 try an expansion of the form 

f(t,v) = tabo(v) + o(ta). 
with· an appropriate positive power a . The coalescence term will be neglected because 
of K(f) = O(t2o:) , which is in good agreement with. the fad that in the early stages of 
the polymerization coalescence is unimportant. We have in the nucleation term 

V(O) = 1, E(O) = 0, 1 - I(t) = Bt + ... 
We take a= 2 and enter with all assumptions into (4.1). Comparison of equal powers 
of t ( - details are omitted - ) gives the following equation for the coefficient b0 of the 
lowest order term: 

Ai 8(v2f3 !) 
2bo(v) + v a = c1B8(v - vo), where 2M0 (b0 ) = c1B. 

Mo(bo) v 
This is formally the same equation as (6.1). So we can use the solution (6.2) to overcome 
the (mathematical) difficulties in the early stage of the polymerization. 
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