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Introduction 
Since the end of the 1980's waveform-iteration(relaxation)-based algorithms 
have become an industrial standard for circuit simulation with the wider use 
of parallel computers [LRSV82, VC85, WSV82, JZ91]. Often they are im-
plemented without further mathematical investigations for the correctness 
of the results. Experience has shown that for a wide class of VLSI circuits 
the waveform-iteration-based simulation gives a good performance and cor-
rect results. However, there are also examples for which they fail. For an 
application of waveform iteration to a wider class of problems we need fur-
ther investigations in order to improve the efficiency and robustness of the 
algorithm. 
One central question which arises is, how to control the step-size in such 
a way that the iteration process converges. Another question concerns the 
number of iterations which are necessary to get the correct waveform 
The influence of the discretization step-size on the speed of convergence has 
been discussed in several publications for fixed step-sizes and linear systems 
of ODE's (or DAE's) [MN85, Nev87, MN87]. 
~esults for nonlinear variable step-size and window technique based on Lip-
schitz condition ~re derived in [Bre93]. 
According to these investigations it is clear that the step-size influences not 
only the discretization error in each iteration but also the convergence be-
havior. 
In [Bre93] Lipschitz conditions and exponentially weighted norms are used to 
prove the convergence of waveform iteration methods in both the continuous 
and the discrete cases. We also get estimates for step-size control with respect 
to the convergence behavior of the iteration scheme. 
However, by using Lipschitz conditions these estimates for the upper bound 
of the discretization step-size are derived for the worst case of an exponential 
growth of the solutions. 
In this way, small step-sizes are suggested in case of large Lipschitz constants 
even if the solution tends very fast to the steady state (in case of large nega-
tive eigenvalues of the linearization). The reason behind it is that Lipschitz 
conditions do not reflect the sign of eigenvalues of the Jacobian. 
There are several problems (for example the dependence from initial values) 
where one-sided Lipschitz conditions are used to improve estimates [Deu90, 
GR92]. Our results extend the results in [Bre93] by using one-sided Lipschitz 
conditions. They allow a better adapted step-size control for exponentially 
decaying solutions. 
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1 Preliminaries 
The problem we want to solve or, more precisely, to approximate by waveform 
iteration is the following initial value problem 

x g(t,x) 
x(to) - xo, (1) 

where x E lRn, t E [t0 , te] C lR and g is continuous with respect to t and x. 
We consider (1) as a system of r interacting subsystems. Let lRn = lRn1 x 
lRn2 X · · · X lR n,., X = ( X 1, ... , Xr), Xi E lR ni, g = (91, ... , 9r), 9i : lR X lR n --+ 
JRni be the corresponding decomposition. 
With this notation we get the following iteration scheme as the simplest case 
of waveform iteration: 

. h i,k - ( i,k i,k) d i,k - xi J - i . f G S .d 1 
{ 

k . < . 
wit u - u 1 , ... , un an ui - k-l . . m case o auss- e1 e -

xi J > i 
Iteration and u~,k = xj-1 in cas.e of Gauss-Jacobi-Iteration. 
Similar to the iteration scheme we use the notation 

and 

g(t,x) = f(t,x,x) 

xk = f ( t, xk, xk-1) 
xk(to) = xo. (2) 

Let us assume "classical" global Lipschitz conditions for the R.H.S. of (2) 

lf(t, x, y) - f(t, x, y)I ~ Lxlx· - xl + LylY -YI (3) 

for a suitable norm I · I in lRn. In a Banach space B of continuous lRn-valued 
functions over [t0 , te] with exponentially weighted norms and the weighting 
parameter a > Lx + Ly we will define a contractive operator which maps y 
into x by solving the equation 

X ( t) = Xo + r j ( X ( S), y ( S), S) ds. lt0 

(4) 

The Lipschitz constant of this map is Ly/(a - Lx), the norm II· Ila in Bis 
defined by · 

llxlla := sup (e-a(t-to)lx(t)I). 
tE[to,te) 

For references see [Bre93, LRSV82, N ev87]. 

2 



If we write the discretized algorithm as 

x = II(f(·,x,y)), (5) 

where II is the discretization operator we get a contractive map with Lipschitz 
constant llIIllaLy/(a - llIIllaLx)· 
In the case of backward Euler discretization for n = 1 we have, e.g. 

where ti := ti1 +hi and hi is the step-size of the i-th discretization step. Here 
llIIlla =ea\ h = maxhi. For n > 1 we have similar expressions [Bre93]. 
Because (in relevant cases) llIIlla depends on ah we get a strict limitation 
for the maximal step-size which has a great disadvantage for large negative 
eigenvalues of the linearization off. 
With the use of one-sided Lipschitz condition with respect to the first ar-
gument of f, however, we get nearly the same contraction constants except 
that Lx may be negative. If we suppose Lx < 0 and if we assume that the 
partition of the initial value problem results in a block diagonal-dominant 
linearization, i.e. 0 ~ Ly < -Lx, then there are no restrictions for (positive) 
a or for h with respect to convergence of the waveform iteration. 

2 Convergence of waveform iteration with one-
sided Lipschitz condition 

Now let us consider one-sided Lipschitz conditions for f with respect to x 

(f(t,x,y)- f(t,x,y),x - x) ~ Lx(x - x,x - x) (6) 

We define by I· I := (·, ·)112 a norm in lRn 

Theorem 2.1 Let f : lR x lRn x lRn --t lRn be continuous, satisfy the Lip-
schitz condition {3} and the one-sided Lipschitz condit~on {6). Let x, x, y, iJ E 
C1([t0 , te], lRn) such that 

x f(t,x,y), 
x f(t,x,iJ), 

x(to) x(to) = Xo. 

Then for the exponentially weighted norm we have 

(7) 
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For the proof of this theorem we need the following lemma. 

Lemma 2.1 Consider the initial value problems x = g(t, x) + u(t), x 
g(t, x) + u, x(t0 ) = x(t0 ) ~ x0 • If we assume that g satisfies a one-sided 
Lipschitz condition with respect to x with Lipschitz constant L and a > l, 
then for the corresponding solution we have 

Proof. We denote 

and 

.6.x .- x - x, 

.6.u .- u - u 

1 µ(t) := 2(.6.x(t), .6.x(t))e-2L(t-to) 

(µ(to) = 0). 

(8) 

By differentiating and applying the one-sided Lipschitz condition for g we 
get 

fl,(t) ((.6.x(t), .6.x(t)) - L(.6.x(t), .6.x(t))) e-2L(t-to) 
((g(t, x(t)) - g(t, x(t)), .6.x(t))- L(.6.x(t), .6.x(t))+ 

(u(t) - u(t), .6.x(t))) e-2L(t-to) 
< (.6.u(t), .6.x(t))e-2L(t-to), 

µ(t) < rt (.6.u,.6.x)e-2L(s-to)ds. 
lto 

Substituting µ(t) and multiplying with e-2L(t-to) yields 

(.6.x(t), .6.x(t)):::; 2e2Lt rt (.6.u, .6.x)e-2L(s-to)ds, 
lto 

l.6.x ( t) 12 :::; 2e2L(t-to) r e2(o:-L)(s-to) II .6.ullo: II .6.x Ila: ds. ( 9) 
lto 

By integrating and multiplying with e-2o:(t-to) we finally get (8). D 

Proof of the theorem. Setting g(t, x) := f(t, x, y(t)), u(t) := 0 and u(t) := 
f(t, x(t), y(t)) - f(t, x(t), y(t)), we get from Lemma 2.1 

1 llx - xllo: :::; a_ Lx llulla· 
Using the Lipschitz condition on f the assertion of the theorem follows. D 

For the discrete version we have the following theorem. 
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Theorem 2.2 Let f be as in Theorem 2.1 Let x, x, y, y E G([t0 , te], lRn) such 
that 

x = 11(!(·,x(·),y(·))),~ = II(f(·,x(·),y(·))),x(to) = x(to) = Xo. 

Then for the exponential weighted norm we have 

II _
11 

lillilaLy _ 
X - X a ~ a - Lx - 1111 - JllaL)Y - Yila· (10) 

Proof. Let g(t,x) := f(t,x,y(t)), u(t) := (l1f(·,x,y))(t)- f(t,x(t),y(t)), 
and u(t) := (llf(·, x, Y)) - f(t, x(t), y(t)). From Lemma 2.1 we get 

1 llx - xlla ~ a_ Lx 11(11 - !)(!(·, x, y) - J(-, x, y))+ 
11(!(·,x,y)- J(·,x,y))ll. 

Thus 

which implies the assertion of the theorem: 0 

In the numerical practice of the waveform iteration method (for instance on 
parallel computers with distributed memory) the information of the whole 
system is not automatically known at the local node at which a subsystem is 
solved. So the conditions for the whole system have to be changed to a local 
one. In practice we relax the condition and merely require a one sided L-
condition for the corresponding subsystem. Thus we have to extend the above 
results beginning with Lemma 2.1. For the definition of the corresponding 
Banach space we use the maximum of exponential weighted norms of the 
subsystems. (Compare [Bre93].) 
With the notation of Lemma 2.1 let 9i(t, Xi, x) the i-th component of g by a 
suitable ordering of the depending variables. 

Lemma 2.2 Suppose that the i-th subsystem satisfies a one-sided Lipschitz 
condition with respect to Xi and a Lipschitz condition with respect to y, i. e.: 

Then 

(gi(t, Xi, y) - 9i(t, Xi, y), Xi - Xi) < Li(Xi - Xi, Xi - Xi), 
l9i(t,xi,Y) - 9i(t,xi,Y)I < Lily-yj. 

1 
llx-xlla~ a-L-Lllu-ulla 

holds, with L := m!iX Li, L := m!lx Li 
' ' 
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Proof. For fixed i we use Lemma 2.1 where we replace g, u and u by 9i(t, Xi, x(t)), 
ui(t) and ui(t)+gi(t, xi(t), x(t))-gi(t, xi(t), x(t)) respectively. Then (8) reads 

1 
ll~xilla :=:; a_ Li (Lill~xlla + ll~uilla)· 

By taking the maximum of the right and left hand side we get 

D 

Let us denote the i-th component of f(t, x, y) by fi(t, Xi, x, y). We suppose 
one-sided Lipschitz conditions for the subsystems of (2) of the following form 

(fi(t, Xi, y, z) - fi(t, Xi, y, z), Xi - Xi) :=:; Lx,i(Xi - Xi, Xi - Xi)· (12) 

Theorem 2.3 Under conditions of Theorem 2.1,the one-sided Lipschitz con-
dition {12) and Lx :== m~x Lx,i we get 

' i 

The proof is similar to the proof of Theorem 2.1 by using Lemma 2.2 instead 
of Lemma 2.1. 
In the same way we get a result corresponding to Theorem 2.2. 

Theorem 2.4 With the conditions of Theorem 2.2, (12) and Lx from The-
orem 2. 3 we have 

II -11 < llITllaLy II -11 
X - X a - a - Lx - (1 + llIT - Illa)L:r: Y - Y a· 

Remark 1. Instead of using the Lipschitz constant Lx we can improve 
our result by using the Lipschitz constant with respect to the off-diagonal 
components of x. That means, splitting the dependent variables on the 
right hand side of (1) into three parts, say J(t, x, x, y) and supposing one-
sided Lipschitz conditions with respect to the second variable based on scalar 
products on subsystems, and usual Lipschitz conditions with respect to the 
second, third and fourth variable, say Lx,d, Lx, Ly, then we have no change 
in Theorem 2.3 but Theorem 2.4 reads 

In case of block Jacobi like iteration Lx is zero, so we have the same inequal-
ities for Theorems 2.3 and 2.4 as in Theorems 2.1 and 2.2. 
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Remark 2. Our results show how to replace the standard Lipschitz con-
dition by one-sided Lipschitz condition in the estimates needed for step-size 
control to guarantee convergence of the discrete waveform iteration scheme. 
The conditions are a mixture of local and global estimates. But it is easy to 
generalize our results in such a way that almost nothing but local estimates 
are used. We can do this first by defining an exponentially weighted norm for 
some parameter ai for the i-th component of system (1) and then taking the 
maximum to get a norm in the function space. Then we have to correct the 
corresponding inequalities by factors of the form e(a:i-a:;)(te-to), so we obtain 
local upper bounds for the discretization step-size to ensure convergen~e. 
Remark 3. Suppose a> L. A closer look at (9) shows that the inequality 
(8) can be improved to 

. 1 _ e(L-a:)(te-to) 
!Ix - xlla: ::; a_ L llu - ulla: (13) 

which leads to 

(14) 

and 

- < llITlla: ( 1 - e(L-a:)(te-to)) Ly - -
llx - xlla: - a - Lx - llIT - Illa: (1 - e(L-a:)(te-to)) Lx jjy Ylla: (15) 

instead of (7) and (10). In this notation we can read off how the length of 
the interval [to, te] (window length) influences to the speed of convergence in 
the Banach space B. A smaller window length yields better convergence or 
fewer restrictions for the step-size of discretization. 
In [Bre93) we have proved convergence results for a variable window tech-
nique. The proof is based on the following inequality for dependence on the 
initial values in terms of the norm of the Banach space. If g( t, x) is Lipschitz 
continuous with respect to x and with constant L, x = g(t, x), x(to) = xo, 
i = g(t, x), x(to) = xo we have 1 

a 
llx - xii ::; a - (1 - e(L-a:)(te-to)) L lxo - xal 

By a well known result for one-sided Lipschitz conditions we have 

1In [Bre93] we use llzll := lz(to)I + l-e;"'
0 llzlla to get results in C 1 . But from llzlla ~ 

llzll it is clear that one can derive similar results in C by using II ·Ila· 
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The proof is the same as in the above lemma by setting 6.u = 0 and by 
taking into account that µ(0) =/:- 0. ([GR92]) 
For our norm in Banach space this leads to 

which is a better result as in [Bre93]. From this it is clear that with the same 
arguments as in [Bre93] Chapter 6.2 the convergence of waveform iteration 
with variable windows for a one-sided Lipschitz condition can be proven. 

3 Conclusions 
To make the connection between our results and step-size bounds for an 
implementation of the discretiz_ed algorithm we use the following inequality 

where 8 is an upper bound for the norm of the global discretization error for 
all iterations, xk denotes the solution of the k-th iteration of the discretized 
algorithm, K, is an upper bound for the (linear) convergence rate and finally 
ck denotes the norm of the difference between xk and the exact solution of 
(1). For K, we have cx~t, by Theorem 2.1 or a.-~Y-Lz by Theorem 2.3. 
If we have an estimate for the Lipschitz constants then we can choose a 
to get K, < 1. From Theorem 2.2 or 2.4 we get also upper bounds for the 
discretization step-size if we have estimates for II II Ila and III - II Ila to ensure 
convergence of the discretized algorithm. Finally, by the above inequality we 
can choose the upper bound for the discretization error and the number of 
iterations we need to reach a given tolerance. 
In practice we will do the estimates not for the whole interval but for smaller 
windows. According to Remark 3 we get smaller K, for smaller windows, so 
we can choose smaller a or larger step-size if we take the window length into 
account. 
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