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AbstratWe onsider singularly perturbed semilinear paraboli periodi problemsand assume the existene of a family of solutions. We present an approah toestablish the exponential asymptoti stability of these solutions by means ofa speial lass of lower and upper solutions. The proof is based on a orollaryof the Krein-Rutman theorem.1 IntrodutionThis paper onerns abstrat singularly perturbed semilinear paraboli periodiproblems of the type
{

ε (u′(t) + Au(t)) = F (t, u(t), ε),
u(t) = u(t+ T ),

(1)as well as periodi Dirihlet problems for singularly perturbed reation-di�usion-advetion equations of the type






ε (∂tu− ∂2
xu) = g(t, x, u, ε)∂xu+ h(t, x, u, ε) for 0 < x < 1,

u(t, x) = u(t+ T, x),
u(t,±1) = 0.

(2)Here, ε > 0 is the small singular perturbation parameter and T > 0 the given period.Our goal is to establish a riterion for exponential asymptoti stability of a givenfamily uε of solutions by means of families aε and bε of lower and upper solutionsof asymptoti order q (see De�nition 4.1) and whih are lose to eah other in sometopology with asymptoti order p, where p > q (see Theorems 2.3, 4.2 and 4.4). Themain tool for deriving suh a riterion is the Krein-Rutman theorem.2 Abstrat singularly perturbed semilinear paraboliperiodi problemsIn this setion we onsider problem (1). We start by formulating the hypothesesunder whih we onsider this problem. 1



Let X be a real Banah spae with norm ‖.‖X . Conerning the operator A we sup-pose
(A1) A : D(A) ⊆ X → X is linear, losed and densely de�ned.
(A2) The resolvent set ̺(A) of A satis�es ̺(A) ⊆ {λ ∈ C : Re λ ≤ 0}.

(A3) There is some positive onstant κ suh that
||(A− λI)−1|| ≤

κ

|λ|
for all λ ∈ C with Re λ ≤ 0, λ 6= 0.

(A4) A has a ompat resolvent.Assumptions (A1)−(A3) imply that A is a setorial operator (see, e.g., [1℄). As usual,we denote by Aα the frational power of A for 0 ≤ α ≤ 1 and by Xα its domain ofde�nition. The spae Xα equipped with the graph norm ‖Aαu‖X is a Banah spae.Moreover, assumption (A4) implies that the embeddings D(A) →֒ Xα →֒ Xβ →֒ Xare ompat for 0 < β < α < 1. Conerning the nonlinearity F we suppose
(F1) F ∈ C2(R × V × (0, 1);W ), where V and W are a real Banah spaes withnorms ‖.‖V and ‖.‖W , respetively, suh that

D(A) →֒ V →֒ W →֒ X, (1)and F is periodi in t with period T > 0, i.e.
F (t, u, ε) = F (t+ T, u, ε) for all t ∈ R, u ∈ V, ε ∈ (0, 1).

To given ε > 0, a solution u to (1) is, by de�nition, a funtion u ∈ C1(R;X) ∩
C(R;D(A)) whih satis�es (1) pointwise.Let uε be a family of solutions to (1). It is well-known (see, e.g., [1, Theorem8.1.1℄) that the stability of the solution uε to (1) an be determined by means of thelinearized initial value problem

{

ε (v′(t) + Av(t)) = ∂uF (t, uε(t), ε) v(t), t > t0,
v(t0) = v0.

(2)Aording to the assumptions (A1)−(A3) and (F1), there exists a family of operators
Uε(t, t0) ∈ L(X) with Uε(t0, t0, ) = I suh that, for any given initial value v0 ∈ X,2



the element Uε(t, t0) v0 is the solution to (2) (see [1℄, Theorem 7.1.3). In partiular,we have
Uε(t, t0) v0 ∈ D(A) for all v0 ∈ X. (3)The operator Uε(T, 0) is usually alled the monodromy operator, and its spetralradius an be used to verify stability of uε by means of the following theorem (see,e.g., [1, Theorem 8.1.1℄):Theorem 2.1 Suppose the assumptions (A1) − (A3) and (F1) are satis�ed, andassume the spetral radius of Uε(T, 0) to be less than one. Then uε is exponentiallyasymptotially stable.In the sequel we will use a orollary of the Krein-Rutman-Theorem in order to verifyif the spetral radius of Uε(T, 0) is less than 1. For this purpose we introdue somenotation.An order one Q in a Banah spae Y is a losed and onvex one with vertex atzero suh that Q ∩ (−Q) = 0. As usual, we write u ≤ v i� v − u ∈ P , and u < vi� v − u ∈ P \ {0}. We denote by int(Q) the set of interior points of Q. Thenext theorem is a ruial onsequene of the Krein-Rutman Theorem (see, e.g., [6,Corollary 7.27℄ and [2, Theorem 7.3℄).Theorem 2.2 Let Q be an order one in a Banah spae Y with int(Q) 6= ∅, andlet K : Y → Y be a linear ompat operator suh that Ku ∈ int(Q) for all u > 0.Suppose that there exists u0 ∈ Q suh that u0 > Ku0. Then the spetral radius of Kis less than one.Now we are going to show how to verify the assumptions of Theorem 2.2 with

K = Uε(T, 0). We assume:
(P1) There is an order one P in X suh that Uε(T, s)v ∈ P for all v ∈ P and 0 ≤
s ≤ T.

(P2) There is a Banah spae U with the properties: (i). There is some 0 < α < 1suh that Xα →֒ U →֒ X. (ii). int(PU) 6= ∅, where PU := P ∩ U , and int(PU)denotes the set of interior (in U) points of PU . (iii). Uε(T, s)v ∈ int(PU) for all v ∈
P \ {0} and 0 < s < T.

(P3) int(PW ) 6= ∅, where PW := P ∩W , and int(PW ) denotes the set of interior (in
W ) points of PW .The main result of this setion whih provides a riterion for exponential stabilityof the family of solutions uε to (1) under some appropriate properties of lower andupper solutions (see setion 4) is the following one.3



Theorem 2.3 Suppose (A1) − (A4), (F1) and (P1)� (P3). Assume that there existtwo families of T -periodi funtions aε, bε ∈ C1(R;X) ∩ C(R;D(A)) with bε(0) −
aε(0) > 0, numbers p > q > 0 and c > 0 and elements ϕl, ϕu ∈ int(PW ) whih donot depend on ε and t suh that for all su�iently small ε and all t we have

ε(a′ε(t) + Aaε(t)) − F (t, aε(t), ε) ≤ −εqϕl, (4)
ε(b′ε(t) + Abε(t)) − F (t, bε(t), ε) ≥ εqϕu, (5)

‖F (t, bε(t), ε) − F (t, aε(t), ε) − ∂uF (t, uε(t), ε)(bε(t) − aε(t))‖W ≤ cεp. (6)Then, for su�iently small ε > 0, the spetral radius of Uε(T, 0) is less than one.Proof. Introduing the funtion ψε by
F (t, bε(t), ε) − F (t, aε(t), ε) − ∂uF (t, uε(t), ε) (bε(t) − aε(t)) = εpψε(t),then we have by (6)

||ψε(t)||W ≤ c for t ∈ R, 0 < ε≪ 1. (7)Hene, assumptions (4) and (5) imply
ε (b′ε(t) − a′ε(t) − (A + ∂uF (t, uε(t), ε)) (bε(t) − aε(t))) =

= ε (b′ε(t) − a′ε(t) − A(bε(t) − aε(t))) − F (t, bε(t), ε) + F (t, aε(t), ε) − εpψε(t) ≥

≥ εq
(

ϕl + ϕu + εp−qψε(t)
)

.Therefore, assumption (P1) and the variation of onstants formula yield
(I − Uε(T, 0)) (bε(0) − aε(0)) ≥ εq

∫ T

0

Uε(T, s)
(

ϕl + ϕu + εp−qψε(s)
)

ds.Beause of ϕl, ϕu ∈ int(PW ), p > q and taking into aount (7) we have ϕl + ϕu +
εp−qψε(s) ∈ P \{0} for su�iently small ε and any s. Aording to assumption (P2)we get

∫ T

0

Uε(T, s)
(

ϕl + ϕu + εp−qψε(s)
)

ds ∈ int(PU).Thus, for su�iently small ε it holds
bε(0) − aε(0) − Uε(T, 0)(bε(0) − aε(0)) > 0.Hene, the element u0 := bε(0) − aε(0) belongs to PU and satis�es u0 > Ku0 with

K := Uε(T, 0).In order to apply Theorem 2.2 it remains to show that K maps U ompatly into Uand that Ku ∈ int(PU) for all u ∈ P \ {0}. The �rst property follows from (3) andassumption (P2) and from the ompatness of the embedding D(A) →֒ Xα. Theseond property follows from assumption (P2).4



3 Su�ient onditions for (6)Assumptions (4), (5) and (6) of Theorem 2.3 seem to be antagonisti: On the onehand, (6) is satis�ed if aε and bε are su�iently lose asymptotially as ε → 0. Onthe other hand, (4), (5) are not satis�ed if aε and bε are too lose asymptotially as
ε→ 0. In this setion we derive su�ient onditions for (6) in terms of asymptotialloseness of aε and uε and of bε and uε that allow (4) and (5) to be satis�ed.First we reformulate the expression on the left hand side of (6). A simple alulation(using the main theorem of di�erential and integral alulus) yields

F (t, bε(t), ε) − F (t, aε(t), ε) − ∂uF (t, uε(t), ε) (bε(t) − aε(t)) (8)
=

∫

1

0

r

∫

1

0

(∂2

uF (t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t))

−∂2

uF (t, uε(t) + rs(aε(t) − uε(t)), ε)(aε(t) − uε(t), aε(t) − uε(t)))drds.3.1 A Setting for Reation-Di�usion EquationsIn this subsetion we onsider a setting where the domain of de�nition V of the non-linearity F is �large�. This is typial for appliations to reation-di�usion equations,where V an be hosen as the Banah spae of ontinuous funtions with the usualmaximum norm. Beause the spae V is �large�, its norm is �weak� and, hene, inmany appliations there exists a onstant c1 > 0 suh that for all small ε > 0 andall t we have
‖uε(t)‖V + ‖aε(t)‖V + ‖bε(t)‖V ≤ c1. (9)From (8) follows that (6) is satis�ed if, for example, there are positive onstants c2and c3 suh that

‖aε(t) − uε(t)‖
2

W + ‖bε(t) − uε(t)‖
2

W ≤ c2ε
p (10)and

‖∂2

uF (t, u, ε)‖ ≤ c3 for all u ∈ V with ‖u‖V ≤ c1, (11)where ‖.‖ is the operator norm in the spae of all bounded bilinear operators from
V × V into W . So we getLemma 3.1 Suppose (10) and (11). Then relation (6) holds.3.2 A Setting for Reation-Di�usion-Advetion EquationsIn this subsetion we onsider a setting where the domain of de�nition V of the non-linearity F is �small�. This is typial for appliations to reation-di�usion-advetionequations, where V must be hosen, for example, as the Banah spae of ontinu-ously di�erentiable funtions with its usual norm. Beause the spae V is �small�,5



now its norm is �strong� and, hene, in most of the appliations assumption (9) isnot satis�ed. For example, in ase of singularly perturbed PDEs the funtions uε(t),
aε(t) and bε(t) have large spatial gradients lose to internal or boundary layers forsmall ε. Therefore, we assume onerning the larger spaeW that there is a onstant
c1 > 0 suh that

‖uε(t)‖W + ‖aε(t)‖W + ‖bε(t)‖W ≤ c1. (12)The following lemma shows how to verify relation (6) in ases, when some morestruture of the nonlinearity F is known. More preisely, we suppose that F has therepresentation
F (t, u, ε) = G(t, u, ε)u+H(t, u, ε) (13)with

G ∈ C2 (R ×W × [0, 1],L(V ;W )) , H ∈ C2 (R ×W × [0, 1],W ) (14)and that there is a onstant c4 suh that






‖(∂uG(t, u, ε)w1)v‖W ≤ c4‖w1‖W‖v‖V ,
‖(∂2

uG(t, u, ε)(w1, w2))v‖W ≤ c4‖w1‖W‖w2‖W‖v‖V ,
‖∂2

uH(t, u, ε)(w1, w2)‖W ≤ c4‖w1‖W‖w2‖W

(15)for all v ∈ V , w1, w2 ∈ W and u ∈ W with ‖u‖W ≤ c1. Moreover, we assume thatthere is a onstant c5 suh that for all small ε > 0 and all t we have
‖aε(t) − uε(t)‖

2

W + ‖bε(t) − uε(t)‖
2

W ≤ c5ε
p+1, (16)and

‖aε(t) − uε(t)‖
2

V + ‖bε(t) − uε(t)‖
2

V ≤ c5ε
p−1. (17)Lemma 3.2 Suppose (13)�(17). Then relation (6) holds.Proof. Beause of (8) it su�es to show that for 0 ≤ r, s ≤ 1

‖∂2

uF (t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t)) (18)
−∂2

uF (t, uε(t) + rs(aε(t) − uε(t)), ε)(aε(t) − uε(t), aε(t) − uε(t))‖W

= O(εp).From (13) we get
∂2

uF (t, u, ε)(v, v) = (∂2

uG(t, u, ε)(v, v))u+ 2(∂uG(t, u, ε)v)v + ∂2

uH(t, u, ε)(v, v).Aording to (15) we have
‖(∂2

uG(t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t))uε(t)‖W ≤

≤ c4‖bε(t) − uε(t)‖
2

W‖uε(t)‖Vand
‖2(∂uG(t, uε(t), ε)(bε(t)−uε(t))(bε(t)−uε(t))‖W ≤ 2c4||bε(t)−uε(t)||V ||bε(t)−uε(t)‖W6



and
‖(∂2

uH(t, uε(t), ε)(bε(t) − uε(t), bε(t) − uε(t))‖W ≤ c4||bε(t) − uε(t)||
2

W .Hene
‖∂2

uF (t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t))‖W

≤ c4

(

‖bε(t) − uε(t)‖
2

W‖uε(t)‖V + 2‖bε(t) − uε(t)‖V ‖bε(t) − uε(t)‖W + ‖bε(t) − uε(t)‖
2

W

)

.Taking into aount (1), (16) and (17), we get
‖∂2

uF (t, uε(t) + rs(bε(t) − uε(t)), ε)(bε(t) − uε(t), bε(t) − uε(t))‖W = O(εp).Analogously we obtain
‖∂2

uF (t, uε(t) + rs(aε(t) − uε(t)), ε)(aε(t) − uε(t), aε(t) − uε(t))‖W = O(εp).Thus, relation (18) has been established.4 Appliations to Paraboli Periodi Dirihlet Prob-lemsIn this setion we onsider the periodi Dirihlet problem (2). Conerning the non-linearities g and h in (2) we suppose
g, h ∈ C2(R × [−1, 1] × R × [0, 1],R) (1)and

g(t, x, u, ε) = g(t+ T, x, u, ε), h(t, x, u, ε) = h(t+ T, x, u, ε). (2)We will show that, with appropriately hosen funtion spaes X, U , V and W ,problem (2) an be written in the abstrat form (1) suh that the assumptions
(A1) − (A4), (F1) and (P1) − (P3) are ful�lled and that also the linearized initialboundary value problem







ε (∂tv − ∂2
xv) = g(t, x, u, ε)∂xv + ∂ug(t, x, u, ε)v∂xu+ ∂uh(t, x, u, ε)v,

v(0, x) = v0(x),
v(t,±1) = 0

(3)an be represented in the form (2). For this end we set
X = L2(−1, 1), D(A) = H2(−1, 1) ∩H1

0 (−1, 1), A = −
d2

dx2
.It is well-known that in this setting the assumptions (A1) − (A4) are valid, and itholds (see [1, Chapter 1.4℄

Xα = H2α(−1, 1) ∩Hα
0 (−1, 1).7



Here, H2α(−1, 1) and Hα
0 (−1, 1) are the usual Sobolev spaes. Further, we take

U = {u ∈ C1([−1, 1]) : u(±1) = 0}, ‖u‖U = max
−1≤x≤1

|u(x)| + max
−1≤x≤1

|u′(x)|.Aording to the embedding theorem of Sobolev we have Xα →֒ U for α > 3/4.Finally, we take
W = C([−1, 1]), ‖u‖W = max

−1≤x≤1
|u(x)|.and

P = {u ∈ L2(−1, 1) : u(x) ≥ 0 for almost all x}.Then, obviously,int PU = {u ∈ U : u(x) > 0 for all x ∈ (0, 1), u′(−1) > 0, u′(1) < 0} 6= ∅,int PW = {u ∈W : u(x) > 0 for all x ∈ [0, 1]} 6= ∅,i.e. (P3) is satis�ed. Moreover, assumptions (P1) and (P2) are satis�ed, beause thesolution to (3) with non-negative initial funtion is non-negative for all t > 0 and
x ∈ [−1, 1], and the solution to (2) with an initial funtion, whih is non-negativeand not identially zero, is positive for all x ∈ (−1, 1) and satis�es ∂xu(−1, t) > 0and ∂xu(1, t) < 0 for all t > 0. This follows from the paraboli maximum priniple(see, e.g., [4, Theorem 2.1.4 and Lemma 2.2.1℄).The spaes U and W introdued above are the same in the following subsetions,the spae V will be hosen aording to the onsidered problem.It is well-known that, under assumption (1), any solution to (2) in the sense ofSetion 2 is a lassial solution, i.e., all derivatives in the di�erential equation existand are ontinuous. Correspondingly we de�ne the notions of upper and lowersolutions to (2):De�nition 4.1 To any �xed ε > 0, the funtions bε, aε : R× [−1, 1] → R are alledupper and lower solutions to (2) of asymptoti order q > 0, respetively, if they aresu�iently smooth, satisfy the periodiity and boundary onditions in (2) and theinequalities

{

ε (∂tbε − ∂2
xbε) − g(t, x, bε, ε)∂xbε − h(t, x, bε, ε) ≥ ϕεq,

ε (∂taε − ∂2
xaε) − g(t, x, aε, ε)∂xaε − h(t, x, aε, ε) ≤ −ϕεqfor all t ∈ R and x ∈ [−1, 1], where ϕ > 0 is some onstant.Note that for the existene of solutions to (2) it is su�ient to onstrut orderedupper and lower solutions whih satisfy weaker onditions than those used in De�-nition 4.1 (see, e.g., [2℄). In order to prove the exponential asymptoti stability, theintrodued notion in De�nition 4.1 seems to be appropriate.8



4.1 Reation-Di�usion EquationsIn this subsetion we onsider problems of the type (2) with g = 0. Assumption
(F1) an be easily veri�ed, where the abstrat funtion is de�ned by

F (t, u, ε)(x) := h(t, x, u(x), ε),and the funtion spae V is hosen as V = W.Now, the following theorem is a diret onsequene of Theorem 2.3.Theorem 4.2 Suppose (1) and (2) with g = 0. Let uε be a family of solutions to(2) with g = 0, and let aε and bε be families of lower solutions and upper solutionsof asymptoti order q > 0 to (2) with g = 0, respetively. Suppose that for all ε, tand x it holds
|uε(t, x)| + |aε(t, x)| + |bε(t, x)| ≤ κ1,

|bε(t, x) − uε(t, x)| + |aε(t, x) − uε(t, x)| ≤ κ2ε
p

2 ,where κ1 > 0, κ2 > 0 and p > q are onstants. Further, suppose that for all ε wehave bε(0, x) ≥ aε(0, x) for all x ∈ [−1, 1] and bε(0, x0) > aε(0, x0) for some x0 ∈
(−1, 1). Then, for su�iently small ε > 0, the solutions uε to (2) are exponentiallyasymptotially stable.Remark 4.3 Upper and lower solutions whih satisfy the assumptions of Theorem4.2 have been onstruted for problems with interior layers in [3, 5℄.4.2 Reation-Di�usion-Advetion EquationsIn this subsetion we onsider problems of the general type (2) with (1) and (2).Then onditions (F1) with (13)�(15) an be easily veri�ed, where the abstrat fun-tions G and H are de�ned by

(G(t, u, ε)v)(x) := g(t, x, u(x), ε)v′(x), H(t, u, ε)(x) := h(t, x, u(x), ε),and the spae V is hosen as
V = C1([−1, 1]), ‖u‖V = max

|x|≤1

|u(x)| + max
|x|≤1

|u′(x)|.Now, the following theorem is a diret onsequene of Theorem 2.3 and Lemma 3.2:Theorem 4.4 Suppose (1) and (2). Let uε be a family of solutions to (2), andlet aε and bε be families lower solutions and upper solutions of order q > 0 to (2),respetively. Suppose that for all ε, t and x it holds
|uε(t, x)| + |aε(t, x)| + |bε(t, x)| ≤ κ1,9



|bε(t, x) − uε(t, x)| + |aε(t, x) − uε(t, x)| ≤ κ2ε
p+1

2 ,

|∂xbε(t, x) − ∂xuε(t, x)| + |∂xaε(t, x) − ∂xuε(t, x)| ≤ c2ε
p−1

2 ,where κ1, κ2 and p > q are onstants. Further, suppose that for all ε we have
bε(0, x) ≥ aε(0, x) for all x ∈ [−1, 1] and bε(0, x0) > aε(0, x0) for some x0 ∈ (−1, 1).Then, for su�iently small ε > 0, the solutions uε to (2) are exponentially asymp-totially stable.Remark 4.5 The upper and the lower solutions whih satisfy the assumptions ofTheorem 4.4 will be presented in our forthoming paper.The approah desribed above seems to have a wide range of appliability in dealingwith transition and boundary layers.Referenes[1℄ D. Henry, Geometri Theory of Semilinear Paraboli Equations, Leture Notesin Math. 840, Springer�Verlag, 1981[2℄ P. Hess, Periodi-Paraboli Boundary Value Problems and Positivity, PitmanResearh Notes in Math. Series 247, Longman Sienti� & Tehnial, 1991[3℄ N. N. Nefedov, An asymptoti method of di�erential inequalities for the inves-tigation of periodi ontrast strutures: existene, asymptotis, and stability ,Di�er. Uravn. 36, 262-269 (2000)[4℄ C. V. Pao, Nonlinear Paraboli and Ellipti Equations, Plenum Press, 1992[5℄ V.T. Volkov, N. N. Nefedov, Development of the asymptoti method of di�er-ential inequalities for investigation of periodi ontrast strutures in reation-di�usion-advetion equations, Computational Mathematis and MathematialPhysis 46, No 4, 585-593 (2006)[6℄ E. Zeidler, Nonlinear Funtional Analysis and its Appliations I: Fixed PointTheorems, Springer�Verlag, 1986

10


