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Abstract. Due to transaction costs, illiquid markets, large investors or risks from an unprotected
portfolio the assumptions in the classical Black–Scholes model become unrealistic and the model
results in strongly or fully nonlinear, possibly degenerate, parabolic diffusion–convection equations,
where the stock price, volatility, trend and option price may depend on the time, the stock price or
the option price itself.

In this chapter we will be concerned with several models from the most relevant class of nonlin-
ear Black–Scholes equations for American options with a volatility depending on different factors,
such as the stock price, the time, the option price and its derivatives.

We will analytically approach the option price by following the ideas proposed by Ševčovič and
transforming the free boundary problem into a fully nonlinear nonlocal parabolic equation defined
on a fixed, but unbounded domain. Finally, we will present the results of a split–step finite difference
scheme for various volatility models including the Leland model, the Barles and Soner model and
the Risk adjusted pricing methodology model.

1 Introduction

The strong interest in pricing financial derivatives – among them in pricing options – arises
from the fact that financial derivatives, also called contingent claims, can be used to mini-
mize losses caused by price fluctuations of the underlying assets. This process of protection
is called hedging. There is a variety of financial products on the market, such as futures,
forwards, swaps and options. In this chapter we will focus on American Call options.

We recall that an American Call option is a contract where at any time before a pre-
scribed time in the future, known as the expiry date T , the owner of the option, known as
the holder, may purchase a prescribed asset, known as the underlying asset S ( t) , for a pre-
scribed amount, known as the exercise or strike price K . The opposite party, or the writer,
has the obligation to sell the asset if the holder chooses to excercise his right. The value of
the American Call option at the time of execution, known as the pay-off function, is

V (S, t ) = ( S − K )+ .

1
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Option pricing theory has made a great leap forward since thedevelopment of the
Black–Scholes option pricing model by Black and Scholes [6]in 1973 and previously by
Merton [44]. The solution of the famous(linear) Black–Scholes equation

0 = Vt +
1

2
σ2S2VSS + rSVS − rV, 0 < S < Sf (t), t ∈ (0, T ), (1)

whereV denotes the value of the option andr the riskless interest rate, provides both an
option pricing formula for an American Call option and a hedging portfolio that replicates
the contingent claim. This is true under the assumption thatthe market iscomplete, which
means that any derivative and any asset can be replicated or hedged with a portfolio of other
assets in the market, cf. [61].

However, this assumption of a complete market is never fulfilled in reality. Due to
transaction costs [4, 8, 41], large investor preferences [23, 24, 50] and incomplete markets
[55] the classical model results in strongly or fully nonlinear, possibly degenerate, parabolic
convection–diffusion equations, where both the volatility σ and the driftµ can depend on
the timet, the stock priceS or the derivatives of the option priceV itself. Here, we will
be concerned with several transaction cost models from the most relevant class of nonlinear
Black–Scholes equations for American options with a constant drift µ and a nonconstant
modified volatility function

σ̃2 := σ̃2(t, S, VS , VSS).

Under these circumstances (1) becomes the followingnonlinear Black–Scholes equa-
tion:

0 = Vt +
1

2
σ̃2(t, S, VS , VSS)S2VSS + rSVS − rV, S > 0, t ∈ (0, T ) (2)

Studying (1) for an American Call option would be redundant,since the value of an
American Call option equals the value of a European Call option if no dividends are paid
and the volatility is constant. In order to make the model more realistic, we will consider a
modification of (2) for American options, whereS pays out acontinuous dividendqSdt in
a time stepdt:

0 = Vt +
1

2
σ̃2(t, S, VS , VSS)S2VSS + (r − q)SVS − rV, S > 0, t ∈ (0, T ), (3)

where the dividend yieldq is constant.

Remark 1.1 Most dividend payments on an index — such as the Dow Jones Industrial Av-
erage (DJIA) or the Standard and Poor’s 500 (S&P500) — are so frequent that they can
be modeled as a continuous payment, which is the case in(3). However, if companies
only make two or four dividend payments per year, then one hasto treat the dividend pay-
ments discretely and the question of how to incorporatediscrete dividend paymentsinto the
Black–Scholes equation arises.

Even though in this work we will focus on the case of continuous dividend payments,
we briefly review the results for discrete dividend paymentsfrom [63] in the sequel.
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We assume that there is only one dividend payment of the dividend yieldq during the
lifetime of the option at thedividend datetq. Neglecting other factors, such as taxes, the
asset priceS must decrease exactly by the amount of the dividend paymentq at time tq.
Thus we have thejump condition

S(t+q ) = (1 − q)S(t−q ),

wheret−q , t+q denote the moments just before and after the dividend datetq. This leads to
the following effect on the option price:

V (S, t−q ) = V ((1 − q)S, t+q ), (4)

i.e. the value of the option atS and timet−q is the same as the value immediately after the
dividend datetq but at the asset value(1 − q)S. In order to calculate the value of a Call
option with one dividend payment we solve the Black–Scholesequation from expiryt = T
until t = t+q and use the relation(4) to compute the values att = t−q . Finally, we continue
to solve the Black–Scholes equation backwards starting att = t−q using these values as the
initial data. The boundary conditions, that are discussed in the next section, do not need to
be modified for this case.

In the mathematical sense equations (2) and (3) are called convection–diffusion equa-
tions. The second-order term12 σ̃2(t, S, VS , VSS)S2VSS is responsible for thediffusion, the
first-order termrSVS or (r − q)SVS is theconvectionterm and−rV can be interpreted as
thereactionterm (cf. [53,62]).

In the financial sense, the partial derivatives indicate thesensitivity of the option price
V to the corresponding parameter and are calledGreeks. The option delta is denoted by
∆ = VS , the option gamma byΓ = VSS and the option theta byθ = Vt [33].

Since American options can be exercised at any time before expiry, we need to find
the optimal timet of exercise, known as theoptimal exercise time. At this time, which
mathematically is astopping time, the asset price reaches theoptimal exercise priceor
optimal exercise boundarySf (t).

This leads to the formulation of the problem for American options by dividing the do-
main [0,∞[×[0, T ] of (3) into two parts along the curveSf (t) and analyzing each of them
(see Fig. 1(a)). SinceSf (t) is not known in advance but has to be determined in the process
of the solution, the problem is calledfree boundary value problem(see e.g. [67]).

For different numerical approaches, the free boundary problem for American options
can be reformulated into alinear complementary problem, a variational inequalityand a
minimization problem[26]. Here, we will only consider the formulation as a free boundary
problem.

For the American Call option thespatialdomain is divided into two regions by thefree
boundarySf (t), the stopping regionSf (t) < S < ∞, 0 ≤ t ≤ T , where the option is
exercised or dead withV (S, t) = S − K and thecontinuation region0 ≤ S ≤ Sf (t),
0 ≤ t ≤ T , where the option is held or stays alive and equation (3) is valid under the
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Figure 1: American Call.

following terminal and boundary conditions:

V (S, T ) = (S − K)+ for 0 ≤ S ≤ Sf (T )

V (0, t) = 0 for 0 ≤ t ≤ T

V (Sf (t), t) = Sf (t) − K for 0 ≤ t ≤ T (5)

VS(Sf (t), t) = 1 for 0 ≤ t ≤ T

Sf (T ) = max(K, rK/q).

For the sake of simplicity we will assumer > q in this chapter, and therefore we have
Sf (T ) = rK/q for the American Call.

The structure of the value of an American Call can be seen Fig.1(b), where we notice
that the free boundarySf (t) determines the position of the exercise.

For American options, in general, analytic valuation formulae are not available, except
for a few special types, which we are not going to address in this chapter. Those types are
Calls on an asset that pays discrete dividends andperpetualCalls — meaning Calls with
an infinite time to expiry [40]. For the other types, there arevarious kinds of analytical and
numerical approximations that will be discussed in this chapter.

The structure of this chapter is as follows. In Section 2 several nonconstant volatility
models that lead to the nonlinearity of the Black–Scholes equation will be introduced. The
focus of this chapter is the solution of the resulting nonlinear problems for American Call
options. Since in general, a closed–form solution to the nonlinear Black–Scholes equation
for American options does not exist (even in the linear case), we have to solve the prob-
lems numerically. The numerical solution and the comparison study for American options
will be achieved by the transformation of the free boundary problem (3) subject to (5) into a
forward-in-time parabolic equation defined on a fixed (but unbounded) spatial domain (Sec-
tion 3). This new problem will be numerically solved by the method of finite differences
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using an operator splitting technique (Section 4). It will then be evaluated and concisely
discussed in Section 5 thereafter.

2 Volatility Models

The essential parameter of the standard Black–Scholes model, that is not directly observable
and is assumed to be constant, is the volatilityσ. There have been many approaches to
improve the model by treating the volatility in different ways and using amodified volatility
function σ̃(·) to model the effects of transaction costs, illiquid marketsand large traders,
which is the reason for the nonlinearity of (2) and (3). In this section we will first give
a brief overview of several volatility models and then focuson the volatility models of
transaction costs.

• The constant volatilityσ in the standard Black–Scholes model can be replaced by
the estimated volatility from the former values of the underlying. This volatility is
known as thehistorical volatility [26].

• If the price of the option and the other parameters are known,which is e.g. the case
for the European Call and Put options, then theimplied volatility can be calculated
from those Black–Scholes formulae. The implied volatilityis the valueσ, for which
the Black–Scholes equation. is true compared to the real market data. It can be
calculated implicitly via the difference between the observed option priceV (from
the market data) and the Black–Scholes formulae, where all the parameters - except
for the implied volatilityσ - are taken from the market data (the stock priceS, the
time t, the expiration dateT , the strike priceK, the interest rater the dividend rate
q).

Considering options with different strike pricesK but otherwise identical parameters,
we see that the implicit volatility changes depending on thestrike price. If the implicit
volatility for a certain strike priceK is less than the implicit volatility for both the
strike price greater and less thanK, this effect is calledvolatility smile(see e.g. [39]).

• Replacing the constant volatility with the observed implicit volatilities at each stock
price and time leads to the term of thelocal volatility σ̃ := σ̃(S, t). Dupire [16]
examines the dependencies and expresses the local volatility as a function of implicit
volatilities.

• Hull and White [32] and Heston [28] develop a model, in which the volatility follows
the dynamics of a stochastic process. This is known as thestochastic volatility.

• The assumption, that each security is available at any time and any size, or that in-
dividual trading will not influence the price, is not always true. Therefore, illiquid
markets and large trader effects have been modeled by several authors. In [23] Frey
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and Stremme and later Frey and Patie [24] consider these effects on the price and
come up with the result

σ̃ =
σ

1 − ρλ(S)SVSS
, (6)

whereσ is the historical volatility,ρ is constant,λ(S) is a strictly convex function
andλ(S) ≥ 1. The functionλ(S) depends on the pay-off function of the financial
derivative. For the European Call option, Frey and Patie show thatλ(S) is a smooth,
slightly increasing function forS ≥ K. Bordag and Chmakova [7] assume thatλ(S)
is constant and solve the problem (2) with the modified volatility (6) explicitly using
Lie-group theory (see also [12]).

The main scope of this chapter is the numerical solution of the nonlinear Black–Scholes
equation for the American Call option, where the nonlinearity results from transaction costs.
Therefore, after this general overview, we devote our attention to a more detailed description
of several transaction cost models.

2.1 Transaction Costs

The Black–Scholes model requires a continuous portfolio adjustment in order to hedge the
position without any risk. In the presence of transaction costs it is likely that this adjustment
easily becomes expensive, since an infinite number of transactions is needed [40]. Thus, the
hedger needs to find the balance between the transaction costs that are required to rebalance
the portfolio and the implied costs of hedging errors. As a result to this "imperfect" hedging,
the option might be over- or underpriced up to the extent where the riskless profit obtained
by the arbitrageur is offset by the transaction costs, so that there is no single equilibrium
price but a range of feasible prices. It has been shown that ina market with transaction costs
there is no replicating portfolio for the European Call option and the portfolio is required to
dominate rather than replicate the value of the option (see [4]). Soner, Shreve and Cvitanič
prove in [54] that the minimal hedging portfolio that dominates a European Call is the trivial
one (hence holding one share of the stock that the Call is written on), so that efforts have
been made to find an alternate relaxation of the hedging conditions to better replicate the
pay-offs of derivative securities.

2.1.1 The model of Leland

Leland’s idea of relaxing the hedging conditions is to tradeat discrete times [41], which
promises to reduce the expenses of the portfolio adjustment. He assumes that the transac-
tion costκ|∆|S/2, whereκ denotes the round trip transaction cost per unit dollar of the
transaction and∆ the number of assets bought (∆ > 0) or sold (∆ < 0) at priceS, is
proportional to the monetary value of the assets bought or sold. Leland derives the relation

rBδt − κ

2
|δ∆|S = (Vt +

σ2

2
S2VSS)δt, (7)
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whereB is the bond andr the riskless interest rate, and shows that

κ

2
|δ∆|S =

σ2

2
Le S2|VSS |δt. (8)

Here,Le denotes theLeland number, which is given by

Le =

√
2

π

(
κ

σ
√

δt

)
, (9)

with δt being the transaction frequency (interval between successive revisions of the port-
folio) andκ the round trip transaction cost per unit dollar of the transaction. Plugging (8)
andB = Π − ∆S = V − SVS into the equation (7) becomes

rV − rSVS − σ2

2
LeS2|VSS | = Vt +

σ2

2
S2VSS. (10)

Therefore, Leland deduces that the option price is the solution of the nonlinear Black–
Scholes equation

0 = Vt +
1

2
σ̃2S2VSS + rSVS − rV,

with themodified volatility

σ̃2 = σ2

(
1 + Le sign(VSS)

)
, (11)

whereσ represents the historical volatility andLe the Leland number. It follows from the
definition of the Leland number (9) that the more frequent therebalancing (δt smaller), the
higher the transaction cost and the greater the value ofV .
Leland’s model has played a significant role in financial mathematics, even though it has
been partly criticized by e.g. Kabanov and Safarian in [37],who prove that Leland’s result
has a hedging error. The restriction of his model is the convexity of the resulting option
priceV (henceVSS > 0) and the possibility to only consider one option in the portfolio.
Hoggard, Whalley and Wilmott study equation (2) with the modified volatility (11) for
several underlyings in [30]. An extension to this approach to general pay–offs is obtained
by Avellaneda and Parás in [3].

2.1.2 The model of Barles and Soner

In [4] Barles and Soner derive a more complicated model by following theutility function
approachof Hodges and Neuberger [29].

Supposing that the proportional transaction costκ is equal toa
√

ε for some constant
a > 0, they prove that asε and κ go to 0, V is the unique (viscosity) solution of the
nonlinear Black–Scholes equation

0 = Vt +
1

2
σ̃2S2V 2

SS + rSVS − rV,
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where

σ̃2 = σ2

(
1 + Ψ(er(T−t)a2S2VSS)

)
. (12)

Hereσ denotes the historical volatility,a = κ/
√

ε andΨ(x) is the solution to the following
nonlinear ordinary differential equation (ODE)

Ψ′(x) =
Ψ(x) + 1

2
√

xΨ(x) − x
, x 6= 0, (13a)

with the initial condition
Ψ(0) = 0. (13b)

The analysis of this ODE (13) by Barles and Soner in [4] implies that

lim
x→∞

Ψ(x)

x
= 1 and lim

x→−∞
Ψ(x) = −1. (14)

The property (14) encourages to treat the functionΨ(·) as the identity for large arguments
and therefore to simplify the calculations. In this case thevolatility becomes

σ̃2 = σ2(1 + er(T−t)a2S2VSS). (15)

The existence of a viscosity solution to (2) for European options with the volatility given
by (12) is proved by Barles and Soner in [4] and their numerical results indicate an eco-
nomically significant price difference between the standard Black–Scholes model and the
nonlinear model with transaction costs.

2.1.3 Risk Adjusted Pricing Methodology

In this model, proposed by Kratka in [39] and improved by Jandačka and Šev̌covič in [35],
the optimal time-lagδt between the transactions is found to minimize the sum of the rate
of the transaction costs and the rate of the risk from an unprotected portfolio. That way the
portfolio is still well protected with the Risk Adjusted Pricing Methodology (RAPM) and
themodified volatilityis now of the form

σ̃2 = σ2

(
1 + 3

(C2M

2π
SVSS

) 1
3

)
, (16)

whereM ≥ 0 is the transaction cost measure andC ≥ 0 the risk premium measure.

It is worth mentioning that these nonlinear transaction cost models that are described
above are all consistent with the linear model if the additional parameters for transaction
costs are equal to zero and vanish (Le, Ψ(·), M ). We will study these models – more
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precisely equations (2) and (3) where the volatility is given by the equations (11), (12), (15)
and (16) – for American Call options.

In general, an exact analytical solution leading to a closedexpression is not known for
American options in a market with transaction costs. In the next section we will analytically
approach the solution of (3) by a transformation, that facilitates the numerical solution in
the section thereafter. We will compare and evaluate the results in the section thereafter.

3 The fixed Domain Transformation

The equation (3) subject to (5) is a backward-in-time free boundary problem. In order to
ease the numerical solution of (3) (5) for American Call options, we transform the prob-
lem into a problem posed on a a fixed (unbounded) domain additionally to the forward
transformation in time. Hence, the domain does not depend onthe free boundarySf (t)
anymore and we simply calculate an algebraic constraint equation for the position of the
free boundary. Following the idea of Ševčovič [52] we change the variables to:

τ = T − t, x = ln

(
̺(τ)

S

)
⇔ S = e−x̺(τ), ̺(τ) = Sf (T − τ),

such thatx ∈ R
+ andτ ∈ [0, T ].

Then, we construct a portfolio

Π(x, τ) = V (S, t) − SVS(S, t)

by buying∆ = VS sharesS and selling an optionV . DifferentiatingΠ with respect tox
andτ gives us

Πx = VSSx − SxVS − SVSSSx = S2VSS

and

Πτ = VSSτ + Vttτ − SτVS − S(VSSSτ + VSttτ )

= −Vt −
̺′(τ)

̺(τ)
S2VSS + SVSt

= −Vt −
̺′(τ)

̺(τ)
Πx − S∂S(−Vt).

(17)

Substituting

−Vt =
σ̃2

2
S2VSS − r(V − SVS) − qSVS =

σ̃2

2
Πx − rΠ − qSVS

from (3) into (17) and using the fact that−S∂S = ∂x, we get

Πτ =
σ̃2

2
Πx − rΠ − qSVS − ̺′(τ)

̺(τ)
Πx + ∂x

(
σ̃2

2
Πx − rΠ

)
+ S∂S(qSVS)

=

(
σ̃2

2
− ̺′(τ)

̺(τ)
− r + q

)
Πx − rΠ +

1

2
∂x(σ̃2Πx).
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We therefore obtain

0 = Πτ +
(
b(τ) − σ̃2

2

)
Πx − 1

2
∂x(σ̃2Πx) + rΠ, (18)

defined onx ∈ R
+, 0 ≤ τ ≤ T , where the coefficientb(τ) is

b(τ) =
̺′

̺
(τ) + r − q.

The terminal condition from (5) in the original variables(S, T ) becomes the initial condi-
tion in the new variables(x, 0):

Π(x, 0) = V (S, T ) − SVS(S, T )

=

{
−K for S > K ⇔ x < ln ̺(0)

K

0 otherwise
.

(19a)

and the boundary conditions from (5) transform to

Π(x, τ) = 0 asx → ∞, 0 ≤ τ ≤ T, (19b)

Π(0, τ) = −K for 0 ≤ τ ≤ T. (19c)

To complete the system of equations that enables the computation of the portfolioΠ we
need to use the last two conditions of (5) to obtain an expression at the free boundary
position̺(τ). Differentiating and evaluatingV (Sf (t), t) = Sf (t)−K at the free boundary
gives us

VS(Sf (t), t)S′

f (t) + Vt(Sf (t), t) = S′

f (t).

Using (5), we conclude that

Vt(Sf (t), t) = 0 for 0 ≤ τ ≤ T.

Computing (3) at the point(Sf (t), t) or at(0, τ) in the transformed variables yields:

0 = Vt(Sf (t), t) +
1

2
σ̃2Πx(0, τ) + (r − q)Sf (t)VS(Sf (t), t) − rV (Sf (t), t)

=
1

2
σ̃2Πx(0, τ) + rK − q̺(τ).

We remind the reader that we have assumedr ≥ q and therefore we obtain the last condi-
tion:

̺(τ) =
1

2q
σ̃2Πx(0, τ) +

rK

q
with ̺(0) =

rK

q
, (19d)

where0 ≤ τ ≤ T andσ̃2 depends on the volatility model we choose. The volatility (11)
from Leland’s model becomes

σ̃2 = σ2

(
1 + Le sign(Πx)

)
, (20a)



Split–Step Schemes for Nonlinear Black–Scholes equationsfor American Options 11

for Barles’ and Soner’s model (12) we get

σ̃2 = σ2(1 + Ψ(erτa2Πx)), (20b)

for the identity model (15) we obtain

σ̃2 = σ2(1 + erτa2Πx), (20c)

and for the Risk Adjusted Princing Methodology (16) we derive

σ̃2 = σ2

(
1 + 3

(C2M

2π
Πx̺(τ)e−x

) 1
3

)
. (20d)

This transformed problem (18) subject to (19) with the corresponding volatilities (20) is
solved by the split-step finite-difference method proposedby Šev̌covič [52]

Once we have numerically solved the transformed problem by calculating the solution
to our portfolioΠ(x, τ) and the free boundary̺(τ), we calculate the value of the American
Call V (S, t) option by transforming

Π(x, τ) = V (S, t) − SVS(S, t)

back to the original variables. Since we know that

Π(x, τ)

S2
=

V (S, t)

S2
− VS(S, t)

S
= ∂S

(
− V (S, t)

S

)
,

we integrate the above equation fromS to Sf (t), take into account the boundary condition
V (Sf (t), t) = Sf (t) − K and obtain:

∫ Sf (t)

S

Π(ln(̺(τ)/S), τ)

S2
dS =

∫ Sf (t)

S
∂S

(
− V (S, t)

S

)
dS

∫ ln ̺(τ)
Sf (t)

ln ̺(τ)
S

Π(x, τ)

S2
(−S)dx = −V (Sf (t), t)

Sf (t)
+

V (S, t)

S

S

∫ ln ̺(τ)
S

0

Π(x, τ)

e−x̺(τ)
dx = −S

̺(τ) − K

̺(τ)
+ V (S, t)

V (S, T − τ) =
S

̺(τ)

(
̺(τ) − K +

∫ ln ̺(τ)
S

0
exΠ(x, τ)dx

)
. (21)

Therefore, (21) yields the price of the American Call optionV (S, t) in the presence (and
absence) of transaction costs.
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4 Numerical Solution

Due to the lack of general closed–form solutions to the Black–Scholes equations, there are
various numerical methods for solving Black–Scholes equations for American options.

For European Call and Put options, the Black–Scholes formulae provide the correct
answer, but for more complicated contracts in more general settings analytical formulae
are seldom available and numerical methods have to be used tosolve the problem. These
vary from lattice methods (including binomial and trinomial approximations [14]), Monte-
Carlo methods using the least-square techniques [34], analytical approximations [5,11,42],
finite-element discretizations [26] to finite-difference methods [2,9,13].

There are numerous other methods for pricing American options including the method
of lines [45], front-tracking algorithms [64], penalty methods [68] and many others. One
of the standard approaches for solving the Black–Scholes equation for American options
consists of the transformation of the original equation into the heat equation posed on a
semi–unbounded domain with a free boundarySf (t) [53, 63]. For a new alternative direct
method using the Mellin transformation we refer to [36,47].

Up to now, an exact analytical formula for the free boundary profile Sf (t) in (3) subject
to (5) is not known, but several authors derived approximateexpressions to evaluate Amer-
ican Call and Put options in the linear case [25]. Recently, in a promising approach [51],
Šev̌covič obtained a semi–explicit formula for an American Call in the case ofr > q.
By transforming the linear Black–Scholes equation for the American Call option into a
nonlinear parabolic equation on a fixed domain and applying Fourier sine and cosine trans-
formations, he derives a nonlinear singular integral equation determining the shape of the
free boundary. This integral equation can be solved effectively by the means of successive
iterations.

Another standard method consists of the reformulation of the free boundary problem
into a linear complementary problem (LCP) and the solution by the Projected Successive
Over Relaxation (PSOR)method of Cryer [15]. Alternatively, penalty and front–fixing
methods are developed (e.g. in [22,46]). A disadvantage of these methods is the change of
the underlying model.

A different approach [31] is based on a recursive calculation of the early exercise bound-
ary, estimating the boundary only at some points and then approximating the whole bound-
ary by Richardson extrapolation. Explicit boundary tracking algorithms are e.g. afinite-
difference bisection scheme[38] or thefront–tracking strategyof Han and Wu [27].

This emphasis of this chapter is on finite-difference schemes, thus other methods will
not be further elaborated on here. For more information on numerical methods we refer the
reader to [48,49,66] and the references therein.

4.1 American Call option

Now we want to solve the transformed problem from the previous section.

0 = Πτ +
(
b(τ) − σ̃2

2

)
Πx − 1

2
∂x(σ̃2Πx) + rΠ, x ∈ R

+, 0 ≤ τ ≤ T (22)
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with the corresponding volatilities (20) subject to the conditions

Π(x, 0) =

{
−K for x < ln ̺(0)

K
0 otherwise

Π(x, τ) = 0 asx → ∞, 0 ≤ τ ≤ T,

Π(0, τ) = −K for 0 ≤ τ ≤ T,

(23)

and the constraint

̺(τ) =
1

2q
σ̃2Πx(0, τ) +

rK

q
with ̺(0) =

rK

q
. (24)

We therefore first describe the solution of (22) subject to (23) and (24) with the correspond-
ing volatilities (20) by finite-difference schemes and thenpresent the numerical results.

4.2 Finite-Difference Schemes

There have been many approaches to calculate the value of an American option numeri-
cally by compact finite-difference schemes in the absence oftransaction costs. Recently,
Tangman et al. [59, 60] introduced a compact scheme of order(2, 4). Two other com-
pact schemes, known as theNumerov-type(see [58,66]) and theCrandall-Douglas scheme
(see [43]), are analyzed for linear Black–Scholes equations. However, these schemes are
not directly transferable to the model in the presence transaction costs.

In order to find a solution for the nonlinear Black–Scholes equation (22) subject to (23)
with the corresponding volatilities (20) and the constraint (24), Šev̌covič suggests to com-
bine two approaches that solve the problem for the American Call with a constant volatility
numerically [52]. One of them is the transformation of the problem into a variational in-
equality and its solution by the PSOR algorithm [26,53]. Theother one is the derivation of
a nonlinear integral equation for the position of the free boundary without the knowledge
of the price itself [40,64].

Even though these methods are not directly applicable, since they require a constant
volatility σ, this approach is successful when it is combined with an operator splitting tech-
nique. The idea is to discretize (22) in time, to split the equation into a convective and a
diffusive part and to find an approximation for the solution pair (Π, ̺) at each time level.
The detailed derivation is given in the sequel.

4.2.1 Grid

We discretize the problem (22) subject to the conditions (23) with the corresponding volatil-
ities (20) by confining the unbounded domainx ∈ R

+ andτ ∈ [0, T ] to x ∈ (0, R) with
R > 0 sufficiently large (see [52]). For the calculation Ševčovič chooses to takeR = 3,
since this is equivalent toS ∈ (Sf (t)e−R, Sf (t)) and yields a good approximation for
S ∈ (0, Sf (t)) (as the transformation wasS = Sf (t)e−x). In the sequel we refer toh > 0
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time

space

τ

x

xi xi+1

τn

τn+1

k

h

R = Nh

T = Mk

0

Figure 2: Uniform grid for an American Call option.

as the spatial step and tok > 0 as the time step,xi = ih, i ∈ [0,N ], R = Nh andτn = nk,
n ∈ [0,M ], T = Mk (see Fig. 2).

The approximate solution of (22) inxi at timeτn is denoted byΠn
i := Π(xi, τn), the

value of the free boundary at timeτn by ̺n := ̺(τn) and the value of the coefficientb(τ)
at τn by bn := b(τn).

We treat the initial and boundary conditions (23) in the following way:

Π0
i = Π(xi, 0) =

{
−K for xi < ln ̺(0)

K = ln r
q

0 otherwise
,

Πn
0 = −K,

Πn
N = 0.

(25)

4.2.2 Difference Quotients

We denote the forward difference quotient with respect to the spatial variable inxi at time
τn with the spatial step sizeh by:

D+
h Πn

i :=
Πn

i+1 − Πn
i

h
≈ Πx(xi, τn),

the backward difference quotient by:

D−

h Πn
i :=

Πn
i − Πn

i−1

h
≈ Πx(xi, τn)

and the central difference quotient by

D0
hΠn

i :=
Πn

i+1 − Πn
i−1

2h
≈ Πx(xi, τn),
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omitting the truncation errorO(h), O(h) andO(h2), respectively. For the second spatial
derivative we introduce the standard difference quotient

D2
hΠn

i :=
Πn

i+1 − 2Πn
i + Πn

i−1

h2
≈ Πxx(xi, τn),

with the error termO(h2).

4.3 Volatility Functions

The volatilities (20) can all be written in the form

(
σ̃n

i

)2
= σ2(1 + sn

i ),

wheresn
i denotes the volatility correction inxi at timeτn. We choose forward differences

to approximateΠx in the volatility formulae, so that for Leland’s model with the volatility
(20a) our volatility correction becomes

sn
i = Le sign(D+

h Πn
i ), (26a)

for the volatility correction in Barles’ and Soner’s model with the volatility (20b) we get

sn
i = Ψ

(
erτna2D+

h Πn
i

)
, (26b)

for the volatility correction in case of treatingΨ(·) as the identity with the original volatility
(20c) we obtain

sn
i = erτna2D+

h Πn
i , (26c)

and for the volatility (20d) in the Risk Adjusted Pricing Methodology (RAPM) the volatility
correction is

sn
i = 3

(
C2M

2π
D+

h Πn
i ̺ne−xi

) 1
3

. (26d)

4.4 The Treatment of the Free Boundary

We discretize the free boundary (24) by approximating the spatial derivative at the origin
x = 0 by forward differences and obtain:

̺n =
1

2q
σ2(1 + sn

0 )D+
h Πn

0 +
rK

q
with ̺0 =

rK

q
, (27)

wheresn
0 denotes (26) atx = 0 depending on the volatility model.

Note, that in case of the RAPM, where the volatility correction is given by equation
(26d),sn

0 depends on̺n and therefore̺ n in (27) is expressed by a fixed point equation.
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Remark 4.1 For the American Call option (in contrast to the American Putoption) it is
possible to derive a series for the location of the optimal exercise boundary close to expiry
using standard asymptotic analysis [1, 63]. This local analysis of the free boundarySf (t)
yields

Sf (t) ∼ Sf (T )

(
1 + ξ0

√
1

2
σ2(T − t) + . . .

)
, ast → T, (28)

whereξ0 = 0.9034 . . . is a universal constantof Call option pricing. Equation(28) can be
rewritten as

̺(τ) ∼ ̺(0)

(
1 + ξ0

√
1

2
σ2(τ) + . . .

)
, asτ → 0. (29)

With only very few terms we get a fairly accurate result for the free boundary and thus
equation(29) will serve us as a check for the case of a constant volatilityσ̃2 = σ2 (see
Fig. 3). Note that this result is especially useful in the first time levels of a numerical
calculation where rapid changes in̺(τ) influence the whole solution region.

10
20

21

22

23

̺
(τ

)

τ

Figure 3: Asymptotic solution for the free boundary̺(τ) with T = 1, K = 10, σ = 0.2,
r = 0.1, q = 0.05.



Split–Step Schemes for Nonlinear Black–Scholes equationsfor American Options 17

4.5 The Splitting in Time Method

We approximate the time derivative of (22) by backward differencesD−

k Πn
i , the first and

second spatial derivatives by central differencesD0
hΠn

i andD2
hΠn

i . Then, (22) becomes:

0 = D−

k Πn
i +

(
bn − σ2

2
(1 + sn

i )
)
D0

hΠn
i − 1

2
∂x

(
σ2(1 + sn

i )D0
hΠn

i

)
+ rΠn

i (30)

subject to the Dirichlet conditions (25). We introduce an intermediate step at timeτn− 1
2
,

such that

D−

k Πn
i =

Πn
i − Πn−1

i

k
=

Πn
i − Π

n− 1
2

i + Π
n− 1

2
i − Πn−1

i

k
,

and then split the problem (30) into aconvective partwith the linear first-order term
bnD0

hΠn
i :

0 =
Π

n− 1
2

i − Πn−1
i

k
+ bnD0

hΠn
i (31)

and adiffusive partwith the nonlinear first- and second-order termsσ2/2(1 + sn
i )D0

hΠn
i

and−∂x

(
σ2/2(1 + sn

i )D0
hΠn

i

)
:

0 =
Πn

i − Π
n− 1

2
i

k
− σ2

2
(1 + sn

i )D0
hΠn

i − 1

2
∂x

(
σ2(1 + sn

i )D0
hΠn

i

)
+ rΠn

i . (32)

Assuming thatD0
hΠn

i ≈ D0
hΠ

n− 1
2

i , which is reasonable for small time stepsk, we can
approximate the convective part (31) as

0 =
Π

n− 1
2

i − Πn−1
i

k
+ bnD0

hΠ
n− 1

2
i . (33)

Now the solution to (32)-(33) gives a good approximation to the solution of (30) (see [52]).
This decomposition of the problem is calledLie-Splittingand is a spitting of order1 in time.

4.5.1 Convective part

First, we solve the convective part (33), which can be approximated by an explicit solution
to thetransport equation

Πτ + b(τ)Πx = 0, (34)

for (x, τ) ∈ R × [0, T ], subject to the boundary and initial conditions

Π(0, τ) = −K,

Π(x, 0) =

{
−K for x < ln r

q

0 otherwise
= Π0(x).

(35)
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We then know by the theory of partial differential equations(see e.g. [20]) that the solution
for this problem (34)–(35) is

Π(x, τ) = Π(x −
∫ τ

0
b(s) ds, 0) = Π0(x −

∫ τ

0
b(s) ds) (36)

with the primitive function
∫

b(s) ds = B(τ) + c = ln ̺(τ) + (r − q)τ + c. Hence,
considering the problem (34) for(xi, τj) ∈ R × [τn−1, τn] subject to the boundary and
initial conditions

Π(0, τj) = −K,

Π(xi, τn−1) = Πn−1(xi),
(37)

we know that the solution is given by

Π(xi, τj) = Π
(
xi −

∫ τj

τn−1

b(s) ds, τn−1

)

=

{
Π(ξj

i , τn−1) for ξj
i > 0

−K otherwise,
.

(38)

where we setξj
i = xi − B(τj) + B(τn−1) = xi − ln ̺j

̺n−1 − (τj − τn−1)(r − q). Then we
can write

Π
n− 1

2
i =

{
Π(ξn

i , τn−1) ξn
i = xi − ln ̺n

̺n−1 − k(r − q) > 0

−K otherwise.
(39)

Here, we use a linear approximation between the discrete valuesΠ(xi, τn−1), i ∈ N in
order to compute the value ofΠ(ξn

i , τn−1).
Hence, (39) is the solution to the convective part (33) of theproblem (30).

4.5.2 Diffusive part

We solve the diffusive part (32) of the problem (30) by the finite-difference method. We
approximate the second spatial derivative by central differencesD2

hΠn
i and the first spatial

derivative by both centralD0
hΠn

i and backward differencesD−

h Πn
i . Then, (32) becomes:

0 =
Πn

i − Π
n− 1

2
i

k
− σ2

2
(1 + sn

i )
Πn

i+1 − Πn
i−1

2h
+ rΠn

i

− σ2

2

(
(1 + sn

i )
Πn

i+1 − 2Πn
i + Πn

i−1

h2
+

(1 + sn
i ) − (1 + sn

i−1)

h

Πn
i − Πn

i−1

h

)

=
Πn

i − Π
n− 1

2
i

k
− σ2

2
(1 + sn

i )
Πn

i+1 − Πn
i−1

2h
+ rΠn

i

− σ2

2

(
(1 + sn

i )
Πn

i+1 − Πn
i

h2
− (1 + sn

i−1)
Πn

i − Πn
i−1

h2

)
.
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Rearranging leads to a tridiagonal system of equations

Π
n− 1

2
i = an

i Πn
i−1 − bn

i Πn
i + cn

i Πn
i+1, (40)

with the coefficients

an
i =

σ2

2
(1 + sn

i )
k

2h
− σ2

2
(1 + sn

i−1)
k

h2
,

bn
i = 1 + kr +

σ2

2
(1 + sn

i )
k

h2
+

σ2

2
(1 + sn

i−1)
k

h2
,

cn
i = −σ2

2
(1 + sn

i )
k

2h
− σ2

2
(1 + sn

i )
k

h2
.

Equation (40) can be written in the form of matrices:

Πn− 1
2 = AnΠn + dn, (41)

where
Πn =

(
Πn

1 , · · · ,Πn
N−1

)⊤ ∈ R
N−1,

An =




bn
1 cn

1 0 · · · 0

an
2 bn

2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . bn

N−2 cn
N−2

0 · · · 0 an
N−1 bn

N−1




∈ R
(N−1)×(N−1),

and
dn =

(
an

1Πn
0 , 0, · · · , 0, cn

N−1Π
n
N

)⊤ ∈ R
N−1.

Therefore, (41) solves the diffusive part (32) of the problem (30).

Now, we have a set of nonlinear equations (26), (27), (39) and(41) that delivers the
solution to our portfolioΠ(x, τ) and to the free boundary̺(τ), from which we can calculate
the value of the American Call optionV (S, t) with equation (21).

In order to see the dependencies of the equations, we rewritethem in the following
abstract form:

sn = D(Πn, ̺n),

̺n = F
(
Πn, sn

)
= F

(
Πn, ̺n

)
,

Πn− 1
2 = G

(
Πn−1, ̺n, ̺n−1

)
= G

(
Πn−1, ̺n

)
,

A
(
sn
)
Πn = A

(
Πn, ̺n

)
Πn = Πn− 1

2 − d(sn),

(42)

where
sn =

(
sn
0 , · · · , sn

N

)⊤ ∈ R
N+1,
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D(·) denotes the right-hand side of (26),F(·) is the right-hand side of (27),G(·) is the
right-hand side of the transport equation (39),A(·) is the tridiagonal matrix andd(sn) the
vector as defined in (41).

As we can see by this notation (42), both̺n andΠn are given in terms of themselves,
hence each is given in terms of̺n andΠn. This problem can be approximately solved by a
successive fixed point iteration overp ∈ N at each time leveln.

Following Šev̌covič [52] we define forn ≥ 1: Πn,0 = Πn−1, ̺n,0 = ̺n−1 andsn,0 =
sn−1. Then the (p+1)-th approximation ofΠn, ̺n andsn is obtained as the solution of the
system:

sn,p+1 = D(Πn,p, ̺n,p),

̺n,p+1 = F
(
Πn,p, sn,p+1

)
,

Πn− 1
2
,p+1 = G

(
Πn−1,p, ̺n,p+1

)
,

A
(
sn,p+1

)
Πn,p+1 = Πn− 1

2
,p+1 − d(sn,p+1).

(43)

Both the volatility correctionsn,p+1
i , the free boundary̺n,p+1 and the solutionΠn− 1

2
,p+1 to

the convective part (31) can be directly computed from (26),(27) and (39) respectively. The
solutionΠn,p+1 to the diffusive part (32) has to be calculated from the system of equations
(41).

Assuming that the system (43) converges to some limiting valuessn,pmax, ̺n,pmax,
Πn− 1

2
,pmax and Πn,pmax at each time leveln [52], we can calculateV (Si, tn) =

V (e−xi̺n, T − τn) with these values and proceed to the next time leveln + 1.
From (21) we then know that:

V (Si, tn) = e−xi
(
̺n − K + Ii

)
, (44)

where

Ii =

i−1∑

j=0

Ik +

∫ xi

xi−1

exΠ(x, τ)dx

=

i−1∑

j=0

Ik +
xi − xi−1

2

(
exi−1Πn

i−1 + exiΠn
i

)
.

Here, we use thetrapezoidal rulein order to approximate the integral in equation (21).
We summarize the calculation of the priceV (S, t) for the American Call option in the

presence or absence of transaction costs by the Algorithm 1 given in the appendix.

5 Comparison Study

Based on the iterative algorithm described in the previous section (Algorithm 1), we solve
the transformed Black–Scholes equation (22) with the corresponding volatilities (20) for
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the American Call option and finally transformΠ(x, τ) back to the original option price
V (S, t).

The main purpose of this section is to compare the resulting option valueV (S, t) and
the free boundarySf (T − t) = ̺(τ) for the four different transaction cost models (26) to
the linear model (σ constant) and to each other.

We choosepmax = 5 for the successive iteration overp in our algorithm in order to
solve the system (42) with the precision of10−7 [52]. We use the following parameters to
calculateΠ(x, τ) and̺(τ):

r = 0.1, σ = 0.2, K = 10, T = 1 (one year), R = 3.

We start by comparing the free boundary̺(τ) computed with Algorithm 1 to the asymptotic
solution (29) from Remark 4.1 for the linear case (sn

i = 0). In Fig. 4 we observe that for
smaller spatial stepsh → 0 the free boundary computed by the iterative algorithm converges
monotonically towards the asymptotic solution (29) from below.
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asymptotic solution
h=0.0086
h=0.01
h=0.012
h=0.015
h=0.03

̺
(τ

)

τ

Figure 4: Free boundary for various spatial stepsh with a constant time stepk = 0.0008
and a constant volatilityσ2 computed by Algorithm 1 vs. the asymptotic solution of (29).

We keep the time stepk = 0.0008 constant and see that forh = 0.0086 (purple line)
the free boundary atT is computed by our algorithm as̺(T ) ≈ 22.2201. The asymptotic
solution atT is ̺(T ) ≈ 22.5552, which means a relative error of1.49%. The free boundary
values for the other spatial steps can be seen in Table 1.
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h 0.03 0.015 0.012 0.01 0.0086

̺(T ) 21.8764 22.1111 22.1619 22.1955 22.2201

Table 1: Values of the free boundary position for various spatial stepsh with a constant
time stepk = 0.0008 and a constant volatilityσ2.

Since the asymptotic solution of (29) is only an approximation, we are satisfied by our
results and take the free boundary̺(T ) ≈ 22.1111 for k = 0.0008, h = 0.015 (blue line
in Fig. 4) as our reference solution in the absence of transaction costs for the sake of the
computational time.

Fig. 5 shows the structure of the price for the American Call option V (S, t) without
transaction costs withk = 0.0008 andh = 0.015. It is computed with the iterative algo-
rithm described in the previous sections and the parametersabove.
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Figure 5: Value of an American Call optionV (S, t) in the absence transaction costs com-
puted with Algorithm 1 determined by the free boundary (red line).

The corresponding synthetic portfolioΠ(x, τ) in the absence of transaction costs is
illustrated in Fig. 6. Note, that we include rounding and discretization errors when trans-
forming Π(x, τ) back intoV (S, t), since equation (44) involves an integral approximation.
However, the analysis ofV (S, t) is more interesting for us and we therefore assume that
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these errors are sufficiently small due to the chosen mesh.
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(a) 3-D profile.
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(b) Profile at different time points.

Figure 6: Value of the synthetic portfolioΠ(x, τ) in the absence of transaction costs com-
puted with Algorithm 1.

We now compare the priceV (S, 0) computed by Algorithm 1 to the priceVPSOR(S, 0)
computed by the PSOR algorithm in the linear casesn

i = 0. Fig. 7 shows that with the
given mesh sizek = 0.0008 andh = 0.015 the price computed by our algorithm (Fig. 7(a))
only slightly differs from the price computed by the PSOR algorithm (Fig. 7(b)).
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(a) Computed with Algorithm 1.
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Figure 7: Price of an American Call optionV (S, 0) in the absence of transaction costs and
the pay-offV (S, T ) (red dotted line).

We calculate the error of accuracy of our computation one year to expiry att = 0,
denoted by theℓ2-error

err2(0) =

(
h

N∑

i=0

|VPSOR(Si, 0) − V 0
i |2
) 1

2

,
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where VPSOR(Si, 0) denotes the solution computed by the PSOR algorithm atSi =
e−ih̺(T ) and̺(T ) depends on the step sizeh. For this purpose, we interpolate the so-
lution computed by the PSOR algorithm by theMATLAB routinesspline andppval.
For V 0

i we use our corresponding solution, wherek = 0.0008. The error can be seen in
Table 2, which reveals that it is reasonable to assume the accuracyO(h).

h 0.03 0.015 0.012 0.01 0.0086

ℓ2-error 0.0365 0.0162 0.0257 0.0084 0.0167

Table 2: ℓ2-error of accuracy of Algorithm 1 compared to the PSOR algorithm in the ab-
sence of transaction costs.

We further compute the free boundary profiles for the four different transaction cost
models (26) by Algorithm 1 and compare them to the profile of the free boundary in the
absence transaction costs. For our computations we takek = 0.0008 andh = 0.015.
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Figure 8: Free boundary positions for various transaction cost models vs. the free boundary
profile in the absence of transaction costs.

As expected, we see that for all the transaction cost models the free boundary values
are greater than in the case without transaction costs (Fig.8). With the given parameters
the free boundary in the absence of transaction costs is̺(T ) ≈ 22.11, followed by the
identity model witha = 0.02 (̺(T ) ≈ 22.16), Barles’ and Soner’s model witha = 0.02
(̺(T ) ≈ 22.34), Leland’s model withδt = 0.1, κ = 0.02 (̺(T ) ≈ 22.44) and finally the
RAPM with C = 0.01, R = 30 (̺(T ) ≈ 23.39).

Furthermore, we compute the corresponding valuesV (S, t) for the American Call op-
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tion by Algorithm 1 and check the price difference between the American Call option with
transaction costs and the American Call option without transaction costs

Vnonlinear(S, t) − Vlinear(S, t).

The influence of transaction costs for the four models can be seen in Fig. 9. We notice that
the difference is maximal one year to expiry att = 0 andS ≈ 9.5. The difference is not
symmetric, but decreases towards the expiry. This seems plausible, since towards expiry the
portfolio can not be adjusted as often at it could be adjustedbefore. Hence, the transaction
costs and the value of the American Call option with transaction costs decrease towards
t = 1.
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(a) Barles’ and Soner’s model (a = 0.02) vs. linear
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(b) Ψ(x) := x chosen as the identity (a = 0.02) vs.
linear model.
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(c) Leland’s model (δt = 0.1, κ = 0.02) vs. linear
model.
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(d) RAPM model (M = 0.01, C = 30) vs. linear
model.

Figure 9: The influence of transaction costsVnonlinear(S, t) − Vlinear(S, t).

The corresponding pricesV (S, 0) in the presence of transaction costs can be seen in
Fig. 10. AtS ≈ 9.5 with the parameters as indicated above andk = 0.0008, h = 0.015
the price of the American Call option evaluated with the RAPMtransaction cost model is
the highest (≈ 1.06). It is followed by Barles’ and Soner’s model (≈ 0.82), Leland’s model
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(≈ 0.78), the identity model (≈ 0.74) and finally the model in the absence of transaction
costs (≈ 0.71). As already shown in Table 2, the linear price computed by our algorithm
(light blue solid line in Fig. 10) only slightly deviates from the price computed by the PSOR
algorithm (black dotted line in Fig. 10).
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Figure 10: Price of an American Call optionV (S, 0) for different transaction cost models
vs. the price without transaction costs.

For other numerical experiments in the future is recommendable to use ratherC or C++
in order to reduce the computational time which is relatively high inMATLAB.

Conclusion

In this chapter we solved the nonlinear Black–Scholes equation for American options in the
presence of transaction costs. Summing up, our numerical results showed a considerable
price difference between linear and nonlinear prices for American Call options.

While we focused in this chapter on standard options (known as plain–vanilla options)
of American type, our future work will deal with extensions:forward and future contracts,
options on futures, more general pay–off functions (e.g. ‘cash–or–nothing call’) with trans-
action costs and instalment options.

Moreover, we will consider a higher-order splitting in time, e.g. the well–known
Strang–Splitting[56] and combine this with modern compact finite difference of high spa-
tial order, like theCrandall–Douglas Scheme[43] which is fourth-order accurate in ‘space’
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(i.e. asset price) or the high–order compact methods proposed in [59], [60], [66]. Espe-
cially, the method of [60] is promising, since it is already an improvement of the Han and
Wu method [27] with a higher order interior scheme and more accurate tracking of the free
boundary.
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Algorithm 1 Computation of the priceV (S, t) for the American Call

Appendix

Require: R, T , h, k, M , N , r, K, D, σ, Le, a, C, M
1: solve the ODE (13) required for the volatility model of Barles and Soner and interpolate

the solution
2: initialize Π0

3: initialize the free boundary̺0 = rK/q
4: transformΠ0 into V 0

5: setπ = Π0 andv = V 0

6: setΠ1,0 = Π0 and̺1,0 = ̺0

7: calculateΠn, ̺n at each time level
8: for n = 1 : M do
9: calculatesn,p, ̺n,p, Πn−1/2,p andΠn,p in the successive loop overp

10: for p = 1 : pmax do
11: calculate the volatility correctionsn,p depending on the volatility model using

Πn,p−1 and ̺n,p−1 (in the case of Barles’ and Soner’s model use the interpo-
lated solution of (13), in the case without transaction costs sn,p = (0, · · · , 0)⊤ ∈
R

N+1)
12: calculate̺ n,p usingΠn,p−1 andsn,p

13: calculateΠn−1/2,p usingΠn−1 and̺n,p

14: fill the matrix An,p and the vectordn,p with the corresponding coefficients using
sn,p

15: L-R-decomposeAn,p = Ln,pRn,p

16: solveLn,pyn,p = Πn−1/2,p − dn,p for yn,p

17: solveRn,pΠn,p = yn,p for Πn,p

18: start over with the loop overp
19: end for
20: setΠn = Πn,p and̺n = ̺n,p

21: transformΠn into V n

22: save the solution in the transformed variables in the array
π =

[
π [−K; Πn; 0]

]

23: save the solution in the original variables in the array
v =

[
v [̺n − K;V n; 0]

]

24: start over with the loop overn
25: end for
26: plot v at each time level and each stock price, plot̺ at each time level
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