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Abstract

It is well known that a simple three-dimensional non-convex poly-
hedron may not be triangulated without using new vertices (so-called
Steiner points). In this paper, we prove a condition that guarantees
the existence of a triangulation of a non-convex polyhedron (of any
dimension) without Steiner points. We briefly discuss algorithms for
efficiently triangulating three-dimensional polyhedra.

1 Introduction

Decomposing a geometric object into simpler parts is one of the most fun-
damental problems in computational geometry. It is well solved in two di-
mensions. For instances, it is known that every polygon can be triangulated
without adding new vertices, so-called Steiner points, and Chazelle showed
that a simple polygon can be triangulated in linear time [4]. However, this
problem is known has many difficulties in three-dimensional space.

Without using Steiner points, Lennes [10] presented in 1911 the first sim-
ple three-dimensional non-convex polyhedron whose interior cannot be tri-
angulated. The most famous example was given in 1927 by Schönhardt [14],
which is a simple polyhedron with 6 vertices (see Fig. 1 left). Later on,
Bagemihl [1] and Rambau [12] extended Schönhardt’s example by showing
that there exists an n-vertex simple polyhedron which can not be trian-
gulated. Ruppert and Seidel [13] proved that the problem of determining
whether or not a non-convex polyhedron can be triangulated is NP-complete.

If Steiner points are allowed, Chazelle [3] showed that any simple poly-
hedron of n vertices may need O(n2) Steiner points, and this bound is tight
in the worst case (see Fig. 1 right). Chazelle and Palios [5] presented an al-
gorithm to decompose a simple polyhedron P using O(n+r2) Steiner points,
where r is the number of reflex edges (a quantitative measure of nonconvex-
ity) of P . However, even for a simply shaped polyhedron, this algorithm will
introduce an unnecessarily large number of Steiner points, see Fig. 2 (b).
More practical approaches using conforming Delaunay triangulations [11, 6]
and constrained Delaunay triangulations [16, 18] are proposed, see Fig. 2
(c) and (d). However, no polynomial upper bound on the number of Steiner
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Figure 1: Two polyhedra which are not tetrahedralizable without using
Steiner points. Left: The Schönhardt polyhedron [14] can be obtained by
twisting the upper face around the axes of a parallel triangular prism by
a small angle. Right: The Chazelle’s polyhedron [3] which is formed by
cutting wedges from a cube. In the middle of the polyhedron are two sets
of orthogonal lines. The lower and upper lines lie on hyperbolic paraboloids
z = xy, and z = xy + ε, respectively.

points is known, see the 22th open problem in [8].

In this paper, we consider the problem of triangulating a non-convex
polyhedron without using Steiner points. A right answer to this question is
meaningful. For instances, it helps to decide what is the optimal number of
Steiner points, and it helps to design efficient algorithms.

Previous work already showed that there are special classes of non-convex
polyhedra (and a collection of polyhedra) that can be triangulated without
Steiner points. They are summarized below.

(1) Convex polyhedra can always be triangulated. A simple proof is given
by Lennes (Problem 61 in [10]). Moreover, they can be triangulated
in linear time [20].

(2) Simple non-convex polyhedra defined by CH(P ∪Q)− (P ∪Q), where
CH denotes convex hull, P,Q are both convex polyhedra and P∩Q = ∅,
can be triangulated. It is proved by Goodman and Pach [9]. Their
algorithm has O(nb(d+1)/2c) complexity, where d is the dimension of the
polyhedron. This result generalizes to the region between any number
of side-by-side convex polyhedra, as long as each Pi can be separated
from CH(P1 ∪ P2 · · · ∪ Pi−1) by a hyperplane. Bern [2] showed that
the separation condition is necessary.

(3) Non-simple polyhedron defined by P − Q, where P,Q are both con-
vex polyhedra and Q ⊂ P , can be triangulated. It is also proved by

2



(a) The input polyhedron (b) Convex decomposition
20 nodes, 12 facets 138 nodes, 280 tets

(c) Conforming Delaunay (d) Constrained Delaunay
51 nodes, 103 tets 20 nodes, 29 tets

Figure 2: A comparison of meshing polyhedra by different approaches. (a):
A simple polyhedron having 2 reflex edges. (b): Convex decomposition.
(c): Conforming Delaunay tetrahedralization. (d) Constrained Delaunay
tetrahedralization.

Goodman and Pach [9]. Bern [2] showed that it takes O(n log n) time
to triangulate such a three-dimensional polyhedron. Note that this re-
sult trivially generalizes to triangulating a nested set of disjoint convex
polyhedra.

(4) A slab (obtained by the translation of a two-dimensional polygon (pos-
sible with holes) by a fixed distance in an arbitrary direction can be
tetrahedralized. Toussaint et al [19] gave an algorithm that takes
O(n log n) time, where n is the number of vertices of the polygon.

(5) Two classes of three-dimensional rectilinear polyhedra formed by ”dig-
ging” a set of pairwise non-intersecting rectilinear polygonal holes from
the top of a rectangular box, see Fig. 3 for an example. If all the holes
have the same depth h, the object is called a type-1 box, otherwise, it
is a type-2 box. It is proved by Toussaint et al [19] that both type-1
and type-2 boxes can be tetrahedralized without using Steiner points
with an additional assumption that the holes in type-2 box are linearly
ordered.
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Figure 3: A rectilinear box formed by ”digging” a set of pairwise non-
intersecting rectilinear polygonal holes from the top of a rectangular box.
According to [19], it is a type-2 box (the depths of the holes are vary). It
can be tetrahedralized without Steiner points.

Figure 4: A three-dimensional piecewise linear complex P. All edges of P
are strongly Delaunay. P can be tetrahedralized without Steiner points.

(6) The union of up to three convex polyhedra can be tetrahedralized. It
is proved by Toussaint et al [19].

(7) Define a three-dimensional polyhedral complex P to be a collection of
polyhedra such that the intersection of any two elements of P is either
empty or an element in P. Call 0- and 1-dimensional polyhedra of P
vertices and edges, respectively. An edge of P is strongly Delaunay if
there is a sphere through its endpoints and all other vertices of P lie
strictly outside that sphere. Shewchuk [15] proved if all edges of P
are strongly Delaunay, then the underlying space of P (the union of
all polyhedra in P) can be tetrahedralized without Steiner points (see
Fig. 4). This result generalizes to higher dimensions.

The objects from classes (1) to (6) are all in special cases, whereas
Shewchuk’s condition gives a more general class of polyhedra which can
be triangulated without Steiner points. However, there are simple special
cases which are not satisfied by Shewchuk’s condition. For example, a prism
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whose vertices are on a common sphere is tetrahedralizable since it is in both
classes (1) and (3), while none of its edges is strongly Delaunay. Obviously,
more general conditions need to be sought.

In this paper, we will prove a new condition which guarantees the exis-
tence of a triangulation of a non-convex polyhedron with no Steiner points.
Differing to previous work, we will focus on finding subdivisions of polyhedra
with no Steiner points. It can be shown that triangulations are just special
cases of subdivisions. A central concept used in this paper is the ”regular
subdivision”, which can be obtained from the projection of higher dimen-
sional convex polytopes by ”deleting the last coordinates”. Our condition
for three-dimensional cases can be described as follows:

Theorem 1.1 Let P be a three-dimensional polyhedron. Call 0- and 1-
faces of P vertices and edges of P . If the set of edges of P is contained in a
regular subdivision of the convex hull of the set of vertices of P , then P can
be triangulated without Steiner points.

Note that all strongly Delaunay edges of P must be contained in the
Delaunay subdivision T (the dual of the Voronoi diagram) of the set of ver-
tices of P . T is a regular subdivision but may not be a triangulation. Our
condition includes Shewchuk’s condition as a special case. We will prove the
above condition for polyhedra of any dimension in Section 5.

The rest of the paper is organized as follows: Section 2 reviews the def-
initions of (regular) subdivisions of point sets and some useful properties of
them. We then define non-convex polyhedra and the (regular) subdivisions
of them in Section 3. In Section 4 we prove a useful theorem on inserting an
internal facet into a polyhedron. We then prove the new condition in Sec-
tion 5. Efficient algorithms for triangulating three-dimensional polyhedra
are discussed in Section 6.

2 Regular Subdivisions

In this section, we review the definition of regular subdivisions of point
configurations and some properties of them. By a point configuration we
essentially mean a finite set A of points, and we are interested in the convex
hull conv(A) of A, which is a topological subspace of Rd. The majority part
of this section are found in the book of De Loera, Rambau and Santos [7].

We brief recall some basic notions from convex polytopes. An excellent
reference for this topic is in [22]. The convex hull of a (not necessary convex)
point set X ⊂ Rd, denoted conv(X), is the intersection of all convex sets
containing X. A convex polytope P is the convex hull of a finite set of
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Figure 5: Subdivisions of a two-dimensional point configuration A =
{p1, ...,p8}. Left is a trivial subdivision (formed by conv(A) and all its
faces), in the middle is a subdivision of A (p8 is not used), and right is a
triangulation of A with all vertices of A are used.

points. The dimension dim(P ) is the dimension of its affine hull, which is
the smallest affine subspace containing P .

A face of a polytope P ⊂ Rd is any set of the form F = P ∩ {x ∈
Rd | cTx = c0}, where cTx ≤ c0 is a valid inequality for all points of P . Two
trivial faces of P are P itself (obtained by 0Tx ≤ 0) and ∅ (obtained by
0Tx ≤ 1). All other faces of P are proper faces of P . We write F ≤ P (and
F < P ) to mean that F is a face (and proper face) of P .

A face of P is also a polytope. Faces of dimension 0, 1, dim(P )− 2, and
dim(P ) − 1 are called vertices, edges, ridges, and facets of P , respectively.
The boundary bd(P ) of P is the union of all proper faces of P , the relative
interior relint(P ) of P is: relint(P ) = P−bd(P ). Note that P is the disjoint
union of the relative interiors of all its faces. The relative interior of a vertex
is the vertex itself. The set of all vertices of P is denoted as vert(P ).

Definition 2.1 (Polyhedral Complex) A polyhedral complex C is a fi-
nite collection of convex polytopes in Rd such that

(i) ∅ ∈ C,

(ii) P ∈ C =⇒ all faces of P are in C, and

(iii) P,Q ∈ C =⇒ P ∩Q is a face of both P and Q.

The dimension dim(C) is the largest dimension of a polytope in C. The
underlying space of C is the point set |C| =

⋃
P∈C P . A subcomplex of C is a

subset C′ ⊆ C that itself is a polyhedral complex. The set of all vertices of
C is denoted as vert(C).

Subdivisions of point configurations are the fundamental objects used in
this paper. Triangulations are nothing but particular cases of them. In the
following, we assume that a point configuration A in Rd contains no repeated
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points, that is, no two points of A have exactly the same coordinates. Unless
stated explicitly, we always assume that A is finite.

Definition 2.2 (Subdivision of Point Configuration) Let A be a point
configuration in Rd. A subdivision of A is a polyhedral complex T such that

(i) vert(T ) ⊆ A, and

(ii) |T | = conv(A).

The elements (convex polytopes) of a subdivision are called cells. Cells of
dimension k are called k-cells. Cells of the same dimension as A are called
maximal cells. A subdivision T of a point configuration A must use the
vertices from A (T contains no Steiner point). While T may not use all
points of A. A triangulation of A is a subdivision whose elements are all
simplices. See Fig. 5 for examples.

Now we introduce the central concept of this paper – regular subdivisions
of point sets. There are many ways to define such objects. The natural way
is to use the ”lift and projection” processes as we will do below.

Definition 2.3 (Regular Subdivision of Point Configuration) Let A ⊂
Rd be a point configuration with n elements. Let ω : A → R be a ”height
vector”. We simply write ωj to refer to the height given to pj ∈ A. Let
pω

j ∈ Rd+1 be the lifted point from pj ∈ A,

pω
j =

(
pj

ωj

)
.

Let Aω in Rd+1 be the lifted point set,

Aω = {pω
j |pj ∈ A}.

A lower face of the polytope P = conv(Aω) is the set

F = {x ∈ P | cTx = c0}, cTx ≤ c0 is valid for P, cd+1 < 0.

(put simply, a face is ”visible” from below.) We define the regular subdivision
of A produced by ω, denoted as T (A, ω), to be the collection of all lower
faces of conv(Aω), projected down to Rd through the canonical projection
map π : Rd+1 → Rd for π(pω) = p, i.e.,

T (A, ω) = {π(F ) |F is a lower face of conv(Aω)}.

In other words, T (A, ω) is the collection of faces of conv(Aω) that can
be ”seen” from −λed+1, for λ −→∞ large enough. Fig. 6 shows an example
of a regular subdivision. The following lemma shows that the object we’ve
just defined is indeed a subdivision of A for any choice of ω.
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44 Configurations, Triangulations, Subdivisions, and Flips

3. The union of all these simplices equals conv(A). (Union Property.)

The first two properties are the definition of a (geometric) simplicial com-
plex. In other words: a triangulation of A is a simplicial complex with vertex
set contained in A and which covers conv(A).

In our definition we do not assume conv(A) to be full-dimensional. In
particular, we may speak of triangulations of a single point (there is one!),
or of triangulations of a face of conv(A), as in the following statement:

Lemma 2.1.3. Let T be a triangulation of a point configuration A and let
F be a face of conv(A). Then, the following is a triangulation of A∩F:

TF := {σ ∈T : σ ⊂ F} .

Proof. Easy. Left to the reader.Figure 2.6: The four triangulations of the point

configuration of Figure 2.3
Observe also that we do not require all the points of A to be used as

vertices in a triangulation. For example, the configuration of Figure 2.3 has
the four triangulations shown in Figure 2.6. Two of them use the five points
and have four triangles, and two use only four points and have two triangles.
Of course, all vertices of convA are used in all triangulations. Similarly,
the six points in Figure 2.5 have 18 triangulations, only 8 of which use all
points.

2.1.3 Regular triangulations

Our first goal is to show that every point configuration has at least one trian-
gulation. The method we are going to use is conceptually the simplest way
of getting triangulations of point configurations. It is surprisingly general
and it is central to the structure of the set of all triangulations of A. The
process is as follows, as illustrated in Figure 2.7. Let A = (p1, . . . ,pn) be a
point configuration in Rd :

Figure 2.7: The lifting construction.

1. Pick a “height function” ω : A→ R (ω can be thought of as a vector
ω = (ω1, . . . ,ωn)∈Rn, with ωi = ω(pi)) and consider the lifted point
configuration

Aω :=
(

p1 . . . pn
ω1 . . . ωn

)
.

Figure 6: Regular subdivisions and triangulations. (De Loera et al [7])

Lemma 2.4 (De Loera et al [7]) T (A, ω) is a subdivision of A, for ev-
ery ω.

Proof See De Loera et al [7] Lemma 2.2.28.

It is an active research topic to study the relations of the set of all
polyhedral subdivisions of a point configuration. An important concept is
the refinement of subdivisions, which roughly means that some pieces of
that subdivision are subdivided further.

Definition 2.5 (Refinement) Let T and T ′ be two subdivisions of a point
configuration A. Then T is a refinement of T ′, denoted T � T ′, if for each
P ∈ T there is a P ′ ∈ T ′ with P ⊆ P ′.

By its definition, a refinement of a subdivision can use extra vertices
which are not used in the subdivision it refines. However, a refinement can
use at most as many vertices as the point set of the point configuration that
all the subdivisons are based on. See Fig. 7 for examples.

Remark With the refinement relation, one can show that the set of all
subdivisions of A is a partially ordered set (poset for short), and it has a
maximal element, the trivial subdivision of A, the minimal elements of the
poset are triangulations of A. See De Loera et al [7].

Lemma 2.6 (De Loera et al [7]) Let T = T (A, ω) be the regular subdi-
vision of A produced by ω. Then there is an ε > 0 such that for every height
function ω′ : A → R that is ε-close to ω, i.e., |ωj − ω′

j | < ε for all j, we
have that T (A, ω′) � T (A, ω).

Proof See De Loera et al [7] Lemma 2.2.29, claim 3.
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Figure 7: Refinements of a subdivision. (1) is a trivial subdivision of 7
points (the points p1, p5, and p7 are collinear), the subdivision in (2) is a
refinement of the left, (3) is a refinement of both left and middle, and (4) is
a refinement of (1) but not (2).

Lemma 2.7 (De Loera et al [7]) Let T be a subdivision of A. Let ω :
A → R be a height vector. Then the following is a subdivision of A and it
refines T :

Tω = ∪P∈T T (A|P , ω|P ).

Moreover, if T equals T (A, ω0), then Tω is regular and equals to T (A, ω0 +
ε ω) for any positive and sufficiently small ε.

In above A|P denotes the subset A ∩ vert(P ), ω|P means the function
ω is restricted on vert(P ). That is, Tω is obtained by refining each cell of T
in the regular way given by the lifting vector ω. Fig. 8 shows an example.

Proof See De Loera et al [7] Lemma 2.2.30.

The subdivision Tω of the previous lemma is called the regular refinement
of T for the lifting vector ω.

Corollary 2.8 (De Loera et al [7]) Every subdivision of A can be re-
fined to a triangulation. Moreover, every regular subdivision of A can be
refined to a regular triangulation.

Proof For the first assertion, observe that if ω is ”sufficiently generic”, then
Tω is a triangulation since every T (A|P , ω|P ) is a triangulation. The second
assertion follows from Lemma 2.7.
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Figure 8: Refinement of a polyhedral subdivision. Left: the point set A =
{1, 2, ..., 8}. A polyhedral subdivision T of A contains two convex prisms,
which are {1, 2, 3, 4, 5, 6} and {2, 3, 5, 6, 7, 8}. Right, A refinement of two
prisms using the way given in Lemma 2.7.

3 Subdivisions of Polyhedra

In this section, we first give the definitions of a general polyhedron (may
be non-convex) and its faces. Then we define the (regular) subdivision of a
polyhedron.

There exist many definitions for non-convex polyhedra, but less defi-
nitions about faces of non-convex polyhedra. The following definition of
non-convex polyhedra and faces are close to those given by Edelsbrunner [8].

Definition 3.1 (Polyhedron) A general and therefore not necessary con-
vex polyhedron is the union of convex polyhedra, i.e., P =

⋃
P, where P is

a finite set of convex polyhedra, and the space of P is connected.

The space of P may not simply connected. See Fig. 9 for examples. The
dimension of P , denoted as dim(P ), is the largest dimension of a convex
polyhedron in P.

We define a face of P by the way suggested in [8]. Let Bε be the open
ball of radius ε centered at the origin in Rd. For a point x ∈ Rd we consider
a sufficiently small neighborhood Nε(x) = (x + Bε) ∩ P . The face figure of
x is the enlarged version of this neighborhood within this polyhedron, i.e.,
x +

⋃
λ>0 λ(Nε(x)− x).

Definition 3.2 (Faces) A face of P is the closure of a maximal connected
set of points with identical face figures.

By this definition, a face of P is always connected, but not necessarily
simply connected, see Fig. 9 for examples.
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Figure 9: Polyhedra and faces. Left: A polyhedron (a torus) formed by the
union of four convex polyhedra. It consists of 16 vertices (zero-faces), 24
edges (1-faces), 10 two-faces (the faces at top and bottom are not simply
connected), and 1 three-face (which is itself). Right: Two polyhedra. Each
has 12 vertices, 18 edges, 8 two-faces, and 1 three-faces. The shaded area
highlights two 2-faces which are coplanar.

A face F of P is again a polyhedron. Particularly, ∅ is a face of P . If
all convex polyhedra in P have the same dimension, then P itself is a face
of P . All other faces of P are proper faces of P . We also write F ≤ P or
F < P if F is a face or a proper face of P . The faces of dimension 0, 1,
dim(P ) − 2, and dim(P ) − 1 are called vertices, edges, ridges, and facets,
respectively. The set of all vertices of P , the vertex set, will be denoted by
vert(P ). The union of all proper faces of P is called the boundary of P ,
denoted as bd(P ). The interior int(P ) is P − bd(P ). The set of all proper
faces of P is a polyhedral complex, called the boundary complex ∂P .

Recall that a subdivision (and regular subdivision) of a point configura-
tion is a polyhedral complex whose underlying space equals to the convex
hull of the point configuration. Moreover, it uses only vertices of the point
configuration. Next we will introduce the definition of ”subdivision of a
polyhedron”, which is also a polyhedral complex. The main difference be-
tween these two objects are: the latter may not be convex and it may contain
Steiner points. However, they are closely related. To setup the connection
between the two objects, we first introduce the notion of ”subdivides”.

Definition 3.3 (Subdivide) Let T be a subdivision of a point configura-
tion A in Rd. Let P be a polyhedron. We say that T subdivides P if for each
face F of P , there is a subcomplex K of T and |K| = F . If T = T (A, ω) is
a regular subdivision of A, then we say that T regularly subdivides P .

If T (regularly) subdivides P , then there is a subcomplex TP of T fills
the interior of P . We say that TP is a (regular) subdivision of P . see Fig. 10.

Now we formally give the definition of a (regular) subdivision of a poly-
hedron P .
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Figure 10: Left: A two-dimensional point configuration A and a polygon P
(the shaded area). A subdivision T of A subdivides P . The subset TP ⊂ T
in the shaded area is a subdivision of P . Right: the lifted point configuration
Aω and the set of lower faces of conv(Aω). TP is a regular subdivision of P .

Definition 3.4 (Subdivision of Polyhedron) Let P be a polyhedron. A
subdivision of P is a polyhedral complex T such that

(i) |T | = P , and

(ii) ∀F ≤ P =⇒ ∃K ⊆ T such that |K| = F .

A subdivision T of a polyhedron P is not necessarily convex (by property
(i)). Moreover, every vertex of P must be in T , and T may contain Steiner
points (by property (ii)). If T contains no Steiner points, we say that T is
a pure subdivision of P .

A subdivision T of a polyhedron P is a triangulation of P if all elements
of T are simplices. The question of this paper is: Under which condition, P
has a pure triangulation?

Definition 3.5 (Regular Subdivision of Polyhedron) Let T be a sub-
division of a polyhedron P . If there is a height function ω : A → R, where
A = vert(T ) such that T is the subset of the set of the projected lower faces
of conv(Aω), i.e.,

T ⊆ {π(F ) |F is a lower face of conv(Aω)},

then T is a regular subdivision of P , denoted as T = T (P, ω).

4 Inserting an Internal Facet

Let P be a polyhedron. Let Q ⊂ P be another polyhedron formed by ridges
of P of the same affine space such that dim(Q) = dim(P ) − 1 and Q is

12



Figure 11: A three-dimensional polyhedron P . An internal facet Q (high-
lighted in yellow color) divides P into two disjoint parts.

not a facet of P . Such Q divides P into two polyhedra PL and PR, where
P = PL ∪ PR, Q = PL ∩ PR, and int(PL) ∩ int(PR) = ∅. We call Q an
internal facet of P , see Fig. 11. In this section, we consider the problem of
triangulating P and Q together without using Steiner points.

Theorem 4.1 Let P be a polyhedron and Q be an internal facet of P such
that Q divides P into two polyhedra PL and PR. If there is a regular sub-
division T = T (A, ω) subdivides P with no Steiner points on bd(P ), then
there are two regular subdivisions TL and TR that subdivide PL and PR with-
out using Steiner points, respectively. TL ∩ TR = TQ, where TQ regularly
subdivides Q.

Proof Let H be the hyperplane passing through Q and separating PL and
PQ. Let HL ⊃ PL and HR ⊃ PR be the two closed half spaces defined by H
(see Fig. 12 top-left). Define two subsets AL and AR of A to be

AL = {p |p ∈ A and p ∈ HL} and AR = {p |p ∈ A and p ∈ HR}.

Let TL and TR be the regular subdivisions of AL and AR obtained by re-
stricting the height function ω on them, respectively (see Fig. 12 top-right).

TL = T (AL, ω|AL
) and TR = T (AR, ω|AR

).

We show that TL and TR subdivide PL and PR, respectively.
Let F be a face of PL and F 6= Q. There is a subcomplex KF ⊂ T , such

that KF = T (F, ω|F ). We show that an arbitrary cell U ∈ KF is also a cell
of TL. If there is only one cell in T contains U , then U is on the convex
hull of T , hence U ∈ TL as well. Otherwise let W1,W2 ∈ T be the two cells
share at U . Since U ⊂ bd(P ), only one of them can be inside P , w.o.l.g.
we assume it is W1. Then W2 ∈ TL, since all other points in Aω are exactly
above the hyperplane passing through the lifted point set vert(W2)ω. In
other words, W2 belongs to any regular subdivision of a subset of A. Hence
U ∈ TL. It turns out, every cell of KF is in TL. Hence KF ⊂ TL.

13
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Figure 12: Top-left shows a two-dimensional polyhedron P (in the shaded
area) with an internal facet Q (in blue) which divides P into two polyhedra
PL and PR. H is the hyperplane passing through Q. HL and HR are closed
half spaces defined by H. A regular subdivision T = T (A, ω) subdivides
P . Bottom-left is a view of the lifted point set Aω. Note that the lifted
object from Q does not on the lower faces of conv(Aω). Top-right is the
regular subdivision TL = T (AL, ω|AL

). Bottom-right shows the lower faces
of the convex hull of the lifted point set Aω

L and their projections in the
plane which is the regular subdivision TL.

Now consider Q (which is a face of PL). There is a subcomplex KL ⊂
TL, such that KL is the regular subdivision of vert(Q) = Q, i.e., KL =
T (Q, ω|Q). We show that KL contains ∂Q as a subcomplex. It is equivalent
to show that for an arbitrary maximal cell U ∈ KL, relint(U) ∩ bd(Q) = ∅.
To get a contradiction, let U ∈ KL and relint(U) ∩ V 6= ∅, V ∈ ∂Q. Let
W ∈ TL be the (maximal) cell containing U . (There is only one such W since
Q is on the boundary of the closed half-space HL.) Then relint(W )∩V 6= ∅,
which implies that V can not belong to any projected lower face of conv(Aω)
(said differently, it implies that V is not a ”regular” cell with respect to ω).
Since V ∈ TL (which is a regular subdivision of A), we arrive a contradiction.
Hence ∂Q ⊂ KL, which implies that KL regularly subdivides Q.

Since every face of PL is subdivided by a subcomplex in TL. Hence TL

subdivides PL. By the same way, we can show that TR subdivides PR.
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Figure 13: Left shows the regular subdivision T = T (A, ω′). The poly-
hedron P is highlighted in yellow. T subdivides P and contains no point
insider and on P . Right shows the resulting TL and TR.

It remains to show that TL ∩ TR = TQ. We’ve show that KL ⊂ TL

regularly subdivides Q. The same, there is a KR ⊂ TR regularly subdivides
Q. It follows from the following equalities

KL = T (Q, ω|Q) = KR.

Hence we have KL = KR = TQ.
Note that both TL and TR may contain Steiner points, since we have no

assumption on A such that it contains no Steiner points of P . In such case,
we can form a new height function ω′ : A → R from ω to be,

ω′(p) =
{

max(ω) if p ∈ int(P )
ω(p) otherwise.

Then let T = T (A, ω′) (see Fig. 13 left). It can be shown that T subdivides
P , and T contains no point that lies inside or on both P and Q. Hence
the resulted TL and TR must contain no points inside or on PL and PR (see
Fig. 13 right). By the same proof, TL and TR subdivides PL and PR with
no Steiner points, respectively.

Remark. Theorem 4.1 shows that if a polyhedron P can be subdivided
by a regular subdivision of a point set, then any internal facet Q of P
which splits P into two polyhedra PL and PR can be recovered without
using Steiner points. Furthermore, it shows that PL and PR can be again
subdivided by regular subdivisions. Hence this theorem can be recursively
applied to recover any internal facet of PL and PR.
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Figure 14: ω-regular cells. A two-dimensional point configuration A and the
lower faces of the convex hull of Aω are shown. Cells [p1,p10], [p11,p12,p13],
and [p8,p9,p20,p19] are ω-regular. All vertices are ω-regular.

5 Triangulating Polyhedra

In this section, we will prove the main theorem of this paper. It states the
following fact: If there is a regular subdivision containing the set of all ridges
of a polyhedron P , then P can be triangulated without using Steiner points.
Recall that a ridge is a d− 2 face of P , where d = dim(P ).

To prove the above fact, we’re going to show that all facets of P can
exist together in a subdivision S of A (S may not be regular), so that S
subdivides P . Steiner points are not needed in S.

First of all, we introduce a convenient notion ”ω-regular” and some prop-
erties it has.

Definition 5.1 (ω-Regular) Let A ⊂ Rd be a point configuration, ω :
A → R be a height function. A polytope U ⊂ Rd whose vert(U) ⊆ A is ω-
regular in A if there is a hyperplane H in Rd+1 containing the lifted points
of vert(U)ω ⊆ Aω and no other point in Aω is below and on H. Call H the
supporting hyperplane of U .

In other words, an ω-regular polytope in A must belong to the projection
of a lower face of the convex hull of Aω, see Fig. 14 for examples.

Proposition 5.2 Let T = T (A, ω). Then

(1) Every cell U ∈ T is ω-regular in A.

(2) T is exactly the collection of ω-regular cells in A.
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Proof (1) is directly followed by the definition of ω-regular cells. Hence
T = T (A, ω) is a collection of ω-regular cells in A. To prove (2), we still
need to show that every ω-regular cell in A must also in T . It is the case
since every maximal ω-regular cell in A is in T .

Next, we will prove a theorem which guarantees the existence of a sub-
division of a polyhedron without using Steiner points.

Theorem 5.3 Let P be a polyhedron. If there is a regular subdivision T =
T (A, ω) containing the set of all ridges of P , or equivalently, all ridges of
P are ω-regular in A and vert(P ) ⊆ A, then P can be subdivided without
using Steiner points.

Proof First of all, note that if the point set A contains a point p ∈ int(P ),
we can form a new regular subdivision T ′ = (A, ω′) by letting ω′ = ω and
ω′(p) = max(ω). Hence p is not in T ′, and T ′ still contains the set of all
ridges of P (see Fig. 13 left). In the following, we assume that A contains
no point p ∈ int(P ). We show that every facet of P can be recovered in a
polyhedral subdivision S of A, so that S subdivides P . However S may not
be a regular subdivision of A.

Initially, Let S = T . Consider an arbitrary facet F of P . If F does not
subdivided by T , then F intersects with a set C of maximal cells of S. Let
C = |C|. C is a polyhedron including F as an internal facet. Let CL and CR

be the two polyhedra separated by F . Clearly C is subdivided by S, i.e.,
there is a KC ⊂ S such that |KC | = C. We have two cases.

Case 1. If F is the first facet of P to be recovered, i.e., S is still a regular
subdivision, then KC is a regular subdivision of C, then by Theorem 4.1
there are two regular subdivisions

KL ⊆ T (CL, ω|CL
) and KR ⊆ T (CR, ω|CR

),

such that KL and KR are regular subdivisions of CL and CR, respectively.
And KL ∩ KR is a regular subdivision of F . We then update S to be

S = (S \ KC) ∪ (KL ∪ KR).

Hence S becomes a subdivision containing a subdivision of F . We call a
cell U ∈ S and U ⊆ F subfacet to distinguish other cells of S. If S contains
subfacets, then S may not be regular anymore.

Case 2. S already contains some recovered facets of P , hence S may
not be a regular subdivision, see Fig. 15 left for an example. We now prove
that KC is still a regular subdivision of C.

We show that every maximal cell of KC is ω-regular in C = vert(C). To
get a contradiction, let U be a maximal cell in KC and U is not ω-regular
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p1

p15

p6

p12

Figure 15: Facet recovery (illustrated in plane). Top-left is a two-
dimensional subdivision S of a point configuration A, Aω and the lifted
cells of S are shown in bottom-left. S is non-regular since it includes the
edge [p1,p6] (shown in blue). The edge [p12,p15] is going to be recovered
in S, it intersects with the marked triangles (shown in yellow). Top-right
shows S after the edge [p12,p15] is recovered, the marked triangles (shown
in yellow) are new in S. The lifted cells of S are shown in bottom-right.

in C. Then there are lifted points in Cω below the supporting hyperplane
H of U . Let W be the maximal cell in KC and one of the lifted vertices
pω ∈ vert(Wω) is below the hyperplane. We can form a sequence of maximal
cells of KC starting from U and end at W (see Fig. 15 for an example),

{U = U0, U1, ..., Um = W},

where Ui and Ui+1 share a common maximal face. This sequence exists since
all these cells are crossed by F . Now we ”walk” from U towards W through
this sequence. Let Ui, 0 ≤ i < m be the cell where we are now, and let
Li < Ui be the face shared by its neighbor cell Ui+1. Let pi+1 be any vertex
in vert(Ui+1) \ vert(Li). If pω

i+1 lies below the supporting hyperplane Hi of
Ui, it implies that Li must be a subfacet of S (since this is the only reason
which causes the non-convexity between two hyperplanes in Rd+1). It turns
out there must be a facet F ′ of P intersects with F , where F ′ ⊃ Li, which is
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impossible. Hence pω
i+1 must lie above Hi, and it must lie above H as well.

Inductively, we will find p ∈ vert(W ) and pω must lie above H. We arrive
a contradiction.

Hence every maximal cell of KC is ω-regular in C. It follows that KC

is a regular subdivision of C. Then we can apply the same operations in
Case 1 to subdivide CL and CR and recover F in S, see Fig. 15 right for an
example.

Since all facets of P can be recovered in S one after one. On finish, S is
a subdivision of P with no Steiner points.

The following corollary shows that the condition given in the above theo-
rem is sufficient to guarantee the existence of a triangulation of a polyhedron
without Steiner points.

Corollary 5.4 Let P be a polyhedron. If there is a regular subdivision T =
T (A, ω) containing the set of all ridges of P , or equivalently, all ridges of
P are ω-regular in A ⊇ vert(P ), then P can be triangulated without using
Steiner points.

Proof By Theorem 5.3, there exist a subdivision S of P such that S contains
no Steiner points of P . Obviously, S uses all vertices of P . By Corollary 2.8,
S can be refined into a triangulation S ′ of P . The definition of refinement
implies that S ′ must contain all vertices of P and no Steiner point.

Discussion We now reconsider Shewchuk’s condition and compare it to
ours. Let P in Rd be a polyhedron whose all ridges are strongly Delaunay
in vert(P ). Let ω : vert(P ) → R be the function ‖x‖2 (where ‖ · ‖ denotes
the Euclidean norm), i.e., ω lifts every vertex of P onto a paraboloid in
Rd+1. The set of ridges of P must be contained in the regular subdivision
T = T (vert(P ), ω). Hence it automatically satisfies our condition. On the
other hand, a Delaunay but non-strongly Delaunay ridge may still exist in
the Delaunay subdivision (which is a regular subdivision) of that point set.
For example, this is the case for a prism whose all vertices share a common
sphere and it is tetrahedralizable by our condition.

6 Algorithms

One of the main applications of our condition is to find triangulations for
three-dimensional polyhedra or complex-like objects formed by a finite col-
lection of polyhedra.

One of the important questions is: how to restrict the number of Steiner
points? Although Chazelle showed that a quadratic number of Steiner points
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may be needed [3], it is not required to use that many Steiner points in most
of cases. Our condition shows that if there is a function ω : A → R, and all
edges of a polyhedron P is ω-regular in A, then no Steiner point is needed to
triangulate P . Hence to efficiently find an ω satisfying the condition would
be helpful. However, it is generally hard to do so. A pre-requisite to this
question is to find a tetrahedralization including the edge set of P , which is
an NP-complete problem [21].

However, it is possible to modify the input edge set by inserting few
Steiner points on some edges such that the resulting edge set is contained
in a regular triangulation of the vertex set of P (including these Steiner
points). In [18], a practical algorithm for recovering the edge set of P in
a Delaunay triangulation of vert(P ) is discussed. This algorithm runs in
O(m2 log m) time, where m is the total number of output points. However,
the upper bound on the number of Steiner points is not yet available.

The next question is: Suppose there is an ω and all edges of P are ω-
regular in vert(P ), i.e., the existence of a triangulation of P with no Steiner
points is known, how to efficiently generate the triangulation?

There are at least two algorithms which can be used for this purpose.
Both run in polynomial time. Shewchuk proposed a flip-based facet insertion
algorithm [17]. Starting from a Delaunay triangulation D of vert(P ) where
D contains all edges of P . He showed there is a sequence of elementary
flips which can insert a facet F of P into D such that D is a constrained
Delaunay triangulation of P . The correctness of this algorithm relies on the
assumption that the vertex set of P is in general position (i.e., no 5 points
share a common sphere), hence the flip sequence will not get stuck. This
algorithm runs in O(n2 log n) time, where n is the input size of P .

Si and Gärtner [18] proposed another algorithm for inserting the facets
of P into D. It first triangulates all facets into a set of triangles, called
subfaces. Then it inserts each subface into D. If a subface σ is missing in D,
one can form a missing region G ⊇ σ of neighboring missing subfaces of σ,
and collect the set of tetrahedra in D whose interiors intersect with G. This
will result a cavity C in D, C contains G as an internal facet which splits C
into CL and CR. Then it triangulates CL and CR by forming the Delaunay
tetrahedralizations of vert(CL) and vert(CR) respectively. The correctness
of this algorithm also relies on the assumption that the vertex set of P is in
general position. This algorithm runs in worst case O(fn2 log n) time, where
f is the number of facets of P . In average, it runs in O(n2 log n) time.

7 Conclusion and Discussion

The problem of triangulating non-convex polyhedra without using Steiner
points has been long discussed in discrete geometry and computational ge-
ometry. Although various special cases and useful conditions have been
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Figure 16: A polyhedron P of 9 vertices. It is constructed by the following
steps: start with two congruent nested squares in the xy-plane; rotate the
inner square around the center of the square by a small angle; translate the
rotated square to z-axis by a small distance; connect the 8 side faces of the
two squares as shown in the left; lastly mount a pyramid at the outer square.
P can be tetrahedralized since the apex of the pyramid sees all the side faces
from interior of P . A tetrahedralization of P is shown in the right. Indeed,
it is the only tetrahedralization of P .

proved [9, 2, 19, 15], the question of asking for a general condition which de-
cides the existence of a triangulation for a given polyhedron with no Steiner
points is still open.

In this paper, we proved a new condition which towards the answer of the
question. It states that if the set of ridges of a polyhedron P is contained in
a regular subdivision, then there exists a triangulation of P with no Steiner
points. In particular, this condition includes Shewchuk’s condition [15] as a
special case. It is still an question that the proved special cases [9, 19] can
be reduced to this condition. However, our condition is not general. For
example, our condition is not fulfilled by the three-dimensional polyhedron
shown in Fig. 16 which is tetrahedralizable with no Steiner points.

A slightly improved condition could be the replacement of the require-
ment of (globally) ω-regular into the requirement of a locally ω-regular plus
some additional requirements (need to be found). Hence the initial subdivi-
sion containing the set of ridges may not be a regular subdivision.
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