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Abstract

The paper describes the deviational particle Monte Carlo method for the
Boltzmann equation. The approach is an application of the general “control
variates” variance reduction technique to the problem of solving a nonlinear
equation. The deviation of the solution from a reference Maxwellian is ap-
proximated by a system of positive and negative particles. Previous results
from the literature are modified and extended. New algorithms are proposed
that cover the nonlinear Boltzmann equation (instead of a linearized version)
with a general interaction model (instead of hard spheres). The algorithms
are obtained as procedures for generating trajectories of Markov jump pro-
cesses. This provides the framework for deriving the limiting equations, when
the number of particles tends to infinity. These equations reflect the influence
of various numerical approximation parameters. Detailed simulation schemes
are provided for the variable hard sphere interaction model.
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1 Introduction

Kinetic equations are crucial to an adequate description of many processes of scien-
tific and industrial importance. In recent years there have been intensified research
activities in the field of numerical algorithms for kinetic equations related to new
areas of application. Typical gas flows in micro- and nano-machines are in the rar-
efied regime. Thus, the classical Boltzmann equation is often used to model such
flows (cf. [14, 18, 6]).

We consider the Boltzmann equation
aft:z:v)%—(vv)f(t:z:v) (1.1)
/ / (v, w,€e) (t:z:v)f(tmw) f(t,m,v)f(t,x,w)]dedw
R3 JS2

with boundary condition

f(t,z,v) (v,n(x)) = / Gret (2, w; 0) f(t, 2, w) |(w,n(z))] dw + gn(z,v),

out (w)

Ve edD, veR:(x), (1.2)
and initial condition
f(0,z,v) = fo(x,v), reD, veR>. (1.3)

The following notations are used: R? - Euclidean space, S? - unit sphere, D -
domain in R?, D - boundary of D, (.,.) - scalar product, ||.|| - Euclidean norm,
n(x) - unit inner normal vector at x € D, V, - gradient, R} (z) and R3,(x) -
velocities leading a particle from x € 0D inside (outside) the domain. The collision
transformation
v’:v’(v,w,e)zv+w ||U_w||’
2 2
v+ w |lv —w||
2 2

(1.4)

w' =w'(v,w,e) =

describes the relationship between post- and pre-collision velocities. The collision
kernel has the form
w—v
B(v,w,e) = b(||lv —wl]|, (e,u)), U= ——, (1.5)
[w — o]
for some non-negative function b. The non-negative functions ¢, and g, are the
inflow intensity and the reflection density. The initial density fy is any non-negative
integrable function.

There are significant numerical challenges related to the new applications men-
tioned above. In classical aerospace problems the common numerical tool for han-
dling the Boltzmann equation is the direct simulation Monte Carlo (DSMC) method
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(cf. 3,10, 17]). DSMC is a general simulation method based on a stochastic particle
system that imitates the behavior of a real gas. In the particular situation described
by the Boltzmann equation (1.1) it approximates the solution f. However, in low
Mach number (slow) rarefied flows, there is a small signal-to-noise ratio. Thus, due
to statistical fluctuations, it is difficult to detect the macroscopic quantities (density,
stream velocity, temperature) with sufficient accuracy. Variance reduction methods
for DSMC are desperately needed.

Modifications of DSMC adapted to low speed rarefied gas flows were considered
in [8, 20]. Some numerical schemes making use of local Maxwellians were introduced
n [15]. A promising approach to the variance reduction problem has been studied
in [1, 7, 13, 12, 2]. The authors consider systems of positive and negative particles
that model the deviation of the solution to the Boltzmann equation from a given
Maxwellian.

The purpose of this paper is to develop the deviational particle approach. New
algorithms are proposed that cover the Boltzmann equation (1.1) with general col-
lision kernels (1.5). They are derived as procedures for generating trajectories of
Markov jump processes, thus fitting the framework of the convergence proof for
DSMC in [21]. The limiting equations for the algorithms (when the particle number
tends to infinity) reflect the influence of various numerical approximation parame-
ters.

The paper is organized as follows. Section 2 describes the deviational particle
approach. Reference Maxwellians are introduced and the modeling of initial and
boundary conditions with deviational particles is discussed. Section 3 is concerned
with the collision step for the linearized Boltzmann equation. Two different proce-
dures are introduced - the collision process and the source-sink process. For each of
them, detailed algorithms for generating their trajectories are given and the limiting
equations are derived. Special cases of collision kernels are treated. Section 4 stud-
ies the collision step for the nonlinear Boltzmann equation. The collision process
and the source-sink process are generalized to this situation. Detailed algorithms
are given and special cases are considered. Section 5 contains comments concerning
the results and directions for further studies. The Appendix provides some useful
technical details related to collision kernels and to the Maxwellian distribution.



2 Deviational particle approach

In this section we describe the general setup of the deviational particle approach.
The equations obtained from the standard DSMC splitting scheme are transformed
in order to describe the deviation of the solution from a reference Maxwellian. Algo-
rithms for the treatment of initial and boundary conditions with deviational particles
are derived.

2.1 DSMC framework

discretization of state space

The standard DSMC method is based on a stochastic particle system

(X"@.v"®), =1 N, =0 (2.1)
This system approximates the solution of the Boltzmann equation (1.1) in the sense
that

N (1)

/D /723 90(“% U) f(t7 Z, U) dvdx ~ g(”) @(Xi(n) (t), Vi(n) (t)) ’ (22)

i=1

where ¢ is any appropriate test function and n = 1,2, ... is a discretization param-
eter. If the initial system is not empty (fo # 0), then the particle weight is defined
as

g(")z—/ foly, w) dw dy (2.3)
D JR3

n

so that n is the number of numerical particles at time zero. Otherwise, the particle
weight is defined as

gm=1 / / gin(z, v) dv o (dz) (2.4)
" Jop JR3 (x)

where o is the uniform surface measure and n represents the expected number of
numerical particles entering the system during a typical time period . According
to (2.3) and (2.4), the weight g™ is the number of real gas molecules represented
by a numerical particle.

discretization of time

The two main components of the evolution of the particle system, spatial motion
and collisions, are separated. In the free flow step, particles move independently of
each other over a certain period of time. In the collision step, particles do not move



over a certain period of time, but collide (change pairwise their velocities) according
to some probabilistic rules that take into account their relative positions in space.

The splitting technique leads to a corresponding approximation of the limiting
equation (1.1). The first equation, which corresponds to the free flow simulation
step, has the form

)
57 [ (62.0) + (v, V2) f(t.2,0) =0, (2.5)

with boundary condition (1.2). The second equation, which corresponds to the
collision simulation step, has the form

0
g ft,x,v) =
/D/R3 /32 h(z,y) B(v,w,e) [f(t,:c,v’)f(t,y,w’) — f(t,m,v)f(t,y,w)}dedwdy
= [ [ Bwwolrn ) fta) - fn fn|dedo, @)
R3 Js2

where

Ft,z.0) = /D h(a.y) £(t, . ) dy. 2.7)

The function h is a mollifying kernel influencing the collision intensity. It has the
form

hr,y) = u§—| S o (@) v @) (2.8)

where
le
D=|]JD (2.9)
=1

is a partition of the spatial domain into a finite number of disjoint cells, |D;| is the
volume of the cell D; and xp, denotes the indicator function.

The free flow equation (2.5) and the collision equation (2.6) are coupled to each
other via appropriate initial conditions. The coupling strategy determines the order
of convergence with respect to the splitting parameter At. More details can be found
in [17, p.68/69]. Here we do not introduce any additional notations for the solutions
of equations (2.5), (2.6) and consider both equations with initial conditions at t = 0.

2.2 Reference Maxwellians

The solution is represented in the form
[tz v) = M(z,v) + fat,z,v), (2.10)
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where

Mz, v) = — () M} (2.11)

- 3/2 ey ()3 oXp {_ e (x)?

with number density nj/(z), bulk velocity uy/(z), temperature Ty, (x) and “most
probable speed”

ev(T) = /2Ty (x) /m. (2.12)

Here k is Boltzmann’s constant and m is the mass of a molecule. The Maxwellian
(2.11) is assumed to be constant in each cell. The function f; is the deviation of the
solution f from the reference Maxwellian.

A system of positive and negative particles (cf. (2.1))
(=0, xPw. v wm), =1 N, (2.13)

is introduced, with positions X (t) € D, velocities V,"™ (t) € R? and signs ™ (¢) =
+1. The system (2.13) is constructed according to the modified equations satisfied
by the deviation. It approximates the deviation in the sense that (cf. (2.2))

N™)(t)
/[)LB¢($7U)fd(t,x,v)dvdx ~ g(”) gg”)(t)(p(Xf")(t),‘/;(n)(t))' (2.14)

i=1

free low equation

Consider equation (2.5) with boundary condition (1.2) and initial condition (1.3).
Inside a cell, the deviation satisfies the same equation,

0
% fa(t,z,v) + (v, V) fa(t,z,v) =0. (2.15)
The initial condition takes the form
fa(0,2,0v) = f(0,z,v) — M(z,v). (2.16)

Boundary condition (1.2) transforms into

fd(tvxv U) (Uv n(:c)) = / qref(wi; U) fd(tv wi) |(w7 n(a:))\ dw + Qi]\r{(xvv) ’

Rgut(x)
where
G (,0) = (2.17)

Gin(x,v) + /RS ( )qref(:c, w;v) M(z,w) |(w,n(z))] dw — M(x,v) (v,n(z)).



The deviational particles are reflected as usual according to ¢..; . However, the inflow
has to be generated according to the modified intensity (2.17).

There are also boundaries between neighboring cells. Let I' be the boundary
between cells 1 and 2. Denote by f® and M® the limits of the functions f and M
at the boundary, taken from cell i = 1,2, and by nt(z) the inner normal vector for
cell 7. The solution satisfies the boundary condition

fOE x,0) (0,0 (2)) = FO(L, 2,0) (v,nV (2)) rel, veR® (218)

The inflow in a cell is given by the outflow from the neighboring cell. Particles do
not feel the cell boundary. The deviational approach (2.10) with

1Ot 2, 0) = MO@) + 17(t 2, 0)
transforms (2.18) into

& (t2,0) (0,0 0(@) = (2:19)
me@nW»HM%>AwmeWm.

If MM # M® | then the boundary condition (2.19) contains an inflow term.
Thus, new particles are created at all boundaries between cells with non-identical
Maxwellians.

collision equation

Consider equation (2.6) with initial condition (1.3). The weak form of equation (2.6)

1S
d
—//w@@ﬂm@ww:
dt D 'RS

//Ra//733/‘92¢(x’v)h($=y)3(%w,6)><

[ftxv (t,y,w') — f(txv)f(t,y,w)}dedwdydvdm

:/AJA$2IU ol v)] x

B(v,w,e) (t x v) f(t,y,w) de dwdy dv dx

:/A/LL (4.0 = ply. w)]

B(v,w,e) f(t,y,w) f(t,z,v)de dwdy dvdx

— //RS//RS/SQ p(,0) + ply, w') = so(fvjv)—so(y,w)]x

(v,w,e) f(t,z,v) f(t,y,w) dedwdy dvdz . (2.20)

The deviation satisfies the equation

0
a fd(t, xZ, ’U) =



/D /Ra /52 h(z,y) Bv, w,e) [fd(t, 2,v") falt,y,w') —

fa(t,z,v) fd(t,y,w)] de dw dy +
[ [ b Blosw. o) (M) fattsyon’) + MGy w) fultn.0) -
D JR3 Js2
M(z,v) fa(t,y,w) — M(y,w) fa(t, z, v)}de dw dy
/ / B(v,w,e) [fd(t,x,v') Falt,z,w') — falt, z,v) fd(t,x,w)] de dw +
R3 Js2
/ / B(v,w,e) [M({E,U/) falt, z w') + M(z,w') fa(t,z,v") —
R3 Js2
M (z,v) falt, z,w) — M(x,w) fd(t,x,v)}de dw , (2.21)

with initial condition (2.16), where (cf. (2.7), (2.8))

ﬁwamzzﬁmwm@%w@. (2.22)

The weak form of equation (2.21) is

%/D/RS o(x,v) fa(t,z,v) dvdr = (2.23)

1//@//7@/52 <p(:c,v’)+go(y,w’)—w(x,v)—sﬁ(y,w)] X

(v,w, e) falt, z,v) fa(t,y, w) de dwdy dv dx +

//RS//RS/S2 (2,0") + ¢(y, w') — p(z, )—w(y,w)}x

B(v,w,e) M(x,v) fq(t,y,w) dedwdydvdx .

2.3 Initial conditions

initial state

The initial state of the system (2.13) is generated according to the function
fo(z,v) = M(z,v), (2.24)

where M is a reference Maxwellian of the form (2.11). Then the system proceeds
according to the free flow equation (2.15) and the collision equation (2.21).

change of the reference Maxwellian

The underlying Maxwellian can be changed either before the free flow step or before
the collision step. This procedure is treated via the initial condition. The system of
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particles
(= (0), X 0), V" (0)) (2:25)

approximates the function f(0,z,v) — M(x,v). If, on the next step, the reference
Maxwellian is supposed to be M , then the initial condition takes the form

fa(0,z,v) = f(0,2,v) — M(z,v). (2.26)
Thus, one has to generate a system of particles
(2 (0), X 0), V" (0)) (2.27)

approximating the function

M (z,v) — M(z,v). (2.28)

The combined system (2.25), (2.27) corresponds to the initial condition (2.26).
Special cases are the transformations between the standard DSMC system and
the deviational particle system. If M = 0, then the Maxwellian is replaced by parti-

cles. If M = 0, then only negative particles are added to the system, corresponding
to the chosen Maxwellian.

implementation

Having in mind (2.24) and (2.28), we propose a procedure for generating particle
systems approximating the difference p; —py of two non-negative integrable functions
on R?. Other constructions are possible.

Lemma 2.1 Let Int(z) denote the integer part of a real number x . For (cf. (2.3),

(2.4))

d d
L= 17 SR k(n) and ]{Z(n) = Int (fpl(v) ,Ug_(l;)fp2(v) ,U)

construct a particle according to the following procedure:

e generate a velocity v; € R? according to

b1 (U> +p2(’0)
[ pi(w) dw + [ pa(w) dw

o with probability

|P1 (Uz) - pz(Ui)|
p1(vi) + p2(vi)

)

define weight

&; = sign(p1(vi) — pa(vi))

10



e otherwise, define weight ¢; =0

Then

i [ o)y = [ o)) = pao) o

n—oo R3

for all bounded continuous function ¢ , where

k(n)

v (dv) = g™ Z £i 0y, (dv) .
i=1

Proof. One obtains

k() k()

mlv p2(v)]
i P\U; - X
9" 2 el | = Z/m PYOEE

p1(v) + pa(v)
dw+fp2w dU

sign(p (v) — pa(v)) f 1w

) ()

ot [ @ -l d = [ ) )]

R3
and, since Var(e; ¢(v;)) < 00,
k(n)

Var | g™ Z gip(vi)| =
i=1

k(n)
(9)2 Y Varleip(v) = (9)? K Var(erplv))  — 0

as n — oo . This completes the proof (cf. [17, Section A.4]). |
Remark 2.2 The simplest way is to generate k% — I (ﬁ) positive particles accordmg

to p1, and l{;gn) = % negative particles according to ps . Note that l{;i” = k2

if [p1 = [p2= [fo. Thus, these particles would be very many, even if py and ps
were close to each other. This would not be efficient. However, the procedure from
Lemma 2.1 does not produce any particles, when p; = ps .

2.4 Boundary conditions

The relationship between stochastic particle systems and boundary conditions is
discussed in [17, Section 3.2]. The generalization to sign-changing inflow intensities
is straightforward.
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inflow boundaries
At an inflow boundary T';,, C 9D one typically assumes g,of = 0 (absorption) and
Gin(2,v) = Myp(z,v) (v,n(x)),
where M;, is an inflow Maxwellian. The modified inflow term (2.17) takes the form
Gin (,0) = [Mi(2,v) = M(z,v)] (v,n(2)). (2.29)
If
M, (z,v) = M(z,v), (2.30)

then the modified inflow term is zero. In the case of pure absorption (g, = 0)
one obtains

q%(m,v) = _M(xvv> (v,n(x)) :

boundaries between cells

The inflow term in (2.19) takes the form

G (z,0) = [MP(v) = MO (v)] (0,nD(2)),  (v,nV(x)) >0,  (2.31)
for cell 1, and

@2 (z,0) = [MD (v) = MP(0)] (0,0 (2)),  (v.nP(2)) >0,  (2.32)
for cell 2.

reflective boundaries

At a reflective boundary one typically assumes ¢, = 0 (no inflow) and the Maxwell
boundary condition

Gref (T, w5 V) = (2.33)

(1—-a)é(v—w+2n(x) (n(z),w)) + FbC(YZE) My(z,v) (v,n(x)),

for some a € [0, 1], where M,, is a boundary Maxwellian and

Fy(x) = / My (z,v) (v,n(x)) dv. (2.34)
Ri, (@)
The modified inflow term (2.17) takes the form
g (z.0) = |(1=a) M(z,v = 2n(z) (n(x), v)) +

«
FM
Fb(l') out

() My (,v) = M(z,0)] (v ()

12



where

Fi@) = [ M) ()] do

out (SC)

is the out-going flux of the Maxwellian M .

In the case of specular reflection (a = 0) one obtains
0yl (z.0) = [M(z,0 = 2n(z) (n(2),v)) = M(z,0)] (v,n(z)).  (235)
If (cf. (2.11))

(ups(x),n(z)) =0, (2.36)

then the modified inflow term (2.35) is zero.

In the case of diffuse reflection (o« = 1) one obtains

M _ Fau()
iy (ZIZ’,'U) - |in([L’)

My(z,v) — M(z, ’U):| (v,n(x)). (2.37)
If
My(z,v) = M(z,v),

then the modified inflow term (2.37) takes the form

0 (z,v) = {?&8 - 1} M(z,v) (v, n(x)). (2.38)
where (cf. (2.34))
Fyl(x) = i M (z, w) (w,n(z)) dw.
The term (2.38) is zero provided that
Fou(a) = Fy (2). (2.39)

This is fulfilled if (2.36) holds.

Reflection of deviational particles is performed as usual. It remains to implement
the creation terms.

implementation

To increase efficiency, we introduce fictitious inflow events. Assume that the inflow
intensity (2.17) satisfies

[ (2, 0)] < Gin (2, 0)

for some majorant function ¢’ . The general procedure is as follows:

13



Algorithm 2.3

1. Make a time step with parameter

= (n/ / G (2, v) dvo(dr).
9 oD JRE (x

Stop, when the final time is exceeded.

2. Generate a position x € OD and a velocity v € R3 (x) according to the density

3.  With probability

g ()|
G (z,0)

reject the inflow event and go to 1.

4. Add a particle with position x , velocity v and sign
sign ¢ (z,v)
to the system and go to 1.
Assume that I' C 0D is some plane part of the boundary so that
n(x)=e, Vzel, for some e € S?.

Consider an inflow intensity of the form (cf. (2.29), (2.31), (2.32), (2.37))

4l (z.0) = xr(@) (MO () = MO () ) (v, )

and the majorant

@ (2, 0) = xr(@) (MO @) + MO @) (v,¢). (2.40)

where yr denotes the indicator function. Define

E(rf):/ M9 (v) (v,e) dv, i=1,2.
(1,€)>0
Algorithm 2.3 takes the form:

Algorithm 2.4

14



1. Make a time step with parameter

. r
s = Loy g,
g n

where |I'| is the surface area. Stop, when the final time is exceeded.
2. Choose an index 1 = 1,2 with probabilities
Fy
3. For given i, generate a velocity v according to the density
1
70

1

MO () (v,e€) . (2.41)

4. With probability

[M®)(v) — MO (v))|

L M) M)

reject the inflow event. Go to 1.
5. Generate a position v € I uniformly.

6. Add a particle with position x , velocity v and sign
sign(M<2> (v) — M(l)(v))
to the system. Go to 1.

The generation of a Maxwellian inflow (2.41) was studied in the literature (cf.
[17, Section B.5], [11]).
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3 Collision step for the linearized BE

In this section we study the evolution of the particle system (2.13) during the colli-
sion step, when only the linear part on the right-hand side of equation (2.21) or (in
the weak form) (2.23) is taken into account. The transition to the limiting equations
is performed using the empirical measures (cf. (2.14))

N(") (t)
M (¢, dx, dv) 8

=1

(dz) 8, (dv) . (3.1)

) 0wy v ()

We introduce two different processes leading to similar limiting equations, thus
providing more degrees of freedom for the approach. Detailed algorithms are con-
structed for the general collision kernel (1.5) and then specified for the variable hard
sphere model

B(v,w,e) = Cs|lv—wl|”, B>0, Cz>0. (3.2)
The special cases of hard spheres and pseudo-Maxwell molecules are obtained for
G =1and =0, respectively.
3.1 Collision process

Here particles jump independently and each jump creates two additional particles.

3.1.1 Generator and limiting equation
Consider states of the form

z = (e1,21,V1; .. . ;EN, TN, UN) - (3.3)
Introduce the generator

APE) = (3.4)
Z/D/’RS /SQ[Q(J(Z,Z',y,w,é’)) — ®(2)] h(xs,y) B(v, w,e) M(y,w) dedwdy,

where J replaces (g4, z;,v;) by (g4, 24,V (v;, w,e)) and adds (e;,y,w'(v;, w,e)) and
(—&4,y,w) . Using test functions

N
2)=g" ) eiplwi,v), (3.5)
i=1

one obtains

N( )(t)

Az =4 32 [ [ [ [0 0e08 0,00 0,004

16



() ey, w (V7 (0),0,€0) = (1) (X (8), V() — 2 (1) oly, )] ¢
(1), y) BV (1), w, e) M(y, w) de dw dy

h(X ™ (¢
//Rg/ /Ra /52 (2,0"(v,w,€)) + ¢y, w'(v,w,e)) — (p(l’,v)—gp(y,w)} x

.y) B(v,w, e) M(y,w) de dwdy 1™ (t, dx, dv)

leading (as n — o00) to the limiting equations (cf. (2.23))

//R (2, 0) falt, 2, 0) dv d = (3.6)

//Rg/ /723 /52 (2,0 (v, w,e)) + oy, w'(v,w,e)) — p(z,v) — @y, w)

B(v,w, e) M(y,w) fq(t, z,v) de dw dy dv dz

or (cf. (2.21), (2.22))

0
a fd(t, xZ, ’U) =

/D/RS /52 h(x,y) B(v,w,e) [M(:):,v') falt,y,w') + M(y,w') fa(t, z,0") —
M(x,v) fa(t,y, w) — M(y,w) falt,=, v)} de dw dy
/723 /52 B(v,w,e) [M(x,v/) falt,z,w') + M(z,w') fa(t, z,v") — (3.7)

M (x,v) falt, z,w) — M(z,w) fd(t,x,v)}de dw .

3.1.2 General simulation procedure
Assume that the collision kernel (1.5) satisfies

w —v

B(v,w, e) < Bpax(v,w, €) := byax(||[v — w]|, (e, 1)), , (3.8)

lw =

for all arguments and some function by, . Rewrite the generator (3.4) in the form

é/[)/R /52/[@(8 — ®(2)] Mz, 4, y,w, e, dZ) X (3.9)

h(2, ) Bmax(vi, w, e) M (y, w) de dw dy ,
where
)\(Zu 7:7 Yy, w,e, dé) =

z B(Uia w, 6)
5J(z,i,y,w,e)(dz)

Bmax(viv w, 6) - B(Uia w, 6)
Bmax(viv w, 6) '

Bmax(viu w, 6)

+6.(d2)
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Define the functions
Baw) = [ [ [ b Blo.w.e) Mg w)dedudy
D JR3 Js2
= / / B(v,w,e) M(x,w) de dw (3.10)
R3 J 82
and

Emax(x,v):/ / Biax (v, w, €) M (z,w) de dw . (3.11)
R3 Js2

The representation (3.9) suggests the following algorithm:

1. Make a time step with parameter

N
> Buax(i,v7) . (3.12)
1=1

Stop, when the final time is exceeded.

2. Choose an index ¢ = 1,..., N according to the probabilities

Emax (LUZ‘, Ui)
Z;V:1 Ernax(,v5)

(3.13)

3. For given i, generate w € R?® according to the density

1

E;@;@(LJ%MwwwaAﬂmwy (3.14)

4. For given i and w , generate e € S? according to the density

Bmax (Uiu w, 6)

Js2 Buax(vi, w, u) du’ (3.15)
5. With probability
1 B(v;, w, e)
Buax (v, w, €)’
reject the parameters ¢, w, e and go to 2.

6. Choose y uniformly in the cell to which z; belongs.
7. Replace (g;, z;,v;) by

(€5, i,V (v5, w, €)) (g1, y,w'(v;,w, €)), (—eiy,w) (3.16)

and go to 1.
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In the variable hard sphere model (3.2) we choose (cf. (3.8))
Buax(v,w,€) = ¢o + ¢ ||[v — w| (3.17)
so that

bmax(€7 C) =+ 6 . (318)
One obtains (cf. (3.11), (2.11))

Eran(,0) = 47 (co nar(z) + &1 /R lv — w| M(z, w) dw) , (3.19)

The general simulation procedure takes a particularly simple form in the case of
pseudo-Maxwell molecules (8 = 0 with ¢y = Cy and ¢; = 0):

Algorithm 3.1 (Pseudo-Maxwell molecules)

1. Make a time step with parameter
N
47 Cy Z n () -
i=1
Stop, when the final time is exceeded.
2. Choose an index i =1,..., N according to the probabilities

n ()

LA 3.20
Zj’vzl na () ( )

For given i, generate w € R?® according to the Mazwellian M (z;,w) .
For given i and w, generate e € S? uniformly.

Choose y uniformly in the cell to which x; belongs.

A

Replace particle (g;, x;,v;) by three particles (3.16) and go to 1.

Finally, we specify the general simulation procedure for the hard sphere model
(8 =1 with ¢y =0 and ¢; = C}):

Algorithm 3.2 (Hard sphere model)

1. Make a time step with parameter

N
47T012/ Jv; — wl]| M (x5, w) dw . (3.21)
i=1 JR?
Stop, when the final time is exceeded.
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2. Choose an index i = 1,..., N according to the probabilities
1
N
> Jrs vy — wll M(zj, w) dw

/ |v; — wl|| M (z;,w) dw. (3.22)
R3

3. For given i, generate w € R® according to the density

1

i~ wl| M(zi, w). 3.23

4. For given i and w, generate e € S? uniformly.
5. Choose y uniformly in the cell to which x; belongs.

6. Replace particle (e;,z;,v;) by three particles (3.16) and go to 1.

3.2 Source-sink process

Here the jumps of particles are replaced by creation and deletion events. The main
idea is to avoid the blow-up of the system by introducing appropriate source terms
that lead to cancellation of positive and negative particles.

3.2.1 Generator and limiting equation

Introduce
KO (3,059, w) = (3.24)
2 ||w—vl|?
4h b (Il — v+ ull, Rl — 1)
@wﬁ/ o =vFu] M(z,v+ ) du.
lw = ol Jr@w-v) lw = v+
K@ (z,0;y,w) = (3.25)
2 ||lw—vl|?
Ah b<||w—v+u]|,1— w_vu2>
@w%/ ) )t u) du
lw =l Jr@w-v) lw = v+
and
KO, viy,w) = ~h(r,9) M(e,0) [ Bo,w.e)de, (3.26)
S2
where I'(v) denotes the plane through the origin orthogonal to v. It follows from
Lemma 6.3 and Corollary 6.4 (with y(v) = ,v)) that
// (z,v) :va, dvd:z—// (z,v) y,wdxdv)
R3 R3

k=12, (3.27)
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where

V(l)(y,w;dx,dv):h(y,x)da:/ / Out (woue)(dv) B(w,u, e) M(z,u)dedu, (3.28)
R Js?

V(z)(y,w;daj,dv):h(y,x)dx/ / Ot (wou,e) (dV) B(w, u, e) M(x,u) dedu (3.29)
R3 Js2

and ¢ is any appropriate test function. Note that (cf. (3.10), (6.8))

E(y,w) = / / B(v,w,e) M(y,v)dedv. (3.30)
r3 Js2
It is a consequence of (3.27) (with ¢ = 1) and (3.30) that

| [ KOy dvde = By, k=123, (331)
D JR3

Consider an auxiliary parameter § € © , where © is a measurable space. Intro-
duce functions s*) and probability measures A such that (cf. (3.24)(3.26))

/ s®) (2,0, 2,0,0) Az, z,v,d0) = K® (2, v; 25, v;) (3.32)
e

forall k=1,2,3, veR?, 2z (cf. (3.3))and i=1,...,N. Let
{I(2)}, l=1,...,L(2), (3.33)
be a partition of the index set {1,..., N} and

Si(z,z,v,0) = (3.34)
Z £ [8(1)(2,2', z,v,0) + 5P (2,4, 2,0,0) + s (2,4, 2,v,0)|.
ie[l(z)

Consider the generator

AD(2) =

L(2)

lZ/D/RB/@[@(Jo,l(z,x,v,e))—w) 1S)(2, 2, 0,0)| Az, @, v, d6) dv dz +

N

3 [(ID(Jl(z,z')) - @(z)} E(zi,v) = Ag®(2) + Ap®(2), (3.35)

i=1

where Jo;(z,z,v,0) adds a particle (signSj(z,z,v,0),z,v) to the system, and
J1(z,1) removes particle (¢;,v;) from the system.
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Using test functions (3.5), one obtains (cf. (3.27))

As®(Z(t)) =
/ /723/ " sign Si(Z(t), U,ﬁ)}ap(:c,v) |S1(Z(t), z,v,0)| x

L(Z(t
(Z(t),z,v,dl) dvdz

— ;g, //R :EU[Z/ ®(Z(t),4,2,v,0) (()x,v,de)]dvdx

&

= g™ st U/w qu<kqu()V(t))dudx]

=1

= 4 ;g, U/R/S (2,0( )) + oz, w' (Vi(t), u, e)) —

=

2

oz, u)]h(Xi(t),x)B(V-(t) w, €) M(z, u) de du d:c}

— //723//723/52<vawue + o(z, w'(w,u,e)) — p(x u)]x

B(w,u,e) M(x,u) de dudz 1™ (t, dy, dw)

and
N

Ap®(Z(t) = —g™ Z ei(t) p(Xi(t), Vi(t)) E(X(1), Vi(t))

i=1
= —// (z,v) E(z,v) p™(t, dz, dv)
R3

leading (as n — o0) to the limiting equation

// (z,v) fa(t,z,v) dvdr = (3.36)
R3

//Rs//m/sz (z,0") + oz, w') — o(z,v) — oy, w)| X

h(z,y) B(v,w,e) M(z,v) fq(t,y, w) de dw dy dv dz
or (cf. Lemma 6.2 and (2.22))

0
5% fa(t,x,v) =

/ /723 /32 X, y U w, 6 (ZL’ 'U,) fd(tayaw/) +M(y>w,) fd(tayavl) -

M (z,v) fd(t Yy, w) — M(y w) fd(t,m,v)] de dw dy
/ / (v, w,e) | M(z,0") fat,z,w') + M(z,w') fa(t, z,v") —
R3 JS2

M(z,v) fa (t 2, w) — M(z,w) fd(t,x,v)}de dw . (3.37)
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3.2.2 General simulation procedure

Define (cf. (3.8), (3.24)—(3.26))

KQ) (z,v;y,w) = (3.38)
2 ||lw— v||
ih b ([0 = v+ w], 2Ll — 1)
(x,y)/ Tw—v+ull? M0+ u)du.
[w = || Jr@w—v) |w — v+ ull
KE) (z,v;y,w) = (3.39)
2 |w—v|?
4h D (||w—v+U||,1— s u)
(x,y)/ Tw—vull Mo+ u)du.
|w = v Jra—v) |w — v+ ull
Kggx(%”??%w) = M(QE,U) h(l’,y)/ Bma&((vvwve) d€ . (34(])
52

The functions Ky are obtained in analogy with K®) when replacing B by Bax
and taking the absolute value (k = 3). Note that (cf. (3.31))

Erax(y, w // ) (z, 05y, w) dvde k=1,2,3.
R3

Consider functions s such that (cf. (3.32))

|s®)| < stk) (3.41)
Assume
/@|s(k)(z,i,x,v,0)| Az, z,v,d0) = |[K® (z,v; 2;,v;)] (3.42)
and
/@sggx(z,z’,x,v,e) Az, z,v,d0) = KW (2,0, 24, v;) (3.43)

forall k=1,2,3, veR?, z (cf. (3.3)) and i =1,..., N. Introduce functions (cf.
(3.34))

gz, x,v,0) = (3.44)
Z [ W (z,i,2,0,0) + 53 (20,2 0,0) +s§lgx(z,z’,x,v,9)],
ie[l(z)

satisfying (cf. (3.41))
1Si(z,z,v,0)] < g(z,z,0,0),
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and measures

oz, @0, 0,d2) = (3.45)

Sz, 20,0 z,2,v,0) —|Si(z,2,0v,0
6Jo,z(z,x,v,0)(dZ)M gl( ) | l( )| ‘

g(z,z,v,0) +0:(d%) gz, z,v,0)

Note that (cf. (3.35))

f/[)/nf%/@ [(I)(Jo,l(Z,I,U,H)) —@(2)] |S1(z, z,v,0)] Az, z,v,dl) dvdx =

TX:)/D/R/@ (/ [0(2) - 0(2) Ao,l(z,x,v,e,dz)) a(z7,0,0) x

A(z, x,v,d0) dvdx

_ Z 5 Z// /(/ a(2)] )\071(,2,:6,@,9,(12)) x

I=1 iely(z) k=1
s®) (z,4,2,0,0) Az, z,v,df) dv dzx

SI(IIfg,X(Z,i,«T,U,Q) K]gfa)x(x,v;xi,vi)
Emax(xiavi)

Az, z,v, d@)} dv dx | (3.46)

Kr(rlgx(x, v; T, V;)

where [(7) is the index of the cluster to which i belongs. Consider functions § such
that (cf. (3.30))

/723 §(z,1,v) M(z,0) dv = E(z;,v;) . (3.47)

Introduce the measures

M (51,0, d) = b3y 00(d2) S(z0,0) s(d2) Smax(2,1,v) — 5(2,14,v) .

Smax(z 1 'U) §max(z>iav)

Note that (cf. (3.35))

i [P0 0) = @) B, ) = (3.48)
Zi:;Emax(xi’vi) /723 (/ [q)(é) - (I)(Z)} )\1(27ivvad2)) % M (z;,v)dv.

Using (3.46) and (3.48), rewrite the generator (3.35) in the form
A (z) = (3.49)
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7

> Euax(@i,v;) /

=

N

ZEmax(xi,vi)kZ; /D /R { /@ < / 5(2) - a(2)] Ao,l(,-)(z,x,u,e,dz)) <

=1

sgfgx(z, i,x,0,0)

Kr(rlgx(x, v; T, V;)

) (/ [(D(i) - q’(z)} Al(z,w’d%)) Suas206,0) e o) do.

Emax(xia Uz’)

KISQX(:C, v; T, U;)

dvd
Emax(xivvi) var

Az, z,v, d@)}
N

1 R

The representation (3.49) suggests the following algorithm:

1.

4.1.

4.2.

4.3.

4.4.

Make a time step with parameter (cf. (3.12))

N
Umax(z) =4 Z Emax(xia 'Ui) . (350)
i=1

Stop, when the final time is exceeded.

Choose an index ¢ = 1,..., N according to the probabilities (cf. (3.13))
4

Omax(2)

Emax(xiavi) . (351)

With probabilities 1/4, choose between creation (k = 1,2, 3) and deletion (go
to 5.1.).
For given 7 and k, choose x € D and v € R? according to the density

1

KW (20225, 0;) | 3.52
B Ko vsv) (352)

For given i, k, x and v, choose # according to the distribution
1

®) (2, 0) A( de) (3.53)
S 2,1, 2,0, 2, 2,0, . .
Kr(r]gx(fav;ffijvi)

max

With probability

S eny % [0, 0.0) + 5O (21w, 0,0) + 59 (25,0, 6) |

1 . 2 . 3 )
S et Sz 0,,0,0) 4+ se(z, ,,0,0) + (2, 2, ,6)|

Y

reject the creation event and go to 1.

Add the particle with position z, velocity v and sign

sign |2 &5 [s0(zd2,0,0) + 59 (2,2, 0,0) + 59z, 4,0, 0)
JE€L 5 (2)

to the system and go to 1.
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5.1. For given i, choose v € R? according to the density

1

Emax(a:iv Ui)

Smax (2,1, 0) M (x4, v) .

5.2. With probability

5(z,1,v)

l—————
Smax(zazav) ’

reject the deletion event and go to 1.

5.3. Remove the particle (¢;, z;, v;) from the system and go to 1.

3.2.3 The implicit method

Here we consider specific choices of the functions s® s and the probability
measures A satisfying conditions (3.32) and (3.41)—(3.43).

Lemma 3.3 Consider the parameter set
o= {9: O1,....08), GieT(v—uv), i= 1,...,N} (3.54)

and the measures (cf. (2.11))

Az, z,v,df) = ! / 3 [H 6,Tuiv(w)(d9,-)] M(z,v+w) dw, (3.55)

where (cf. Remark 6.7)
Tp—o(w) € T'(v; —v)

is the projection of the velocity w. Consider functions ¢*) and qﬁ’fgx such that

1g®] < ¥, (3.56)
1
/ " (2,0, y,w, Tp—o(c)) M(z,v + ¢)dc = K®(z,v;y,w)  (3.57)

1

np(x)

1090 T M0 +-0) de = | KO vig,w)] (359
R3
and

1
— / qfﬁx(x, VY, W, Ty—y(€)) M(z,v + ¢) dec = Kgfgx(x, viy,w).  (3.59)
ny () Jrs
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Then the functions
S(k) (Zv i7 z,v, 9) = q(k) (,’L’, U, Ty, Vs, 92)

and

()

max(zﬁ i? $7 U? 0) = q(k) ($7 U? ZL‘Z? U’l? 97/)

satisfy conditions (3.32) and (3.41)-(3.43).
Proof. The definitions imply, e.g.,

/ S(k)(’zu i, T, 0, (9) A(Z, €,v, d@) =
()

q(k)(x> U, Xyg, Vg, 92) A(Za z,v, d@)
S
1

= ®) (2,0, 24, 05, T —o(w)) M (2,0 + w) dw
— [ o)) Mz, 0 + )

so that the assertion follows from assumptions (3.56)—(3.59). |

Lemma 3.4 The functions

¢ (z,v,y,w,u) = (3.60)
2 Jw—v|?
4h b(llw—v+u||, w_U“—l)
(z,v) U M0+ 0 dc} Tw—vtu] |
1w =l [Jr@w—v) Jw — v+ ul
g (v, y,w,u) = (3.61)
2 |w—v|?
4h brnax (||w—?f+“||’m—1>
(z,v) U M(z,v+ ) dc} Tw—vull |
lw =l [Jr@w—v) Jw — v+ ul
¢ (z,v,y,w,u) = (3.62)
2 Jw—v|?
4 b(||w—v+u||,1— w_vu2)
h(z,y) U M(z,0+0) dc} Two—vu] |
1w =l [Jr@w—v) Jw — v+ ul
and
g2 (v, y, w,u) = (3.63)
2 lw—v|?
4 h brmax <||w—v+u||,1— v uz)
(z,y) U M(z,v+0) dc} To—oFul
1w =l [Jr@w—v) Jw — v+ ul

satisfy conditions (3.56)-(3.59).
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Proof. Condition (3.56) is obviously fulfilled. Applying Lemma 6.8 with

b( ’2|[|1v2||2 1)
p)=1, U=l
one obtains
v 2
b (“” +ull, e - 1)
T'(v) v+ ull
U Voo } [ b (o + w2t -1) i
c)de w) dw .
rw R [v + o (w) o
When replacing v — w — v and V' — up — v, equation (3.64) implies (cf. (3.24))
4h
KO vsgu) = S Mo de]
ny(z) lw =0l L/r@-)

w—v 2
b <||w — 0+ Ty (W), e — 1)
J -
R3 ||'UJ —'U“_ﬂ-w—v(w)n

Thus, conditions (3.57) and (3.58) are fulfilled for £ = 1. Condition (3.59) follows
when b is replaced by b.x . The case k = 2 is treated analogously. [ |

z,v+w)dw.

Remark 3.5 The functions
S(k)(’zu 7;7 T, v, (9) = K(k)(xv V5 iy Ui) ) S(k) (Zv 7;7 T, v, 6) = Kr(rlfa)x(xu V; L4, Ui)

max

satisfy conditions (3.32) and (3.41)—(3.43) for any choice of the probability measures
A.

Remark 3.6 A position x and a velocity v with density (3.52) are obtained accord-
ing to (3.27). The position is generated uniformly in the cell to which x; belongs.
The velocity is generated according to (3.14) in the case k = 3 and as

v="1'(v;,w,e) (k=1) or  v=uw'(v,w,e) (k=2),
where w, e are chosen according to (3.14), (3.15).

Remark 3.7 Fork = 1,2, the distribution (3.53) of the auziliary parameter 6 takes
the form

1 M
q(k) (3: v, x;, v, 0; / [H 5m U(w d9 ] (x v+w) dw —
J=1

Kggx(:)s,v;x,-,vi) M(SC)

1 / (k)
Qmax(zv U, T, Vg, in—v(w)) X
Kr(r@x(xav;fb’i,w) R?

Qr(nzzx(x v xzavza z H5 d‘g (ZIZ' 'U‘l"(U) dw
a0, 0, 4, 05, T o ) o
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We choose A, s and s according to Lemmas 3.3, 3.4 (k = 1,2) and Re-
mark 3.5 (k = 3), and (cf. (3.47), (3.10))

§(z,i,v) = / B(v,v;,e)de, Smax(2,1,V) = / Biax(v,v5,€)de.  (3.65)
52 52
The following algorithm is obtained:
Algorithm 3.8 (Implicit method)

1. Make a time step with parameter (3.50). Stop, when the final time is exceeded.
2. Choose an index i =1,..., N according to the probabilities (3.51).

3.  With probabilities 1/4, choose between creation (k = 1,2,3) and deletion (go
to 5.1.).

4.1. For given i, construct a position x € D and a velocity v € R?.
4.1.1. Generate x uniformly in the cell to which x; belongs.
4.1.2. Generate w € R? according to the density (cf. Remark 3.6)

1
Y D / Biax (vi, w, e) de | M(z;,w). (3.66)
Emax(xiu Ui) S2
4.1.3. If k=3, then choose v =w and go to 4.2.1.
4.1.4. For given w, generate e according to the density (cf. Remark 5.6)

Bmax (Uiu w, 6)

. 3.67
fgz Bmax(via w, U) du ( )
4.1.5. If k=1, then calculate v = v'(v;,w, e) and go to 4.2.2.
4.1.6. Calculate v = w'(v;, w, e) and go to 4.2.2.
4.2. For given v, x and v, construct an auziliary parameter 6 .
4.2.1. Generate w € R? according to the density
— M(x,v+w 3.68
o M@+ ) (3.69)
and go to 4.2.3.
4.2.2. Generate w € R? according to the density (cf. Remark 3.7)
1 M D
v, () L) 0

Kgfgx(x,v;xi,vi) na ()
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4.2.3. Compute
0; = 7, —o(W) , J € Iy(2).

4.3. With probability

. ‘Zjell(i)(z) £ [q(l)(a:, v, 25,0;,0;) + qP (2,0, 75,v;,0;) + KO (2, v; :)sj,vj)} ‘

D ienn(2) [qfﬁix(x,v,xj,vj,ﬁj) + gl (@, 0, 25, v5,0;) + Kr(riix(x,v;xj,vj)] ’
(3.70)

reject the creation event and go to 1.
4.4. Add the particle with position x , velocity v and sign

sign Z £; [q(l)(x,v, x5, 05, 0;) + ¢ (x,0,25,0;,0;) + KO (2, v; :Ej,vj)]

JEL 5 (2)
(3.71)

to the system and go to 1.
5.1. For given i, choose v € R® according to the density (3.66).
5.2.  With probability

- Js: B(vi,v,€) de
fSZ Buax(vi, v, €) de”’

reject the deletion event and go to 1.
5.3. Remove the particle (¢;,x;,v;) from the system and go to 1.
3.2.4 Variable hard sphere model
In the case (3.2) one obtains from (3.26), (3.60), (3.62)

K®(z,v;y,w) = =47 Cgh(x,y) M(z,v) ||v — wl|?, (3.72)

q(k) ('CC? /U7 y? w? u) =

4Csh(z,y)

[w = o]

(/ M(z,v+c) dc) |w—v+ul® (3.73)
I'(w—v)

and from (3.38)-(3.40), (3.61), (3.63) (with (3.17))

K (w, 03y, w)

max

_ 4h(z,y)
|w — v

1
(co/ —M(m,v+u)du+cl/ M(x,v+u)du),
T'(w—v) H’UJ -V _'_u” T'(w—v)
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Kg;x(z, v;y,w) =4mh(z,y) M(z,v) (co +c v — w||>, (3.75)

a¥) (z,v,y, w,u) = (3.76)

M(/ M(:B,v—l—c)dc) (C—0+cl),
lw =]l \Jrw-v) [w — v+ ull

Remark 3.9 Dueto (3.74) (cf. (3.28), (3.29)), step 4.1 of Algorithm 3.8 simplifies.

for k=1,2.

Remark 3.10 The density (3.09) takes the form (cf. (3.74), (3.76))

(ff‘(vi—v) M(z,v + u) du) <m + 01) —L~ M(z,v + )

nar(x)

(3.77)
co fl"(vi—v) m M(z,v +u)du+ ¢ fl"(vi—v) M(z,v + u)du
Ifu L v; —v, then ||v; — v +u|| > ||v; — v and
1 1
< . (3.78)
[vi = v +ul] = [Jvi — o

In accordance with (3.78), the density (3.77) can be generated using the acceptance-
rejection technique with the majorant function

<ff(vi—v) M(z,v +wu) du) (ﬁ + Cl) —L M (z,v+ w)

nar(x)

co fl"(vi—v) 7”1%_1}%” M(x,v+u)du+c fl"(vi—v) M(z,v+u)du’

The implicit method (Algorithm 3.8) takes the form:

Algorithm 3.11 (Variable hard sphere model)

1. Make a time step with parameter (cf. (3.19))

N N
Omax(2) = 167 <co ZHM(%) +c Z /m |v; — wl|| M (z;,w) dw) .
i=1 i=1 /R

Stop, when the final time is exceeded.

2. Choose an index i = 1,..., N according to the probabilities

167

Omax (%)

(co nar(x;) + 61/ |v; — w|| M (z;, w) dw) :
R3

3.  With probabilities 1/4, choose between creation (k = 1,2,3) and deletion (go
to 5.1.).
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4.1.
4.1.1.

4.1.2.

4.1.3.
4.1.4.
4.2.

4.2.1.

4.2.2.

4.2.3.

4.2.4.
4.3.
4.4.

5.1.

5.2.

5.3.

For given i, construct a position x € D and a velocity v € R .
Generate x uniformly in the cell to which x; belongs.
Generate w € R? according to the density (cf. (3.17))

4
W;Tv) (co+ ex ljos = wll) M (a1, w). (3.79)
If k=3, then choose v=w and go to 4.2.1.
Generate e € 8% uniformly, calculate v =v'(v;, w,e) and go to 4.2.2.

For given i,z and v, construct an auxiliary parameter 0.

Generate w € R? according to the density M (z;,v + w)/na(z;) and go to
4.2.4.

Generate w € R? according to the density M (z;,v + ) /nys(;) .
With probability (cf. Remark 3.10)

co
T E——er T C
[r—— )

1—

go to 4.2.2.
Compute 0; = 7, (W), j € Liy(2).
With probability (3.70), reject the creation event and go to 1.

Add the particle with position x , velocity v and sign (3.71) to the system and
go to 1.

For given i, choose w € R® according to the density (3.79).
With probability

Cs llvi — w||?

co+ e l|vi —wl|’

reject the deletion event and go to 1.

Remowe the particle (g;, x;,v;) from the system and go to 1.

In the case § =0 (with ¢y = Cy and ¢; = 0), Algorithm 3.11 takes the form:

Algorithm 3.12 (Pseudo-Maxwell molecules)
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4.1.
4.1.1.
4.1.2.
4.1.3.
4.1.4.

4.2.

4.2.1.

4.2.2.

4.2.3.

4.2.4.

4.3.

Make a time step with parameter
N
16 7 Cy Z na(x;) .
i=1
Stop, when the final time is exceeded.
Choose an index i =1, ..., N according to the probabilities (3.20).

With probabilities 1/4 , choose between creation (k = 1,2,3) and deletion (go
to 5.).

For given i, construct a position x € D and a velocity v € R3.
Generate x uniformly in the cell to which z; belongs.

Generate w € R? according to the density M (z;,w)/ny(x;) .

If k=3, then choose v =w and go to 4.2.1.

Generate e € 8% uniformly, calculate v = v'(v;,w, e) and go to 4.2.2.
For given i,z and v, construct an auxiliary parameter 6 .

Generate w € R? according to the density M(x;,v + w)/nay(z;) and go to
4.2.4.

Generate w € R? according to the density M(z;,v + ) /ny(x;) .
With probability

[vi = ]

1-— =
[0i = v+ 7o, (W]

Y

go to 4.2.2.
Compute 0; = 7, (W), j € Ly (2).
With probability (cf. (3.72), (3.73), (3.75), (3.76))

B ZjEIL(i)(Z) 6]‘ h(fﬁ, ZIJ'J) [m (fl"(vj—v) M(QU, v+ u) du) — T M(,'L', U)i| ‘
2 ety () M ) [uvj—vu ||12)j—v+6j|| (fr(vj—w M(z,v +u) du) +m M(z, “ﬂ

Y

(3.80)

reject the creation event and go to 1.
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4.4. Add the particle with position x , velocity v and sign

sign Z gj h(z,z;)x (3.81)

JE€L 5 (2)

v
M(x,v+u)du | — 7 M(xz,v
lv; — o ||Uj—v+9j||<F(vj—v) ( ) ) ( )]>

to the system and go to 1.

5. Remove the particle (e;,x;,v;) from the system and go to 1.
In the case § =1 (with ¢y = 0 and ¢; = (), Algorithm 3.11 takes the form:
Algorithm 3.13 (Hard sphere model)

1. Make a time step with parameter

N
167r012/ Jv; — w|| M (25, w) dw . (3.82)
=1 /R?

Stop, when the final time is exceeded.

2. Choose an index i = 1,..., N according to the probabilities

1
S50 Jrs Mo — wl| M (2, w) dw

/ |v; — wl|| M (z;,w) dw. (3.83)
R3

3.  With probabilities 1/4, choose between creation (k = 1,2,3) and deletion (go
to 5.).

4.1. For given i, construct a position x € D and a velocity v € R?.
4.1.1. Generate x uniformly in the cell to which x; belongs.

4.1.2. Generate w € R? according to the density

1
S i = u|| M (2, u) du

|vi — wl|| M (2, w) . (3.84)

4.1.3. If k=3, then choose v =w and go to 4.3.
4.1.4. Generate e € 8% uniformly and calculate v = v'(v;, w, €).

4.2. This step is redundant.
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4.3.  With probability (cf. (5.72), (3.73), (3.75), (.76))

ety 5 0@ 23) [t (Jog, o M@0+ u)du) = 7 M(z,0) o = o |
S et 1@ 23) [y (Jo, o M@ v +u) du) + 7 M(z,0) Jlo = ]

(3.85)

reject the creation event and go to 1.

4.4. Add the particle with position x , velocity v and sign

sign Z gjh(z, xj)x (3.86)

J€L)(2)

2
[M </<> Miz,v+ ) d“> —m M(z,v) lo~ vjn])

to the system and go to 1.

5. Remove the particle (e;, z;,v;) from the system and go to 1.

3.3 Implementation issues
3.3.1 Generating distributions
waiting time parameter

The integrals in (3.21) and (3.82) are explicitly known so that the sums can easily
be updated after each jump. Indeed, Lemma 6.6 with (cf. (2.11), (2.12))

V= V(e,0) = un(z) —v, T=T()= %@) (3.87)
implies
/ |lw —v|| M(z,w) dw = (3.88)
R3
np(x) 27(x) {exp (0% + (% + QU) gerf(U)] )
where
oo la) o
U=Ulev) = 27T (z)
and
erf(s) = % /Os exp (—r?) dr, s>0. (3.89)



index distribution

The generation of the probabilities (3.22) and (3.83) is performed using the acceptance-
rejection technique. Since

lw = vf| M(z, w) < lw—upn(@)]| Mz, w) + lus (2) — ol M(z,w) — (3.90)

and (cf. (2.11) and (3.88))
/ [l = (@) Mz, w) + l[uae(w) = ol M(z,w) | dw = (3.91)
R3

mar(2) |2 V2T@)/7 + flun(x) = v

one obtains
/R =il M, w) dw < nag(e) [crel(z, m(i)) + 2 /2 T(xy) /w} . (3.92)

where m(i) is the index of the cell to which particle i belongs, and

Cra(z,m) = max |vs — unr(zs)| m=1,...,1.. (3.93)
1., €EDm

Thus, a cell index is generated according to the probabilities
ey, Tt (1) |z, m(@)) + 2 /2T (i) /7

S mar(@) ez, m(@)) + 2 2T () )

Inside the cell, the index i is chosen uniformly and accepted with probability (cf.
(3.88))

V2T (z;) /7 [GXP (U (i, v:)?) + (y(xlm) + 2U($i=”@'>> g erf(U(zs, vi))

Crel(z,m(7)) + 22T (x;) /7

Remark 3.14 There are many alternatives, when applying the acceptance-rejection
technique. Instead of the right-hand side of (3.92), one may use a uniform magjorant
over all cells. Instead of (3.93), one may also use shells in the velocity space (cf.
[16]) in order to obtain a more precise majorant.

velocity distribution

The generation of the densities (3.23) and (3.84) is performed using the acceptance-
rejection technique with the majorant (3.90). The velocity w is generated according
to the density

[w = upr ()| M (i, w)
2na () /2T () /m
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with probability (cf. (3.91))

2
2+ﬁU(l’i,Ui)’

and according to the density M (x;, w)/ny(x;), with the remaining probability. It
is accepted with probability (cf. (3.90))

[w — i

lw = war (@)l + [Junr (i) — il

Remark 3.15 The acceptance rate in dependence on x;, v; takes the form (cf. (3.88),

(3.91))

2U (25, v0) + ey | S et (Ui, 0)) + exp (Ui, 1)?)

2 + ﬁU(IZ,UZ)

Ezpression (3.95) equals 1 at U = 0 and U — oo. It has a minimum of about 0.7
for U between 1 and 2. Thus, (3.90) seems to provide a rather efficient majorant.

(3.95)

rejection probability and sign

The expressions (3.80), (3.81), (3.85), (3.86) are explicitly known, due to the formula

_ (@) oxc (um(x) —v, 0 — v)?
/F(w_v) M(x,v + y) dy - \/7_TCM(5(7) p ( CM(SL’)z Hw _ ,UHQ ) s (396)

which follows from Lemma 6.8.

3.3.2 Comments on the implicit method

The implicit method (Algorithm 3.8) is ready for implementation provided that
the collision kernel B and its majorant kernel By, are such that the integrals (cf.
(3.65))

/ B(v,w,e)de and / Bhax (v, w, €) de (3.97)
52 52

as well as the quantity Fp.x (cf. (3.11)) are explicitly known (and finite). All neces-
sary distributions (3.51), (3.66)—(3.69) can be generated directly or by appropriate
acceptance-rejection techniques. There are some specific parameters involved in the
method. Namely, rather general functions By, ¢*) and qr(r]fix are used instead of
the simple choices

Buax =B, ¢®W=K®_ & —|g® (3.98)
The following comments are to illustrate the utility of these parameters.
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When choosing the parameters as in (3.98), explicit knowledge of the quantity
E is necessary for performing Steps 1 (waiting time) and 2 (choice of the index) of
the implicit method. Explicit knowledge of K* is needed for calculating both the
acceptance probability (3.70) and the signs (3.71) of the new particles (Steps 4.3
and 4.4).

The implicit method does not assume that the integrals in the representations
(3.24), (3.25) of the functions K*) can be calculated analytically. Neither it assumes
explicit knowledge of the quantity E defined in (3.10). This becomes essential even
in the study of the variable hard sphere model. In this special case one obtains

_ 4Csh(z,y)

K® (2 vy, w) = / |w — v 4 ul|’™ M(z,v+u)du, k=12,
I'(w—v)

|w — vl
and

E(x,v):47rcﬁ/ v — wl||® M(z,w) dw.
R3

These expressions do not seem to be analytically tractable in general, when [ €
(0,1).

If the function E is explicitly known, then one can choose By.. = B . It follows
that

Emax = E? Kl’(l’]fa)x - |K(k)| Y (k) (z7v7y7w7u) = |q(k)(x7?j7y7w7u)| Y

Gmax

and several steps of the algorithm simplify. We call the corresponding algorithm
the “semi-implicit method”. An example is Algorithm 3.12 for pseudo-Maxwell
molecules.

If the functions K®) as well as the quantity E are explicitly known, then one
can make the choice (3.98). The behavior of the process does not depend on € so
that the generation of # becomes redundant. We call the corresponding algorithm
the “explicit method”. An example is Algorithm 3.13 for the hard-sphere model.

Remark 3.16 If the first integral in (3.97) is not explicitly known, then one can
introduce an additional parameter e € 8% and consider

1

np(x)

N
Az, z,v,df) = /723 [H Ory,o(w) (d0;) x p(e) de| M(z,v+w)dw,
i=1

where p is a strictly positive probability density on 8%, and (cf. (5.26))

B(v, v, €)

Gz 4 0) = —M
57(z,1, 7,0, x,v
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3.3.3 Clustering and cancellation effect

Here we discuss the choice of the partition {[;(2)} (cf. (3.33)). These index clusters
are involved in Steps 4.3 and 4.4 of the implicit method (Algorithm 3.8). On the
one hand, they influence the cancellation effect via the rejection probability (3.70).
The acceptance rate for handling the source term (creating particles) is (cf. (3.46))

L(Z fD f'RS f@ |Sl 2, T,V (9>|A(Z T,V d@) dv dx

L(z ) (399)
fD fR‘S f@gl 2,2,V 9) A(Z,l’,’(],d@) dv dx
where (cf. (3.34))
Si(z,x,v,0) = (3.100)
Z € [ (z,v, zi,vi,0;) + ¢2 (2, v, 25,05, 0;) + K@ )(:p,v;zi,vi)}
ZEIL )
and (cf. (3.44))
g(z,z,0,0) = (3.101)
Z [qgix('xa v, X4, Vi, 92) + qgix(x7 U, Ty, Vs, 92) + Krg’?gx(xu v; Zg, UZ):| .
iEIl(Z)

Note that the denominator in formula (3.99) does not depend on the choice of the
clusters, since

L(z)
Z// /gl(Z,x,U,H) A(Z,.Z’,U,d@) dvdx =
I= R3

Z/ / / qmax X U,.Ti,Ui,Hi) +qr(ri)1x(x7v7xi7vi79) +Kr(r?ax(x7v;xi7vi)i|-
R3

When positive and negative terms in expression (3.100) cancel each other, the prob-
ability of rejection becomes bigger so that less particles are created. On the other
hand, big clusters reduce the efficiency of the method, due to the summations in-
volved in formulas (3.100) and (3.101). Thus, it is important to avoid frequent
summations over big subsystems.

The following two extremal choices illustrate the problem.

Example 3.17 (one cluster) If there is only one cluster

L(z) =1{1,...,N},

then the nominator in formula (3.99) takes the form

X

q(l) (ZE', U, Tj, Uy, 91) + q(2) (l’, U, T, Vg, 91) + K(3) (l’, V5 T, Uz):|

pJr3 Je
Az, xz,v,d0) dvdz .
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This expression is the smallest over all choices of cluster systems. Thus, the can-
cellation effect is the strongest (less particles are created), but the effort for each
particle significantly increases.

Example 3.18 (single particle clusters) In the case of single particle clusters,
I(z) =A{l}, l=1,...,L(z) =N,

the nominator in formula (3.99) takes the form

N
Z// /}q(l)(zvv>$iavi>9i)+q(2)(x7'uvxiavia9i)+K(3)(x7v;xiavi)‘ X
i—1 YD JR3Je©

Az, x,v,d0) dvdz .

This expression is the biggest over all choices of cluster systems. Still there is some
cancellation due to sign change of ¢V, ¢® (positive) and K (negative).

There is considerable freedom in choosing the clusters. It is possible that they
depend on the state of the process, or on the Maxwellian. The clusters can be
changed at the beginning of each collision time step.

In order to obtain sufficient cancellation, the clusters should combine positive
and negative particles with similar velocities. The last example provides a choice
that seems to be quite reasonable.

Example 3.19 (clustering with velocity cells) Let {C;},—1.. 1 be a finite par-
tition of the velocity space R® and

L(z) = {z'zl,...,N - eCl}, I=1,....L.
If there is a big cloud of particles with different signs but similar velocities, then

these particles are actually redundant and will be canceled rather efficiently by the
algorithm.
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4 Collision step for the nonlinear BE

In this section we first study the evolution of the particle system (2.13) during the
collision step, when only the nonlinear part on the right-hand side of equation (2.21)
or (in the weak form) (2.23) is taken into account. We generalize the collision process
and the source-sink process from the previous section to the nonlinear case. Finally,
the algorithms for the linear and the nonlinear parts are combined to cover the full
Boltzmann equation.

Consider states z of the form (3.3). In the algorithms, the sub-processes in
different spatial cells (cf. (2.9)) are generated independently. Let

Np(z)=4#{i=1,...,N : z; € Dy}, m=1,...,1., (4.1)

denote the number of particles in the cell D,, .

4.1 Collision process
4.1.1 Generator and limiting equation

Introduce the generator
g &
Av(2) = L2 3 [ (@020, 5.0) - ©(a) hla) Blunoys)de (1)
2 = s
where J replaces (g;,%;,v;) and (¢;, z;,v;) by
o ife; =¢; =1, then
(g4, 2,V (vi,v5,€)) and (g5, 25, W (v, v5,€)) (4.3)
o ife; =1ande; = —1, then

(—51',%,21,(%”3',6)% (Ejalfj,w,(vi,vj,t?)) and (Ei,xi,vi), (Eiaﬂfz’,%)
(4.4)

o ife;=—1ande; =1, then

(€02, V' (viyvg,€)), (—ejmy,w'(visvg,e))  and  (g5,25,v5), (85,25, v5)

o ife; =¢; =—1, then

(—ei, i,V (v, v5,€)), (=5, 25, w (v, v5,€))  and (4.6)

(givxiu Ui) ) (givxi7 Ui) ) (5j,$j,'Uj) ) (€j7 xj’ Uj) .
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According to (4.4), (4.5), a “+/—"-collision creates two negative particles and dou-
bles the old positive particle. According to (4.6), a “—/—"-collision creates two
positive particles and doubles both old particles.

Introduce I™ and I~ as the sets of indices corresponding to positive and negative
signs, respectively. Then one obtains

Z h(x;, ;) B(v;,vj, €)X

i,je€lt
|:5i (P(xiavl(via vy, e)) + €j @(xj,w'(vi, vy, e)) — & p(xs,v;) — €j 90(%'7%‘)] =
Z h($i7xj) B(Uivvj7e) X (47)

i,j€lt

[90(% v'(vi, 05, €)) + (g, w'(vi, v5, €)) — (s, vi) — ol Uj)]&' &

Z h(xivxj) B(Uiuvjve) _gigo(xivv/(viavjve))_'_

elt, jel—
8.7 QO(ZZ'], 'UJ,('Ui, Uj) 6)) + 2 g 90(1% Ui) — & SD(IH Ui) - gj QO(ZEJ, U])i| =
S A ) Blu,vy.c) x (4.5)

ielt, jel—
[, v/ (01, 5, €)) + (a5, 0 (05,05, €)) = (i, v5) = pla5,07)| i
and

Z h(xlu xj) B(”h Uy, 6) [ — & (p(xlv U/(Uiv Uy, 6)) —&j QO(I']‘, w/(viu Uy, 6))+
ijer-
2ei (i, vi) + 25 (x5, v5) — & 0(mi,vi) — €5 (5, Uj)} =
Z h($i7xj) B(UZ',U]‘,Q) X (49)
ijer-
[‘P(xia U/(Uia U5, 6)) + QD(ZE]', ’LU/(U,', U5, 6)) - QO(ZEZW Ui) - QD(ZE]', Uj)] Ei &y
Using the test functions (3.5) and (4.7)-(4.9), one obtains

n)\2 N(")(t)
av(z(0) = LS 00 00 nx ). X0 %

/ BV (@), V" (0),0) [ (X (), (V" (0), V" (1), ) +
S2

(X)W (VI (1), V1), €) = p(X(0), VIO (1) = p(X{(8), ViV (1)) | de

7

- //R//R/ ol (0,0, ) + @y, ' (0,0, ) = o, v) = ol w)]

y) B(v,w,e) de n™(t, dy, dw) p"™(t, dz, dv)
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leading (as n — 00) to the limiting equations

% / /R ol v) fult, v, 0) dvde = (4.10)

or

faltw,0) falt g, ) = falt,2,0) fult,y,w) | de duwdy

4.1.2 General simulation procedure

Rewrite the generator (4.2) in the form

AD(2) = / [B(3) — B(2)] Mz, d3) (4.11)

Eo(z,m)Z/ Blosv,e)de,  Viyj: ana; € Dy (4.12)
82

The representation (4.11) suggests the following algorithm:

1. Make a time step with parameter (cf. (4.1))

1 ~
31O g™ N, (2)? Ey(z,m) . (4.13)

Stop, when the final time is exceeded.
2. Choose indices 7,j : x;,x; € D,, uniformly.
3. With probability

- = B~(v,-,vj, e) de
E0(2>m)

reject the indices 4, j and go to 1.
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4. For given i, j, generate e € S? according to the density

B(v;,vj,€)
fszB(vi,vj,u) du’

5. Replace (¢;, x;,v;) and (g, z;,v;) according to (4.3)-(4.6) and go to 1.

In the variable hard sphere model (3.2) we choose (cf. (4.12))

Eo(z,m) = 47 Cp Vier(z,m)?,
where

Via(z,m) > [lv; = v, Vi,j 1 2,25 € Dy . (4.14)
The general simulation procedure takes the form:

Algorithm 4.1 (Variable hard sphere model)

1. Make a time step with parameter

Ny (2)? A
|Dm| g m(z) ‘/rel(zam)

Stop, when the final time is exceeded.
2. Choose indices i,j : x;,x; € Dy, uniformly.
3. With probability

D=l
‘/rel(z7 m)'B ’

reject the indices i, 7 and go to 1.
4. For given i,j, generate e € S* uniformly.

5. Replace (¢;,x;,v;) and (€;,x,v;) according to (4.3)-(4.6) and go to 1.

4.2 Source-sink process
4.2.1 Generator and limiting equation

source term

Introduce
thl)(xvv;ylawlay%u@) = (415)
2 |lwa—v|1?
4h h b(!lwz—erUH, w_v“—l)
(w,y1) h(z, y2) / lwa—vtul hs(v — wy + ) du,
Jwa — v I (ws—0) [wa — v+ ul
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K§2)($7U;yl>wlay27w2) = (416)

2 [Jwa—vl?
hio o) | b (e — v+ uf, 1 — Al
T'(w2—v)

) hs(v —wy + u) du
lws — o] T (v =wi+u)

and

K§3) (, 0591, w1, Yo, wo) = —h(z,y1) h(z,y2) hs(v — w1) /2 B(v,wq,e)de, (4.17)
S

where hs, § > 0, is a rotationally symmetric smoothing kernel on R?. It follows
from Lemma 6.3 and Corollary 6.4 (with v(v) = hs(v — w1)) that

// p(a,v) K (@, 030, wr, 0, ws) dv do = (4.18)
D JR3

/ / QO(ZI}',’U) V(gk)(ylvw17y27w2;dx7dv>7 k= 1727
D JR3

where
Vél)(ylawlay2>w2;dzadv) = (419)
h(.ﬁ(}, yl) h(l‘, y2) dl‘/ / 5@’(w2,u,e) (dv) B(wz, u, 6) h(;(u — wl) de du
R3 JS2
and
V§2)(ylawlay2>w2;dzadv) - (420)
h(x>y1) h(I7y2) dl’/ / 5w’(w2,u,e)(dv) B(QUQ,U,€) h(s(u —'LUl) dedu .
R3 JS2
Define

Es(wy,wy) = / / B(ws, u, e) hs(u — wy) de du (4.21)
R3 Js2
and note that
/ h(xvyl) h’(xu y2) dr = h’(ylu y2) .
D

It follows from (4.17)—(4.20) that (cf. (6.8))
/D/R3 |K§k)($>v;y1,w1,y2,w2)| dvdz = h(y1,y2) Es(w1, ws) .

Consider probability measures As and functions sgk) such that (cf. (3.32))
/@sgk)(z, i,7,x,0,0) As(2,1, z,v,d0) = ng) (@, v; 24,03, 24, 0)) . (4.22)
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Introduce the terms (cf. (3.33))
3
Ssalz,i,2,v,0) = g™ Z Ei€j Z s((;k)(z, i,j,,v,0). (4.23)
JEL(2) k=1

Consider the generator

N L(z)

Asd( ZZ// / (Troa(zis2,0,0)) — B(2)| x
=1 =1 R?
|Ss.(2, 0, 2,0,0)| As(2,1, 2, v,d0) dv dz, (4.24)

where Js50,(2, 4, z,v,0) adds a particle
(sign Ss,(z, 4, z,v,0),z,v)

to the system. Using test functions (3.5), one obtains (cf. (4.18)—(4.20))

N L(Z
As®(Z Z // / x,v) S5 i(Z(t),4,2z,v,0) As(2,1, x,v,db) dv dz
=1 R3
N
=<ww2km@m2//JMMKWmmmmwm&mwmmw
ij=1 k=17 D JR?

=@Wiwmm[@LMMMWmeWmmwﬂx

ij=1

h(z, X;(t X;(t)) B(V;(t),u,e) hs(u — Vi(t)) de du dx —

(™) i t)e;(t //723/52 x,v)

h(z, X;(t)) B(v,Vi(t),e) hs(v — V;(t)) de dv dz

— //7@//713//7@/52 (2,0 (wg, u, e)) + p(x, w' (wy, u,e))| x

h(z,y1) h(x,ys) B(ws, u, €) hs(u — wy) dedudx,u (t,dyl,dwl) (")(t,dyg,dwg) —

I o o Jo s e

h(z, y1) h(z, y2) B(v, ws, €) hs(v —wl)dedvdxu (tadyludw1>:u(n)<tv dya, dws)

leading (as n — o0) to the expression

/D /R / /R / /R /S v (ws,w, €)) + ol w! (ws, w, €)) |, 1) B, o) %

B(wsg, u, e) hs(u —wy) de dudz fq(t, yr,w1) fa(t, y2, ws) dwy dy; dws dys —

//733//713//733/5 (2, v) h(z, 1) bz, y2) ¥

46



where

U , Wa, €

93?/2

ha U - wl) de dvdx fd(tL Y1, wl) fd(tL Y2, wz) dwy dy, dws dys

//R/ /R/S (7,0 (w2, u, €)) + p(x, w'(ws, u, e))] X

w2>u 6) fd (t,[lf,U) fd(t7y2>w2) deddededy2 -

/LJéizm

:L’yg

(v, wy, € )fd (t,z,v) fa(t,y2, ws) de dv dz dwy dys

//723//7@/82 (z, (v, w, €)) + p(z, w'(v, w,e)) |

B(v,w,e) fd (t,x,w) fa(t,y,v) dedwdzxdvdy —

/A/LLﬁw

)

1

and (cf. (2.7), (2.22))

sink term

B(v,w,e) fd V(t, 2, w) fa(t, y,v) de dwdz dv dy,

O(t,z,v) =/ hs(v —u) fq(t, z,u) du
R3

O (¢, 2, 0) = /D W) 10t y,0) dy.

Consider functions 5 such that (cf. (4.21))

Introduce the terms

and

Syi(z,i,0) =

N

/ 55(2,7,1,v) hs(v) dv = h(x;, ;) Es(vj,v;) .
R3

S(S,l(zaiav) = g(n) Z 5j§6(27j7iav)7

JEL(2)

Sﬂ;,l(z, i, 'U) s if Sﬂ;,l(z, i, 'U) Z 0 s
0 , otherwise,

, otherwise.

. -8 z,t,v), if S z,t,v) <0,
S(g’l(Z,Z,'U):{ 0 671( ) 671( )
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Consider the generator
(2)

Apd(= ZZ/ {[ o(2.1)) — ()] S5y(z.00) + (4.30)

[q)(jl(z, i) — cp(z)} CHIERS v)} hs(v) dv |

where Jy(z,1) adds a particle (g, 2;,v;) to the system and J;(z,4) removes particle
(€4, x4, v;) from the system.

Using test functions (3.5), one obtains

Ap®(Z(t)) =

: /L/AALI“

B(v,u,e) hs(u — w) de du p,(t, dy, dw) p,(t, dz, dv)
leading (as n — o00) to the term (cf. (4.26), (4.27))

obe e Joe

B(v,u,e) hs(u —w)dedu fq(t,y, w) fa(t,z,v) dy dw dx dv
s

L
= b Jod,
Dbl

Note that fé is constant in the cells.

/ o(x,v) B(v,u,e) féé)(t,m,u) fa(t, z,v) de du dz dv (4.31)
3.J82

/ / (@

Rr3 Js2

/ / oy, 0) b, y) Blo,w,€) 7Ot w) falt, y, v) de dy dw dar do.
R3 JS2

, ) h(z,y) B(v,w,e) féé)(t, x,w) fq(t, z,v) de dy dw dz dv

limiting equation

According to (4.25) and (4.31), the process with the generator
1
3 (s + 4)
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corresponds to the limiting equation (cf. (2.20))

di/ /723 o(z,v) fa(t,z,v) dvdr = (4.32)

//R//R/S (z,0'(v,w, ) + @z, w' (v, w, €)) — p(z,w) — Py, v)

y) B(v,w,e) fd (t z,w) fa(t,y,v) dedwdydvdx .

Removing the test function one obtains the equation

fd (tvxvv)fd(tava)_fd (tvmvv)fd(tvva)_fcg)(tvva)fd(tvxvv)}dedw

= %/723 /S; B(v,w,e) [fcgé)(t,x,w/) fd(tvxvv/> +
T2 Jults e w) = FO(E 0,0) falt 2 w) = J§ (1, w) falt 2, 0) | de duw.

Note the analogy with (3.36) and (3.37).

4.2.2 The implicit method
source term

Lemma 4.2 Let the smoothing kernel hs be a Mazwellian, i.e.

1 vl
h(;(U) = W exXp <—W s 60>0. (433)

Consider the parameter set (3.54) and the probability measures (cf. (3.55))

As(z,i,z,v,df) = / [Haﬂu ) (d6; ]h(;(v—v,-jtw)dw.
j=1

Consider functions

4 h(z,y1)h(x,y
qél)(x7v;y1>wlay2aw2>u) = (||w21)_'l(}|| 2)X (434)
2 ||wa—v||?
b(y|w2 — v+ |, el 1)
/ hs(v —wy + ¢)dc ,
T'(w2—v) ||w2—v+u||
4 h(x,y;)h(x,
Q§2)($7U§yl>wlayz>w2>u) = (||U:1ygl)— ,l(}H yz) (435)
w2 —v 2
b(||w2 —v+ul,1— M)
/ hs(v —wy + ¢) de Ty
T(wz—v) Wa U"‘UH
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and
q(g?’) (x,v; Y1, W1, Yo, Wa, u) = K(gg)(:c,v; Y1, W1, Y2, Wa) . (4.36)
Then the functions
sgk)(z, i,j,z,0,0) = qgk)(:c,v, T, Vi, Tj, V5, 6;) k=1,2,3, (4.37)
satisfy assumption (4.22).

Proof. One obtains
/ (1)(2' i,7,x,0,0) As(z,1, z,v,dl) =
©

/723 qél)(aj, U, Ty, Vg, T, U, Ty —o (W) hs(v — v; + w) dw

- Ah(z,x;) h(z, x;) / hs(v —v; + ¢) dc
|lv; — v I'(v;—v)

2 ||v; —v||2
b <||vj — v+ Ty, (W), ||vj_v17iujf|l(w>||2 B 1)
/ hs(
RS

[0 = v+ ;o (W)

X

v —v; +w)dw

so that (4.22) (with & = 1) is a consequence of Lemma 6.8 (cf. (3.64)) and (4.33).
The case k£ = 2 is treated analogously, and the case k = 3 is obvious. |

Define Ké o s Eomax » qgglax and sgﬁzlax in analogy with (4.15)—(4.17), (4.21) and
(4.34)—(4.37), respectively, with b replaced by by.x, and taking the absolute value
(in case k = 3). Introduce an upper bound

E&,max(zvm) Z Eé,max(viuvj> ) VZ,j : .CL’Z',LU]‘ € Dm . (438>

Consider functions (cf. (4.23))

3
g(gl(Z,Z,LUU(g _g Z ZS Z,’l,j,flf’U&)

jEIl(z k)zl
and measures (cf. (3.45), (4.24))

Nz, 0, x,0,0,d2) =

~ ‘55,l(27 7;7 €, v, (9)|

2,0, 2,0,0) — |S5i(2, 4, 2,0, 0)|
5 2,0,X,V d - 7 '
Jsoa(zan)(42) gs1(2, 4,2, v,0)

- 95,1(
* 5Z(d2) g5,l(zui7xavat9>

The generator (4.24) takes the form

Ag®(z i::LZ:)/D/RS/@ (/ [@(2)-@(2)} )\570,l(z,i,x,v,9,d,§)) X

9s1(z,0,2,0,0) As(2,1,x,v,d0) dv dx
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_ ég/D/R/ (/ a(2) >\5,071(j)(z,i,x,v,9,d,§)) «

sémax(z i,j,x,v,0) As(z, i, z,v,d0) dvdx

N
— g(n) Z h(IZ‘,SL’j) Eémax(vi7vj) X

Z / /R { / < / () - @(2)| )\5,071(j)(z,i,x,v,9,d,§)) x (4.30)

A : do thljnax(x’v;xi’w’xj’vj)d d
ot v ) e Pl y)

sémax(z,z,j,x v,0)

K5 max(x U] T4, Uy T, Uj)

95" 11 ) (B0 — 1) [ 2~ 2] .(a2),

i,7=1
where [(7) is the index of the cluster to which the particle j belongs and m(i) is the

index of the cell to which particle ¢ belongs.

sink term

Counsider the function

55(2, o1, 0) = hlas, @) / Blvs,v; — v, €) de, (4.40)
82

which satisfies assumption (4.28). If Ej is explicitly known, then one can choose (cf.
(4.21))

§5(Z,j,’i,1)) = h(flﬁi,l’j) Eg(Uj,Ui) . (441)

Define $5max in analogy with (4.40) and (4.41), respectively, where B is replaced by
Binax - Consider functions (cf. (4.29))

g(SlZ'lU Z Sémaxzj,l ’U)
Efl(z)
and measures
Xl,l(zaavvdg) -
S5(z, 1,V S (z i v P o) — 1S .
6] 2,0) (dZ) ~ ( ) —|—(5J 20) (dz) ¥ +5z(dé> 9571(2,2,})) | 6,I(Z,Z,U)| .
0 g (Z7Z7U) 1 gél(z’l,v> g5’l(277l’ ,U)

The generator (4.30) takes the form

/RS </ [@(2) - <I>(z)] Xl,l(z,i,v,dz)) Gsa(2,4,v) hs(v) d
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_ f: /R 3 < / ) = 2()| A (2. dz)) S22, 1, 0) ha(v) du

’l]:l
N ~
- Z/ (/ @(2)] )\1,l(z’)(z,j,v,d2)) 8s.max (2,1, J,v) hs(v) dv
i,7=1 R3
N
= g™ h(wi, 7)) Esmax(vi, v;) % (4.42)
1,j=1

L ([ [o6) - 00 huodovan ) gt do
>

h(xi,xj)<f?5,max(z,m(i)) — E&max(vi,uj)) / [cp(z) _ cp(z)} 5.(dz).

pathwise behavior
The representations (4.39) and (4.42) suggest the following algorithm:
Algorithm 4.3 (Implicit method)

1. Make a time step with parameter (cf. (4.1))

2 ~

Do 9™ Ny (2)? Esmax(2,m) . (4.43)
Stop, when the final time is exceeded.

2. Choose indices i, : x;,x; € Dy, uniformly.

3.  With probability (cf. (6.19))

fRS fSQ Bmax(’Uj, ’LL, 6) Mvi,5(u) de du

1— =
E&,max (Zu m)

, (4.44)

go to 1.
4. With probabilities 1/4 , choose k = 1,2,3 or go to 6.
5. Perform a jump according to the source term with index k .

5.1. For giveni,j, generatex € D andv € R?® according to the density (cf. (4.17)-

(4.20)

1 0

T,V;T;, Vi, Lj,Vj).
h(xiaxj)E(S,max(Ui,'Uj) 6max( 1R Ty ])

5.1.1. Generate x uniformly in the cell D,,
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5.1.2.

5.1.3.
5.1.4.

5.1.5.
5.1.6.
5.2.

5.2.1.

5.2.2.

5.3.

5.4.

Generate w € R? according to the density
1
T (1 ) Bmax iy Wy d Mv- .
E5,max(viyvj> <Az (Uj w 6) 6) “5(’(1])

If k=3, then choose v =w and go to 5.2.

For given w , generate e € 8? according to the density

Binax(vj, w, €)
Js2 Bmax(vj, w,u) du

If k=1, then calculate v = v'(v;,w, e) and go to 5.2.
Calculate v = w'(vj, w, e).

For given 1,7, x and v, generate the auxiliary parameter 6 according to the
distribution (cf. Remark 3.7)

1
s (2,2, 0,0) As(z, 4, 2,0, d6) .
(x,'U;xi,'Ui,l'j,Uj) ’

%0

d,max

Generate W € R? according to the density

1 - -
Q§f€131ax(zv v, T, Vi, Tj, Uy, ij—v(w)) Mvi,é(v + ’LU) .

K(gi)]ax(:c,v; T, Vi, Tj, Vj)
(4.45)
Compute
Op = Ty, —0(W), a € Ii;)(2).
With probability
| Papebz0,0)] (4.46)
Gs() (2,0, 2,0, 0)
ZO‘efl(n(Z) Zizl i Ea qgk) (,v, 24, Vi, Ty, Vary Oy
Zaell(j)(z) 22:1 qgizlax(xa U, Ty Vi, Lo, Vas o) 7
go to 1.
Add the particle with position x , velocity v and sign
sign Ss(j) (2,4, x,v,0) = (4.47)

3

Sign Z Zgi €a qgk)(x7vvxiaviaxaava79a)

Q’EIL(J) (Z) k=1

to the system and go to 1.
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6. Perform a jump according to the sink term.

6.1. For given i,j, generate v € R® according to the density
[Dm| -
= 7~ Sémax\%,?,],V MO,(S v).
E&,max(vhvj) ( ) ( )
6.2. With probability

o |g5,l(i) (Za j7 U)| —1_ Zae[l(i)(z) a §5(Z’ Oé,j, U)

1—= . - —
g6,l(l) (Z7 j’ /U) Zae[l(i) (Z) 857max(z7 OK, j? U)

go to 1.
6.3. If

Z €a§5(Z,Oé,j,'U) > 07

OcEIl(i)(Z)
then delete particle i and go to 1.

6.4. Double particle i and go to 1.

4.2.3 Variable hard sphere model
In the case (3.2) one obtains from (4.15), (4.16), (4.21), (4.34)-(4.36)) (with (4.33))

KO (2,051, w1, 4o, ws) = (4.48)
4Csh h
B ($7y1> (x7y2)/ ||w2—v+u||ﬁ_1 Mwl,é(v+u> du,
I'(w2—v)

lws = o]

Es(wy,wy) = 4w Cyg ||wq — u||5 My, 5(u) du ,
3

R

q((;k)(x’ VY1, W1, Y2, W, u) —

4C3h h
8 (I,yl) (.flf,y2) (/ Mw1,(5('U +C) dC) ||'lU2 —v +u||ﬁ_1’
||’LU2 - UH (w2 —v)
(3)

g5 (@, v; 91, w1, Y2, Wo, u) =

K (2,05 y1,w1, Y2, wa) = —4w C h(w, y1) h(w, y2) My, 5(0)][v — ws)?
and (with (3.17))

4 h $7 y h, l” y
chﬁzlax(zvv;ylawl,yz’w2) — ( 1) ( 2)
|wa — |
1
co/ T Mo ,é(v—i-u)du—i-cl/ Mo, 5(v + u) dul |
{ (w2 —v) |we — v+ ul| 1 - X
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Es max(w1, wy) = 4w [00 + ¢ / |we — ul|| My, s(w) du} , (4.49)
RS

qgﬂrzlax(x7 U3 Y1, Wi, Y2, W2, u) =

4 h h
(2, 31) 7w, y) (/ My, s(v+c) dc) {—| “ + 01} ,
I'(w2—v)

lws = o |wy — v+ ull

qé,max Z,V5Y1, Wi, Y2, W2, U) =

K031, w01,y 0) = 47 (1) B, 2) Mas, (0 [eo + 1 o = ws].
for k =1,2. Lemma 6.6 implies (cf. (3.89))

29
[ s =l M) du = 4 22
RS-

™

_ \/ _ _ 2
9 [|wi — wo| i 20 —Werf (le w2H) + exp (_ w1 — wo| )
V246 w1 —ws| | 2 V26 20

26
< o = wsfl +24/ —. (4.50)

According to (4.38), we choose (cf. (4.49), (4.50), (4.14))

co+c1 <Vrel(z,m) + 2 \/2?75)] .

According to the choice (4.40), one obtains

E(;,max(z, m) = 47

35(2,7,4,v) = 47 Cg h(zi, ;) ||vi — v; + v||°
and
Ss.max(2, J,1,0) = 4w h(w;, x;) | co + ¢ ||vi — vj + v||]

Density (4.45) is generated by an acceptance-rejection technique (cf. Remark 3.10).
The implicit method (Algorithm 4.3) takes the form:

Algorithm 4.4 (Variable hard sphere model)

1. Make a time step with parameter

co+ (le(z,m) + 2 \/2;5” .

Stop, when the final time is exceeded.

87 9" Npp(2)?
2
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5.1.
5.1.1.

5.1.2.

5.1.3.
5.1.4.

5.2.
5.2.1.
5.2.2.

5.2.3.

5.2.4.

5.3.

Choose indices 1,j : x;,x; € Dy, uniformly.
With probability
G + 1 s V5 — ul] My, 5(u) du (4.51)

Co+ 1 (le(z,m) —|—2\/25/7T) ’

go to 1.

With probabilities 1/4 , choose k =1,2,3 or go to 6.
Perform a jump according to the source term.

For given i, , generate x € D and v € R3.
Generate x uniformly in the cell D,, .

Generate w € R? according to the density

[co + 1 [|v; — wl]] My, 5(w)

. 4.52
Trlco [0y — all] Mo o(w) du (4.52)

If k=3, then choose v=w and go to 5.2.1.

Generate e € §* uniformly, calculate v = v'(vj,w,e) and go to 5.2.2.
For given i, j, x and v, generate the auxiliary parameter 0.

Generate w € R* according to the density M,, s;(v +w) and go to 5.2.4.
Generate w € R? according to the density M,, s(v + ) .

With probability

(€]
. 7~ C
| T, @l ta
__ ¢ _|_ Is
To—ol T €1

go to 5.2.2.
Compute Oo = Ty,—o(W), o € Liij(2).
With probability

3 (k)
Zaell(j)(z) Zk:l €i€ads (ZIZ’, U, T, Uiy Loy Vo, ea)

3 (k) ’
Zaell(j)(z) Zk:l q5,max(xv U, i, Uiy Loy Vs ea)

go to 1.
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5.4. Add the particle with position x , velocity v and sign

3

Sign Z Zgi €a qgk)(x7vvxiaviaxaava79a)

a€lyj)(z) k=1
to the system and go to 1.
6. Perform a jump according to the sink term.
6.1. For given i,j, generate v € R? according to the density

[co + c1 ||v; — vi + 0] Mo s(v)
Jrslco + i llv; —vi + ull] Mos(u) du

(4.53)

6.2. With probability

B raepn o Calles — v+ ol

Zaell(i)(z);%eDm [CO + ||’Uj — U + ,UH]
go to 1.
6.3. If

Z EaHUj—’Ua—}—UHﬁ > 07

a€lyi)(2) : €a€Dm
then delete particle v and go to 1.
6.4. Double particle i and go to 1.
In the case § =0 (with ¢y = Cy and ¢; = 0), Algorithm 4.4 takes the form:
Algorithm 4.5 (Pseudo-Maxwell molecules)

1. Make a time step with parameter

81 Co g™ N,y (2)?
| Dra|

Stop, when the final time is exceeded.
2. Choose indices i,j : x;,x; € Dy, uniformly.
3. This step is redundant.
4. With probabilities 1/4 , choose k =1,2,3 or go to 6.

5. Perform a jump according to the source term.
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5.1.
5.1.1.
5.1.2.
5.1.3.
5.1.4.

5.2.
5.2.1.
5.2.2.

5.2.3.

5.2.4.
5.3.

5.4.

6.

6.1.

For given i, , generate x € D and v € R3.

Generate x uniformly in the cell D,, .

Generate w € R? according to the density M,, s(w).

If k=3, then choose v =w and go to 5.2.1.

Generate e € §* uniformly, calculate v =v'(vj,w,e) and go to 5.2.2.
For given 1, 7, x and v, generate the auxiliary parameter 6 .

Generate w € R? according to the density M,, s;(v +w) and go to 5.2.4.
Generate w € R? according to the density M,, s(v + ) .

With probability

[v; — o

1— =
[v; = v 4 70— (D)

)

go to 5.2.2.
Compute On = Tpy—u(W), a € Lij(2).

With probability

2
Zaell(j)(z):xaeDm Ca |:||va—v|| [oa—v+0a] (fr(ua_y) My, s5(v+c) dC) -7 Mvi,é(v)] ‘

2
Zae]l(j)(z):xaeDm |:||1)a—1)|| ||va—v+€a|| (ff‘(va_v) MU@'#S(” _I_ C) dc) + m MU@',(S(U):|

Y

(4.54)
go to 1.

Add the particle with position x , velocity v and sign

sign | &; Z Eq X (4.55)

a€ly;)(2) : Ta€Dm

2
M,, — 7 M,,
{Hva—vnnva-wean </(> ”Z"S(“C)dc) ! ““MD

to the system and go to 1.

Perform a jump according to the sink term.

This step 1s redundant.
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6.2. With probability

1 Zae]l(i)(z) o €Dm €a

Y

ZO!EIL(Z-) (2):2a€Dm 1
go to 1.
6.3. If

Z €a > 0,

OéEIl(i)(Z) 1 Ta€Dm
then delete particle i and go to 1.

6.4. Double particle i and go to 1.

In the case =1 (with ¢y = 0 and ¢; = C}), we make the choice (4.41) instead
of (4.40). One obtains

§5(Zuj7 i,’U) = §5,max(z7.j7i7 U) = 4r Cl h’(xlvx])/ ||UZ - UH MUj,5(u) du.
R

3
Algorithm 4.4 (with step 6 from Algorithm 4.3) takes the form:

Algorithm 4.6 (Hard sphere model)

1. Make a time step with parameter
87 Cy g™ N? 20
—— | Vial(z, — |-
‘Dk‘ 1(2 m) + -

Stop, when the final time is exceeded.
2. Choose indices i, : x;,x; € Dy, uniformly.
3. With probability

 Jrs vy — ull My 5(u) du
le(z,m) —|—2 24

™

1 , (4.56)

go to 1.
4. With probabilities 1/4 , choose k =1,2,3 or go to 6.
5. Perform a jump according to the source term.
5.1. For given 1,7, generate x € D and v € R?.

5.1.1. Generate x uniformly in the cell D,, .
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5.1.2. Generate w € R? according to the density

[v; = wl| My, 5(w)

. (4.57)
Jrs lv; = ull My, 5(u) du

5.1.3. If k=3, then choose v =w and go to 5.3.
5.1.4. Generate e € §* uniformly and calculate v =v'(v;,w,e) .
5.2. This step is redundant.

5.3.  With probability

Zaell(j)(z):xaeDm Ca [m (ff‘(va—v) Mvhg(’U + C) dC) -7 MUi75(U> ||U o UQH] ‘

Zaell(j)(z):xaeDm [m (fl—‘(ya_y) Mvi,é(v + C) dC) +m Mvi,é(v) ||U - 'UozH]

(4.58)

go to 1.

5.4. Add the particle with position x , velocity v and sign

sign | € Z EaX (4.59)

a€ly;)(2) :2a€Dm

2
{m (/F( )Mvi75(v+0) dC) —7TMUZ.’5(’U) H’U—’UQH:|)

to the system and go to 1.
6. Perform a jump according to the sink term.
6.1. This step 1s redundant.

6.2. With probability

Zaé[l(i)(z) (T €Dm €a fR3 ||Uj - UH Mva,5(u) du

1 —
Zaell(i) (Z) 1o €Dm, f’RS ||U] - u” Mvayé(u) du

, (4.60)

go to 1.
6.3. If

> ga/ Jv; — ul| My, s(u)du > 0, (4.61)
'RS

a€ly)(2) : 2a€Dm
then delete particle v and go to 1.

6.4. Double particle i and go to 1.
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4.2.4 Comments

The algorithms described above are ready for implementation. The integrals in
(4.51), (4.56), (4.60), (4.61) are explicitly known (cf. (4.50)). Densities (4.52) and
(4.53) and (4.57) are generated in analogy with (3.94). The integrals in (4.54),
(4.55), (4.58), (4.59) are obtained from Lemma 6.8 as

1 (v; — v, v, —)*
M,, s(v+c)dec = exp | — : :
/1'“(11&—11) V21 o 25||UOZ_UH2

The main new component of the source-sink algorithms for the nonlinear equa-
tion is the smoothing kernel Mj 5. This parameter allowed us to apply all the tech-
niques developed for the linearized equation. Cancellation is achieved when positive
and negative particles are close to each other, so that the corresponding functions
¢s in the acceptance probabilities (4.46) have similar absolute values. When § is
chosen too small, then these functions become more and more singular (cf. (4.58))
so that the cancellation effect is drastically reduced.

As in the linearized case, the introduction of the clusters avoids the inefficient
calculation of the rejection probabilities (4.46) and the signs (4.47) of the new parti-
cles. The clusters can depend on the spatial cells, since the corresponding processes
are independent. If there are only few particles in a cell, then clusters do not seem to
make sense. However, the clusters from Example 3.19 would work. If there was only
one particle in a cluster, then there would be no cancellation. But if the few particles
in the cell had velocities far from each other, they would not create a cancellation
effect anyway.

A new component of the algorithms in the nonlinear case, which is also related to
the efficiency issue, is the function Ejmax(z, m). This parameter avoids calculating
the waiting time parameter

9" Esmax(i, vi, 15, 0;)

ij=1
instead of (4.43), and generating the indices according to the probabilities
Eé,max(xia Vi, Ly, Uj)

Zijcv,zﬂ Eé,max(l"k, Uk, X, Ul)

instead of the uniform distribution, both related to N?-effort.

4.3 The combined algorithm

Finally, the linear and the nonlinear parts are combined to get an algorithm for the
full Boltzmann equation. For example, the combined collision process in a cell D,,
is obtained by using the waiting time parameter (cf. (3.12), (4.13))

1 ~

:x;€Dm
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Then the linear algorithm is applied with probability

Zi: 2;€Dm Emax(xia Ui)
iszieny, max(is vi) + 557 90 Nn(2)? Eo(2,m)

and the nonlinear algorithm is used with the remaining probability. Analogously,
the combined source-sink process in a cell D,, is obtained by using the waiting time
parameter (cf. (3.50), (4.43))

2 ~
4 )" BEuax(@i,v) + 75— 9" Niu(2)? Esmax(2,m) . (4.63)

1. x;€Dm ‘Dm|

The factor 4 in the expression (4.63) (compared to (4.62)) provides an instructive
illustration of the relationship between the collision process and the source-sink
process. The jump events of the collision process consist of transformations of one
particle into three (linear part) or of two particles into six (nonlinear part). In the
source-sink process these events are splitted into either deletion or (three types of)

creation of particles. Therefore, the number of jump attempts increases by a factor
4.

limiting equations

The limiting equations for the combined algorithm are obtained by combining the
corresponding equations for the linear and nonlinear parts, respectively. For exam-
ple, equations (3.6) and (4.10) provide equation (2.23) for the combined collision
process.

The limiting equation for the combined source-sink process is obtained from
(3.36) and (4.32) as

//R3 x,v) fa(t, z,v) dvdx =

y) B(v,w,e) M(x,v) fq(t,y,w) de dwdy dv dx +

//Rg//w/‘g2 (, 0" (v, w, €)) + p(z, w'(v, w, €)) — p(a, w) - @(y,v)}x

x,y) B(v,w,e) fd (t x,w) fy(t,y,v)dedwdydvdzx.

The collision process and the source-sink process have (slightly) different limiting
equations. Roughly speaking, more smoothing is involved in the equation for the
source-sink process. Thus, there is a deviation from the DSMC limiting equation
(dependent on cell size parameter Az and the velocity smoothing parameter ¢).

There is some deviation even in the linearized case, since equation (3.37) is
different from equation (3.7) (cf. the second part of (2.21)). This difference is due
to the fact that the position of the new particles are generated uniformly. The
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generation of uniform positions for the new particles in the source-sink approach
is quite natural. The existing particles do not have an identical influence on the
velocity of the new particle, so that there is no reason to use some of the positions
of the old particles for the new particle, instead of the uniform.

conservation properties

The combined collision process satisfies conservation properties during each jump,
since (cf. (3.4)

p(vi) = (v (vi, w, €)) + p(w'(v;, w, €)) — p(w)
and (cf. (4.3)-(4.6))

p(v) —(v;) = —pW'(vi, v),€)) — p(w'(vi,v5,€)) + 2(vi)

p(vi) +o(v) = —p'(vi,v5,€)) — o(w'(vi,v5,€)) +20(vi) +20(v;) -

This is not the case for the source-sink process. However, the weak form of the
limiting equations implies that asymptotic conservation properties hold. Moreover,
considering the pre-limit expressions for the empirical measures (3.1), one can es-
tablish that the expected values of momentum and energy are conserved.

mixed approach

The generality in the construction of the algorithms allows one to introduce various
combinations of the different ingredients. The collision process has better conser-
vation properties and a more accurate limiting equation, but leads to a blow-up of
the system. The source-sink process does not have very desirable properties, but
it provides a way to reduce/avoid the blow-up. It would be possible to model the
linear term with the source-sink process and the nonlinear term with the collision
process. The limiting equation depends on the way of combination.

Alternatively, one might try using the collision process, when there are only few
particles in a spatial cell, and the source-sink process otherwise.
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5 Conclusions and outlook

The deviational particle approach to the numerical treatment of the Boltzmann
equation goes back to [1]. A similar idea was published in [7]. More details about
the collision processes and the modeling of boundary conditions are given in [2],
where also methods of particle removal at the boundary and via a cancellation radius
are considered. The source-sink idea was described in [13] as an alternative “which
removes the necessity for a cancellation step”. An extended version was given in
[12]. The treatment of the source-sink method was restricted to the hard-sphere
model and the linearized Boltzmann equation.

The deviational particle approach is a special case of the general variance reduc-
tion method known as “control variates” (cf., e.g., [9]). In contrast to the well-known
“importance sampling” technique, where approximate knowledge about the solu-
tion is used to improve the probabilistic sampling procedure, this method uses the
knowledge as a deterministic approximation to the solution and leaves the stochastic
simulation part for an appropriately transformed problem describing the deviation
from that approximation. I am not aware of any previous applications of the con-
trol variates technique to the solution of nonlinear equations. The main question is
whether the transformed problem can be solved in a sufficiently efficient way so that
there remains a net variance reduction effect. However, in my opinion this general
variance reduction technique has the potential to give significant improvements in
the context of low Mach number rarefied gas flows.

The original motivation for this paper was to understand the deviational parti-
cle approach from the point of view of Markov jump processes and to provide the
basis for a theoretical convergence study in the spirit of [21]. This task was easy for
the collision process, but turned out to be rather involved as far as the source-sink
process was concerned. In particular, the generalization to the nonlinear equation
was not so straightforward as one might have expected. Moreover, the extension
to interaction models beyond the hard-sphere case was a real challenge. Some new
ideas were needed in order to treat even the case of pseudo-Maxwell molecules. This
model is not really important in the context of engineering applications. However,
it is a very useful tool for validating numerical algorithms (in particular, new col-
lision routines), since complete analytical solutions are available in the spatially
homogeneous case.

There are further modifications in the source-sink process, as compared to the
papers cited above. The change of the reference Maxwellian is treated in a different
way. The collision step is performed in the continuous time setup, as in the Bird
scheme in contrary to Nanbu’s scheme. The single particle majorant makes the
generation of particles according to the source term more directly related to usual
collisions. The introduction of clusters replaces the method of summing up only a
small randomly chosen number of terms.

The main purpose of the paper is the detailed description of the deviational
particle Monte Carlo method for the nonlinear Boltzmann equation with a general
collision kernel. The limiting equations are derived in a heuristic way and provide
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a justification for the method. A rigorous proof can be obtained following the
lines for standard DSMC, but doing this would have made the paper even longer.
The algorithm presented in this paper contains many degrees of freedom. These
parameters are subject to certain restrictions, but otherwise they can be chosen
arbitrarily. The restrictions guarantee that the algorithm converges to the limiting
equations described in the paper. Intensive numerical experiments will be necessary
in order to find out the best choices of the parameters (velocity clusters, smoothing
parameter).

The main challenge for future research is the study of the stationary behavior of
the processes. Even in the case of standard DSMC only partial results are available
(see [4]). The first question is whether the cancellation effect achieved by the source-
sink modeling is strong enough to keep the number of particles bounded. Otherwise,
alternative reduction methods have to be developed. The second problem concerns
the conservation of momentum and energy in the source-sink process. Conservation
on average is a rather weak property. The behavior of the fluctuations around the
mean value for large times should be studied, as well as corresponding properties of
the steady state.
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6 Appendix

6.1 Collision transformations and collision kernels
Here we introduce the collision transformation
v =v"(v,w,e) =v+e(e,w—v), w' =w*(v,w,e) =w—e(e,w—wv). (6.1)

While (1.4) is commonly used in the context of numerics, (6.1) is more convenient
for theoretical derivations (cf. [5] or [19]). Both transformations are equivalent in
the following sense.

Lemma 6.1 Let v and v be any functions such that the integrals exist. Then

/ B(v,w,e)y(v') ¢(w') de :/ B*(v,w, e) y(v*) Y(w*) de, (6.2)
s 52
where
B*(v,w,e) = 2|(e,u)| B(v,w,2e(e,u) —u), (6.3)
B 1 o w e+u
Blow.e) = = - ( NG (e,u))) (6.4)
and
u=u(v,w) = ||Z:Z|| ) (6.5)

Proof. According to [17, Section 1.2] one obtains

/szB(“’wve) (') (') de :/

S2

= / |(e,u)| B(v,w,2e(e,u) —u) x
S2

7(1} + v ; wl 2e (e,u)) ’(/)(’w L ; wl 2e (e,u))de

= 2/82\(6,u)|B(v,w,26(e,u) —u)y(v+e(e,w—v))Y(w—-e(e,w—v))de

O(e +u)de = 2/52 |(e,u)| P(2e(e,u))de

- [sgB*(anae)v(v*)w(w*)d&

and the proof is completed. [ |

According to Lemma 6.1 one obtains equivalence of the equations with different
collision transformations. In particular, (6.2) implies

/B(U,w,e)de:/ B*(v,w,e) de.
S2

82
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Collision kernels of the form
B*(v,w,e) = b*(|lv — wl], |(e,u)|) (6.6)

correspond to (cf. (6.4))

B 1 . Cw (e,u)+1
Blv,w,e) = 2(1+ (e, u)) ’ <HU I 2(1+ (e, u)) )

- 2<1+1(e,u)) b*<“U —vly w)

Thus, the kernels B have the form (1.5) with

1 1+y)
b(z,y) = ——— bz, —= |, x>0, ye[-1,1].
(z,y) IO ( 5 y €| ]

On the other hand, given a kernel B of the form (1.5), one obtains (cf. (6.3))

B*(v,w,e) = 2|(e,u)|b(|lv—w], (2¢e(e,u) —u,u))
= 2|(e,u)| b(||v — wl], 2 (e, u)” = 1).

Thus, the corresponding kernel B* has the form (6.6) with
b (z,y) = 2yb(z,29y* — 1), x>0, yel01]. (6.7)
Note that
B(v,w,—e) = B(w,v,e). (6.8)
For the variable hard sphere model (3.2), kernel (6.3) takes the form
B*(v,w,e) =2Cs (e, u)| [lv —w]” = 2Cs|(e,v —w)| [lv —w]~". (6.9)

For the hard sphere model (3 = 1 with C} = d*/4, where d is the diameter) one
obtains

d2
B(v,w,e) = —|lw -] (6.10)

and

B*(v,w,e):%\(e,w—vﬂ. (6.11)

In the case of pseudo-Maxwell molecules (5 = 0), kernel (6.9) takes the form
(cf. (6.5))

B*(v,w,e) =2Cy|(e,u)l.

67



Lemma 6.2 Consider collision kernels of the form (1.5). Let v and v be any
functions such that the integrals exist. Then

/Rs /Rg /SQS”(”)B(“%G) y(w) P (v') de dw dv =
/723 /Ra /52 p(v") B(v,w, e) y(w) ¥(v) de dwdv . (6.12)

Property (6.12) holds when replacing B,v',w'" by B*, v*, w*.

Proof. The assertion follows from [17, Lemma 1.10]. For kernels of the form (6.6)
one obtains

L;@Af@FWW@WMww@m@:
©0(v) B(v,w, e)y(w') ¥ (') de dw dv

2

o(v") B(v,w, e) y(w) ¥ (v) de dw dv

2

o(v*) B* (v, w, e) y(w) ¥(v) de dwdv ,

2

w

I
oo

w

3

according to Lemma 6.1. [ |

Lemma 6.3 Consider collision kernels of the form (1.5). Let v and v be any
functions such that the integrals exist. Then

| [ Bewasw)vwydeds = [ wwyitae. 13

where
4 b (llw = v+ ull, Bl — 1)
kv, w) = 7/ y(v+u)du (6.14)
[w = vl Jrgw-0) [w = v+ ull

and T'(v) denotes the plane through the origin orthogonal to v. Moreover,

/723 o) k(v,w)dv = /7%3 o(v) v(w,dv), (6.15)

where
V(w,dv):/ / Out (woue) (dV) B(w, u, e) y(u) de du
R3 Js2

and @ is any appropriate test function.
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Proof. Using Lemma 6.1 and the substitution w — v — w — w, one obtains

[;Az v, €) (W)Y *ﬂw—[;éjfvwe w*) $(v") de dw =

[ L= wll el 2w o) dedo = (6.16)
[ vl el o+ — e e w) vlo + e (ew) dedu.

Changing the order of integration and introducing a rotation Q(e)w — W — w such
that the first coordinate axis is parallel to e, (6.16) takes the form

//b*(HwH»|w1|/||w||)7(U+Q(6)'w—ew1)¢(v+ew1)dwde (6.17)
/82/ U v(llex +y|, llex|/|lex+yll) v (v+y)dy} (v +ex)drde.

Considering = and e as spherical coordinates, i.e. 22dx de = dw, one obtains from
(6.17)

2l [ [l ol )t )y -4 )

The factor 2 occurs due to symmetry with respect to x and —z . The substitution
v+ w— w— w gives

2 [ ol [ w okl = ol = o) 2o+ 9)dy | wGw) do.
R3 T'(w—v)

Thus, assertion (6.13) follows from (6.7). Lemma 6.2 and (6.13) imply

o) [ r(w,w) pw)dwdo = [ () B(v, w, ) 7(w) (') de duw dv
foeor [ Lo [ ],
- /R 3 /R 3 / olt)) Blo,w, ) y(w) Y(v) deduwdo,

and assertion (6.15) follows for ) = ¢, . [

Corollary 6.4 Let the assumptions of Lemma 6.3 be fulfilled. Then

| ] Bwwenwyiw)dedn = [ o) vwan,

where

2 |lw—v]?

Hw—v+uH1 |MMP)
R(v,w) ||w_UH/ vy +u)du. (6.18)

|lw — v+ ull
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Moreover,
| ewieua = [ s,
R3 R3
where
v(w,dv) :/ / O’ (w,u,e) (dV) B(w, u, €) y(u) de du
R3 JS2
and o is any appropriate test function.

Proof. Note that (cf. (1.4))
/ B(v,w,e)vy(")Y(w')de = / B(v,w,—e)v(v'(v,w, —e)) Y (w'(v,w, —e)) de
§2 S2
= /52 B(v,w, —e)y(w') ¥(v') de .

Since the kernel B(v,w,e) = B(v,w, —e) has the form (1.5) with b(z, y) = b(z, —y) ,
the assertions follow from Lemma 6.3. [ |

Remark 6.5 In the variable hard sphere case (3.2), both functions (6.14) and (6.18)
take the form

ol ) =4yl o [ ol ) dy
I'(w—v
In the hard sphere case (6.10), one obtains
d2

= (v +y)dy.
Hw - UH T'(w—v)

k1 (v, w)

6.2 Properties of the Maxwellian

Lemma 6.6 (non-central moment) The Mazwellian

_ 1 Jw — V|
MV,T(w) - (27TT)3/2 exp( 2T (619)
satisfies
[ el M) o = (6.20
R3
5T 1 ul
VLo (—l? +(—+z||u||) [ ewyart,
" { CIP) + L ee ()
where
y
U=—.
V2T

70



Proof. The substitution
w=V2Tw, dw=2T)*?*dw

implies

2T _ 2T -V 2 B
/ |w|| My7r(w) dw = \/_3/ I[47|| exp <_H\/ w I )d
R ™ JRs 2T
1 /27T
= L el e (-l ae. o21)
T T R3

Expressing w in spherical coordinates

w=re, e=/(cospi,sinp; cospy,sinp; sinps), dw = 12 dr sin 1 dp; dep,

where the first axis is parallel to u, one obtains
/ |w]| exp (—||w — u||2) dw = (6.22)
RS
e} 2 ™
/ r? dr/ dg@/ sin @1 dor v exp (— [r? = 27 |Jul) cospr + [|ul?])
0 0 0
= 27 exp (—|ju?) / r® exp (—17) dr/ sin 1 dpy exp (27 ||u|| cos¢q) .
0 0

Note that

™ 1 1
/ exp (a cosx)sinx dx = / exp(ay)dy = o [e* —e™].
0 —

1

Thus, (6.22) implies

[ el exp (<lhw = ) du = .
a2 (1) 4% exp () [exp 2 ) = exp (=2 )]
) ﬁ/ "2 [ (= = ull?) - exp (~(r o+ ful?)
- m{/nu” r o+ Jlull)® exp (= )dr—/lulw— lull)? exp (—r )}dr}
™ Jul ) - L
- m{/|u|| " +||u|| exp (_T )dr+/ﬂull4r||UH exp( )}d }

Since

/ r? exp (—7"2) dr = -2 exp (—x2) + 1/ exp (—7"2) dr
0 2 2 Jo
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and -
/ 27 exp (—7"2) dr = exp (—xz) ,

one obtains from (6.23)
/ o]l exp (—Jlw — ul]2) duw =
RS
. ; Jul )
T8l exp (<) + [ exp (<r%) dr+
Tl .
) [l ) )
2 / exp (=) dr + 2 |Jul] exp (~ Ju]?

m ) ,o [l )
- m{llull exp (=[ul*) + (1 +2 ull )/0 exp (_r)dr}. (6.24)

Finally, (6.21) and (6.24) imply (6.20) and the proof is completed. |

Remark 6.7 Let I'(v) denote the plane through the origin orthogonal to v. The
projection of a vector x onto I'(v) is obtained as

(z,v)

=R
Note that
@) = Qs Siho = 0o i 00
o= T ¢v] -2,

where () is any rotation.

Lemma 6.8 The Mazwellian (6.19) satisfies

1 ([/,U)z
M‘/ ay = X — 2
T'(v) 7T(y) Y 2m Te P ( 27 ||U||2> (6 5)

and

/F( ) e(y) (v, [[v+yll) Myvr(y) dy =

[/F(v) My (@) d:c] /Rg p(my(w)) (v, [[v 4 m (w)]|) My,r(w) dw,

for any functions ¢ and v such that the integrals exist.
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Proof. Consider a random variable ¢ with density

1
- fF(v) MV’T(LL’) dx

pe(y) My,r(y) Xr@w) (y)

and n = Q'¢, where () is any rotation. Note that Qy L v iff y L @'(v). Since
|Qu =V =|v—QV], it follows that

MV’T(QU) = MQ’V,T(U> . (626)
Thus, one obtains
1
py(y) = pe(Qy) = T M (@) My (Qy) xrw) (Qy)
1
- Mavr(y) xr@wy) () - (6.27)

In particular, (6.27) implies

MV7T(ZL') dx = / MQIMT(y) dy . (628)
I'(v) 0Q’'(v))
Let @ be such that

Q'(v) = (0,0,c). (6.29)

One obtains from (6.28)

1 (Q’V)%)

My r(z)de = exp | — . 6.30
) vr(o) VarT P ( 9T (6:30)

The third component of 'V corresponds to the distance between the center of the
Maxwellian and the plane I'(v), which is |[(V,w)]|/||w||, so that (6.25) holds.

Remark 6.7 and (6.26) imply
p(mo(w)) (v, [[v + 7 (w)|]) Myr(w) dw

p(mo(Qw)) P(v, [[v+ m (Qw)[) My (Qw) dw

3

P(Qmou(w)) ¢ (v, [[v+ Qrgn(w)]]) Marvr(w) dw

3

P(Qmgu(w)) Y (v, Qv + 7 (w)]) Morv.r(w) dw (6.31)

S————

and

/F( ) e(y) (v, [[v+yll) Myvr(y) dy =



/ e (@) 2(Qu) (v, [[v + Qu) Myr(Qy) dy
- / Q) (v, [[o + Qyll) Myr(Qy) dy
T(Q'v)

= [, PQVIQ ) Movr(v) dy. (6.32)

for any rotation (. If the rotation (6.29) is used, then (6.31) takes the form

T

/RS P(Q(wr, w2, 0)) 9 <v ¢ +w?+ wz) Mgz (w) dw (6.33)

and (6.32) gives

// (y1,92,0)) 2 (% \/ A4y + y%) Mavr(yi, y2,0) dyy dys . (6.34)

Note that

3
1 (w; — Vi)?
My,p(wy, ws, ws) H exXp ( 7) .
o V2rT 2T

Thus, (6.33) takes the form

// (11,12, 0)) (6.35)
(ot [ o (-5)

1=1

dw1 d’LUQ

~

and (6.34) gives

// (y1,92,0)) (U, 2+ y?+ y%) X (6.36)

[11 o O (—%W) dyr dys V% exp (—%) .

Comparing (6.35) and (6.36) and taking into account (6.30) completes the proof.
|
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