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Abstract

The paper deals with co-derivative formulae for normal cone mappings to
smooth inequality systems. Both, the regular (Linear Independence Con-
straint Qualification satisfied) and nonregular (Mangasarian-Fromovitz Con-
straint Qualification satisfied) case are considered. A major part of the re-
sults relies on general transformation formulae previously obtained by Mor-
dukhovich and Outrata. This allows to derive exact formulae for general
smooth, regular and polyhedral, possibly nonregular systems. In the non-
regular, nonpolyhedral case a generalized transformation formula by Mor-
dukhovich and Outrata applies, however a major difficulty consists in checking
a calmness condition of a certain multivalued mapping. The paper provides
a translation of this condition in terms of much easier to verify constraint
qualifications. A series of examples illustrates the use and comparison of the
presented formulae.

1 Introduction

The Mordukhovich co-derivative has become an important tool for the characteriza-
tion of stability and optimality in variational analysis. We refer to the basic mono-
graph [7] for definitions, properties, calculus rules and applications of this object.
When dealing with generalized equations or variational inequalities, the multival-
ued mappings which the co-derivative has to be calculated for are typically given
by normal cones NΩ to certain closed sets Ω. For complementarity problems, for
instance, Ω = R+

n and an explicit, ready for use formula for the co-derivative D∗NR+
n

is available. In many applications, however, Ω is more complicated than just R+
n ,

for instance, it may be a general polyhedron or a set described by a finite number
of smooth inequalities. Then it turns out (see [8], [7]) that, thanks to convenient
calculus rules for the co-derivative, similar formulae can be obtained in those cases
too, supposed that certain constraint qualifications hold true. For instance, if Ω is
given by a smooth inequality system satisfying the Linear Independence Constraint
Qualification (LICQ), then the co-derivative D∗NΩ can be led back, up to an addi-
tional second order term and a linear transformation, to the well-known formula for
D∗NR+

n
. In the nonregular case - if LICQ happens to be violated - still a slightly

more complicated transformation formula (involving a union over non-uniquely de-
fined multipliers) can be applied under the assumptions of Mangasarian-Fromovitz
Constraint Qualification (MFCQ) and additional calmness of a certain associated
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multifunction (see [9]). This transformation formula holds true as an inclusion only
in general, thus leaving a gap between the precise expression for the co-derivative
and the one comfortably calculated from the formula. Closing this gap amounts
to calculating the co-derivative ’from scratch’. Important examples, where precise
formulae for the co-derivative could be obtained in the nonregular case are general
polyhedra where LICQ may be violated (see [6]) and the second order cone which
does not admit any description satisfying LICQ either (see [11]).

The aim of this paper is to provide explicit, ready for use co-derivative formulae
for normal cone mappings to possibly nonregular inequality systems. The first part
reviews some precise expressions for the co-derivative in the regular and non-regular,
polyhedral setting. It is also illustrated how - similar to the reduction approach by
Bonnans and Shapiro ([1], p. 240) - nonregularity of the given set Ω can be shifted
in certain special situations to the simpler image set which might happen to be
polyhedral and thus allow to apply the previously mentioned co-derivative formula
also for certain nonregular, nonpolyhedral sets Ω. A second part of the paper deals
with the transformation formula for nonregular systems mentioned above. First, it
is used to derive an alternative explicit expression for the co-derivative in case of Ω
being polyhedral (possibly nonregular). A couple of examples contrasts its easy use
on the hand and its lack of precision on the other with an application of the pre-
viously presented precise formula. In the polyhedral case, the mentioned calmness
condition required for the application of the transformation formula happens to be
automatically satisfied. This is no longer true, however, and requires verification
for nonlinear inequality systems. The original calmness condition is formulated for
a multifunction of complicated structure involving primal and dual variables. A
major part of the paper is therefore devoted to a reformulation of this condition
as a constraint qualification, i.e., in terms of primal variables only. More precisely,
associating with the original inequality system describing Ω the respective equal-
ity system, one has to check calmness of this equality system along with all its
subsystems. A comfortable constraint qualification ensuring this property is finally
derived for the special case that the number of binding inequalities exceeds the space
dimension.

2 Some concepts and tools of variational analysis

We start with the definitions of the main objects in our investigation. For a closed
set Λ ⊆ Rn and a point x̄ ∈ Λ, the Fréchet normal cone to Λ at x̄ ∈ Λ is defined by

N̂Λ(x̄) := {x∗ ∈ Rn| 〈x∗, x− x̄〉 ≤ o (‖x− x̄‖) ∀x ∈ Λ}.

The Mordukhovich normal cone to Λ at x̄ ∈ Λ results from the Fréchet normal cone
in the following way:

NΛ(x̄) := Limsup
x→x̄,x∈Λ

N̂Λ(x).
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The ’Limsup’ in the definition above is the upper limit of sets in the sense of
Kuratowski-Painlevé, cf. [12].

For a multifunction Φ : Rn ⇒ Rp, consider a point of its graph: (x, y) ∈ gph Φ. The
Mordukhovich normal cone induces the following co-derivative D∗Φ (x, y) : Rp ⇒ Rn

of Φ at (x, y):

D∗Φ (x, y) (y∗) = {x∗ ∈ Rn| (x∗,−y∗) ∈ NgphΦ (x, y)} ∀y∗ ∈ Rp.

A multifunction Z : Y ⇒ X between metric spaces is said to be calm at a point
(ȳ, x̄) belonging to its graph, if there exist L, ε > 0, such that

d(x, Z(ȳ)) ≤ Ld(y, ȳ) ∀x ∈ Z(y) ∩ B (x̄, ε) ∀y ∈ B (ȳ, ε) .

Here ’d’ and ’B’ refer to the distances and balls with corresponding radii in the
respective metric space. For the special multifunction Z : Rn × Rm ⇒ Rp, defined
by

Z (α, β) := {x ∈ Rp|G1(x) = α, G2(x) ≤ β},
where G1 : Rp → Rn and G1 : Rp → Rm are continuous mappings, it is easy to see
that calmness of Z at (0, 0, x̄) for some x̄ satisfying G1 (x̄) = 0 and G2 (x̄) = 0 is
equivalent with the existence of L, ε > 0, such that

d(x, Z(0, 0)) ≤ L
(∑

i
|G1i(x)|+

∑
i
[G2i(x)]+

)
∀x ∈ B (x̄, ε) . (1)

Here, [y]+ := max{y, 0}.

3 On the co-derivative of normal cone mappings

3.1 Regular constraint systems

The following theorem recalls a basic transformation formula for co-derivatives which
was established by Mordukhovich and Outrata in [8] (Theorem 3.4) as an inclusion
with the remark that the converse inclusion is easily seen to hold as well. For the
readers convenience, we’ve added an explicit proof in the appendix.

Theorem 3.1. Let C = F−1(P ), where F : Rn → Rm is twice continuously differ-
entiable and P ⊆ Rm is some closed subset. Consider points x̄ ∈ C and v̄ ∈ NC(x̄).
If the Jacobian ∇F (x̄) is surjective, then

D∗NC(x̄, v̄)(v∗) =

(
m∑

i=1

λ̄i∇2Fi(x̄)

)
v∗ +∇T F (x̄) D∗NP

(
F (x̄), λ̄

)
(∇F (x̄) v∗) .

(2)
Here,

λ̄ =
(
∇F (x̄)∇T F (x̄)

)−1∇F (x̄)v̄.
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The value of this transformation formula relies on the fact that, starting with the
co-derivative for normal cone mappings to simple objects (such as an orthant),
one may pass to nonlinearly transformed constraint systems (such as differentiable
inequalities). So, for instance, if

C = {x ∈ Rn | Fi(x) ≤ 0 (i = 1, . . . ,m)},

where the Fi are twice continuously differentiable and x̄ ∈ C satisfies the Linear
Independence Constraint Qualification, then, putting

F := (F1, . . . , Fm)T P := Rm
− ,

one may calculate D∗NC from D∗NRm
−

via Theorem 3.1. To do so, one may access
the following representation (see, e.g., [2], [9], [6] (Cor. 3.5)) for any (x, v) ∈ gr NRm

−
:

D∗NRm
−
(x, v)(v∗) =

{
∅ if ∃i : viv

∗
i 6= 0

{x∗|x∗i = 0 ∀i ∈ I1, x∗i ≥ 0 ∀i ∈ I2} else
(3)

where

I1 := {i|xi < 0} ∪ {i|vi = 0, v∗i < 0}, I2 := {i|xi = 0, vi = 0, v∗i > 0}.

Formula (2) is of use even in the linear case:

Corollary 3.1. Let C := {x ∈ Rn | Ax ≤ b}, where b ∈ Rm and A is some matrix
of order (m, n) having rank m. Then, for x̄ ∈ C and v̄ ∈ NC(x̄), it holds that

D∗NC(x̄, v̄)(v∗) =

{
∅ if ∃i : λ̄i 〈ai, v

∗〉 6= 0

{AT x∗|x∗i = 0 ∀i ∈ Ĩ1, x∗i ≥ 0 ∀i ∈ Ĩ2} else

where

Ĩ1 := {i| 〈ai, x̄〉 < bi} ∪ {i|λ̄i = 0, 〈ai, v
∗〉 < 0}

Ĩ2 := {i| 〈ai, x̄〉 = bi, λ̄i = 0, 〈ai, v
∗〉 > 0}

λ̄ :=
(
AAT

)−1
Av̄

and the ai refer to the rows of A.

Proof. Putting F (x) := Ax− b, (2) yields that

D∗NC(x̄, v̄)(v∗) = AT D∗NRm
−

(
Ax̄− b, λ̄

)
(Av∗) .

Now, the result follows from (3).

Of course, the full-rank assumption in the corollary can be localized, so that the
formula applies to any regular polyhedra defined by possibly many inequalities.
Then, the matrix A has to be replaced by the submatrix corresponding to active
inequalities.
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3.2 Nonregular constraint systems – polyhedral image sets

Corollary 3.1 does not apply to nonregular polyhedra, for instance, it does not
allow to derive a co-derivative formula for the polyhedral set x3 ≥ max{|x1|, |x2|}.
However, using the well-known representation of polyhedral normal cone mappings
by Dontchev and Rockafellar ([2], proof of Theorem 2), one may derive an explicit
co-derivative formula for arbitrary polyhedra

C := {x ∈ Rn | Ax ≤ b},

where b ∈ Rm and A is some matrix of order (m, n). To this aim, denote by ai

the rows of A and consider arbitrary x̄ ∈ C and v̄ ∈ NC(x̄). Then, v̄ = AT λ for
some λ ∈ Rm

+ . Introduce the index sets I := {i|〈ai, x̄〉 = bi} and J := {j|λj > 0}.
Clearly, J ⊆ I. Finally, with each I ′ ⊆ I associate its characteristic index set χ(I ′)
consisting of those indices j ∈ I such that for all h ∈ Rn the following implication
holds true:

〈ai, h〉 ≤ 0 (i ∈ I \ I ′), 〈ai, h〉 = 0 (i ∈ I ′) =⇒ 〈aj, h〉 = 0.

Clearly, I ′ ⊆ χ(I ′) ⊆ I, χ(I ′) ⊆ χ(I
′′
) for I ′ ⊆ I

′′
and I ′ = χ(I ′) if the submatrix

{ai}i∈I has full rank. Now, the following relations hold true ([6], Prop. 3.2 and Cor.
3.4):

Theorem 3.2. With the notation introduced above, one has that

D∗NC (x̄, v̄) (v∗) =

{
x∗

∣∣∣∣∣(x∗,−v∗) ∈
⋃

J⊆I1⊆I2⊆I

PI1,I2 ×QI1,I2

}
, (4)

where

PI1,I2 = con {ai|i ∈ χ (I2) \I1}+ span {ai|i ∈ I1}
QI1,I2 = {h ∈ Rn| 〈ai, h〉 = 0 (i ∈ I1) , 〈ai, h〉 ≤ 0 (i ∈ χ (I2) \I1)}

and ’con’ and ’span’ refer to the convex conic and linear hulls, respectively.

A more convenient expression avoiding the union above can be used in the following
upper estimation:

D∗NC (x̄, v̄) (v∗) ⊆ con {ai|i ∈ χ
(
Ia(v∗) ∪ Ib(v∗)

)
\Ia(v∗)}

+span {ai|i ∈ Ia(v∗)} (5)

if 〈ai, v
∗〉 = 0 for all i ∈ J and 〈ai, v

∗〉 ≥ 0 for all i ∈ χ(J)\J , whereas otherwise
D∗NC (x̄, v̄) (v∗) = ∅. Here,

Ia(v∗) := {i ∈ I| 〈ai, v
∗〉 = 0}, Ib(v∗) := {i ∈ I| 〈ai, v

∗〉 > 0}.
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Corollary 3.2. D∗NC (x̄, v̄) (0) = span {ai|i ∈ I}.

Proof. Since 0 ∈ QI1,I2 for any index sets I1, I2, it follows from (4) that

D∗NC (x̄, v̄) (0) =
⋃

J⊆I1⊆I2⊆I

PI1,I2 = PI,I

Here, the last equality relies on the fact that PI1,I2 ⊆ PI3,I4 , whenever I1 ⊆ I3 and
I2 ⊆ I4.

To illustrate these characterizations, consider the following two examples:

Example 3.1. Let C := Ax ≤ 0, where

A :=


−1 0 1

1 0 1
0 −1 1
0 1 1

 .

Put x̄ := 0 and v̄ := a1 + a2 = (0, 0, 2). Then, I = {1, 2, 3, 4}, J = {1, 2} and
χ(J) = I. Referring to (5), the condition ’〈ai, v

∗〉 = 0 for all i ∈ J and 〈ai, v
∗〉 ≥ 0

for all i ∈ χ(J)\J ’ reduces to ’v∗ = 0’. Moreover, Ia(0) = I and Ib(0) = ∅.
Consequently, D∗NC (x̄, v̄) (v∗) = ∅ for v∗ 6= 0. On the other hand, by Corollary
3.2,

D∗NC (x̄, v̄) (0) = span {ai|i ∈ I} = Im AT = R3.

Example 3.2. In the previous example, put x̄ := 0 and v̄ := a1 + a3 = (−1,−1, 2).
Then, I = {1, 2, 3, 4}, J = {1, 3} and χ(J) = J . Now, the condition ’〈ai, v

∗〉 =
0 for all i ∈ J and 〈ai, v

∗〉 ≥ 0 for all i ∈ χ(J)\J ’ reduces to v∗1 = v∗2 = v∗3.
Consequently, D∗NC (x̄, v̄) (v∗) = ∅ if this last identity is violated. If it holds true,
then D∗NC (x̄, v̄) (0) = R3 by Corollary 3.2 and

D∗NC (x̄, v̄) (t, t, t) ⊆
{

con {a2, a4}+ span {a1, a3} if t > 0
span {a1, a3} if t < 0

.

This follows easily from (5), from the definition of A and from the already stated
identity χ({1, 3}) = {1, 3}.

We combine the previous results for general linear and regular nonlinear constraint
systems in order to calculate the co-derivative in a special nonregular, nonlinear
setting. We assume that

C := {x ∈ Rn | AF (x) ≤ b}, (6)
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where F : Rn → Rs is twice continuously differentiable, b ∈ Rm and A is some
matrix of order (m, s). Suppose also that ∇F (x̄) is surjective. Note that, in order
to calculate D∗NC , we cannot invoke Theorem 3.1 because surjectivity of ∇(AF )(x̄)
may be violated. Nevertheless, we may rewrite the constraint set as

C := F−1(P ), P := {y ∈ Rs | Ay ≤ b} (7)

and then apply Theorem 3.1, recalling that we are able to calculate D∗NP via
Theorem 3.2. We illustrate this fact in the following example:

Example 3.3. Let

C := {(x1, x2, x3) | x3 ≤ −‖(x1 + x3
1 + x4

2, x
3
1 + x2 − x3

2)‖∞}

Evidently, C can be equivalently represented by the nonlinear inequality system

−x1 − x3
1 − x4

2 + x3 ≤ 0

x1 + x3
1 + x4

2 + x3 ≤ 0

−x3
1 − x2 + x3

2 + x3 ≤ 0

x3
1 + x2 − x3

2 + x3 ≤ 0

Figure 3.3 illustrates the boundary of this constraint set. At x̄ = 0 ∈ C, all inequal-

Figure 1: Illustration of the boundary of the constraint set in Example 3.3

ities are active, so their gradients cannot be linearly independent (the non-regularity
can also be recognized from Fig. 3.3, where the graph exhibits four creases meeting
at x̄). This prevents an application of Theorem 3.1. However, we may write C in
the form (7), where b = 0, A is as in Example 3.1 and

F (x) = (x1 + x3
1 + x4

2, x
3
1 + x2 − x3

2, x3)
T .

Evidently, ∇F (0) = I3 is surjective. As a normal vector v̄ ∈ NC(0) choose for
example v̄ = (−1,−1, 2). Because of ∇2Fi(0) = 0 for i = 1, 2, 3, Theorem 3.1
provides the formula

D∗NC(0, v̄)(v∗) = D∗NP (0, v̄) (v∗) .

Hence, we may use for D∗NC(0, v̄) exactly the same estimates as obtained in Exam-
ple 3.2.
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3.3 Nonregular constraint systems – the use of calmness

In [9] (Th. 3.1), it was shown, how the surjectivity condition in a result like Theorem
3.1 can be weakened towards a condition, which in the setting of Theorem 3.1 would
amount to the Mangasarian-Fromovitz Constraint Qualification, if in addition one
assumes calmness of a certain multifunction. Specifying those ideas to our setting,
one gets the following generalization of Theorem 3.1:

Theorem 3.3. Consider the set C = {x ∈ Rn | Fi(x) ≤ 0 (i = 1, . . . ,m)}, where F :
Rn → Rm is twice continuously differentiable. Fix some x̄ ∈ C and v̄ ∈ NC (x̄) with
F (x̄) = 0 and suppose that the following two constraint qualifications are fulfilled:

1. The rows of {∇F (x̄)} are positive linear independent (i.e., the Mangasarian-
Fromovitz Constraint Qualification is satisfied at x̄)

2. The multifunction

M(ϑ) := {(x, λ) | (F (x), λ) + ϑ ∈ Gr NRm
−
}

is calm at
(
0, x̄, λ̄

)
for all λ̄ ∈ NRm

−
(0) with ∇T F (x̄)λ̄ = v̄.

Then,

D∗NC(x̄, v̄)(v∗) ⊆⋃
λ̄∈NRm

−
(F (x̄))

∇T F (x̄)λ̄=v̄

{(
m∑

i=1

λ̄i∇2Fi(x̄)

)
v∗ +∇T F (x̄) D∗NRm

−

(
0, λ̄
)
(∇F (x̄) v∗)

}
.

As a first application of Theorem 3.3, we recover an alternative estimate of (4)
and (5) in terms of dual (multipliers) rather than primal (characteristic index sets)
objects.

Corollary 3.3. Let
C := {x ∈ Rn | Ax ≤ b},

where b ∈ Rm and A is some matrix of order (m, n). Fix some x̄ ∈ C and v̄ ∈ NC (x̄)
with Ax̄ = b. If there exists some ξ ∈ Rn such that Aξ < 0 (component-wise), then,
with the notation of Theorem 3.2,

D∗NC(x̄, v̄)(v∗) ⊆ con {ai| 〈ai, v
∗〉 > 0}+ span {ai| 〈ai, v

∗〉 = 0},

whenever there exists some λ̄ ≥ 0 such that AT λ̄ = v̄ and λ̄i 〈ai, v
∗〉 = 0 for all

i = 1, . . . ,m. Otherwise, D∗NC(x̄, v̄)(v∗) = ∅.
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Proof. In the setting of Theorem 3.3, put F (x) := Ax − b. Observe, that the
existence of ξ ∈ Rn such that Aξ < 0 implies via Gordan’s Theorem the first
constraint qualification of the Theorem. Moreover, the multifunction considered
in the second constraint qualification happens to be polyhedral, so it is calm by
Robinson’s well-known upper Lipschitz result for polyhedral multifunctions. Hence,
one may conclude that

D∗NC(x̄, v̄)(v∗) ⊆
⋃

λ̄≥0, AT λ̄=v̄

AT D∗NRm
−

(
0, λ̄
)
(Av∗) . (8)

From (3) we derive that the union on the right-hand side applies only if λ̄i 〈ai, v
∗〉 = 0

for all i = 1, . . . ,m, in which case

AT D∗NRm
−

(
0, λ̄
)
(Av∗) = {AT x∗| x∗i = 0 ∀i : λ̄i = 0, 〈ai, v

∗〉 < 0;

x∗i ≥ 0 ∀i : λ̄i = 0, 〈ai, v
∗〉 > 0}

= con {ai| 〈ai, v
∗〉 > 0}+ span {ai| 〈ai, v

∗〉 = 0}.

This yields the assertion of the corollary.

The last corollary provides a more handy formula for calculating the co-derivative
of normal cone mappings to polyhedra when compared to Theorem 3.2, where char-
acteristic index sets have to be calculated. On the other hand, it may be less precise
than the latter in certain circumstances. This shall be illustrated by revisiting Ex-
amples 3.1 and 3.2:

Example 3.4 (Example 3.2 revisited). With the data from Example 3.2, the only
λ̄ with AT λ̄ = v̄ is λ̄ = (1, 0, 1, 0). Hence, by Corollary 3.3,

D∗NC (x̄, v̄) (v∗) 6= ∅ ⇐⇒ 〈a1, v
∗〉 = 〈a3, v

∗〉 = 0 ⇐⇒ v∗1 = v∗2 = v∗3.

Moreover,

D∗NC(x̄, v̄)(t, t, t) ⊆


span {a1, a2, a3, a4} = R3 if t = 0
con {a2, a4}+ span {a1, a3} if t > 0
span {a1, a3} if t < 0

Thus, we completely recover the results of Example 3.2 obtained via Theorem 3.2.

Example 3.5 (Example 3.1 revisited). With the data from Example 3.1, there are
three possibilities for AT λ̄ = v̄: λ̄ = (0, 0, 1, 1), λ̄ = (1, 1, 0, 0) and λ̄ = (r, r, s, s) for
r, s > 0 and r + s = 1. Now, Corollary 3.3 implies

D∗NC(x̄, v̄)(v∗) ⊆



span {a1, a2, a3, a4} = R3 if v∗ = 0
con {a1}+ span {a3, a4} if v∗2 = v∗3 = 0, v∗1 < 0
con {a2}+ span {a3, a4} if v∗2 = v∗3 = 0, v∗1 > 0
con {a3}+ span {a1, a2} if v∗1 = v∗3 = 0, v∗2 < 0
con {a4}+ span {a1, a2} if v∗1 = v∗3 = 0, v∗2 < 0
∅ else
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In contrast to this result, the application of Theorem 3.2 in Example 3.1 has shown
that D∗NC(x̄, v̄)(v∗) = ∅ whenever v∗ 6= 0. In other words, the formula of Corollary
3.3 creates some additional artificial expressions in the co-derivative formula.

We now turn to an application of Theorem 3.3 in a nonlinear setting. The crucial
calmness condition required there, has been investigated in [5] (see Th. 2, Th. 6, Ex.
6). As the conditions for calmness used there may be difficult to verify in general,
we provide a different characterization here, where the calmness property has to be
verified only for certain constraint systems in the space of x-variables which come
as subsystems of the original inequality constraints. For the definition of calmness
used in the following, we refer to Section 2.

Proposition 3.1. If for all ∅ 6= I ⊆ {1, . . . ,m} the multifunctions

HI(α) = {x | Fi(x) = αi (i ∈ I), Fi(x) ≤ 0 (i ∈ Ic)}

are calm at (0, x̄), then the multifunction M introduced in Theorem 3.3 is calm at(
0, x̄, λ̄

)
for any λ̄ specified there.

Proof. Throughout this proof we use the 1−norm of vectors. Note first, that for
I = ∅, HI is trivially calm as a constant multifunction. Hence, this special case can
be excluded from the assumption. Next, observe that, by F (x̄) = 0, one has indeed
(0, x̄) ∈ gr HI for all I ⊆ {1, . . . ,m}. The calmness assumption means that for any
I ⊆ {1, . . . ,m}, there exist constants εI , LI > 0 such that

d(x, HI(0)) ≤ LI ‖α‖ ∀x ∈ BεI
(x̄) ∩HI(α) ∀α : αi ∈ (−εI , εI) (i ∈ I).

Putting
ε := min

I⊆{1,...,m}
εI , L := max

I⊆{1,...,m}
LI ,

one obtains that ε, L > 0 and

d(x, HI(0)) ≤ L ‖α‖ ∀x ∈ Bε (x̄)∩HI(α) ∀α : αi ∈ (−ε, ε) (i ∈ I) ∀I ⊆ {1, . . . ,m}.
(9)

Due to F (x̄) = 0, we may further shrink ε > 0 such that

|Fi(x)| ≤ ε ∀x ∈ Bε (x̄) ∀i ∈ {1, . . . ,m}. (10)

Now, choose arbitrary ϑ = (ϑ1, ϑ2) ∈ Bε (0)×Rm and (x, λ) ∈ M(ϑ)∩(Bε (x̄)× Rm).
We show that

d((x, λ) , M(0)) ≤ L̃ ‖ϑ‖ (11)

for some L̃ > 0. This would prove the asserted calmness of M at
(
0, x̄, λ̄

)
at any

λ̄ ∈ NRm
−
(0). Note first that (x, λ) ∈ M(ϑ) amounts to λ + ϑ2 ∈ NRm

−
(F (x) + ϑ1).

Accordingly,

F (x) + ϑ1 ≤ 0, λ + ϑ2 ≥ 0, (λi + ϑ2i) (Fi(x) + ϑ1i) = 0 ∀i ∈ {1, . . . ,m}. (12)
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Define
I ′ := {i ∈ {1, . . . ,m}|Fi(x) + ϑ1i = 0 or Fi(x) ≥ 0}.

Choose x̃ ∈ HI′(0) such that ‖x− x̃‖ = d(x, HI′(0)). Note that by definition of I ′,
Fi(x) < 0 for all i ∈ I ′c. Consequently, x ∈ Bε (x̄) ∩HI′(α) for α defined by

αi := Fi(x) (i ∈ I ′).

Since also (10) ensures that αi ∈ (−ε, ε) for all i ∈ I ′, we may apply (9) to derive
that

d(x, HI′(0)) ≤ L ‖α‖ = L
∑
i∈I′

|Fi(x)| .

Now, if i ∈ I ′ is such that Fi(x) + ϑ1i = 0, then |Fi(x)| = |ϑ1i|. Otherwise, by (12),
Fi(x) + ϑ1i < 0 and, by definition of I ′, Fi(x) ≥ 0. This implies |Fi(x)| ≤ |ϑ1i|. In
any case we may conclude that

‖x− x̃‖ = d(x, HI′(0)) ≤ L ‖ϑ1‖ .

Next, define λ̃ ∈ Rm by λ̃i := λi + ϑ2i if i ∈ I ′ and λ̃i := 0 if i ∈ I ′c. Then, λ̃ ≥ 0 by
(12). Moreover, x̃ ∈ HI′(0) entails that Fi(x̃) = 0 if i ∈ I ′ and Fi(x̃) ≤ 0 if i ∈ I ′c.
In particular, λ̃iFi(x̃) = 0 for all i ∈ {1, . . . ,m}. This means that λ̃ ∈ NRm

−
(F (x̃))

and, hence, (x̃, λ̃) ∈ M(0). Finally observe that, for i ∈ I ′c, one has Fi(x) + ϑ1i < 0
and, thus, by (12), λi = −ϑ2i. This proves that λ̃− λ = ϑ2. Consequently,

d((x, λ) , M(0)) ≤ ‖ (x, λ)− (x̃, λ̃)‖ = ‖x− x̃‖+ ‖λ− λ̃‖
≤ L‖ϑ1‖+ ‖ϑ2‖ ≤ (L + 1) ‖ϑ‖

which shows (11).

For methods to check calmness of constraint systems like those given by the mul-
tifunctions HI in the previous proposition we refer to [4]. The next proposition
shows how to get rid of inequalities for the verification of calmness in the previous
proposition. More precisely, calmness has to be checked for all equality subsystems
only. This proposition, which yields a slightly stronger result than needed, requires
a technical lemma the proof of which is shifted to the appendix (Lemma 3.1).

Proposition 3.2. If for all I ⊆ {1, . . . ,m} the multifunctions

H̃I (α) := {x|Fi (x) = αi (i ∈ I)}

are calm at (0, x̄), then the multifunctions

H̄I (α) = {x|Fi (x) = αi (i ∈ I) , Fi (x) ≤ αi (i ∈ Ic)}

are also calm at (0, x̄) for all I ⊆ {1, . . . ,m}. In particular, the multifunctions
HI (α) introduced in Proposition 3.1 are calm at (0, x̄) for all I ⊆ {1, . . . ,m}.
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Proof. We proceed by induction over the number m of components of F . Consider
first the case m = 1. We either have I = ∅ or I = {1}. In the second case, one
has H̄I = H̃I due to m = 1, hence calmness of H̄I follows from that of H̃I . In the
first case, we apply Lemma 3.1 proved in the appendix. Referring to the notation
of this lemma, we put I∗ = ∅ and check the two assumptions made there. As the
only set I ⊆ {1} with I 6= I∗ is given by I = {1} and then, as before, H̄I = H̃I ,
calmness of H̄I follows from that of H̃I . This shows the first assumption of Lemma
3.1 to hold true. Concerning the second assumption, one has i′ = 1 and, hence,
M reduces to the trivial constant multifunction M (α, β) ≡ Rn which is calm. On
the other hand, the second multifunction introduced there reduces to M̄ = H̃I ,
hence calmness of M̄ follows from that of H̃I . As a consequence, Lemma 3.1 yields
calmness of H̄I∗ = H̄∅. Summarizing, the assertion of our proposition follows for
the case m = 1. Next assume that the Proposition holds true for all m ≤ k and
consider the case m = k + 1. By assumption, the H̃I are calm at (0, x̄) for all
I ⊆ {1, . . . , k + 1}. In particular, the multifunction M̄ considered in the second
assumption of Lemma 3.1 and corresponding to the case #I = 1 is calm at (0, x̄).
Moreover, the induction hypothesis ensures that also the multifunctions

{x|Fi (x) = αi (i ∈ I) , Fi (x) ≤ αi (i ∈ J�I)} (13)

are calm at (0, x̄) for all subsets I ⊆ J and all J ⊆ {1, . . . , k + 1} with #J = k.
Since the multifunction M considered in the second assumption of Lemma 3.1 is
of type (13) with J = {1, . . . , k + 1}� {i′}, it follows that M is calm at (0, 0, x̄).
Summarizing, the second assumption of Lemma 3.1 is always satisfied no matter how
the index set I∗ ⊆ {1, . . . , k + 1} is chosen in the Lemma. Therefore it is enough to
check the first assumption for its application.

Now, choose an arbitrary I∗ ⊆ {1, . . . , k + 1}. We have to show that H̄I∗ is calm
at (0, x̄). If I∗ = {1, . . . , k + 1}, then H̄I∗ = H̃I∗ and calmness of H̄I∗ follows from
that of H̃I∗ . If #I∗ = k, then the only choice for the index set I considered in
the first assumption of Lemma 3.1 is I = {1, . . . , k + 1} . According to what we
have shown just before, H̄I is calm, so we have shown that the H̄I∗ are calm at
(0, x̄) whenever #I∗ ≥ k. Passing to the case #I∗ = k − 1 and recalling that the
index set I considered in the first assumption of Lemma 3.1 is always strictly larger
than I∗, one derives calmness of H̄I on the basis of what we have shown before
due to #I > #I∗ = k − 1 which amounts to #I ≥ k.So, the first assumption of
Lemma 3.1 is satisfied again and we derive calmness of H̄I∗ whenever #I∗ ≥ k − 1.
Proceeding this way until #I∗ = 0, we get the desired calmness at (0, x̄) for all
subsets I∗ ⊆ {1, . . . , k + 1}.
That the calmness of the H̄I implies the calmness of the corresponding HI introduced
in Proposition 3.1, is an immediate consequence of the calmness definition and of
the evident relations H̄I(α, 0) = HI(α).

We emphasize that a result analogous to Proposition 3.2 cannot be obtained for a
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single constraint system (without considering subsystems). For instance, for F (x) :=
(x2, x) one has that the equality system F1(x) = α1, F2(x) = α2 is calm at (0, 0),
whereas the inequality system F1(x) ≤ α1, F2(x) ≤ α2 is not. The reason is that
subsystems need not inherit calmness (for instance, the equality subsystem F1(x) =
α1 fails to be calm at (0, 0)).

We may combine Theorem 3.3, Proposition 3.1 and Proposition 3.2 to get an as-
sumption which completely relies on constraint systems induced by F and thus can
be considered to be a CQ (weaker than surjectivity) for the mapping F .

Theorem 3.4. In the setting of Theorem 3.3 assume that

1. the Mangasarian Fromovitz constraint qualification is satisfied at x̄;

2. all perturbed equality subsystems

{x | Fi(x) = αi (i ∈ I)} I ⊆ {1, . . . ,m}

are calm at (0, x̄).

Then, the co-derivative formula of Theorem 3.3 holds true.

Remark 3.1. If we consider the couple of constraint qualifications imposed in The-
orem 3.4 as a single one and give it the name CQ∗, then the following holds true for
the inequality system F (x) ≤ 0:

LICQ =⇒ CQ∗ =⇒ MFCQ,

where MFCQ and LICQ refer to the Mangasarian-Fromovitz and Linear Indepen-
dence constraint qualifications, respectively, where the latter amounts to the surjec-
tivity condition imposed in Theorem 3.1. Indeed, the second implication being evi-
dent, suppose that F (x) ≤ 0 satisfies LICQ at x̄. Then, all gradients {∇Fi(x̄)}i=1,...,m

- and trivially all subsets of gradients - are linearly independent. But linear inde-
pendence of a set of gradients implies the Aubin property and, hence, calmness for
the corresponding set of equations. Consequently, CQ∗ follows from LICQ. Summa-
rizing, CQ∗ is something in between LICQ and MFCQ and it seems that it is closely
related to the constant rank constraint qualification CRCQ (see [3]).

At the end of this section, we provide a useful and easy to check constraint qualifi-
cation ensuring condition 2. in Theorem 3.4.

Proposition 3.3. In the setting of Theorem 3.3 assume that at x̄ the following full
rank constraint qualification is satisfied:

rank {∇Fi (x̄)}i∈I = min {n, #I} ∀I ⊆ {1, . . . ,m} . (14)

Then, the multifunctions H̃I introduced in Proposition 3.2 are calm at (0, x̄) for all
I ⊆ {1, . . . ,m}.
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Proof. Choose an arbitrary I ⊆ {1, . . . ,m}. Consider first the case that #I ≤ n.
Then, by (14), the set of gradients {∇Fi (x̄)}i∈I is linearly independent. Conse-

quently, H̃I is calm at (0, x̄). Now, if #I > n, then select an arbitrary J ⊆ I with
#J = n. By (14), the set of gradients {∇Fi (x̄)}i∈I is linearly independent, hence

H̃J(0) = {x̄} by the inverse function theorem. Since F (x̄) = 0 and H̃I(0) ⊆ H̃J(0),
it follows that H̃I(0) = H̃J(0). Moreover, according to what has been mentioned
before, H̃J is calm at (0, x̄). Consequently, there are constants L, ε > 0 such that

d(x, H̃J(0)) ≤ L ‖α̃‖ ∀x ∈ H̃J(α̃) ∩ Bε (x̄) ∀α̃ ∈ Bε (0) .

From here it follows with H̃I(α) ⊆ H̃J(α̃), where α̃ is the subvector of α according
to the index set J ⊆ I, that

d(x, H̃I(0)) = d(x, H̃J(0)) ≤ L ‖α̃‖ ≤ L ‖α‖ ∀x ∈ H̃I(α) ∩ Bε (x̄) ∀α ∈ Bε (0) .

This, however, amounts to calmness at (0, x̄) of H̃I .

As an illustration, we revisit Example 3.3. This example being nonlinear, we cannot
take assumption 2 of Theorem 3.3 automatically for granted as we could in Examples
3.4 and 3.5. On the other hand, the four constraint gradients in this example, though
linearly dependent in R3 satisfy the full rank constraint qualification (14). Indeed,
any of the 4 triples which can be selected from the original set of gradients happens
to be a linearly independent set. Therefore, the second assumption of Theorem
3.4 is satisfied by virtue of Proposition 3.3. Since also the Mangasarian-Fromovitz
Constraint Qualification is easily seen to be fulfilled at x̄), we are allowed to apply
the co-derivative formula of Theorem 3.3. Doing so would yield the same result as
in the linearized examples discussed before.

Appendix

Proof of Theorem 3.1:

Proof. By assumption, ∇F (x) is surjective on a compact neighbourhood U(x̄).
Then, by Exercise 6.7 in [12],

NC(x) = ∇T F (x)NP (F (x)) ∀x ∈ U(x̄). (15)

Moreover, for all (x, λ, v) ∈ U(x̄)× Rs × Rn one has that

v = ∇T F (x)λ =⇒ λ =
(
∇F (x)∇T F (x)

)−1∇F (x)v. (16)

Let V(v̄) be some compact neighbourhood of v̄. Define π as the projection of Rn ×
Rs × Rn onto its first and third components (i.e., π(x, λ, v) = (x, v)) and

D := {(x, λ, v) ∈ U(x̄)× Rs × V(v̄) | v = ∇T F (x)λ, λ ∈ NP (F (x))}.
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It follows from (15) that

gr NC ∩ (U(x̄)× Rn) = π(D). (17)

Moreover, (16) implies

π−1 (U(x̄)× V(v̄)) ∩D ⊆ U(x̄)×
(
∪x∈U(x̄)

v∈V(v̄)

(
∇F (x)∇T F (x)

)−1∇F (x)v
)
× V(v̄).

Obviously, the set on the right-hand side is bounded (this follows for the second
factor for continuity reasons). Hence the set on the left-hand side is bounded too.
Recalling that, by assumption, (x̄, v̄) ∈ gr NC , this allows to invoke Theorem 6.43
in [12] in order to derive from (17) the inclusion

Ngr NC∩(U(x̄)×Rn)(x̄, v̄) ⊆
⋃

(x,λ,v)∈π−1(x̄,v̄)∩D

{(x∗, v∗) | (x∗, 0, v∗) ∈ ND(x, λ, v)}

= {(x∗, v∗) | (x∗, 0, v∗) ∈ ND(x̄, λ̄, v̄)},

where λ̄ is defined in the statement of the theorem. Here, the last equality relies
again on (16). On the other hand, by surjectivity of π, we may refer once more to
Exercise 6.7 in [12], in order to derive from (17) that

ND(x̄, λ̄, v̄) = {(x∗, 0, v∗) | (x∗, v∗) ∈ Ngr NC∩(U(x̄)×Rn)(x̄, v̄)}.

Hence, the previous inclusion is actually an equality. We may summarize this as

Ngr NC
(x̄, v̄) = Ngr NC∩(U(x̄)×Rn)(x̄, v̄) = {(x∗, v∗) | (x∗, 0, v∗) ∈ ND(x̄, λ̄, v̄)}. (18)

By definition of D, we have

D = Φ−1({0} × gr NP ) ∩ (U(x̄)× Rs × V(v̄)) , (19)

where Φ : Rn × Rs × Rn → Rn × Rs × Rs is defined as

Φ(x, λ, v) :=
(
v −∇T F (x)λ, F (x), λ

)T
.

Clearly, the Jacobian

∇Φ(x̄, λ̄, v̄) =

 −
∑s

i=1 λ̄i∇2Fi(x̄) −∇T F (x̄) In

∇F (x̄) 0 0
0 Is 0


is surjective by surjectivity of ∇F (x̄). This allows to employ Exercise 6.7 in [12] a
third time, to see that (19) entails

ND(x̄, λ̄, v̄) = NΦ−1({0}×gr NP )(x̄, λ̄, v̄) = ∇T Φ(x̄, λ̄, v̄)N{0}×gr NP
(Φ(x̄, λ̄, v̄))

= ∇T Φ(x̄, λ̄, v̄)
(
Rn ×Ngr NP

(F (x̄), λ̄)
)
.
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Given the structure of the Jacobian, we end up at

ND(x̄, λ̄, v̄) =

(x∗, λ∗, v∗)

∣∣∣∣∣∣
x∗ = −

∑s
i=1 λ̄i∇2Fi(x̄)v∗ +∇T F (x̄)b

λ∗ = −∇F (x̄)v∗ + c
(b, c) ∈ Ngr NP

(F (x̄), λ̄)

 .

Combining this with (18) and taking into account the definition of the co-derivative
yields

Ngr NC
(x̄, v̄) = {(x∗, v∗) | x∗ ∈ −

s∑
i=1

λ̄i∇2Fi(x̄)v∗+∇T F (x̄)D∗NP (F (x̄), λ̄)(−∇F (x̄)v∗)}.

Now, the assertion of the theorem follows once more from the definition of the
co-derivative.

Lemma 3.1. Fix an arbitrary I∗ ⊆ {1, . . . ,m}. Referring back to the multifunctions
H̄I introduced in Proposition 3.2, assume that

1. For all I 6= I∗ with I∗ ⊆ I ⊆ {1, . . . ,m} the H̄I are calm at (0, x̄) .

2. For some i′ ∈ I�I∗ the multifunctions

M(α, β) : =

{
x ∈ Rn

∣∣∣∣ Fi (x) = αi (i ∈ I∗) ,
Fj (x) ≤ βj (j ∈ {1, . . . ,m}� (I∗ ∪ {i′}))

}
,

M̄(t) : = {x ∈ Rn |Fi′ (x) = t}

are calm at (0, 0, x̄) and (0, x̄), respectively.

Then, H̄I∗ is calm at (0, x̄).

Proof. Assume that H̄I∗ fails to be calm at (0, x̄). Then, by (1), there is a sequence
xk → x̄ such that

d(xk, H̄I∗ (0)) > k

∑
i∈I∗

|Fi (xk)|+
∑

j∈{1,...,m}�I∗

[Fj (xk)]+

 . (20)

Suppose there is some index j′ ∈ {1, . . . ,m}�I∗ and some subsequence xkl
with

Fj′ (xkl
) ≥ 0. Put I ′ := I∗∪{j′}. Due to H̄I′ (0) ⊆ H̄I∗ (0) and to xkl

∈ H̄I′ (F (xkl
))

one would arrive from (20) at

d(xkl
, H̄I′ (0)) > kl

∑
i∈I′

|Fi (xkl
)|+

∑
j∈{1,...,m}�I′

[Fj (xkl
)]+

 ,
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a contradiction with assumption 1. Hence, there is some k0 such that

Fj (xk) < 0 ∀k ≥ k0 ∀j ∈ {1, . . . ,m}�I∗. (21)

Together with (20), this implies that

d(xk, H̄I∗ (0)) > k
∑
i∈I∗

|Fi (xk)| . (22)

We claim the existence of some ρ > 0 and k1 ≥ k0 such that∑
i∈I∗

|Fi (xk)| > ρ |Fi′ (xk)| ∀k ≥ k1, (23)

where i′ refers to assumption 2. Indeed, otherwise there was a subsequence xkl
such

that ∑
i∈I∗

|Fi (xkl
)| ≤ l−1 |Fi′ (xkl

)| .

In the following, we lead this relation to a contradiction. Now, justified by x̄ ∈
M̄(0) 6= ∅, where M̄ is defined in assumption 2, we may select for any l some
yl ∈ M̄(0) such that

d(xkl
, M̄(0)) = ‖xkl

− yl‖ .

The assumed calmness at (0, x̄) of M̄ entails the existence of some L1 > 0 such that

d(xkl
, M̄(0)) ≤ L1 |Fi′ (xkl

)| →l 0

which in turn implies that yl → x̄. Consequently, for all large enough l,

|Fi′ (xkl
)| = |Fi′ (xkl

)− Fi′ (yl)| ≤ L2 ‖xkl
− yl‖

where L2 is some Lipschitz modulus of Fi′ near x̄. Now, referring to the multifunction
M defined in assumption 2., we observe by virtue of (21) that, for all large enough

l, xkl
∈ M

(
α(l), 0

)
, where α

(l)
i := Fi (xkl

) for i ∈ I∗. Now, the assumed calmness at
(0, x̄) of M leads to

d(xkl
, M(0, 0)) ≤ L3

∥∥α(l)
∥∥ = L3

∑
i∈I∗

|Fi (xkl
)| ≤ l−1L3 |Fi′ (xkl

)|

≤ l−1L3L2 ‖xkl
− yl‖ = l−1L3L2d(xkl

, M̄(0)),

for all large enough l. If also l > L3L2, then

d(xkl
, M(0, 0)) < d(xkl

, M̄(0)). (24)

Now, justified by x̄ ∈ M(0, 0) 6= ∅, we may select zl ∈ M(0, 0) such that

d(xkl
, M(0, 0)) = ‖xkl

− zl‖ ∀l.
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It follows from (24) that zl /∈ M̄(0), whence Fi′ (zl) 6= 0. Recalling that Fi′ (xkl
) < 0

for large enough l (see (21)), one would find in case of Fi′ (zl) > 0 some z′ on the line
segment [xkl

, zl] with Fi′ (z
′) = 0 and ‖xkl

− z′‖ < ‖xkl
− zl‖ yielding a contradiction

with (24) due to z′ ∈ M̄(0). Therefore, Fi′ (zl) < 0 and, hence, one may invoke the
definition of M to infer from zl ∈ M(0, 0) that zl ∈ H̄I∗ (0) for large enough l. Now,
(21) and (22) provide, for large enough l that

kl

∑
i∈I∗

|Fi (xk)|+
∑

j∈{1,...,m}�(I∗∪{i′})

[Fj (xkl
)]+


= kl

∑
i∈I∗

|Fi (xkl
)| < d(xkl

, H̄I∗ (0)) ≤ ‖xkl
− zl‖ = d(xkl

, M(0, 0)),

a contradiction with the assumed calmness at (0, 0, x̄) of M . This contradiction
proves the desired relation (23). Using this, we may continue (22) as

d(xk, H̄I∗ (0)) > k

(
1

ρ + 1

∑
i∈I∗

|Fi (xk)|+
ρ

ρ + 1

∑
i∈I∗

|Fi (xk)|

)

> k
ρ

ρ + 1

 ∑
i∈I∗∪{i′}

|Fi (xk)|


= k

ρ

ρ + 1

 ∑
i∈I∗∪{i′}

|Fi (xk)|+
∑

j∈{1,...,m}�(I∗∪{i′})

[Fj (xk)]+


∀k ≥ k1,

where in the last relation, we exploited again (21). Put I ′ := I∗ ∪ {i′}. Due to
H̄I′ (0) ⊆ H̄I∗ (0) we end up at the relation

d(xk, H̄I′ (0)) > k
ρ

ρ + 1

∑
i∈I′

|Fi (xk)|+
∑

j∈{1,...,m}�I′

[Fj (xk)]+

 ∀k ≥ k1.

This, however, is in contradiction with the assumed calmness at (0, x̄) of H̄I′ (see
assumption 1.). Hence, we have finally led to a contradiction our initial assumption
that H̄I∗ fails to be calm at (0, x̄).
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