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Abstra
tWe 
onsider singularly perturbed semilinear paraboli
 periodi
 problemsand assume the existen
e of a family of solutions. We present an approa
h toestablish the exponential asymptoti
 stability of these solutions by means ofa spe
ial 
lass of lower and upper solutions. The proof is based on a 
orollaryof the Krein-Rutman theorem.1 Introdu
tionThis paper 
on
erns abstra
t singularly perturbed semilinear paraboli
 periodi
problems of the type
{

ε (u′(t) + Au(t)) = F (t, u(t), ε),
u(t) = u(t+ T ),

(1)as well as periodi
 Diri
hlet problems for singularly perturbed rea
tion-di�usion-adve
tion equations of the type






ε (∂tu− ∂2
xu) = g(t, x, u, ε)∂xu+ h(t, x, u, ε) for 0 < x < 1,

u(t, x) = u(t+ T, x),
u(t,±1) = 0.

(2)Here, ε > 0 is the small singular perturbation parameter and T > 0 the given period.Our goal is to establish a 
riterion for exponential asymptoti
 stability of a givenfamily uε of solutions by means of families aε and bε of lower and upper solutionsof asymptoti
 order q (see De�nition 4.1) and whi
h are 
lose to ea
h other in sometopology with asymptoti
 order p, where p > q (see Theorems 2.3, 4.2 and 4.4). Themain tool for deriving su
h a 
riterion is the Krein-Rutman theorem.2 Abstra
t singularly perturbed semilinear paraboli
periodi
 problemsIn this se
tion we 
onsider problem (1). We start by formulating the hypothesesunder whi
h we 
onsider this problem. 1



Let X be a real Bana
h spa
e with norm ‖.‖X . Con
erning the operator A we sup-pose
(A1) A : D(A) ⊆ X → X is linear, 
losed and densely de�ned.
(A2) The resolvent set ̺(A) of A satis�es ̺(A) ⊆ {λ ∈ C : Re λ ≤ 0}.

(A3) There is some positive 
onstant κ su
h that
||(A− λI)−1|| ≤

κ

|λ|
for all λ ∈ C with Re λ ≤ 0, λ 6= 0.

(A4) A has a 
ompa
t resolvent.Assumptions (A1)−(A3) imply that A is a se
torial operator (see, e.g., [1℄). As usual,we denote by Aα the fra
tional power of A for 0 ≤ α ≤ 1 and by Xα its domain ofde�nition. The spa
e Xα equipped with the graph norm ‖Aαu‖X is a Bana
h spa
e.Moreover, assumption (A4) implies that the embeddings D(A) →֒ Xα →֒ Xβ →֒ Xare 
ompa
t for 0 < β < α < 1. Con
erning the nonlinearity F we suppose
(F1) F ∈ C2(R × V × (0, 1);W ), where V and W are a real Bana
h spa
es withnorms ‖.‖V and ‖.‖W , respe
tively, su
h that

D(A) →֒ V →֒ W →֒ X, (1)and F is periodi
 in t with period T > 0, i.e.
F (t, u, ε) = F (t+ T, u, ε) for all t ∈ R, u ∈ V, ε ∈ (0, 1).

To given ε > 0, a solution u to (1) is, by de�nition, a fun
tion u ∈ C1(R;X) ∩
C(R;D(A)) whi
h satis�es (1) pointwise.Let uε be a family of solutions to (1). It is well-known (see, e.g., [1, Theorem8.1.1℄) that the stability of the solution uε to (1) 
an be determined by means of thelinearized initial value problem

{

ε (v′(t) + Av(t)) = ∂uF (t, uε(t), ε) v(t), t > t0,
v(t0) = v0.

(2)A

ording to the assumptions (A1)−(A3) and (F1), there exists a family of operators
Uε(t, t0) ∈ L(X) with Uε(t0, t0, ) = I su
h that, for any given initial value v0 ∈ X,2



the element Uε(t, t0) v0 is the solution to (2) (see [1℄, Theorem 7.1.3). In parti
ular,we have
Uε(t, t0) v0 ∈ D(A) for all v0 ∈ X. (3)The operator Uε(T, 0) is usually 
alled the monodromy operator, and its spe
tralradius 
an be used to verify stability of uε by means of the following theorem (see,e.g., [1, Theorem 8.1.1℄):Theorem 2.1 Suppose the assumptions (A1) − (A3) and (F1) are satis�ed, andassume the spe
tral radius of Uε(T, 0) to be less than one. Then uε is exponentiallyasymptoti
ally stable.In the sequel we will use a 
orollary of the Krein-Rutman-Theorem in order to verifyif the spe
tral radius of Uε(T, 0) is less than 1. For this purpose we introdu
e somenotation.An order 
one Q in a Bana
h spa
e Y is a 
losed and 
onvex 
one with vertex atzero su
h that Q ∩ (−Q) = 0. As usual, we write u ≤ v i� v − u ∈ P , and u < vi� v − u ∈ P \ {0}. We denote by int(Q) the set of interior points of Q. Thenext theorem is a 
ru
ial 
onsequen
e of the Krein-Rutman Theorem (see, e.g., [6,Corollary 7.27℄ and [2, Theorem 7.3℄).Theorem 2.2 Let Q be an order 
one in a Bana
h spa
e Y with int(Q) 6= ∅, andlet K : Y → Y be a linear 
ompa
t operator su
h that Ku ∈ int(Q) for all u > 0.Suppose that there exists u0 ∈ Q su
h that u0 > Ku0. Then the spe
tral radius of Kis less than one.Now we are going to show how to verify the assumptions of Theorem 2.2 with

K = Uε(T, 0). We assume:
(P1) There is an order 
one P in X su
h that Uε(T, s)v ∈ P for all v ∈ P and 0 ≤
s ≤ T.

(P2) There is a Bana
h spa
e U with the properties: (i). There is some 0 < α < 1su
h that Xα →֒ U →֒ X. (ii). int(PU) 6= ∅, where PU := P ∩ U , and int(PU)denotes the set of interior (in U) points of PU . (iii). Uε(T, s)v ∈ int(PU) for all v ∈
P \ {0} and 0 < s < T.

(P3) int(PW ) 6= ∅, where PW := P ∩W , and int(PW ) denotes the set of interior (in
W ) points of PW .The main result of this se
tion whi
h provides a 
riterion for exponential stabilityof the family of solutions uε to (1) under some appropriate properties of lower andupper solutions (see se
tion 4) is the following one.3



Theorem 2.3 Suppose (A1) − (A4), (F1) and (P1)� (P3). Assume that there existtwo families of T -periodi
 fun
tions aε, bε ∈ C1(R;X) ∩ C(R;D(A)) with bε(0) −
aε(0) > 0, numbers p > q > 0 and c > 0 and elements ϕl, ϕu ∈ int(PW ) whi
h donot depend on ε and t su
h that for all su�
iently small ε and all t we have

ε(a′ε(t) + Aaε(t)) − F (t, aε(t), ε) ≤ −εqϕl, (4)
ε(b′ε(t) + Abε(t)) − F (t, bε(t), ε) ≥ εqϕu, (5)

‖F (t, bε(t), ε) − F (t, aε(t), ε) − ∂uF (t, uε(t), ε)(bε(t) − aε(t))‖W ≤ cεp. (6)Then, for su�
iently small ε > 0, the spe
tral radius of Uε(T, 0) is less than one.Proof. Introdu
ing the fun
tion ψε by
F (t, bε(t), ε) − F (t, aε(t), ε) − ∂uF (t, uε(t), ε) (bε(t) − aε(t)) = εpψε(t),then we have by (6)

||ψε(t)||W ≤ c for t ∈ R, 0 < ε≪ 1. (7)Hen
e, assumptions (4) and (5) imply
ε (b′ε(t) − a′ε(t) − (A + ∂uF (t, uε(t), ε)) (bε(t) − aε(t))) =

= ε (b′ε(t) − a′ε(t) − A(bε(t) − aε(t))) − F (t, bε(t), ε) + F (t, aε(t), ε) − εpψε(t) ≥

≥ εq
(

ϕl + ϕu + εp−qψε(t)
)

.Therefore, assumption (P1) and the variation of 
onstants formula yield
(I − Uε(T, 0)) (bε(0) − aε(0)) ≥ εq

∫ T

0

Uε(T, s)
(

ϕl + ϕu + εp−qψε(s)
)

ds.Be
ause of ϕl, ϕu ∈ int(PW ), p > q and taking into a

ount (7) we have ϕl + ϕu +
εp−qψε(s) ∈ P \{0} for su�
iently small ε and any s. A

ording to assumption (P2)we get

∫ T

0

Uε(T, s)
(

ϕl + ϕu + εp−qψε(s)
)

ds ∈ int(PU).Thus, for su�
iently small ε it holds
bε(0) − aε(0) − Uε(T, 0)(bε(0) − aε(0)) > 0.Hen
e, the element u0 := bε(0) − aε(0) belongs to PU and satis�es u0 > Ku0 with

K := Uε(T, 0).In order to apply Theorem 2.2 it remains to show that K maps U 
ompa
tly into Uand that Ku ∈ int(PU) for all u ∈ P \ {0}. The �rst property follows from (3) andassumption (P2) and from the 
ompa
tness of the embedding D(A) →֒ Xα. These
ond property follows from assumption (P2).4



3 Su�
ient 
onditions for (6)Assumptions (4), (5) and (6) of Theorem 2.3 seem to be antagonisti
: On the onehand, (6) is satis�ed if aε and bε are su�
iently 
lose asymptoti
ally as ε → 0. Onthe other hand, (4), (5) are not satis�ed if aε and bε are too 
lose asymptoti
ally as
ε→ 0. In this se
tion we derive su�
ient 
onditions for (6) in terms of asymptoti
al
loseness of aε and uε and of bε and uε that allow (4) and (5) to be satis�ed.First we reformulate the expression on the left hand side of (6). A simple 
al
ulation(using the main theorem of di�erential and integral 
al
ulus) yields

F (t, bε(t), ε) − F (t, aε(t), ε) − ∂uF (t, uε(t), ε) (bε(t) − aε(t)) (8)
=

∫

1

0

r

∫

1

0

(∂2

uF (t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t))

−∂2

uF (t, uε(t) + rs(aε(t) − uε(t)), ε)(aε(t) − uε(t), aε(t) − uε(t)))drds.3.1 A Setting for Rea
tion-Di�usion EquationsIn this subse
tion we 
onsider a setting where the domain of de�nition V of the non-linearity F is �large�. This is typi
al for appli
ations to rea
tion-di�usion equations,where V 
an be 
hosen as the Bana
h spa
e of 
ontinuous fun
tions with the usualmaximum norm. Be
ause the spa
e V is �large�, its norm is �weak� and, hen
e, inmany appli
ations there exists a 
onstant c1 > 0 su
h that for all small ε > 0 andall t we have
‖uε(t)‖V + ‖aε(t)‖V + ‖bε(t)‖V ≤ c1. (9)From (8) follows that (6) is satis�ed if, for example, there are positive 
onstants c2and c3 su
h that

‖aε(t) − uε(t)‖
2

W + ‖bε(t) − uε(t)‖
2

W ≤ c2ε
p (10)and

‖∂2

uF (t, u, ε)‖ ≤ c3 for all u ∈ V with ‖u‖V ≤ c1, (11)where ‖.‖ is the operator norm in the spa
e of all bounded bilinear operators from
V × V into W . So we getLemma 3.1 Suppose (10) and (11). Then relation (6) holds.3.2 A Setting for Rea
tion-Di�usion-Adve
tion EquationsIn this subse
tion we 
onsider a setting where the domain of de�nition V of the non-linearity F is �small�. This is typi
al for appli
ations to rea
tion-di�usion-adve
tionequations, where V must be 
hosen, for example, as the Bana
h spa
e of 
ontinu-ously di�erentiable fun
tions with its usual norm. Be
ause the spa
e V is �small�,5



now its norm is �strong� and, hen
e, in most of the appli
ations assumption (9) isnot satis�ed. For example, in 
ase of singularly perturbed PDEs the fun
tions uε(t),
aε(t) and bε(t) have large spatial gradients 
lose to internal or boundary layers forsmall ε. Therefore, we assume 
on
erning the larger spa
eW that there is a 
onstant
c1 > 0 su
h that

‖uε(t)‖W + ‖aε(t)‖W + ‖bε(t)‖W ≤ c1. (12)The following lemma shows how to verify relation (6) in 
ases, when some morestru
ture of the nonlinearity F is known. More pre
isely, we suppose that F has therepresentation
F (t, u, ε) = G(t, u, ε)u+H(t, u, ε) (13)with

G ∈ C2 (R ×W × [0, 1],L(V ;W )) , H ∈ C2 (R ×W × [0, 1],W ) (14)and that there is a 
onstant c4 su
h that






‖(∂uG(t, u, ε)w1)v‖W ≤ c4‖w1‖W‖v‖V ,
‖(∂2

uG(t, u, ε)(w1, w2))v‖W ≤ c4‖w1‖W‖w2‖W‖v‖V ,
‖∂2

uH(t, u, ε)(w1, w2)‖W ≤ c4‖w1‖W‖w2‖W

(15)for all v ∈ V , w1, w2 ∈ W and u ∈ W with ‖u‖W ≤ c1. Moreover, we assume thatthere is a 
onstant c5 su
h that for all small ε > 0 and all t we have
‖aε(t) − uε(t)‖

2

W + ‖bε(t) − uε(t)‖
2

W ≤ c5ε
p+1, (16)and

‖aε(t) − uε(t)‖
2

V + ‖bε(t) − uε(t)‖
2

V ≤ c5ε
p−1. (17)Lemma 3.2 Suppose (13)�(17). Then relation (6) holds.Proof. Be
ause of (8) it su�
es to show that for 0 ≤ r, s ≤ 1

‖∂2

uF (t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t)) (18)
−∂2

uF (t, uε(t) + rs(aε(t) − uε(t)), ε)(aε(t) − uε(t), aε(t) − uε(t))‖W

= O(εp).From (13) we get
∂2

uF (t, u, ε)(v, v) = (∂2

uG(t, u, ε)(v, v))u+ 2(∂uG(t, u, ε)v)v + ∂2

uH(t, u, ε)(v, v).A

ording to (15) we have
‖(∂2

uG(t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t))uε(t)‖W ≤

≤ c4‖bε(t) − uε(t)‖
2

W‖uε(t)‖Vand
‖2(∂uG(t, uε(t), ε)(bε(t)−uε(t))(bε(t)−uε(t))‖W ≤ 2c4||bε(t)−uε(t)||V ||bε(t)−uε(t)‖W6



and
‖(∂2

uH(t, uε(t), ε)(bε(t) − uε(t), bε(t) − uε(t))‖W ≤ c4||bε(t) − uε(t)||
2

W .Hen
e
‖∂2

uF (t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t))‖W

≤ c4

(

‖bε(t) − uε(t)‖
2

W‖uε(t)‖V + 2‖bε(t) − uε(t)‖V ‖bε(t) − uε(t)‖W + ‖bε(t) − uε(t)‖
2

W

)

.Taking into a

ount (1), (16) and (17), we get
‖∂2

uF (t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t))‖W = O(εp).Analogously we obtain
‖∂2

uF (t, uε(t) + rs(aε(t) − uε(t)), ε)(aε(t) − uε(t), aε(t) − uε(t))‖W = O(εp).Thus, relation (18) has been established.4 Appli
ations to Paraboli
 Periodi
 Diri
hlet Prob-lemsIn this se
tion we 
onsider the periodi
 Diri
hlet problem (2). Con
erning the non-linearities g and h in (2) we suppose
g, h ∈ C2(R × [−1, 1] × R × [0, 1],R) (1)and

g(t, x, u, ε) = g(t+ T, x, u, ε), h(t, x, u, ε) = h(t+ T, x, u, ε). (2)We will show that, with appropriately 
hosen fun
tion spa
es X, U , V and W ,problem (2) 
an be written in the abstra
t form (1) su
h that the assumptions
(A1) − (A4), (F1) and (P1) − (P3) are ful�lled and that also the linearized initialboundary value problem







ε (∂tv − ∂2
xv) = g(t, x, u, ε)∂xv + ∂ug(t, x, u, ε)v∂xu+ ∂uh(t, x, u, ε)v,

v(0, x) = v0(x),
v(t,±1) = 0

(3)
an be represented in the form (2). For this end we set
X = L2(−1, 1), D(A) = H2(−1, 1) ∩H1

0 (−1, 1), A = −
d2

dx2
.It is well-known that in this setting the assumptions (A1) − (A4) are valid, and itholds (see [1, Chapter 1.4℄

Xα = H2α(−1, 1) ∩Hα
0 (−1, 1).7



Here, H2α(−1, 1) and Hα
0 (−1, 1) are the usual Sobolev spa
es. Further, we take

U = {u ∈ C1([−1, 1]) : u(±1) = 0}, ‖u‖U = max
−1≤x≤1

|u(x)| + max
−1≤x≤1

|u′(x)|.A

ording to the embedding theorem of Sobolev we have Xα →֒ U for α > 3/4.Finally, we take
W = C([−1, 1]), ‖u‖W = max

−1≤x≤1
|u(x)|.and

P = {u ∈ L2(−1, 1) : u(x) ≥ 0 for almost all x}.Then, obviously,int PU = {u ∈ U : u(x) > 0 for all x ∈ (0, 1), u′(−1) > 0, u′(1) < 0} 6= ∅,int PW = {u ∈W : u(x) > 0 for all x ∈ [0, 1]} 6= ∅,i.e. (P3) is satis�ed. Moreover, assumptions (P1) and (P2) are satis�ed, be
ause thesolution to (3) with non-negative initial fun
tion is non-negative for all t > 0 and
x ∈ [−1, 1], and the solution to (2) with an initial fun
tion, whi
h is non-negativeand not identi
ally zero, is positive for all x ∈ (−1, 1) and satis�es ∂xu(−1, t) > 0and ∂xu(1, t) < 0 for all t > 0. This follows from the paraboli
 maximum prin
iple(see, e.g., [4, Theorem 2.1.4 and Lemma 2.2.1℄).The spa
es U and W introdu
ed above are the same in the following subse
tions,the spa
e V will be 
hosen a

ording to the 
onsidered problem.It is well-known that, under assumption (1), any solution to (2) in the sense ofSe
tion 2 is a 
lassi
al solution, i.e., all derivatives in the di�erential equation existand are 
ontinuous. Correspondingly we de�ne the notions of upper and lowersolutions to (2):De�nition 4.1 To any �xed ε > 0, the fun
tions bε, aε : R× [−1, 1] → R are 
alledupper and lower solutions to (2) of asymptoti
 order q > 0, respe
tively, if they aresu�
iently smooth, satisfy the periodi
ity and boundary 
onditions in (2) and theinequalities

{

ε (∂tbε − ∂2
xbε) − g(t, x, bε, ε)∂xbε − h(t, x, bε, ε) ≥ ϕεq,

ε (∂taε − ∂2
xaε) − g(t, x, aε, ε)∂xaε − h(t, x, aε, ε) ≤ −ϕεqfor all t ∈ R and x ∈ [−1, 1], where ϕ > 0 is some 
onstant.Note that for the existen
e of solutions to (2) it is su�
ient to 
onstru
t orderedupper and lower solutions whi
h satisfy weaker 
onditions than those used in De�-nition 4.1 (see, e.g., [2℄). In order to prove the exponential asymptoti
 stability, theintrodu
ed notion in De�nition 4.1 seems to be appropriate.8



4.1 Rea
tion-Di�usion EquationsIn this subse
tion we 
onsider problems of the type (2) with g = 0. Assumption
(F1) 
an be easily veri�ed, where the abstra
t fun
tion is de�ned by

F (t, u, ε)(x) := h(t, x, u(x), ε),and the fun
tion spa
e V is 
hosen as V = W.Now, the following theorem is a dire
t 
onsequen
e of Theorem 2.3.Theorem 4.2 Suppose (1) and (2) with g = 0. Let uε be a family of solutions to(2) with g = 0, and let aε and bε be families of lower solutions and upper solutionsof asymptoti
 order q > 0 to (2) with g = 0, respe
tively. Suppose that for all ε, tand x it holds
|uε(t, x)| + |aε(t, x)| + |bε(t, x)| ≤ κ1,

|bε(t, x) − uε(t, x)| + |aε(t, x) − uε(t, x)| ≤ κ2ε
p

2 ,where κ1 > 0, κ2 > 0 and p > q are 
onstants. Further, suppose that for all ε wehave bε(0, x) ≥ aε(0, x) for all x ∈ [−1, 1] and bε(0, x0) > aε(0, x0) for some x0 ∈
(−1, 1). Then, for su�
iently small ε > 0, the solutions uε to (2) are exponentiallyasymptoti
ally stable.Remark 4.3 Upper and lower solutions whi
h satisfy the assumptions of Theorem4.2 have been 
onstru
ted for problems with interior layers in [3, 5℄.4.2 Rea
tion-Di�usion-Adve
tion EquationsIn this subse
tion we 
onsider problems of the general type (2) with (1) and (2).Then 
onditions (F1) with (13)�(15) 
an be easily veri�ed, where the abstra
t fun
-tions G and H are de�ned by

(G(t, u, ε)v)(x) := g(t, x, u(x), ε)v′(x), H(t, u, ε)(x) := h(t, x, u(x), ε),and the spa
e V is 
hosen as
V = C1([−1, 1]), ‖u‖V = max

|x|≤1

|u(x)| + max
|x|≤1

|u′(x)|.Now, the following theorem is a dire
t 
onsequen
e of Theorem 2.3 and Lemma 3.2:Theorem 4.4 Suppose (1) and (2). Let uε be a family of solutions to (2), andlet aε and bε be families lower solutions and upper solutions of order q > 0 to (2),respe
tively. Suppose that for all ε, t and x it holds
|uε(t, x)| + |aε(t, x)| + |bε(t, x)| ≤ κ1,9



|bε(t, x) − uε(t, x)| + |aε(t, x) − uε(t, x)| ≤ κ2ε
p+1

2 ,

|∂xbε(t, x) − ∂xuε(t, x)| + |∂xaε(t, x) − ∂xuε(t, x)| ≤ c2ε
p−1

2 ,where κ1, κ2 and p > q are 
onstants. Further, suppose that for all ε we have
bε(0, x) ≥ aε(0, x) for all x ∈ [−1, 1] and bε(0, x0) > aε(0, x0) for some x0 ∈ (−1, 1).Then, for su�
iently small ε > 0, the solutions uε to (2) are exponentially asymp-toti
ally stable.Remark 4.5 The upper and the lower solutions whi
h satisfy the assumptions ofTheorem 4.4 will be presented in our forth
oming paper.The approa
h des
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