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Abstract

We consider singularly perturbed semilinear parabolic periodic problems
and assume the existence of a family of solutions. We present an approach to
establish the exponential asymptotic stability of these solutions by means of
a special class of lower and upper solutions. The proof is based on a corollary
of the Krein-Rutman theorem.

1 Introduction

This paper concerns abstract singularly perturbed semilinear parabolic periodic
problems of the type

{g(uf(t)+,4u t)) = F(t,u(t)e), (1)
u(t) = u(t+1),

as well as periodic Dirichlet problems for singularly perturbed reaction-diffusion-
advection equations of the type

e (O — Pu) = g(t,x,u,e)0u+ h(t,z,u,e) for 0 <z <1,
u(t,z) = u(lt+7T,x), (2)
ult,+1) = 0.

Here, € > 0 is the small singular perturbation parameter and 7" > 0 the given period.

Our goal is to establish a criterion for exponential asymptotic stability of a given
family u. of solutions by means of families a. and b, of lower and upper solutions
of asymptotic order ¢ (see Definition 4.1) and which are close to each other in some
topology with asymptotic order p, where p > ¢ (see Theorems 2.3, 4.2 and 4.4). The
main tool for deriving such a criterion is the Krein-Rutman theorem.

2 Abstract singularly perturbed semilinear parabolic
periodic problems

In this section we consider problem (1). We start by formulating the hypotheses
under which we consider this problem.



Let X be a real Banach space with norm ||.||x. Concerning the operator A we sup-
pose

(A1) A: D(A) € X — X is linear, closed and densely defined.
(As) The resolvent set p(A) of A satisfies p(A) C {A € C: Re A <0}.

(A3) There is some positive constant k such that

(A= AD7Y| < % for all A\ € C with Re A < 0, # 0.

(A4) A has a compact resolvent.

Assumptions (A;)—(As) imply that A is a sectorial operator (see, e.g., [1]). As usual,
we denote by A® the fractional power of A for 0 < a < 1 and by X® its domain of
definition. The space X equipped with the graph norm ||A%u||x is a Banach space.
Moreover, assumption (A4) implies that the embeddings D(A) — X — X# — X
are compact for 0 < # < a < 1. Concerning the nonlinearity I’ we suppose

(F1) F € C](R x V x (0,1); W), where V and W are a real Banach spaces with
norms ||.||y and |.||w, respectively, such that

D(A) =V - W — X, (1)
and F' is periodic in ¢t with period T" > 0, i.e.

F(t,u,e) = F(t+T,u,e) forall teRueV,ee(0,1).

To given € > 0, a solution u to (1) is, by definition, a function u € C'(R; X) N
C(R; D(A)) which satisfies (1) pointwise.

Let u. be a family of solutions to (1). It is well-known (see, e.g., [1, Theorem
8.1.1]) that the stability of the solution u. to (1) can be determined by means of the
linearized initial value problem

{5(v’(t)+Av(t)) = O0.F(t,u.(t),e) v(t), t>tg, )

v(tg) = wp.

According to the assumptions (A;)—(As) and (F}), there exists a family of operators
U.(t,tg) € L(X) with U.(to,to,) = I such that, for any given initial value vy € X,



the element U.(t, 1) vo is the solution to (2) (see [1], Theorem 7.1.3). In particular,
we have

Ug(t,tO) Vo € D(A) for all v € X. (3)

The operator U.(T,0) is usually called the monodromy operator, and its spectral
radius can be used to verify stability of u. by means of the following theorem (see,
e.g., [1, Theorem 8.1.1]):

Theorem 2.1 Suppose the assumptions (A1) — (A3) and (Fy) are satisfied, and
assume the spectral radius of U.(T,0) to be less than one. Then u. is exponentially
asymptotically stable.

In the sequel we will use a corollary of the Krein-Rutman-Theorem in order to verify
if the spectral radius of U.(T',0) is less than 1. For this purpose we introduce some
notation.

An order cone () in a Banach space Y is a closed and convex cone with vertex at
zero such that Q@ N (—Q) = 0. As usual, we write v < v iff v —u € P, and u < v
ifft v —u € P\ {0}. We denote by int(Q)) the set of interior points of (). The
next theorem is a crucial consequence of the Krein-Rutman Theorem (see, e.g., [6,
Corollary 7.27| and |2, Theorem 7.3]).

Theorem 2.2 Let QQ be an order cone in a Banach space Y with int(Q) # (), and
let K :Y — Y be a linear compact operator such that Ku € int(Q) for all u > 0.
Suppose that there exists ug € Q such that ug > Kug. Then the spectral radius of K
15 less than one.

Now we are going to show how to verify the assumptions of Theorem 2.2 with

K = U.(T,0). We assume:

(Py) There is an order cone P in X such that U.(T,s)v € P for allv € P and 0 <
s<T.

(P,) There is a Banach space U with the properties: (i). There is some 0 < a < 1
such that X* — U — X. (ii). int(Py) # 0, where Py := PN U, and int(Py)
denotes the set of interior (in U) points of Py. (iii). U.(T, s)v € int(Py) for all v €
P\ {0} and 0 < s <T.

(Ps) int(Pw) # 0, where Py := PN W, and int(Py ) denotes the set of interior (in
W) points of Py .

The main result of this section which provides a criterion for exponential stability
of the family of solutions u. to (1) under some appropriate properties of lower and
upper solutions (see section 4) is the following one.
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Theorem 2.3 Suppose (A1) — (A4), (F1) and (Py) (P3). Assume that there exist
two families of T-periodic functions a.,b. € C*(R; X) N C(R; D(A)) with b.(0) —
a-(0) > 0, numbers p > q > 0 and ¢ > 0 and elements ;, @, € int(Py) which do
not depend on € and t such that for all sufficiently small € and all t we have

e(az(t) + Aac(t)) — F(t, ac(t), ) < =gy, (4)
e(bL(t) + Abe(t)) — F(t,b.(t),e) > ey, (5)

[F(t,b:(),€) = F(t, ac(t),€) — Oul'(t, us(t), €)(be(t) — ac(t))|w < e’ (6)
Then, for sufficiently small € > 0, the spectral radius of U.(T,0) is less than one.

Proof. Introducing the function 1. by
F(t,0:(t),€) = F(t,ac(t),€) — OuF (¢, uc(t), €) (be(t) — ac(t)) = ePpe(t),
then we have by (6)

0 ®)llw <c for teR, 0<e< 1. (7)

Hence, assumptions (4) and (5) imply

e (bL(t) — al(t) — (A+ 9ul(t,us(t), €)) (b(t) — ac(t))) =
=& (bla(t) - a;(t) - A(ba(t) - aa(t))) - F(t, ba(t)a 5) + F(t, aa(t)a 5) - 5p"7ba(t) 2
> &9 (@1 + pu + P (1)) -

Therefore, assumption (P;) and the variation of constants formula yield

(I = U.(T, 0)) (b-(0) — a.(0)) > 9 /0 U(T, ) (91 + pu + P~ 90.(s)) ds.

Because of ¢, ¢, € int(Py), p > ¢ and taking into account (7) we have p; + ¢, +
e~ (s) € P\ {0} for sufficiently small € and any s. According to assumption (P)
we get

/OT U(T), s) ((pl + o, + ap_qwe(s)) ds € int(Py).
Thus, for sufficiently small ¢ it holds
1:(0) — 02(0) — UL(T, 0)(-(0) — (0)) > 0
Hence, the element uy := b.(0) — a.(0) belongs to Py and satisfies ug > Kuy with
K :=U.(T,0).

In order to apply Theorem 2.2 it remains to show that K maps U compactly into U
and that Ku € int(Py) for all w € P\ {0}. The first property follows from (3) and
assumption (P) and from the compactness of the embedding D(A) — X°. The
second property follows from assumption (P,).
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3 Sufficient conditions for (6)

Assumptions (4), (5) and (6) of Theorem 2.3 seem to be antagonistic: On the one
hand, (6) is satisfied if a. and b. are sufficiently close asymptotically as ¢ — 0. On
the other hand, (4), (5) are not satisfied if a. and b. are too close asymptotically as
e — 0. In this section we derive sufficient conditions for (6) in terms of asymptotical
closeness of a. and u. and of b. and u. that allow (4) and (5) to be satisfied.

First we reformulate the expression on the left hand side of (6). A simple calculation
(using the main theorem of differential and integral calculus) yields

F(t,b F(t,ac(t),€) — OuF (t, uc(t), €) (be(t) — ac(t)) (8)
/ / (O2F (t,uc(t) + rs(bo(t) — uc(t)), e)(bo(t) — uc(t), be(t) — uc(t))
—O2F(t,u(t) +rs(a:(t) — u(t)),e)(a:(t) — uc(t), ac(t) — u(t)))drds.

3.1 A Setting for Reaction-Diffusion Equations

In this subsection we consider a setting where the domain of definition V' of the non-
linearity F'is “large”. This is typical for applications to reaction-diffusion equations,
where V' can be chosen as the Banach space of continuous functions with the usual
maximum norm. Because the space V' is “large”, its norm is “weak” and, hence, in
many applications there exists a constant ¢; > 0 such that for all small € > 0 and
all t we have

lue(@)lv + lla-Olv + [[b-O)]lv < e (9)

From (8) follows that (6) is satisfied if, for example, there are positive constants ¢,
and c3 such that

lac(t) — ue (@)l + [16-(t) — uc ()5 < coe” (10)

and
|02 F (t,u,€)| < e for all uw € V with ||luly < e, (11)
where ||.|| is the operator norm in the space of all bounded bilinear operators from

V x V into W. So we get

Lemma 3.1 Suppose (10) and (11). Then relation (6) holds.

3.2 A Setting for Reaction-Diffusion-Advection Equations

In this subsection we consider a setting where the domain of definition V' of the non-
linearity F'is “small”. This is typical for applications to reaction-diffusion-advection
equations, where V' must be chosen, for example, as the Banach space of continu-
ously differentiable functions with its usual norm. Because the space V is “small”,
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now its norm is “strong” and, hence, in most of the applications assumption (9) is
not satisfied. For example, in case of singularly perturbed PDEs the functions u.(t),
a.(t) and b.(t) have large spatial gradients close to internal or boundary layers for
small e. Therefore, we assume concerning the larger space W that there is a constant
¢y > 0 such that

Jue(D)llw + llac (@) lw + [1b-(E)][w < c1. (12)

The following lemma shows how to verify relation (6) in cases, when some more
structure of the nonlinearity F' is known. More precisely, we suppose that F' has the
representation

F(t,u,e) = G(t,u,e)u+ H(t,u,¢) (13)

with
GeC*(RxW x[0,1],L(V;W)), He C*(Rx W x [0,1], W) (14)

and that there is a constant ¢4 such that

[(0uG(, u,e)wr)vllw < callwr]|wlvllv,
(DG (¢t u, &) (wi, wa))vllw < eallwi|lw |[wa|lwlv]|v., (15)
102 (¢, u, ) (wr, wo)lw < eallwllw[[wellw

for all v € V, wy,wy € W and u € W with |lu|lw < ¢;. Moreover, we assume that
there is a constant cs such that for all small £ > 0 and all ¢ we have

llac(t) — ue ()15 + [1be() — ue(®)[fy < s, (16)

and
lac(t) — uc()[IF + [[0-(t) — u(B)][} < ese”™ (17)

Lemma 3.2 Suppose (13)-(17). Then relation (6) holds.

Proof. Because of (8) it suffices to show that for 0 <r s <1

||83F(t7u€(t) +T5(b ( ) - 6( )) )(be(t) - us(t) be@) - us(t)) (18)
—OF(t,ue(t) + rs(as(t) — ua(t), €)(as(t) — ue(t), ac(t) — ue(t))lw
= 0(£P).

From (13) we get
O2F (t,u,e)(v,v) = (02G(t,u, ) (v,v))u + 2(0,G(t, u, e)v)v + O2H (t,u, ) (v,v).
According to (15) we have

I(RG(t, ue(t) +75(be(t) — ue(t)), &) (be(t) — ue(t), be(t) — ue(t) uc(t) w <
< ca|be(t) = ue(t)l[3l|ue () |lv

and

120G (1, ue(t), €) (be (t) = e (£)) (0= () —ue (£))[[w < 2eal[be(8) —ue (0)][v[[be (8) —ue () [l
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and
1(D2H (1, us(t), €) (b(t) — us(t), b=(t) — ue(t))lw < calbo(t) — ua(t)| [y
Hence

102 F (t, uc(t) + r(bo(t) — (), &) (bo(t) — ua(t), bo(t) — ua(t))
< ea([10-(6) = ) et + 20(E) — wel®) [ 16-(8) = w®) oy + [10-8) = we®) 3 ).

Taking into account (1), (16) and (17), we get

0L (£, ue(t) + s (be(t) — ue(t)), ) (be(t) — ue(t), be(t) — ue(t))w = O(e”).
Analogously we obtain

1055 (¢, ue(t) + 75(ac(t) — ue(t)), ) (ac(t) — ue(t), ac(t) — ue(t))|lw = O().

Thus, relation (18) has been established.

4 Applications to Parabolic Periodic Dirichlet Prob-
lems

In this section we consider the periodic Dirichlet problem (2). Concerning the non-
linearities g and h in (2) we suppose

g,h € C*(R x [-1,1] x R x [0,1],R) (1)
and
g(t,z,u,e) =gt +T,z,u,e), h(t,x,u,e) = h(t + T, z,u,¢). (2)

We will show that, with appropriately chosen function spaces X, U, V and W,
problem (2) can be written in the abstract form (1) such that the assumptions
(A1) — (A4), (Fy) and (Py) — (P3) are fulfilled and that also the linearized initial

boundary value problem

e (0w — %) = g(t, v, u,8)0v + 0ug(t, T, u, e)vpu + O, h(t, x,u, v,
v(0,2) = wo(x), (3)
v(t,£1) = 0
can be represented in the form (2). For this end we set
d2
Cda?

It is well-known that in this setting the assumptions (A;) — (A4) are valid, and it
holds (see |1, Chapter 1.4]

X = L*(—1,1), D(A) = H*(—1,1)N Hy(—1,1), A=

X = H**(-1,1) N HY(-1,1).
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Here, H**(—1,1) and H§(—1,1) are the usual Sobolev spaces. Further, we take

= 1 — : = = /
U= {ue =11 u) =0}, fully = max Ju(@)] + max [(z)]
According to the embedding theorem of Sobolev we have X — U for a > 3/4.

Finally, we take
W =C([-1,1)), [lullw = max |u(z)]

—1<z<1

and
P={ue L*(—1,1): u(x) > 0 for almost all z}.

Then, obviously,

int Py = {ueU: u(zx)>0foralze(01), v(—1)>0, u'(1) <0} #0,
int Py = {ueW: u(xz)>0forall z€l0,1]} #0,

i.e. (Ps) is satisfied. Moreover, assumptions (P;) and (P,) are satisfied, because the
solution to (3) with non-negative initial function is non-negative for all ¢ > 0 and
x € [—1,1], and the solution to (2) with an initial function, which is non-negative
and not identically zero, is positive for all z € (—1,1) and satisfies d,u(—1,¢) > 0
and d,u(1,t) < 0 for all t > 0. This follows from the parabolic maximum principle
(see, e.g., [4, Theorem 2.1.4 and Lemma 2.2.1]).

The spaces U and W introduced above are the same in the following subsections,
the space V will be chosen according to the considered problem.

It is well-known that, under assumption (1), any solution to (2) in the sense of
Section 2 is a classical solution, i.e., all derivatives in the differential equation exist
and are continuous. Correspondingly we define the notions of upper and lower
solutions to (2):

Definition 4.1 To any fized € > 0, the functions b.,a. : R x [—-1,1] — R are called
upper and lower solutions to (2) of asymptotic order q > 0, respectively, if they are
sufficiently smooth, satisfy the periodicity and boundary conditions in (2) and the
inequalities

e,

e (Opb. — 0%b.) — g(t, w, b, €)0pb. — h(t, b, €)
€ —pe?

>
(Ora. — D%a.) — g(t,x,a.,€)0pa. — h(t,z,a.,e) <
for allt € R and x € [—1, 1], where ¢ > 0 is some constant.

Note that for the existence of solutions to (2) it is sufficient to construct ordered
upper and lower solutions which satisfy weaker conditions than those used in Defi-
nition 4.1 (see, e.g., [2]). In order to prove the exponential asymptotic stability, the
introduced notion in Definition 4.1 seems to be appropriate.



4.1 Reaction-Diffusion Equations

In this subsection we consider problems of the type (2) with ¢ = 0. Assumption
(F1) can be easily verified, where the abstract function is defined by

F(t,u,e)(z) :== h(t,xz,u(x),e),

and the function space V is chosen as V = W.

Now, the following theorem is a direct consequence of Theorem 2.3.

Theorem 4.2 Suppose (1) and (2) with g = 0. Let u. be a family of solutions to
(2) with g = 0, and let a. and b, be families of lower solutions and upper solutions
of asymptotic order ¢ > 0 to (2) with g = 0, respectively. Suppose that for all e, t
and x it holds
|ue(t, )| + |ac(t, 2)| + |be(t, )] < £,
bo(t, ) — uc(t, )| + |ac(t, 2) — uc(t, )| < Koe?,

where k1 > 0, kg > 0 and p > q are constants. Further, suppose that for all € we
have b.(0,x) > a.(0,z) for all x € [—1,1] and b.(0,z¢) > a.(0,zy) for some xy €
(=1,1). Then, for sufficiently small € > 0, the solutions u. to (2) are exponentially
asymptotically stable.

Remark 4.3 Upper and lower solutions which satisfy the assumptions of Theorem
4.2 have been constructed for problems with interior layers in [3, 5].

4.2 Reaction-Diffusion-Advection Equations

In this subsection we consider problems of the general type (2) with (1) and (2).
Then conditions (F7) with (13) (15) can be easily verified, where the abstract func-
tions G and H are defined by

(Gt ue)0)(@) = g(tau(), )/ (@), H(t,u,e)(@) = hit,z,u(x), e),
and the space V' is chosen as

_ — /
V= AL, fully = mas u(e)| + max |/ (2)]

Now, the following theorem is a direct consequence of Theorem 2.3 and Lemma 3.2:

Theorem 4.4 Suppose (1) and (2). Let u. be a family of solutions to (2), and
let a. and b, be families lower solutions and upper solutions of order ¢ > 0 to (2),
respectively. Suppose that for all €, t and x it holds

|ue(t, )| + [ac(t, 2)| + |b=(t, )] < k1,
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p+1

|b-(t, ) — u(t, )| + |ac(t, x) — us(t, z)| < Koe 2,

p—1

|0:b-(t, ) — Opuc(t, )| + |0zac(t, ) — Opuc(t,x)| < coe 2,

where k1, ko and p > q are constants. Further, suppose that for all ¢ we have
b(0, ) > a-(0,z) for all x € [—-1,1] and b-(0, ) > a.(0,x) for some zy € (—1,1).
Then, for sufficiently small € > 0, the solutions u. to (2) are exponentially asymp-
totically stable.

Remark 4.5 The upper and the lower solutions which satisfy the assumptions of
Theorem 4.4 will be presented in our forthcoming paper.

The approach described above seems to have a wide range of applicability in dealing
with transition and boundary layers.
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