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Abstract. Nonlinear Black—Scholes equations have been increasingly attracting interest over
the last two decades, since they provide more accurate values by taking into account more realistic
assumptions, such as transaction costs, risks from an unprotected portfolio, large investor’s prefer-
ences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and
the option price itself.

This book consists of a collection of contributed chapters of well-known outstanding scientists
working successfully in this challenging research area. It discusses concisely several models from
the most relevant class of nonlinear Black—Scholes equations for European and American options
with a volatility depending on different factors, such as the stock price, the time, the option price
and its derivatives. We will present in this book both analytical techniques and numerical methods
to solve adequately the arising nonlinear equations.

The purpose of this book is to give an overview on the current state-of-the-art research on
nonlinear option pricing. The intended audience is on the one hand graduate and Ph.D. students
of (mathematical) finance and on the other hand lecturer of mathematical finance and and people
working in banks and stock markets that are interested in new tools for option pricing.

1 Introduction

Nonlinear models im mathematical finance are becoming more and more important since
they take into account effects like the presence of transaction costs, feedback and illiquid
market effects due to large traders choosing given stock-trading strategies, imperfect repli-
cation and investor’s preferences and risk from unprotected portfolios.

Due to transaction costs, illiquid markets, large investors or risks from an unprotected
portfolio the assumptions in the classical Black—Scholes model become unrealistic and
the model results in strongly or fully nonlinear, possibly degenerate, parabolic diffusion—
convection equations, where the stock price, volatility, trend and option price may depend
on the time, the stock price or the option price itself.

In this chapter we will be concerned with several models from the most relevant class
of nonlinear Black—Scholes equations for European and American options with a volatility
depending on different factors, such as the stock price, the time, the option price and its
derivatives, where the nonlinearity results from the presence of transaction costs.

In the following sections we will give a short introduction to option pricing.
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2 Financial Derivatives

The interest in pricing financial derivatives — among therpriging options — arises from
the fact that financial derivatives, also called contingdaims, can be used to minimize
losses caused by price fluctuations of the underlying as3éiis process of protection is
called hedging There is a variety of financial products on the market, suclutures,
forwards, swaps and options. In this introductory chaptemill focus on European and
American Call and Put options.

Definition 2.1 AEuropean Call optiors a contract where at a prescribed time in the future,
known as the expiry or expiration dafe (t = 0 means 'today’), the holder of the option
may purchase a prescribed asset, known as the underlyireg asthe underlyings(¢), for

a prescribed amount, known as the exercise or strike pkiceThe opposite party, or the
writer, has the obligation to sell the asset if the holder abes to buy it.

At the final timeT the holder of the European Call option will check the curgaite of the
underlying asse$ := S(T). If the price of the asset is greater than the strike piice, K,
then the holder will exercise the Call and buy the stock ferstrike price/. Afterwards,
the holder will immediately sell the asset for the pri¢and make a profit ot = S — K.

In this case theash flow or the difference of the money received and spent, is pesitnd
the option is said to bim-the-moneylf S = K, the cash flow resulting from an immediate
exercise of the option is zero and the option is said tatade-moneyin caseS < K, the
cash flow is negative and the option is said tmhbeof-the-moneyin the last two cases the
holder will not exercise the Call option, since the assean be purchased on the market
for K or less thank', which makes the Call option worthless. Therefore, the valithe
European Call option at expiry, known as tbey-off functionis

V(S7T) = (S - K)+7
with the notationf™ = max(f,0).

Definition 2.2 Reciprocally, @uropean Put optiois the right to sell the underlying asset
S(t) at the expiry datel” for the strike price/l. The holder of the Put may exercise this
option, the writer has the obligation to buy it in case thedwsslchooses to sell it.

The Putis in-the-money iK' > S, at-the-money i = S and out-of-the-money i < S.
The pay-off function for a European Put option is therefore

V(S,T) = (K — S)*.

The pay-off functions for the European Call and Put optian @otted in Fig, 1 from the
perspective of the holder. This perspective is calledidhg position The perspective of
the writer, or theshort position is reversed and can be seen when the pay-off functions in
Fig. 1 are multiplied by-1. That means that the writer of a European Call option is takin
the risk of a potentially unlimited loss and must carefulgsmn a strategy to compensate
for this risk [27].
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v European Call 1% European Put

0 K 0 K

Figure 1: Pay-off functions for European options with ak&tmprice K.

While European options can only be exercised at the expigy DaAmerican options
can be exercised at any time until the expiration. Since aergan option includes at least
the same rights as the corresponding European option, the shan American option
V@™ can never be smaller than the value of a European optidh i.e.

Vam > Veur .

Whether the values are equal depends orditielend yieldg, which describes the percent-
age rate of the returns on the underlying asset. Assumingheainderlying stoclé pays
no dividends, the values of a European and an American Catiropre equal if all the
other parameters remain the same (for details see [13, 8gase of an American Put
option without dividend payments it can often be advantagdo exercise it before expiry,
so that the values of a European and an American Put can shiffetantially.

In the presence of a continuous dividend payment the fagepri(S,0) of both an
American Call and Put option is greater than the value of @pean Call or Put, see Fig. 2.

— European Cail — Européan Put

— American Call — American Put

---Pay-Off V(S,T K ---Pay—off V(S,T
) )
22 2
= >

K ‘ K
S S
(@) American vs. European Call with dividends. (b) American vs. European Put option.

Figure 2: Schematical values of American vs. European ogptitt = 0.
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Furthermore, it should be mentioned that the value of a Galbo on an underlying
without a dividend payment is always greater than the vafue@all option on an under-
lying with a dividend payment for both European and Ameriogtions. For European
and American Put options on an underlying without a dividpagiment the value is less
than on an underlying with a dividend payment. The influerfca dividend payment is

summarized in Fig. 3.

Options, whose pay-offs only depend on the final value of thdedying asset, are
calledvanilla options. Options, whose pay-offs depend on the path of tdenlying asset,
are calledexotic or path-dependenbptions. Examples ar@sian Barrier and lookback
options. In this chapter, we will be solely concerned withiplanilla European and Amer-

ican options.

—0=0 —0q=0 ‘
—q=0.2 —0q=0.2
q=0.4 Kk, gq=0.4

---Pay-off V(S,T ) ---Pay—off V(S,T
S )
22 2
= >

K | K
S S
(a) European Call option with dividend yielgs (b) European Put option with dividend yields
—q=0 I(/ [ ‘ —q=0
—q=0.2 —¢=0.2
g=0.4 1 KK g=0.4

--- Pay-off V(S,T N\ ---Pay-off V(S,T
= =
v <
Y >

K | K
S S
(c) American Call option with dividend yieldg (d) American Put option with dividend yields

Figure 3: The influence of a dividend yield.
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3 Linear Black—Scholes Equations

Option pricing theory has made a great leap forward sincel¢velopment of the Black—
Scholes option pricing model by Fischer Black and Myron $ehaon [3] in 1973 and
previously by Robert Merton in [25]. The solution of the famsdlinear) Black—Scholes
equation[9]

1
0="V;+ 502521/33 +7rSVs — 1V, 1)

whereS := S(t) > 0 andt € (0,7), provides both an option pricing formula for a
European option and a hedging portfolio that replicatestimingent claim assuming that
[27]:

e The price of the asset price or underlying asSdbllows a Geometric Brownian
motion, meaning that if¥’ := W (¢) is a standard Brownian motion (see Appendix
A.6), then$ satisfies the following stochastic differential equati®DE):

dS = pSdt + o SAW.

e Thetrend or drift ;1 (measures the average rate of growth of the asset price), the
volatility o (measures the standard deviation of the returns) and tklesssinterest
rater are constant fod < ¢ < 7" and no dividends are paid in that time period.

e The market isfrictionless thus there are no transaction costs (fees or taxes), the
interest rates for borrowing and lending money are equighaaties have immediate
access to any information, and all securities and credéswailable at any time and
any size. That is, all variables are perfectly divisible amaly take any real number.
Moreover, individual trading will not influence the price.

e There are narbitrage opportunities, meaning that there are no opportunitie-of i
stantly making a risk-free profit ("There is no such thingrae flunch").

Under these assumptions the marketasplete which means that any derivative and any
asset can be replicated or hedged with a portfolio of otheetasn the market (see [31]).
Then, it is well-known that the linear Black—Scholes equrafil) can be transformed into
the heat equation and analytically solved to price the of88]. The derivation of the so-
lution can be found in [27], the formulae for the Europearl @adl Put options are attached
in Appendix B.

For American options, in general, analytic valuation folaeuare not available, except
for a few special types, which we are not going to addressisnctapter. Those types are
Calls on an asset that pays discrete dividendspendetualCalls and Puts — meaning Calls
and Puts with an infinite time to expiry [23].
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4 Nonlinear Black—Scholes Equations

It is quite easy to imagine that the restrictive assumptimestioned in the previous Sec-
tion 3 are never fulfilled in reality. Due to transaction &tf. [2, 5, 24]), large investor
preferences (cf. [11, 12, 26]) and incomplete markets &tf])[these assumptions are likely
to become unrealistic and the classical model resultsamgly or fully nonlinear, possibly
degenerate, parabolic convection—diffusion equatiorgrer both the volatilityy and the
drift 4 can depend on the timg the stock prices or the derivatives of the option pridé
itself.

In this chapter we will focus on several transaction cost @®d@rom the most rele-
vant class of nonlinear Black—Scholes equations for Ewmoad American options with
a constant driff, and a nonconstamhodified volatility function

2 :=5%(t, S, Vs, Vss).

Under these circumstances (1) becomes the followimglinear Black—Scholes equation
which we will consider for European options:

0=V, + %52(75, S, Vs, VSS)SQVSS +rSVg —1rV, (2)
wheredS = pSdt +aSdW, S > 0andt € (0,7).

Studying the linear Black—Scholes equation (1) for an An@riCall option would be
redundant, since the value of an American Call option egqhalsvalue of a European Call
option if no dividends are paid and the volatility is constan

In order to make the model more realistic, we will consideradification of the non-
linear Black—Scholes equation (2) for American optionserelt’ pays out acontinuous
dividendqSdt in a time stepit:

1.
0=V, + 50’2(& S, Vs, Vss)S*Vss + (r — q)SVs — 1V, (3)

where S follows the dynamicsiS = (u — q)Sdt + aSdW, S > 0,t € (0,7) and the
dividend yieldg is constant.

In the mathematical sense the nonlinear Black—Scholegdiegad?2) and (3) are called
convection—diffusion equations. The second-order téﬁ‘ﬁ(t, S, Vs, Vss)S?*Vsg is re-
sponsible for theliffusion the first-order termSVs or (r — ¢) SV is called theconvection
term and—rV can be interpreted as tireactionterm (see [27, 32]).

In the financial sense, the partial derivatives indicatestivgsitivity of the option price
V' to the corresponding parameter and are calleeeks The option delta is denoted by
A = Vg, the option gamma by = Vgg and the option theta b§ = V;. For a detailed
discussion of this issue we refer to [19].

5 Terminal and Boundary Conditions

In order to find a unique solution for the equation (2) we needomplete the problem by
stating the terminal and boundary conditions for both theogeian Call and Put option.
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Since American options can be exercised at any time befqueyexve need to find
the optimal timet of exercise, known as theptimal exercise time At this time, which
mathematically is @topping timgsee Appendix A.5), the asset price reachesoiitemal
exercise priceor optimal exercise boundar§(t). This leads to the formulation of the
problem for American options by dividing the domain co[x [0, 7] of (3) into two parts
along the curves(t) and analyzing each of them (see Fig. 4). Sifigét) is not known in
advance but has to be determined in the process of the syltiie problem is calleftee
boundary value probler{84].

t t
A
y A E S Theeeoee - S
hold \ exercise exercise . hold
| Sy(t) S1(t) |
' - S ‘ ' - S
0 Si(T)  S5(0) 0 S(0)  Sy(T)
(&) American Call. (b) American Put.

Figure 4: Exercising and holding regions for American opgio

For different numerical approaches, the free boundarylenolfor American options
can be reformulated into lnear complementary probletf CP), avariational inequality
and aminimization probleni13]. The most simple treatment is the formulation as a free
boundary problem [8, 14].

Even though we will focus on Call options in this chapter, waesthe conditions for
Put options for the sake of completeness.

5.1 European Call Option

The valueV (S, t) of the European Call option is the solution to (2) on< S < oo,
0 <t < T with the following terminal and boundary conditions:

V(S,T)= (S - K)* for0 < S < o0
V(0,t) =0 for0<¢<T ()
V(S,t) ~ S — Ke (T ass — oc.

5.2 European Put Option

Reciprocally, the valud’ (S, ¢) of the European Put option is the solution to (2)®r<
S < 00, 0 < t < T with the pay—off function for the Put as the terminal coraditand the



8 Matthias Ehrhardt

boundary conditions:

V(S,T)=(K—5)" for0 < S < oo
V(0,t) = Ke 7T for0<t<T (5)
V(S,t) —0 ass — oc.

5.3 American Call Option

For the American Call option thepatial domain is divided into two regions by tHeee
boundaryS(t), the stopping regionS¢(t) < S < oo, 0 < t < T, where the option is
exercised or dead with'(S,t) = S — K and thecontinuation regiord < S < Sy(t),
0 < t < T, where the option is held or stays alive and (3) is valid urtterfollowing
terminal and boundary conditions (see Fig. 4(a)):

V(S,T)=(S—-K)" for 0 < .S < S¢(T)
V(0,t) =0 for0<t<T
V(Sf(t),t) = Ss(t) — K foro<t<T (6)
Vs(S¢(t),t) =1 for0<¢t<T
S#(T) = max(K,rK/q)

For the sake of simplicity we will assume > ¢ in this chapter, and therefore we have
S¢(T') = rK/q for the American Call.

The structure of the value of an American Call can be seen3&), where we notice
that the free boundarg(¢) determines the position of the exercise. The exercising and
holding regions are illustrated in Fig. 4(a).

5.4 American Put Option

The American Put option is exercised in the stopping regien S < Sf(t),0 <t < T
where it has the valu& (S, t) = K — S (see Fig. 4(b)). In the continuation regidn(t) <
S < 00,0 <t <T the Put option stays alive and (3) is valid under the follapierminal
and boundary conditions:

V(S,T)= (K- 8)* for S¢(T) < S <
SIEI;OV(St)ZO foro<t<T
V(S¢(t),t) = K — Sy(t) foro<t<T (7)
VS(Sf( ),t) =—1 foro<t<T
)

S¢(T

min(K,rK/q).

Since we assumed that> ¢, we haveS;(T") = K for the American Put. In Fig. 5(b) one
can see how the free bounday(t) determines the structure of an American Put.
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V(S t) , V(S,t)

(@) American Call. (b) American Put.

Figure 5: Schematical valués(S, t) of American options.

6 \olatility Models

The essential parameter of the standard Black—Scholesl ntiwakes not directly observable
and is assumed to be constant, is the volatility There have been many approaches to
improve the model by treating the volatility in different ygaand using anodified volatility
functiona(-) to model the effects of transaction costs, illiquid marlkaatsl large traders,
which is the reason for the nonlinearity of (2) and (3). Wd fiit give a brief overview of
several volatility models and then focus on the volatilitgdrls of transaction costs.

e The constant volatilityr in the standard Black—Scholes model can be replaced by
the estimated volatility from the former values of the umgag. This volatility is
known as théhistorical volatility [13].

e If the price of the option and the other parameters are knawtigh is e.g. the case
for the European Call and Put options (see Appendix B), theintplied volatility
can be calculated from those Black—Scholes formulae. Tipdieohvolatility is the
value o, for which (24) or (25) is true compared to the real markeaddt can be
calculated implicitly via the difference between the olisdroption pricéd/ (from the
market data) and the Black—Scholes formulae (24) or (25grevhll the parameters
— except for the implied volatility — are taken from the market data (the stock price
S, the timet, the expiration dat&’, the strike price¥, the interest rate the dividend
rateq).

Considering options with different strike pric&Sbut otherwise identical parameters,
we see that the implicit volatility changes depending orsthike price. If the implicit
volatility for a certain strike prices is less than the implicit volatility for both the
strike price greater and less than this effect is calledrolatility smile[22].
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¢ Replacing the constant volatility with the observed impNolatilities at each stock
price and time leads to the term of thexal volatility o := &(S,¢). Dupire [7]
examined the dependencies and expressed the local ¥plasila function of implicit
volatilities.

e Hull and White [18] and Heston [15] developed a model, in waHite volatility fol-
lows the dynamics of a stochastic process. This is knownessttichastic volatility

e The assumption, that each security is available at any timdeaay size, or that in-
dividual trading will not influence the price, is not alwaysd. Therefore, illiquid
markets and large trader effects have been modeled by sawthars. In [11] Frey
and Stremme and later Frey and Patie [12] considered thies#sebn the price and
come up with the result

~ (o

7T1- pA(S)SVss’

(8)

whereo the historical volatility,p constant\(.S) strictly convex functionA(.S) > 1.
The function)(.S) depends on the pay-off function of the financial derivativer the
European Call option, Frey and Patie show thgf) is a smooth, slightly increasing
function for S > K. Bordag and Chmakova [4] assumed th&s) is constant
and solve the problem (2) with the modified volatility (8) égjly using Lie-group
theory (see also [6]).

As the main scope of this general overview chapter, we dravattention in the sequel to
a more detailed description of several transaction cosietsod

6.1 Transaction Costs

The Black—Scholes model requires a continuous portfoljosichent in order to hedge the
position without any risk. In the presence of transactiostsd is likely that this adjustment
easily becomes expensive, since an infinite number of tcéingsa is needed [23]. Thus, the
hedger needs to find the balance between the transactiaitlasare required to rebalance
the portfolio and the implied costs of hedging errors. Assailteto this "imperfect" hedging,
the option might be over- or underpriced up to the extent eltiee riskless profit obtained
by the arbitrageur is offset by the transaction costs, sbtttgge is no single equilibrium
price but a range of feasible prices.

It has been shown that in a market with transaction costs ikero replicating portfolio
for the European Call option and the portfolio is requiredldminate rather than replicate
the value of the option (see [2]). Soner, Shreve and Cyitf8] proved that the minimal
hedging portfolio that dominates a European Call is thédirisne (hence holding one share
of the stock that the Call is written on), so that efforts heeen made to find an alternate
relaxation of the hedging conditions to better replicatepghy-offs of derivative securities.
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6.2 The model of Leland

Leland’s idea [24] of relaxing the hedging conditions is ade at discrete times, which
promises to reduce the expenses of the portfolio adjustntémiassumes that the transac-
tion costx|A|S/2, wherex denotes the round trip transaction cost per unit dollar ef th
transaction and\ the number of assets boughk (> 0) or sold (A < 0) at price S, is
proportional to the monetary value of the assets boughtldr 8ow consider a replicating
portfolio with A units of the underlying and thieond B (a certificate of debt issued by
a government or a corporation guaranteeing paynieptus interest by a specified future
date):

IIT=AS+ B.

After a small change in time of the sizé the change in the portfolio becomes
ST = ASS + rBot — g|5A|S, (9)

wheredS is the change in pric&, so that the first term represents the change in value,

the second term represents the bond growtt itime andd A represents the change in the

number of assets, so that the last term becomes the traomsaost due to portfolio change.
We apply Itd’s lemma (see 23 in Appendix A.7) to the value efdiptionV := V(S t)

and get

2
5V = VgdS + (Vi + %SQVss)dt. (10)

Assuming that the optioil is replicated by the portfolidl, their values have to match at
all times and there can be no risk-free profit. With this noiteage argument we get

oIl = oV.

Matching the terms in (9) and (10) we gat= Vg and

2
rBot — g|5A|S = (V; + %521/55)&. (11)
Leland shows that )
gyfmys = % Le S2|Vsg]t, (12)

whereLe denotes théeland numberwhich is given by

2 K
Le— \/;<am> (13)

with §t being the transaction frequency (interval between suteessvisions of the port-
folio) and « the round trip transaction cost per unit dollar of the tratisa. Plugging (12)
andB =11 — AS =V — SVg into the equation (11) becomes

0'2 02
rV —rSVs - - Le S%|\Vss| = Vi + 7S2VSS. (14)
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Therefore, Leland deduces that the option price is the isoludf the nonlinear Black—
Scholes equation

1.
0=V, + 50252‘/35 +rSVs —1rV,

with the modified volatility

7% = o2 (1 + Le sign(VSs)>, (15)

whereo represents the historical volatility aia the Leland number. It follows from the
definition of the Leland number (13) that the more frequestrigbalancing & smaller),
the higher the transaction cost and the greater the valie of

Itis known thatl’sg > 0 for European Puts and Calls in the absence of transactids. cos
Assuming the same behavior in the presence of transactists,cequation (2) becomes
linear with an adjusted constant volatil# = o(1 + Le) > o2.

Leland’s model has played a significant role in financial reathtics, even though it has
been partly criticized by e.g. Kabanov and Safarian in [24p prove that Leland’s result
has a hedging error. The restriction of his model is the catwef the resulting option
price V (henceVsg > 0) and the possibility to only consider one option in the puitf.
Hoggard, Whalley and Wilmott studied equation (2) with thedified volatility (15) for
several underlyings in [17]. An extension to this approaciyeéneral pay-offs is obtained
by Avellaneda and Paras [1].

6.3 Barles and Soner

In [2] Barles and Soner derived a more complicated model bgviing the above utility
function approach of Hodges and Neuberger [16]. Consideptbcess of bonds owned
X (s) and the process of shares owrgds). Let the trading strategyL(s), M(s)) be

a pair of nondecreasing processes Witft) = M(t) = 0, which are interpreted as the
cumulative transfers, measured in shares of sté¢k) is measured in shares from bond to
stock and\/(s) is measured in shares from stock to bond. A&t (0, 1) be the proportional
transaction cost. The processEss) andY (s) start with the initial values andy, s €
[t,T] and evolve according to

X(s) —w—/ S(m)(1 4+ k) dL(T /S (1 —k)dM(T) (16)

and
Y(s) =y+ L(s) — M(s). a7

The first integral in (16) represents buying shares of stoekice increased by the pro-
portional transaction cost, the second integral represseiting stock at a reduced price
of the transaction cost. In (17) we add the amount of the stbokight and subtract the
amount for the stocks sold to the initial amount of stocks @dvn
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According to the utility maximization approach of Hodgesladeuberger [16], the
price of a European Call option can be obtained as the diféerdoetween the maximum
utility of the terminal wealth when there is no option liatyiland when there is such a
liability. Following this approach, Barles and Soner cdeséd two optimization problems.
Let theexponential utility functiorbe

U(g) =1- 6’_%7 g € Rv

wherey > 0 is therisk aversion factar The first value function is the expected utility from
the final wealth without any option liabilities taken oveetlnansfer processes

Vi(z,y,S(t),t) .= sup E[U(X(T)+Y(T)S(T))],
L(-),M(-)
the second one is the expected utility from the final wealtuasng that we have soltf
European Call options taken over the transfer processes

Va(z,y, S(t),t) .= sup E[U(X(T) +Y(T)S(T) — N(S(T) — K)*)].
L(-),M(-)
Hodges and Neuberger postulate that the price of each aptemual to the maximal solu-
tion A of the algebraic equation

Va(z + NA,y, S(t),t) = L(.siujg(') ElU(X(T)+ NA+Y(T)S(T)
— N(S(T) - K)7)]
= sup E[U(X(T)+Y(T)S(T))]
L(-),M(")
= Vl(wa Y, S(t), t),

which means that the option priceequals the increment of the initial capital at timghat
is needed to cope with the option liabilities arisindglatBy a linearity argument sellingy/
options with risk aversion factor of yields the same price as selling one option with risk
aversion factory V. This leads to performing an asymptotic analysis&s— oo. Hence,
we consider

U) =1-eN¢

and

Then, we have
U§)=1—e5, €eR

Our optimization problems become

1
Vi(z,y,S(t),t) =1— inf Ele e XDM+HYIDST)
1(@3, 5), 9 L(-),M() [ ]
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and
Valz,y,S(t),t) =1 — inf Ele~ s XOHYDSTO)~(SD)=K))y,
L(-),M ()

For analysis simplification Barles and Soner defing : R x (0,00) x (0,7)) — R by
Viz,y, S(t),4) = 1 — ¢t (#4950 -21.50).0)

and
Va(w, 9, S(8), 1) = 1 — e+ (#+0S50—-22:50)0)

Then
21(y,S(t),T) =0 and z(y,S(t),T) = (S(T) — K)*

and the option price

A S(0),152,1) = 2200, 5(0).0) = 219, S(0),0).

By the theory of stochastic optimal control [10], Barles &aher state that the value func-
tionsV; andV; are the unique solutions of the dynamic programming equatio

1
min{—V; + 5025%3 — 1SV, =V, + S(1 + k)Vi, V,, — S(1 — K)Vi} = 0,

which leads to a dynamic programming equation #p@and z,, which are independent of
the variabler.

Supposing that the proportional transaction cost equal toa./c for some constant
a > 0, they prove that as — 0 andx — 0

z1 — 0 and 20 — V,

whereV is the unique (viscosity) solution of the nonlinear Blackh8les equation
1.
0="Vi+ 55" Vis +rSVs =1V,

where
52 =02 <1 + \If(eT(T_t)a252Vgs)>. (18)

Hereo denotes the historical volatility, = x//c and¥(z) is the solution to the following
nonlinear ordinary differential equation (ODE)

U(zr)+1

Vi@ = 2\/x¥(x) —x

, x #0, (19a)

with the initial condition
¥(0) =0. (19b)
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The analysis of this ODE (19) by Barles and Soner in [2] imgptleat

lim Yiz) =1 and lim ¥(z)=-1. (20)
T—00 I T——00

The property (20) encourages to treat the functign) as the identity for large arguments
and therefore to simplify the calculations. In this casevdlatility becomes

52 = %1+ " T D425%Vyy). (21)

The existence of a viscosity solution to (2) for Europeariamst with the volatility given
by (18) is proved by Barles and Soner in [2] and their numénriesults indicate an eco-
nomically significant price difference between the stadddlack—Scholes model and the
nonlinear model with transaction costs.

6.4 Risk Adjusted Pricing Methodology

In this model, proposed by Kratka in [22] and improved by ke and Sesovit in [20],
the optimal time-lagit between the transactions is found to minimize the sum ofdke r
of the transaction costs and the rate of the risk from an uapted portfolio. That way the
portfolio is still well protected with the Risk Adjusted Bimg Methodology (RAPM) and
the modified volatilityis now of the form

C2M

52 = o (1 +3( SVSS)%>, 22)
2

whereM > 0 is the transaction cost measure &nid 0 the risk premium measure.

It is worth mentioning that these nonlinear transactiont cosdels that are described
above are all consistent with the linear model if the add#lgparameters for transaction
costs are equal to zero and vanigle,(¥(-), M).

Conclusion

In this chapter we provided a profound overview over norlmBlack—Scholes equations
for European and American options.

We introduced the reader to the financial terminology andl&miB-Scholes equations
and presented several reasons for their nonlinearity angséa on the nonlinearity resulting
from a modified volatility function due to transaction costdere we focused on several
transaction cost models, including Leland’ model, Barba®d Soner's model, the identity
model and the Risk Adjusted Pricing Methodology.
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Appendix

A Stochastics

In this chapter, we used several terms and concepts of plitpdbeory and stochastics.
Thus, we recall some definitions (see e.qg. [13, 27, 28] andeieeences therein).

A.1 Probability Space

Let Q2 be asample spaceepresenting all possible scenarios (e.g. all possiblesdar the
stock price over time). A subset 6fis aneventandw € 2 asample point

Definition A.1 Let{2 be a nonempty set anél be a collection of subsets Of F is called
a o-algebra(not related to the volatility), if

) Qe F,

ii) whenever a setl belongs taF, its complement¢ also belongs t¢F and

o0
n=

i) whenever a sequence of sefs, n € N belongs toF, their union|J
belongs taF.

1 A, also

In our financial scenarioF represents the space of events that are observable in thetmar
and therefore, all the information available until the timean be regarded ascaalgebra
F:. Itis logical thatF; C F; for t < s, since the information that has been availabie
still available ats.

Definition A.2 Let() be a nonempty set aifl be ac-algebra of subsets 6¢1. Aprobability
measureP is a function that assigns a number[ih 1] to every sed € F. The number is
called theprobability of A and is writtenP(A). We require:

° P(Q) =1and

e whenever a sequence of disjoint sét{g n € N belongs taF, then
P< U An> => P(4n).
n=1 n=1
The tripel (2, F, P) is called aprobability space

A.2 Random Variable

Definition A.3 A real-valued functionX on () is called arandom variabléf the sets
(X <z} ={weQ: X(w) <z} =X""(]—-o0,z])

are measurable for alt € R. Thatis{X <z} € F.
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A.3 Stochastic Process

Definition A.4 A (continuous)tochastic procesk (t) = X (-, t), t € [0, o], is a family of
random variablesX : Q x [0, co[— R witht — X (w, t) continuous for allv € .

A.4 1t6 Process

Definition A.5 AnItd processs a stochastic process of the form
dX = a(X,t)dt + b(X,t)dW,

which is equivalent to
t t
X(t) :X(O)+/ a(X,s)ds+/ b(X, s)dW,
0 0

whereX (0) is nonrandomJ¥ (¢) is a standard Wiener process(-) andb(-) are sufficiently
regular functions and the integrals are Itd integrals.

A.5 Stopping Time

Definition A.6 A stopping time is a random variable taking values |f, o] and satisfy-
ing
{t<s}eF, Vs>0.

A.6 Brownian Motion

Definition A.7 A Brownian motionor Wiener processs a time-continuous stochastic pro-
cessWV (t) with the properties:

e W(0)=0.

e W(t) ~N(0,t)forall t > 0. That is, for eacht the random variabléV (¢) is nor-
mally distributed with meaR[W ()] = 0 and varianceVar[W (t)] = E[W?2(t)] = ¢.

e AllincrementsAW (t) := W (t + At) — W (¢) on non-overlapping time intervals are
independent. That i)/ (t2) — W (t;) and W (t4) — W(t3) are independent for all
0<t <ty <t3<iy.

e W (t) depends continuously an
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A.7 1t6’'s Lemma

Theorem A.8 Consider a functiorV/ (S,t) : R x [0, 00[— Rwith V € C%}(R x [0, oo[)
and suppose thag(¢) follows the 1td process

dS = a(S, t)dt + b(S, t)dW,

wherelV (t) is a standard Wiener process. Th&nfollows an It6 process with the same
Wiener proces$V (t):

1
dV = (aVs + 5b2vss + V;)dt + bVsdW, (23)
wherea := a(S,t) andb := b(S, t).

If we consider a special case, whei5,t) = 1S andb(S,t) = 05, thenS(t) follows
the Geometric Brownian motion, wheVE(¢) is a standard Wiener process, and we have

dS = pSdt + o Sdw.

Then, 1t6’s Lemma yields
1
dV = (uSVs + 5025%3 + Vy)dt + 0 SVsdW

= (302521/55 + Vi)dt + VsdS.

B Pricing Formulae

Theorem B.1 The solution to the linear Black—Scholes equatibpwith the terminal and
boundary conditiong4), or the value of thé&uropean Calbption, is given by

V(S,t) = Se TN (d)) — Ke " TN (dy), (24)
where )
@ - In(Z)+(r—g+ )T 1)
e oV —t
W) e )T 1)
2 ovT —1

andN () is the standard normal cumulative distribution function

L
N(m):E/ e~ T dy, r € R.

Respectively, the value of tReropean Pubption is the solution to the linear Black—Scholes
equation(1) with the terminal and boundary conditios) and is given by

V(S,t) = Se TN (dy) — Ke " TN (dy). (25)
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