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Abstract 
This paper deals with the development of a new mathematical model that 
characterizes the structure-process interaction for a complex milling system. The 
structure is divided into a work piece and a machine part, which are represented 
by different models. While the machine dynamics is characterized by a standard 
multi-body system, the work piece is described as a linear thermo-elastic 
continuum. The coupling of both parts is carried out by an empirical process 
model permitting an estimate of heat and coupling forces occurring during milling. 
This work reports the derivation of the governing equations emphasizing the 
coupling and summarizes the numerical algorithms being applied to solve the 
coupled equation system. The results of numerical simulations that show the 
dynamics of the complex thermo-mechanical system are presented at the end. 

 

1 INTRODUCTION 
The modeling of milling dynamics, the determination of stable cutting conditions and the design 
of more efficient milling machines are important research fields in production technology. 
Effective methods to predict stable processes have been developed in recent decades (cf. 
Altintas et al. [1], Faassen [2]). An essential part of these methods is an abstract dynamical 
model, i.e. an ordinary differential equation. Adjusted to vibration measurement data it 
reproduces local characteristics of the actual milling system, i.e. the dynamics at the tip of the 
cutter. In combination with a process model it allows to identify efficiently stable machining 
parameters by means of bifurcation analysis (cf. Faassen [3], Insperger [4], Szalai [5]). 
However, these methods provide only few detailed information about the dynamics of the entire 
machine structure. To allow for more detailed studies we have developed a new mathematical 
model especially accounting for the process-structure interaction. The structural part of the 
model consists of two sub models. The first part is a multi body system representing the 
dynamical characteristics of the entire machine. Such a machine representation has the 
advantage that we may analyze the behavior of each structural component in detail. This 
information may be used to find out weak spots in the machine structure and provide hints to 
further improvements. The second part is a detailed work piece representation. The work piece 
is modeled as a continuous thermo-elastic body, incorporating the varying dynamics due to 
material removal. Thus, it allows for studying the effect of thermal expansion which may be 
important in the machining of thin walled pieces. The coupling of both sub-structures is carried 
out with an empirical cutting force model. The main part of the coupling is a new formulation of 
the uncut chip thickness which takes into account the work piece deformation. The forces 
arising in the milling process act on the work piece as well as on the cutter as member of the 
machine structure. In Section 2 we derive the model equations, describe a numerical algorithm 
and discuss the problem of parameter identification. We present some numerical results in 
Section 3. Section 4 is devoted to some concluding remarks. 

2 MODELLING 

2.1 The thermo elastic work piece model 
We assume that the major part of the machined work piece behaves like thermo elastic solid. 
Only in vicinity of the cutting edge, which is a small domain compared to volume of the work 
piece, visco-elasto-plastic effects have to be taken into account. However, these effects will be 
incorporated through the empirical cutting force model (cf. Section 2.3). The corresponding 
equations can be found in the monograph Haupt [6]: 
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whereO andP are the Lamé constants,  denotes a reference temperature, i.e. the initial 

temperature,  the heat conductivity and 
0T

N D  is the thermal expansion coefficient. 

2.2 Machine model 
Here, we assume that the milling machine can be represented by a rigid body system. The 
structural members of the machine (spindle, traverse, side-plates etc.) are coupled with linear 
spring-damper elements. A well known strategy to carry out the mathematical modeling of the 
rigid body system is to formulate the corresponding Newton–Euler–equations with additional 
constraints accounting for given system properties such as spindle rotation speed or feed 
displacements. This approach results in a system of differential and algebraic equations. 
We follow an alternative strategy by formulating the Newton-Euler-equations in generalized 
coordinates. In this approach the number of generalized coordinates equals the number of 
degrees of freedom of the constrained system and we get no additional algebraic equations. In 
order to derive the equations of motion explicitly, we use an efficient technique, called the 
principal of Jourdain (cf. Pfeiffer [7]), which provides a compact expression for the Newton-
Euler-equations of a -body system given in generalized coordinates . N ( )q t

In order to model the kinematics of the multi body system, we draw up the position vectors to 
each center of mass, denoted in the global reference frame, using the generalized coordinates 

. The time derivative of the position vectors immediately yields the corresponding velocity 

and accelerations. We describe the orientation of the body fixed reference frames by applying 
orthogonal transformations on the global reference frame. The transformations consist of a 
product of rotation matrices based on Kardan-angles as described by Wittenburg [8]. These 
angles are also part of the generalized coordinates. It is easily seen that the angular velocities 

� �q t

iZ  follow from the time derivates of the orthogonal transformations. 

For the computation of the force  and torques e
iF e

iM  acting on body ‘i’, we have to describe the 

movement points ‘P’ on a rigid body as a function of the generalized coordinates. For this 
purpose we assume that the coordinates  of a ‘P’ on the body ‘i’ are given in 

the reference frame attached to the body. In order to compute the position of point ‘P’ in the 
global reference frame ‘R’ we use the position vector and orientation of body ‘i’ relatively to 

the system ‘R’ in the following form: 

( ,P P , )i i i i
P Pr x y z 

i

R
Sr

T

.i � �, ( , ) ( , )
i

R R R
P S ih t q r t q O t q r � P  (2) 

Starting from this expression we may derive a formula for the relative displacement and the 
relative velocity of two points on two different bodies, which are necessary to compute the 
forces and torques acting via the coupling elements on each body. 
The general equation of motion for the multi body system in generalized coordinates reads: 

 � � � �, , , , ,M q t q f q q t p �� �  (3) 

where p denotes the vector of stiffness and damping constants of the coupling elements. 

2.3 Coupling 
The basis for the coupling of work piece and machine model is the cutting force. To this end we 
use an algebraic relation for the uncut chip thickness and the cutting forces (cf. Weck [9]): 

 � �ˆ max ,0 F K h . (4) 

On the cutting edge the forces act in three directions: perpendicular to the cutting velocity, in 
opposite direction to the cutting velocity and parallel to the rotation axis of the cutter. In order to 
obtain a general expression usable on the right hand side of equation (3) and to define a stress 
vector on the boundary of the work piece, we transform equation (4) into the global reference 
frame: 

 � �� � � � � � ˆ, , ,R R C
j C F j ,f g t z O t q A z FM D  (5) 



where , if the corresponding tooth ‘j’ with angle 1g  � �,j t zM  is in cut and  otherwise. The 

orthogonal matrix  transforms the forces  into the reference frame attached to the cutter. 

The rotation matrix transforms the force vector into the global reference frame. Note that 

0g  
C

FA
R

CO

F̂
R f  

in equation (5), has the dimension force per length. Now we define the boundary condition for 
the momentum balance (cf. (1)) as: 
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The value 
F

s*  denotes the length of the arc where the stress vector is active. The heat flux 

boundary condition has a similar structure: 
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The value denotes the cutting speed, i.e. the tangential velocity at the cutting edge. We 

estimate the heat flux into the work piece, 
CSv

HFq , according to Müller [10]. The forces and torques 

acting on the cutter can be obtained by integrating equation (5) along the z-direction: 
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Note that we use the global reference frame to describe the force, while we describe the torque 

in the reference frame attached to the cutter. The vector � �0,D 9�C
jr z

F C

represents the distance 

between the center of mass of the cutter and the point on the cutting edge, where the respective 
cutting force is active. Finally, we project both values andR M on the space of generalized 

coordinates. Thus, we obtain a generalized force ,ª º¬ ¼
R CMG F  contributing to the right hand 

side of equation (3) which is replaced by: 

 � � � �, , , , ,R C .M q t q f q q t p G F Mª º � ¬ ¼�� �  (9) 



The crucial point is to derive an expression for the uncut chip thickness h . To this end, we look 
at a z=const plane and assume that cutter and work piece may oscillate independently. 
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Figure 1: Scheme of the uncut chip thickness. 

At a given time the cutter marks with its tip a certain material point PR of the work piece moved 

to its position due to the deformation field � �P . Thus, we may express the po �,u t R int �P t using 

on the one hand the work piece kinematics and on the other hand the cutter position: 
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where  denotes the diameter of the cutter. Usually, the uncut chip thickness is defined as: D

 � � � �� � ,j
rh P t Q t e � �  (11) 

with  representing the unit vector in radial direction of tooth ‘j’ at time t.  represents the 

relevant part of the work piece surface created during the preceding cut. Recall that at time 

j
re � �Q t

t W�  the cutter marked another material point QR  that was moved to its position due to the 

deformation field u t . Thus equation � , QRW� � (10) also holds at time t W� : 

 � � � � �00',
2

j
Q Q r

D
u t R R R t e q t �' .W W� �  � � � �W  (12) 

Furthermore, it is clear that the material point QR  is also subject to the work piece deformation 

field  at time , which means that it is located at position � , Qu t R � t � �Q t : 

 � � � �, QQ t u t R R � .Q  (13) 



Finally, we may replace QR  in equation (13) using equation (12), which yields the expression: 

 � � � � � � � � � �00'' , ,
2

j
Q Q

D
Q t q t u t R u t R R t eW W W � � � � � � � .r  (14) 

For the difference of � �P t  that we express with the second part of equation (10), and � �Q t  

follows: 

 � � � � � � � � � � � � � � � �� �00' 00' ' ' , ,QP t Q t R t R t q t q t u t R u t RW W�  � � � � � � � � .QW  (15) 

We notice that the uncut chip thickness consists of three different parts. The first part represents 
just the cutter displacement due to the given feed. Projected on the radial direction, it yields the 
stationary uncut chip thickness. The second part represents the machine oscillations and 
produces the modulation of the chip thickness that has been indentified to be the main reason 
for chatter. The third contribution to the uncut chip thickness is related to the work piece 
deformation. While the first two terms are well-known, the third one is new. With this approach, 
for the first time, the influence of complex work piece dynamics on the stability of milling 
processes can be studied. 

2.4 Numerical solution in time domain 
In this subsection we briefly explain the numerical algorithm to solve the coupled system of 
equations (3) and (1) with (6) and (7). In a milling process with nonzero feed material is 
removed from the work piece. Since we use a thermo-elastic work piece representation that 
cannot take the chip removal into account directly, we have to introduce an approximation of 
this process. We therefore restrict ourselves to situations where only one tooth is in cut. 
Defining the theoretical tooth path by the positions of the cutting edge ‘j’ at time  and height t z : 

 � � � � � ��00',
2

j j
th r

D
t t z R t e t zM � �,j , (16) 

neglecting all deformations, we estimate the shape of the machined work piece for the time 

interval � �, 1t m mW W� �ª¬ º¼ 0m t with . In equation (16) � �,j t zM

Q

 denotes the rotation angle of 

cutting edge « j » with respect to the z-slider for a rotation around the z-axis. When the active 
tooth leaves the cut, we create the newly shaped work piece and interpolate the solution from 
the old grid to the new one. Furthermore, we estimate R  appearing in equation (15) with the 

help of the theoretical tooth path: 
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Thanks to these approximations we obtain a closed system of equations that we may solve 
numerically. The first step of the solution process is the transfer of the space-time continuous 
PDE system (cf. equation (1)) to a space discrete and time continuous set of equations. We 
therefore rewrite the balance equations in variational form and we use linear finite elements to 
derive the desired space discrete system. Afterwards we perform the time integration using an 
incremental decoupling. In order to sketch the algorithm, we start at time  assuming the 

solution  to be known, where 

nt

� , , , ,n n n n n n
h h h hS u v a T q{ n

hu v �  and . We compute  the 

approximate solution  at time 

n
hv a �

n
h

1nS � 1nt �  carrying out the following steps: 

x With nS  and the associated cutting forces, we calculate the update of the boundary 
conditions for the momentum and energy balance equation; 

x We apply the Newmark algorithm (cf. Hughes [11]) to determine 1  and a 

backward Euler scheme to solve the heat equation yielding, 1n
hT

1 1, ,n n n
h h hu v a� � �

� ; 



x Now we know and 1, , ,n n n n
h h h hu v a T 1 1 1, , ,n n n n

h h h hu v a T� � � �

r t t�

. It is obvious that we may calculate 

each of these values at time 1,n nª º� ¬ ¼  by means of interpolation. This also applies to 

every solution � �S s  with time 1t,n ns t W W�ª º� � �¬ ¼ . Thus, equation (9) reduces to a 

system of ordinary differential equations that we integrate with an explicit Runge-Kutta-
54 solver (cf. Deufelhard et al. [12]). The outcome of this last step is the solution of the 
machine equation 1nq �  and additionally the cutting forces at time 1nt � . 

x Finally we store the calculated solution and restart the procedure. 
After each tooth period the shape of the work piece is modified as explained above and then 
remeshed. Note that the whole algorithm has been implemented using the WIAS-pde-library 
pdelib2 [13]. It allows for direct access to all solution components guaranteeing efficient time 
stepping without any loss of performance due to data transfer.  

3 PARAMETER IDENTIFCATION 
We determine the cutting force coefficients using the method proposed by Altintas [14]. The 
main idea is to minimize a functional that compares measured average cutting forces with the 
outcome of the empirical cutting force model. Note that the method assumes stable cutting 
conditions. For further details we refer to Hömberg, et al. [15]. 
The heat flux into the work piece (cf. equation (7)) contains parameters, which have to be 
determined experimentally. We estimate the heat flux with the help of the cutting forces. The 
basic observation is that for dry cutting, the generated heat flows partly into the tool, partly into 
the chip and the work piece. With the help of an empirical parameter CHE we extract the heat 

flowing into the work piece. The values for H CE  indicated in the pertinent literature range from 

5-15%. However, in order to compute an acceptable estimate of the heat flux into the work 
piece, we have to determine CHE  more precisely. One possibility is to compare the simulated 

and the measured work piece temperature at several points close to the machined surface and 
t CHto fi E  and the other parameters so that the difference between both temperatures be 

pearing in the 
coupling elements. They are estimated on the basis of stiffness measurements.  

. We consider 
a half immersion cut, with the cutter moving in negative x-direction (cf. Figure 1). 

 
Figure 2: Machine model with work piece. 

minimal. 
The unknown machine parameters are the damping and stiffness constants ap

4 NUMERICAL SIMULATIONS 
We simulate a metal cutting process using the algorithm explained in Section 2.4

x
y 

z

work piece

feed



In order to illustrate what happens numerically if chatter occurs we compare a stable cut (axial 
depth of cut: ) with an unstable solution (axial depth of cut: ). We 

employ a 3 tooth helical end mill with a diameter of 15 mm and a helix angle of 10° as model for 
the cutter. The spindle speed was set 10000 rpm and we simulated 36 tooth periods of cutting.  

0.75 pa mm mm1.75 pa

cx / mm cx / mm 

Figure 3: Displacement of the cutter tip (stable: (a), unstable (b)). 
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After a simulation run we evaluated the solution � �q t  at the tip of the cutter making use of 

equation (2). In the following we denote the vibrations at the tip of the cutter with 
, where the index ‘CT’ represents the cutter tip. Figure 2 

shows the x, y and z component of the cutter tip displacement. The pictures 3(a) depict the 
stable case while the pictures 3(b) show the unstable situation. The two diagrams in the first row 
clearly show the feed that is superposed with the cutter vibrations. For time  we 
recognize in picture (b) for 

� � � �� � � 0 0,R R
CT CTc t h t q t h t q � �,

0.05t !

xc  the increasing chatter vibrations. The y-component of the cutter 

tip displacement indicates the stable and the unstable cut. While the amplitude of  for the 

case (a) remains constant after the settling process, the amplitude of  in case (b) increases 

until the end of the simulation run, clearly indicating chatter. We prove this assessment with the 
help of the discrete fourier transform (DFT). Figure 4(b) shows a high chatter peak arising at 
about 290 Hz. The peaks and the harmonics related to the tooth 

yc

yc

 
Figure 4: DFT of the y-component of the cutter displacement. 

passing frequency arise at multiples of 500 Hz which are marked by the squares. In Figure 4 (b) 
the chatter peak dominates the peaks from the harmonic excitation which means that we are 
clearly in the regime of chatter. In Figure 4 (a) we also recognize a chatter peak, but this peak is 
clearly below the highest peak resulting from the excitation. We hence conclude that the cutting 
conditions corresponding to picture 4 (a) are much closer to the stability limit.  

 
Figure 5: Work piece deformations in the stable case. 
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Finally we look at the work piece deformations. For the sake of simplicity we focus on the 
deformations occurring in the vicinity of the cutting edge at the top of the work piece. (cf. Figure 
5 and 6). In both figures the red line denotes the deformation in x-direction, the green line the 
deformation in y-direction and the blue line the deformation in z-direction. Comparing both 
figures we state that in this case the work piece has no effect on the stability of the milling 
process. The amplitudes of the work piece deformations are much smaller than those of the 
cutter, which means that here the milling machine is the weakest part in the whole assembly. A 
second observation is that we eventually may distinguish stable and unstable processes also by 
analyzing the work piece deformations. Figure 6 indicates the unstable cut by increasing 
deformation amplitudes of the y-direction for . Another hint for the unstable process is 0.05t ! s

, ,x y zu u u  / mm 

time / sec 

0.002

 
Figure 6: Work piece deformations in the unstable case. 

the unstationary evolution of all deformation components for . 0.05t s!

5 CONCLUSION 
In this paper we have developed an advanced milling model including several effects that can 
influence on the stability of milling processes. The main parts are a machine model represented 
by a multi body system and a work piece that is modeled as a thermo elastic solid. The coupling 
of both sub models was carried out with an empirical cutting force model that incorporates 
machine displacements and work piece deformation by a special model for the uncut chip 
thickness. Our main contribution is a new approach for the modeling of the uncut chip thickness 
that permits to account for the continuous work piece deformations. The system of coupled 
equations was solved with a time integration scheme taking care of the special features of the 
delayed ode-pde system. The presented simulations were carried out for realistic machine, work 
piece and cutting force parameters. However, the parameter identification including all 
necessary data for a precise thermal simulation is still in progress.  
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