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Abstract

We consider a model system describing the 2D �ow of a conducting �uid
surrounded by a ferromagnetic solid under the in�uence of the hysteretic response
of the surrounding medium. We assume that this in�uence can be represented
by the Preisach hysteresis operator. Existence and uniqueness of solutions for
the resulting system of PDEs with hysteresis nonlinearities is established in the
convexity domain of the Preisach operator.

1 Introduction
The �ow of a conducting �uid surrounded by a ferromagnetic solid is strongly in-
�uenced by the hysteretic response of the surrounding medium ([15], part G9). We
assume that this in�uence can be represented by the Preisach model, and show below
in Section 3 that this assumption is in agreement with general thermodynamics. A
similar problem was recently considered in [7], where, however, the typical hysteresis
magnetization curve is approximated by two linear parts.
Principles of the magnetohydrodynamic (MHD) �ow theory with linear relation be-
tween the magnetic �eld and magnetic induction are explained e. g. in [8]. In order
to take hysteretic e�ects in MHD into account, we consider the following problem,
which has been derived in detail in [12], as a model for MHD �ow of a conducting
�uid between two ferromagnetic plates:

∂b

∂t
+ v · ∇b−∆u = 0 ,

∂v

∂t
+ (v · ∇)v −∆v + b∇u+∇p = 0 ,

divv = 0 ,

b = u+W [u]





(1.1)

in Ω × (0, T ) , coupled with initial conditions and homogeneous Dirichlet boundary
conditions, with unknowns u (represents the magnetic �eld), b (magnetic induction),
v (�uid velocity), and p (pressure), where Ω is an open bounded set in R2 with
Lipschitzian boundary, and W is a Preisach hysteresis operator. All positive material
constants are normalized to 1 .
The �rst equation in (1.1) for v �xed is studied in [11], where existence of the solution
is proved under fairly general assumptions on the hysteresis operator. Uniqueness
and stable dependence on the data is established in the special case of the so-called
Prandtl-Ishlinskii operator and suitable regularity assumptions on v . The problem of
obtaining this regularity in the coupled system (1.1) is di�cult due to the occurrence
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of the hysteresis terms. On the one hand, hysteresis operators are not continuous
with respect to weak or strong Lp topologies for p <∞ ; on the other hand, they are
not di�erentiable as mappings in function spaces and the chain rule does not hold.
Therefore, a re�ned estimation technique using a new hysteresis energy inequality is
necessary to obtain the desired bounds for the solution. This energy inequality only
holds in the domain where all hysteresis loops are convex. This is not a restriction
for Prandtl-Ishlinskii operators, which are globally convex. For a general Preisach
operator, however, only small amplitude loops have this property. This is why we
are able to construct the solution only for small initial data, which ensure that the
solution does not leave the Preisach convexity domain.
The existence proof is based on a time discrete scheme with a convexi�ed Preisach
operator under the time derivative and a cut-o� Preisach operator in the other two
hysteresis terms. Uniform bounds enable us to pass to the limit using compact em-
beddings and check that the limit is a solution of the original problem. Under more
regular initial data, we prove via a Moser iteration technique that the solution has
su�cient regularity for uniqueness.
The text is organized as follows. In Section 2, we recall some basic facts about the
Preisach hysteresis model. The main results are stated in Section 3; Sections 4 and
5 are devoted to the proof of the existence and uniqueness theorem. The Appendix
contains some general results we use throughout the paper: the Gagliardo-Nirenberg
inequality, a detailed derivation of the discrete �rst and second order energy inequali-
ties for the Preisach operator, and a discrete Moser iteration lemma.

2 Hysteresis operators
Hysteresis is characterized (cf. [25]) by the memory e�ect and rate independence. To
illustrate the meaning of these concepts, consider a system described by the input-
output pair (u,w) . The memory e�ect means that at any instant t the value of the
output w(t) is not simply determined by the value u(t) of the input at the same instant
but it depends also on the previous evolution of the input u. The rate independence
means that the path (u(t), w(t)) is invariant with respect to any increasing time
homeomorphism. On scalar monotone inputs, rate independent memory operators
behave like usual superposition (Nemytskii) operators. Their generating functions are
called trajectories of the hysteresis operators, and depend on the history of the process.
Here, we substantially use the fact that trajectories corresponding to small amplitude
oscillations form convex hysteresis loops.
A basic contribution to the theory of hysteresis has been brought by Krasnosel'ski�� and
his collaborators, summarized in the monograph [16]. In this fundamental work, they
introduced the concept of hysteresis operator and started a systematic investigation of
its properties. Since then, other monographs devoted to more special questions have
been published, see e. g. [1, 5, 9, 18, 21, 25].
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2.1 The play operator

Now we brie�y recall the de�nition and some properties of the play operator, which
is the simplest example of a continuous hysteresis operator, see Figure 1. It is de�ned
as the mapping that with a given input function u ∈ W 1,1(0, T ) , a parameter r > 0 ,
and an initial condition x0

r ∈ [−r, r] , associates the solution ξr ∈ W 1,1(0, T ) of the
variational inequality

(i) |u(t)− ξr(t)| ≤ r ∀t ∈ [0, T ],

(ii) (ξ̇r(t)) (u(t)− ξr(t)− y) ≥ 0 a. e. ∀ y ∈ [−r, r] ,
(iii) ξr(0) = u(0)− x0

r ,

(2.1)

see [18, 25], and we denote for r > 0

Pr[x
0
r, u] : [−r, r]×W 1,1(0, T ) → W 1,1(0, T ) : (x0

r, u) 7→ ξr . (2.2)

�0

−r
r u

ξ
r

Figure 1: A diagram of the play operator.

It was shown in [5, Theorem 2.7.7] that the whole class of the so-called Preisach type
hysteresis operators (also called operators with return point memory in engineering
literature) can be represented by the one-parametric family of play operators {Pr; r >
0} . For given u ∈ W 1,1(0, T ) , t ∈ [0, T ] , and x0

r ∈ [−r, r] , the distribution of plays
r 7→ Pr[x

0
r, u](t) represents the state of the system at time t . Following [18, Section

II.2], we introduce the con�guration space

Λ :=

{
λ ∈ W 1,∞(0,∞);

∣∣∣∣
dλ(r)

dr

∣∣∣∣ ≤ 1 a. e.
}
,

as well as its subspaces

ΛK := {λ ∈ Λ;λ(r) = 0 for r ≥ K }, Λ0 :=
⋃
K>0

ΛK . (2.3)

Elements λ ∈ Λ are called memory con�gurations. For a given λ ∈ Λ , it is convenient
to de�ne the initial condition x0

r by the formula

x0
r := Qr(u(0)− λ(r)),
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where Qr : R→ [−r, r] is the projection

Qr(x) := sign (x) min{r, |x|} = min{r,max{−r, x}}. (2.4)

Then λ is called the initial con�guration of the play system, and we de�ne for r > 0
a mapping ℘r : Λ×W 1,1(0, T ) → W 1,1(0, T ) by the formula

℘r[λ, u] := Pr[x
0
r, u] .

The reason for introducing the space Λ is that for every �xed t ∈ [0, T ] and λ ∈ Λ ,
the state mapping r 7→ ℘r[λ, u](t) belongs to Λ .
In [19], the play operator has been extended to the space G+(0, T ) of right-continuous
regulated functions. This is the space of functions u : [0, T ] → R which admit the
left limit u(t−) at each point t ∈ (0, T ] and the right limit u(t+) exists and coincides
with u(t) at each point t ∈ [0, T ) . We de�ne the seminorms

||u||[0,t] = sup{|u(τ)| ; τ ∈ [0, t]} for u ∈ G+(0, T ) and t ∈ [0, T ]. (2.5)

Indeed, || · ||[0,T ] is a norm and G+(0, T ) endowed with this norm is a Banach space.
By Theorem 2.1 and Proposition 2.4 of [19], this extension is Lipschitz continuous in
the sense that

|℘r[λ, u](t)− ℘r[µ, v](t)| ≤ max
{|λ(r)− µ(r)|, ‖u− v‖[0,t]

}
, (2.6)

for any λ, µ ∈ Λ , u, v ∈ G+(0, T ) , and t ∈ [0, T ] . For an initial con�guration λ ∈ Λ
and a step function u ∈ G+(0, T ) of the form

u(t) =
m∑

k=1

uk−1 χ[tk−1,tk)(t) + um χ{T}(t), (2.7)

where 0 = t0 < t1 < · · · < tm = T is a division of [0, T ] , we have in particular

℘r[λ, u](t) =
m∑

k=1

ξk−1(r)χ[tk−1,tk)(t) + ξm(r)χ{T}(t), (2.8)

where χω is the characteristic function of a set ω ⊂ [0, T ] , and

ξ0(r) = P [λ, u0](r), ξk(r) = P [ξk−1, uk](r), (2.9)

with P : Λ× R→ Λ de�ned as

P [λ, v](r) := max{v − r,min{v + r, λ(r)}} = Qr(v − λ(r)). (2.10)

2.2 The Preisach operator

We brie�y recall here the de�nition and some properties of the Preisach operator. The
construction presented here was introduced in [17] as an equivalent alternative to the
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classical model proposed in [22]. More information about the Preisach model can be
found in [3, 4, 5, 16, 18, 21, 24, 25, 26].
In the Preisach half-plane

R2
+ = {(r, v) ∈ R2 : r > 0}, (2.11)

we assume that a function ψ ∈ L1
loc(R2

+) (the Preisach density) is given with the
following property.

Assumption 2.1. There exists β1 ∈ L1
loc(0,∞), such that

0 ≤ ψ(r, v) ≤ β1(r) for a. e. (r, v) ∈ R2
+ .

We put
b̃1(K) :=

∫ K

0

β1(r) dr for K > 0 (2.12)

and
g(r, v) :=

∫ v

0

ψ(r, z) dz for (r, v) ∈ R2
+ , (2.13)

and de�ne the Preisach operator as follows.

De�nition 2.2. Let ψ ∈ L1
loc(R2

+) satisfying Assumption 2.1 be given and let g be as
in (2.13). Then the Preisach operator W : Λ0 × G+(0, T ) → G+(0, T ) generated by
the function g is de�ned by the formula

W [λ, u](t) :=

∫ ∞

0

g(r, ℘r[λ, u](t)) dr =

∫ ∞

0

∫ ℘r[λ,u](t)

0

ψ(r, z) dz dr (2.14)

for any given λ ∈ Λ0, u ∈ G+(0, T ) and t ∈ [0, T ], where Λ0 is introduced in (2.3).

As a counterpart of [18], Section II.3, Proposition 3.11, we obtain from (2.6) the
following estimate.

Proposition 2.3. Let Assumption 2.1 be satis�ed and let K > 0 be given. Then for
every λ1, λ2 ∈ ΛK and u, v ∈ G+(0, T ) such that ||u||[0,T ], ||v||[0,T ] ≤ K, we have

|W [λ1, u](t)−W [λ2, v](t)| ≤
∫ K

0

|λ1(r)−λ2(r)| β1(r) dr+ b̃1(K) ||u−v||[0,t] ∀t ∈ [0, T ] .

We introduce the Preisach potential energy E as

E [λ, u](t) :=

∫ ∞

0

G(r, ℘r[λ, u](t)) dr, (2.15)

where
G(r, v) := v g(r, v)−

∫ v

0

g(r, z) dz =

∫ v

0

z ψ(r, z) dz, (2.16)
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and the Preisach dissipation operator as

S[λ, u](t) :=

∫ ∞

0

r g(r, ℘r[λ, u](t)) dr. (2.17)

For u ∈ W 1,1(0, T ) and ξr = ℘r[λ, u] , it is easy to derive the pointwise inequality

0 ≤ u̇(t) ξ̇r(t) ≤ u̇2(t) a. e., (2.18)

which entails in turn the following result (see also [18, Proposition II.4.8]).
Proposition 2.4. Let Assumption 2.1 be satis�ed and let K > 0 be given. Suppose
moreover b ≥ 0 , λ ∈ ΛK , and u ∈ W 1,1(0, T ) be given such that ||u||C0([0,T ]) ≤ K .
Put w := b u+W [λ, u] . Then for a. e. t ∈ (0, T ) we have

b u̇2(t) ≤ ẇ(t) u̇(t) ≤ (b+ b̃1(K)) u̇2(t). (2.19)

We will need later a discrete counterpart of (2.19), see (6.13).
The following result can be found in [18, Theorem II.4.3].
Proposition 2.5. Let Assumption 2.1 be satis�ed and let K > 0 be given. For
arbitrary λ ∈ ΛK and u ∈ W 1,1(0, T ) such that ||u||C0([0,T ]) ≤ K , we put

w := W [λ, u] E := E [λ, u] S := S[λ, u],

where E and S are respectively the Preisach potential energy and the Preisach dissi-
pation operator introduced in (2.15) and (2.17). Then we have

(i) E(t) ≥ 1

2b̃1(K)
w2(t) ∀ t ∈ [0, T ]

(ii) ẇ(t) u(t)− Ė(t) = |Ṡ(t)| a. e.

We will need later a discrete counterpart of equation (ii) in Proposition 2.5, which
will be derived in Subsection 6.1.
We �nally quote the following result (see [18, Proposition II.4.13]), which will be used
in Subsection 5.1 to establish the uniqueness of the solution to our model problem.
Proposition 2.6. Let W be a Preisach operator (2.14) satisfying Assumption 2.1.
For given u1, u2 ∈ W 1,1(0, T ) , λ1, λ2 ∈ Λ0 , and i = 1, 2 , put ξi

r := ℘r[λi, ui] , wi :=
W [λi, ui] =

∫∞
0
g(r, ξi

r) dr . Then for a. e. t ∈ (0, T ) we have

(ẇ1(t)− ẇ2(t)) (u1(t)− u2(t)) ≥
∫ ∞

0

(ξ1
r (t)− ξ2

r (t))
∂

∂t
(g(r, ξ1

r (t))− g(r, ξ2
r (t))) dr.

(2.20)

In Problem (1.1), both the input and the initial memory con�guration λ additionally
depend on the space variable x ∈ Ω . If λ(x, ·) belongs to Λ0 and u(x, ·) belongs to
C0([0, T ]) for (almost) every x ∈ Ω , then we de�ne

W [λ, u](x, t) :=

∫ ∞

0

g(r, ℘r[λ(x, ·), u(x, ·)](t)) dr . (2.21)
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For x1, x2 ∈ Ω , we have by (2.6) and Assumption 2.1 that
|W [λ, u](x1, t)−W [λ, u](x2, t)|

≤
∫ ∞

0

|g(r, ℘r[λ(x1, ·), u(x1, ·)])− g(r, ℘r[λ(x2, ·), u(x2, ·)])|(t) dx

≤
∫ ∞

0

β1(r)

(
|λ(x1, r)− λ(x2, r)|+ sup

τ∈[0,t]

|u(x1, τ)− u(x2, τ)|
)

dr. (2.22)

Assume that ∇u ∈ L2(Ω;G+(0, T )) , β1 ∈ L1(0,∞) , and that λ : Ω → ΛK is such
that ∫ K

0

∫

Ω

β1(r)|∇λ(x, r)| dx dr <∞.

Here and in the sequel, the symbol ∇ denotes the gradient with respect to the spatial
variable x ∈ Ω . Set b̃1 =

∫∞
0
β1(r) dr and w(x, t) = W [λ, u](x, t) . Then we obtain

from (2.22) that

|∇w(x, t)| ≤
∫ ∞

0

β1(r) |∇λ(x, r)| dr + b̃1 sup
τ∈[0,t]

|∇u(x, τ)| (2.23)

for all t ∈ [0, T ] a. e. in Ω .

2.3 Convexi�cation and cut-o�

Let R > 0 be �xed; set
DR := {(r, v) ∈ R2

+ : |v|+ r ≤ R}.
In addition to Assumption 2.1 we prescribe the following conditions.
Assumption 2.7.

(i)
∂ψ

∂v
∈ L∞loc(R2

+);

(ii) AR := inf{ψ(r, v); (r, v) ∈ DR} > 0.

Furthermore, denote

CR := sup

{∣∣∣∣
∂

∂v
ψ(r, v)

∣∣∣∣ ; (r, v) ∈ DR

}
.

Taking possibly a smaller R > 0 , if necessary, we may assume that

KR :=
1

2
AR −RCR > 0. (2.24)

We modify the density ψ outside DR by setting

ψR(r, v) =





ψ(r, v) (r, v) ∈ DR

ψ(r,−R + r) v < −R + r, r ≤ R

ψ(r, R− r) v > R− r, r ≤ R

ψ(R, 0), r > R.

(2.25)
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We de�ne a new Preisach operator WR by the formula

WR[λ, u](t) =

∫ ∞

0

∫ ℘r[λ,u](t)

0

ψR(r, v) dv dr (2.26)

for λ ∈ Λ0 and u ∈ W 1,1(0, T ) . In Subsection 6.2 we prove that all increasing
trajectories of WR are convex and all decreasing trajectories are concave. This will
play an important role in higher order energy estimates in Subsections 4.5 and 5.2.
We also introduce the cut-o� density

ψ̃R(r, v) =

{
ψ(r, v) (r, v) ∈ DR

0 otherwise
(2.27)

and the corresponding cut-o� operator

W̃R[λ, u](t) =

∫ ∞

0

∫ ℘r[λ,u](t)

0

ψ̃R(r, v) dv dr. (2.28)

Remark 2.8. We remark that WR is convex (in the sense of trajectories) but not
globally bounded, while W̃R is globally bounded but nonconvex, see Figure 2. The
former will appear under the time derivative to ensure the validity of the second order
energy inequality, the latter is used in the quadratic terms to keep the growth under
control. We eventually show that the whole memory evolution takes place in DR , so
that the truncations never become active.

In what follows, we will often write W [u] instead of W [λ, u] for brevity when λ is
clear from the context.

�
w

u
−R

R0

w = WR[u]

w = W[u]

w = ˜WR[u]

Figure 2: Preisach hysteresis diagrams for W , WR , and W̃R with the choice λ ≡ 0 .

3 Main result
Let us consider an open bounded domain Ω ⊂ R2 with Lipschitzian boundary, and
set ΩT := Ω × (0, T ) . We set V := W 1,2

0 (Ω) , and introduce the spaces of divergence
free functions

H :=

{
u ∈ L2(Ω;R2);

∫

Ω

u(x) · ∇φ(x) dx = 0 ∀φ ∈ V
}
, V := H ∩W 1,2

0 (Ω;R2).
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For φ = (φ1, φ2) ∈ V , we denote by ∇φ = (∇φ1,∇φ2) the Jacobi matrix of φ , each
row being the gradient of a component of φ , and for all φ,ψ ∈ V we denote with
(∇φ,∇ψ) the canonical scalar product of matrices.
We propose to solve the following problem.

Problem 3.1. Consider a Preisach operator W of the form (2.21), and let u0 ∈
L2(Ω) , v0 ∈ H , λ : Ω → Λ be given initial data; we search for functions (u,v) with
appropriate regularity, such that

u(x, 0) = u0(x), v(x, 0) = v0(x) a. e. in Ω , (3.1)

and for any φ ∈ V , any φ ∈ V , and for a. e. t ∈ (0, T ) we have
∫

Ω

∂

∂t
(u+W [λ, u])φ dx−

∫

Ω

v · ∇φ (u+W [λ, u]) dx

+

∫

Ω

∇u · ∇φ dx = 0, (3.2)
∫

Ω

∂v

∂t
· φ dx+

∫

Ω

(v · ∇)v · φ dx+

∫

Ω

(∇v,∇φ) dx

+

∫

Ω

(u+W [λ, u])∇u · φ dx = 0. (3.3)

Interpretation. If the functions u , W [λ, u] , v are smooth enough, we may integrate
by parts in (3.2) and (3.3). We see that the function

q :=
∂v

∂t
+ (v · ∇)v −∆v + (u+W [λ, u])∇u

is orthogonal to every function φ ∈ V , hence (see [14]), there exists p such that q =
−∇p . System (3.2)�(3.3) thus formally reduces to (1.1) with homogeneous Dirichlet
boundary conditions for both u and v .
It is straightforward to check the thermodynamic consistency of System (3.2)�(3.3).
Putting φ = u and φ = v , we formally obtain from Proposition 2.5 the energy
equality

d
dt

∫

Ω

(
1

2
u2 + E [λ, u] +

1

2
|v|2

)
dx+

∫

Ω

(∣∣∣∣
∂

∂t
S[λ, u]

∣∣∣∣ + |∇u|2 + |∇v|2
)
dx = 0 ,

(3.4)
where 1

2
u2 + E [λ, u] + 1

2
|v|2 ≥ 0 is the total speci�c energy, and | ∂

∂t
S[λ, u]|+ |∇u|2 +

|∇v|2 ≥ 0 is the speci�c dissipation (or entropy production) rate.
The main result of the paper can be stated as follows.

Theorem 3.2. Let the Preisach operator W satisfy Assumptions 2.1 and 2.7, and let
R > 0 be �xed as in Subsection 2.3. Let K ∈ [0, R] and λ : Ω → ΛK be given.
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(i) (Existence) Let the initial data have the regularity

u0 ∈ V, v0 ∈ V, ∆u0 ∈ L2(Ω), ∆v0 ∈ H, ∇λ ∈ L2(Ω× (0, K)), (3.5)

and set

α := max
{||u0||V , ||v0||V, ||∆u0||L2(Ω), ||∆v0||L2(Ω;R2), ||∇λ||L2(Ω×(0,K))

}
. (3.6)

Then there exists α1 > 0 such that if α ≤ α1 , then Problem 3.1 has a solution
(u,v) with the regularity

u ∈ C0(Ω̄T ) ∩ C0(0, T ;V ) v ∈ C0(Ω̄T ;R2) ∩ C0(0, T ;V)

ut,∆u ∈ L∞(0, T ;L2(Ω)) vt,∆v ∈ L∞(0, T ;H)

∇ut ∈ L2(ΩT ;R2) ∇vt ∈ L2(ΩT ;R2×2)

(ii) (Uniqueness) In addition to (3.5), let the initial data satisfy

∆u0 ∈ L∞(Ω), ∇λ ∈ Lq̂+1(Ω× (0, K)) for some q̂ > 3 . (3.7)

Then there exists a unique solution (u,v) to Problem 3.1 with additional regu-
larity ut ∈ L∞(ΩT ) .

Remark 3.3. The initial data are taken su�ciently small in order to keep the solution
inside the convexity domain of the hysteresis operator W ; see Remark 2.8. We restrict
ourselves to an a priori bounded interval (0, α0) of admissible values of α .

4 Proof of existence

4.1 Strategy of the proof

We �rst replace the Preisach operator W by WR and W̃R at suitable places, and
discretize the PDEs in time. The solution to the discrete problem is found using the
Browder-Minty Theorem (Subsection 4.2). In Subsections 4.3�4.6, we derive a priori
estimates independent of the discretization parameter based on a discrete version of
the second order energy inequality (Subsection 6.2). If α is su�ciently small, the sup-
norm of u is uniformly bounded by the cut-o� parameter R , hence W [u] = WR[u] =

W̃R[u] . By compactness, we choose a convergent subsequence as τ → 0 , and check
that the limit is a solution to Problem 3.1. We will carefully write down explicitly,
how the estimates depend upon α introduced in (3.6), and upon the discretization
parameter τ .

10



4.2 The discrete problem

Let us �x some m ∈ N and de�ne the time step τ =
T

m
. For k = 1, . . . ,m , consider

a recurrent system with unknowns uk and vk ,∫

Ω

•
uk φ dx+

∫

Ω

•
wk φ dx−

∫

Ω

bk−1 vk · ∇φ dx+

∫

Ω

∇uk · ∇φ dx = 0,

∫

Ω

•
vk ·φ dx+

∫

Ω

(vk−1 · ∇)vk · φ dx+

∫

Ω

(∇vk,∇φ) dx+

∫

Ω

bk−1∇uk · φ dx = 0,





(4.1)
for any φ ∈ V and φ ∈ V , with u0 and v0 as in (3.5), where we set

•
uk:=

uk − uk−1

τ
,

•
vk:=

vk − vk−1

τ
,

•
wk:=

wk − wk−1

τ
, k = 1, . . . ,m; (4.2)

bk(x) = uk(x) + w̃k(x), a. e. in Ω , k = 0, . . . ,m; (4.3)

wk(x) =

∫ ∞

0

gR(r, ξk(x, r)) dr, w̃k(x) =

∫ ∞

0

g̃R(r, ξk(x, r)) dr, (4.4)

with
gR(r, v) =

∫ v

0

ψR(r, v′) dv′, g̃R(r, v) =

∫ v

0

ψ̃R(r, v′) dv′, (4.5)

where ψR , ψ̃R are the functions introduced in (2.25), (2.27) respectively. As in (2.9)�
(2.10), the sequence ξk is de�ned recursively by

ξ0(x, r) := P [λ(x, ·), u0(x)](r), ξk(x, r) := P [ξk−1(x, ·), uk(x)](r). (4.6)
Setting

ū(τ)(x, t) =
m∑

k=1

uk−1(x)χ[(k−1)τ, kτ)(t) + um(x)χ{T}(t), (4.7)

and
ξ̄(τ)
r (x, t) =

m∑

k=1

ξk−1(x, r)χ[(k−1)τ, kτ)(t) + ξm(x, r)χ{T}(t), (4.8)

we thus have, in view of (2.7)�(2.10),
ξ̄(τ)
r (x, t) = ℘r[λ, ū

(τ)](x, t). (4.9)
We construct the solution to (4.1) by induction over k . Assuming that uk−1 ∈ V ,
vk−1 ∈ V are already known, we de�ne the mapping

Fk : W → W ′

where W := V ×V , by the formula〈
Fk

(
u

v

)
,

(
φ

φ

)〉

W ,W ′
=

1

τ

∫

Ω

(u− uk−1)φ dx+
1

τ

∫

Ω

(w − wk−1)φ dx

−
∫

Ω

bk−1 v · ∇φ dx+

∫

Ω

∇u · ∇φ dx+
1

τ

∫

Ω

(v − vk−1) · φ dx

+

∫

Ω

(vk−1 · ∇)v · φ dx+

∫

Ω

(∇v,∇φ) dx+

∫

Ω

bk−1∇u · φ dx,
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where
w(x) =

∫ ∞

0

gR(r, P [ξk−1(x, ·), u(x)](r)) dr. (4.10)

For
(
ui

vi

)
∈ W , i = 1, 2 , we have, for some constant c > 0 ,

〈
Fk

(
u1

v1

)
−Fk

(
u2

v2

)
,

(
u1 − u2

v1 − v2

)〉

W ,W ′
=

1

τ

∫

Ω

|u1 − u2|2 dx

+
1

τ

∫

Ω

(w1 − w2)(u1 − u2) dx+
1

τ

∫

Ω

|v1 − v2|2 dx+

∫

Ω

|∇(u1 − u2)|2 dx

+

∫

Ω

|∇(v1 − v2)|2 dx ≥ c (||u1 − u2||2V + ||v1 − v2||2V),

where we used the monotonicity of the mapping u 7→ w de�ned by (4.10) (which in
turn is given by the superposition of the two nondecreasing mappings g and P [λ, ·] ).
We see that Fk is bounded, continuous, monotone and coercive, and by Browder-
Minty's Theorem (see [23], Theorem 9.45), there exists

(
uk

vk

)
∈ W such that

Fk

(
uk

vk

)
=

(
0

0

)
,

i.e. (4.1) holds.

4.3 First a priori estimate

In the estimates below, many di�erent constants will appear. For simplicity, we denote
every constant independent of α and τ by C . Indeed, the value of C may vary from
one formula to another.
We choose φ = uk and φ = vk in (4.1). This yields

∫

Ω

•
uk uk dx+

∫

Ω

•
wk uk dx+

∫

Ω

|∇uk|2 dx

+

∫

Ω

•
vk ·vk dx+

∫

Ω

(vk−1 · ∇)vk · vk dx+

∫

Ω

|∇vk|2 dx = 0.

We notice that, as vk−1 ∈ V ,∫

Ω

(vk−1 · ∇)vk · vk dx =
1

2

∫

Ω

vk−1 · ∇|vk|2 dx = 0,

hence, using (6.3), we have for every k = 1, . . . ,m , as a discrete counterpart of the
energy equality (3.4), that

1

2

∫

Ω

(|uk|2 − |uk−1|2) dx+

∫

Ω

(Ek − Ek−1) dx+
1

2

∫

Ω

(|vk|2 − |vk−1|2) dx

+ τ

∫

Ω

|∇uk|2 dx+ τ

∫

Ω

|∇vk|2 dx ≤ 0.
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After summing for k = 1, . . . , n , for every n ∈ {1, . . . ,m} , using the regularity of the
initial data (3.5), we obtain

max
n=1,...,m

∫

Ω

|un|2dx+ max
n=1,...,m

∫

Ω

|vn|2dx+ τ

m∑

k=1

∫

Ω

|∇uk|2dx+ τ

m∑

k=1

∫

Ω

|∇vk|2dx

≤ 1

2

∫

Ω

|u0|2dx+
1

2

∫

Ω

|v0|2dx+

∫

Ω

E0 dx ≤ C α2. (4.11)

4.4 Estimate of the initial condition

For k = 1, . . . ,m set
Hk :=

∫

Ω

(•
uk +

•
wk

) •
uk dx . (4.12)

Due to the monotonicity and local Lipschitz continuity of the functions g(r, ·) and
P [λ, ·](r) , we have the pointwise inequality

•
uk(x)

•
wk(x) ≥ 0 a. e. in Ω , k = 1, . . . ,m . (4.13)

In Eq. (4.1) corresponding to k = 1 choose φ :=
•
u1 , φ :=

•
v1 , and sum the two

equations. We deduce

H1 +

∫

Ω

∣∣∣ •v1

∣∣∣
2

dx+ τ

∫

Ω

∣∣∣∇ •
u1

∣∣∣
2

dx+ τ

∫

Ω

∣∣∣∇ •
v1

∣∣∣
2

dx

=−
∫

Ω

(v0 · ∇)v1· •v1 dx+

∫

Ω

b0 v1 · ∇ •
u1 dx

−
∫

Ω

b0∇u1· •v1 dx+

∫

Ω

∆u0
•
u1 dx+

∫

Ω

∆v0· •v1 dx.

On the right hand side, we have∫

Ω

b0 v1 · ∇ •
u1 dx−

∫

Ω

b0∇u1· •v1 dx

=

∫

Ω

b0 v0 · ∇ •
u1 dx−

∫

Ω

b0∇u0· •v1 dx =: Ia + IIa.

We estimate these two terms as

Ia = −
∫

Ω

•
u1 v0 · ∇b0 dx ≤ 1

4

∫

Ω

∣∣∣•u1

∣∣∣
2

dx+

∫

Ω

|v0|2 |∇b0|2 dx,

and
IIa = −

∫

Ω

b0∇u0· •v1 dx ≤ 1

4

∫

Ω

∣∣∣ •v1

∣∣∣
2

dx+

∫

Ω

|∇u0|2 |b0|2 dx.
The remaining integrals are estimated similarly as∫

Ω

∆u0
•
u1 dx+

∫

Ω

∆v0· •v1 dx ≤ 1

4

∫

Ω

∣∣∣•u1

∣∣∣
2

dx

+

∫

Ω

|∆u0|2 dx+
1

4

∫

Ω

∣∣∣ •v1

∣∣∣
2

dx+

∫

Ω

|∆v0|2 dx,
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and
∫

Ω

(v0 · ∇)v1· •v1 dx =

∫

Ω

(v0 · ∇)v0· •v1 dx

≤ 1

4

∫

Ω

∣∣∣ •v1

∣∣∣
2

dx+

∫

Ω

|(v0 · ∇)v0|2 dx.

Summing up the above inequalities, we obtain
1

2

(
H1 +

∫

Ω

∣∣∣ •v1

∣∣∣
2

dx
)

+ τ

∫

Ω

∣∣∣∇ •
u1

∣∣∣
2

dx+ τ

∫

Ω

∣∣∣∇ •
v1

∣∣∣
2

dx

≤
∫

Ω

|v0|2 |∇b0|2 dx+

∫

Ω

|∇u0|2 |b0|2 dx

+

∫

Ω

|∆u0|2 dx+

∫

Ω

|∆v0|2 dx+

∫

Ω

|(v0 · ∇)v0|2 dx ≤ Cα2. (4.14)

The constant C in (4.14) depends on the upper bound α0 for α , but α0 is kept �xed
as mentioned in Remark 3.3.

4.5 Second a priori estimate

We take the time increments in (4.1) and set for k = 1, . . . ,m , in addition to the
notations in (4.2)

•
bk:=

bk − bk−1

τ
. (4.15)

We obtain
∫

Ω

(•
uk − •

uk−1

)
φ dx+

∫

Ω

( •
wk − •

wk−1

)
φ dx− τ

∫

Ω

bk−1
•
vk ·∇φ dx

− τ

∫

Ω

•
bk−1 vk−1 · ∇φ dx+ τ

∫

Ω

∇ •
uk ·∇φ dx = 0, (4.16)

for any φ ∈ V and
∫

Ω

( •
vk − •

vk−1

)
· φ dx+ τ

∫

Ω

(vk−1 · ∇)
•
vk ·φ dx+ τ

∫

Ω

( •
vk−1 ·∇

)
vk−1 · φ dx

+ τ

∫

Ω

(
∇ •

vk,∇φ
)
dx+ τ

∫

Ω

bk−1∇ •
uk ·φ dx+ τ

∫

Ω

•
bk−1 ∇uk−1 · φ dx = 0, (4.17)

for any φ ∈ V . Now we choose φ =
•
uk in (4.16) and φ =

•
vk in (4.17). We get

∫

Ω

(•
uk − •

uk−1

) •
uk dx+

∫

Ω

( •
wk − •

wk−1

) •
uk dx− τ

∫

Ω

•
bk−1 vk−1 · ∇ •

uk dx

+ τ

∫

Ω

•
bk−1 ∇uk−1· •vk dx+ τ

∫

Ω

∣∣∣∇ •
uk

∣∣∣
2

dx+

∫

Ω

(
•
vk − •

vk−1)· •vk dx

+ τ

∫

Ω

( •
vk−1 ·∇

)
vk−1· •vk dx+ τ

∫

Ω

∣∣∣∇ •
vk

∣∣∣
2

dx = 0,

(4.18)
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where we used the fact that

τ

∫

Ω

(vk−1 · ∇)
•
vk · •vk dx = 0.

For simplicity, we will use the notation | · |p for the Lp(Ω)−norm of both scalar- or
vector-valued functions, 1 ≤ p ≤ ∞ . Using (6.4) for p = 2 , we have, for k ≥ 2 ,

1

2

∫

Ω

(•
uk +

•
wk

) •
uk dx− 1

2

∫

Ω

(•
uk−1 +

•
wk−1

) •
uk−1 dx+ τ

∣∣∣∇ •
uk

∣∣∣
2

2

+
1

2

(∣∣∣ •vk

∣∣∣
2

2
−

∣∣∣ •vk−1

∣∣∣
2

2

)
+ τ

∣∣∣∇ •
vk

∣∣∣
2

2
≤ − τ

∫

Ω

( •
vk−1 ·∇

)
vk−1· •vk dx

+ τ

∫

Ω

∣∣∣•bk−1

∣∣∣ |vk−1|
∣∣∣∇ •

uk

∣∣∣ dx+ τ

∫

Ω

∣∣∣•bk−1

∣∣∣ |∇uk−1|
∣∣∣ •vk

∣∣∣ dx.

(4.19)

By (6.13), we have ∣∣∣•bk−1(x)
∣∣∣ ≤ C

∣∣∣•uk−1(x)
∣∣∣ ∀x ∈ Ω . (4.20)

With Hk de�ned in (4.12), it follows from (4.19) for k ≥ 2 that

1

2
(Hk −Hk−1) +

1

2

(∣∣∣ •vk

∣∣∣
2

2
−

∣∣∣ •vk−1

∣∣∣
2

2

)
+ τ

∣∣∣∇ •
uk

∣∣∣
2

2
+ τ

∣∣∣∇ •
vk

∣∣∣
2

2

≤ τ
∣∣∣ •vk−1

∣∣∣
4
|∇vk−1|2

∣∣∣ •vk

∣∣∣
4
+ C τ

∣∣∣•uk−1

∣∣∣
4
|vk−1|4

∣∣∣∇ •
uk

∣∣∣
2

+C τ
∣∣∣•uk−1

∣∣∣
4
|∇uk−1|2

∣∣∣ •vk

∣∣∣
4

=: Ib + IIb + IIIb. (4.21)

We now apply (6.15) with the choices q1 = 4 , q2 = q3 = 2 , ρ = 1/2 , and obtain

Ib ≤ C τ
∣∣∣ •vk−1

∣∣∣
1/2

2

∣∣∣∇ •
vk−1

∣∣∣
1/2

2
|∇vk−1|2

∣∣∣ •vk

∣∣∣
1/2

2

∣∣∣∇ •
vk

∣∣∣
1/2

2

≤ τ

4

∣∣∣∇ •
vk−1

∣∣∣
2

2
+
τ

4

∣∣∣∇ •
vk

∣∣∣
2

2
+ C τ |∇vk−1|22

∣∣∣ •vk−1

∣∣∣
2

∣∣∣ •vk

∣∣∣
2
;

IIb ≤ C τ
∣∣∣•uk−1

∣∣∣
1/2

2

∣∣∣∇ •
uk−1

∣∣∣
1/2

2
|vk−1|1/2

2 |∇vk−1|1/2
2

∣∣∣∇ •
uk

∣∣∣
2

≤ τ

4

∣∣∣∇ •
uk

∣∣∣
2

2
+
τ

4

∣∣∣∇ •
uk−1

∣∣∣
2

2
+ C τ |∇vk−1|22

∣∣∣•uk−1

∣∣∣
2

2
|vk−1|22;

IIIb ≤ C τ
∣∣∣•uk−1

∣∣∣
1/2

2

∣∣∣∇ •
uk−1

∣∣∣
1/2

2
|∇uk−1|2

∣∣∣ •vk

∣∣∣
1/2

2

∣∣∣∇ •
vk

∣∣∣
1/2

2

≤ τ

4

∣∣∣∇ •
uk−1

∣∣∣
2

2
+
τ

4

∣∣∣∇ •
vk

∣∣∣
2

2
+ C τ |∇uk−1|22

∣∣∣•uk−1

∣∣∣
2

∣∣∣ •vk

∣∣∣
2
.
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Using the fact that |vk−1|2 ≤ C by (4.11), we thus have for k ≥ 2

1

2
(Hk −Hk−1) +

1

2

(∣∣∣ •vk

∣∣∣
2

2
−

∣∣∣ •vk−1

∣∣∣
2

2

)
+

3

4
τ

∣∣∣∇ •
uk

∣∣∣
2

2
+
τ

2

∣∣∣∇ •
vk

∣∣∣
2

2

≤ τ

2

∣∣∣∇ •
uk−1

∣∣∣
2

2
dx+

τ

4

∣∣∣∇ •
vk−1

∣∣∣
2

2
+ C τ |∇vk−1|22

∣∣∣ •vk−1

∣∣∣
2

∣∣∣ •vk

∣∣∣
2

+ C τ |∇vk−1|22
∣∣∣•uk−1

∣∣∣
2

2
+ C τ |∇uk−1|22

∣∣∣•uk−1

∣∣∣
2

∣∣∣ •vk

∣∣∣
2
.

(4.22)

We de�ne auxiliary quantities

Xk :=
1

2
Hk +

1

2

∫

Ω

∣∣∣ •vk

∣∣∣
2

dx+
τ

2

∫

Ω

∣∣∣∇ •
uk

∣∣∣
2

dx+
τ

4

∫

Ω

∣∣∣∇ •
vk

∣∣∣
2

dx (4.23)

Yk :=
τ

4

∣∣∣∇ •
uk

∣∣∣
2

2
+
τ

4

∣∣∣∇ •
vk

∣∣∣
2

2
, (4.24)

and
ak := |∇uk−1|22 + |∇vk−1|22. (4.25)

By virtue of (4.11), we have for k = 1, . . . ,m+ 1 the estimate

τ ak ≤ τ

m+1∑
j=1

aj ≤ C α2. (4.26)

Now (4.22) implies, using (4.13), (4.23), (4.24), and (4.25), that

Xk −Xk−1 + Yk ≤ C τ ak(Xk−1 +
√
XkXk−1) ≤ τ ak(CXk−1 + c∗Xk) , (4.27)

where c∗ is a �xed constant such that

1− c∗ τ ak >
1

2
∀ k = 1, . . . ,m+ 1 . (4.28)

Such a constant exists as a consequence of (4.26). This enables us to rewrite (4.27) as

Xk + Yk ≤ 1 + C τ ak

1− c∗ τ ak

Xk−1 ≤ (1 + τ dk)Xk−1 (4.29)

for k = 2, . . . ,m , where we set dk = 2(C + c∗)ak , with C from (4.29). We now apply
the discrete Gronwall argument. Putting

Rk =
k∏

j=1

(1 + τ dj),

we have
Xk

Rk

+
Yk

Rk

≤ Xk−1

Rk−1

,
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hence

Xk +
k∑

i=1

Yi

k∏
j=i+1

(1 + τ dj) ≤ X1

k∏
j=2

(1 + τ dj) ≤ X1eτ
Pk

j=2 dj ≤ CX1 (4.30)

for k = 2, . . . ,m . By (4.14), we have X1 ≤ Cα2 , hence Xk +
∑k

i=1 Yi ≤ Cα2 for all
k = 1, . . . ,m . This implies in particular that

∣∣∣•un

∣∣∣
2

2
+

∣∣∣ •vn

∣∣∣
2

2
+ τ

n∑

k=1

∣∣∣∇ •
uk

∣∣∣
2

2
+ τ

n∑

k=1

∣∣∣∇ •
vk

∣∣∣
2

2
≤ Cα2, (4.31)

for every n = 1, . . . ,m .

4.6 Third a priori estimate

We prove by induction over k = 1, . . . ,m that there exists B > 0 independent of k
and m such that

|vk|∞ ≤ B α, |uk|∞ ≤ B α for all k = 0, . . . ,m. (4.32)

For k = 0, . . . ,m set

B
(m)
k =

1

α
max{|uj|∞, |vj|∞; j = 0, . . . , k}. (4.33)

We have B
(m)
0 ≤ C independently of m by hypotheses on initial data. Let now

1 ≤ k0 ≤ m be �xed, and assume that B(m)
k0−1 <∞ . Let {φi; i ∈ N} be the complete

system of eigenfunctions, orthonormal in H , of the problem

−∆φi = λiφi, divφi = 0, φi = 0 on ∂Ω.

Put vki =
∫

Ω
vk ·φi dx , and in the second equation of (4.1) set φ = −∑J

i=1 vki λiφi .
We may let J tend to ∞ and obtain for k = 1, . . . , k0 that

|∆vk|22 ≤
(∣∣∣ •vk

∣∣∣
2
+ |vk−1|∞ |∇vk|2 + |bk−1|∞ |∇uk|2

)
|∆vk|2

≤
(∣∣∣ •vk

∣∣∣
2
+B

(m)
k0−1 α |∇vk|2 +

(
b̃1(R) +B

(m)
k0−1 α

)
|∇uk|2

)
|∆vk|2,

hence
|∆vk0|2 ≤

∣∣∣ •vk0

∣∣∣
2
+ C (1 +B

(m)
k0−1 α) (|∇vk0|2 + |∇uk0|2). (4.34)

Using (4.31), we estimate

|∇vk0|2 ≤ |∇v0|2 + τ

k0∑

k=1

∣∣∣∇ •
vk

∣∣∣
2
≤ |∇v0|2 +

(
τ

k0∑

k=1

∣∣∣∇ •
vk

∣∣∣
2

2

)1/2

≤ Cα ,

and similarly
|∇uk0|2 ≤ C α ,

∣∣∣ •vk0

∣∣∣
2
≤ C α ,
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hence
‖vk0‖W 2,2(Ω;R2) ≤ C |∆vk0|2 ≤ C α (1 +B

(m)
k0−1 α) . (4.35)

The embedding of W 2,2(Ω;R2) into W 1,4(Ω;R2) yields

|∇vk0|4 ≤ C α (1 +B
(m)
k0−1 α).

Using the Gagliardo-Nirenberg inequality (6.15) in the form

|vk0|∞ ≤ C |vk0|1/3
2 |∇vk0|2/3

4

and (4.11), we obtain that

|vk0|∞ ≤ C α (1 +B
(m)
k0−1 α)2/3. (4.36)

By direct comparison in the �rst equation in (4.1), we derive for k = 1, . . . , k0 the
estimate

|∆uk|2 ≤
∣∣∣•uk

∣∣∣
2
+

∣∣∣ •wk

∣∣∣
2
+ |vk|∞ |∇bk−1|2. (4.37)

This yields in particular that B
(m)
k0

< ∞ . Using (4.4)�(4.6) and (2.25), we get for
every k and a. e. x ∈ Ω the pointwise estimate

∣∣∣ •wk (x)
∣∣∣ ≤ C

(
1 + max

j=0,...,k
|uk(x)|

) ∣∣∣•uk (x)
∣∣∣ .

From (2.23) and the hypotheses on W it follows for a. e. x ∈ Ω that

|∇bk−1(x)| ≤ C

(∫ R

0

|∇λ(x, r)| dr + max
j=0,...,k−1

|∇uj(x)|
)

≤ C

(∫ R

0

|∇λ(x, r)| dr + |∇u0(x)|+ τ

k−1∑
j=1

∣∣∣∇ •
uj (x)

∣∣∣
)
. (4.38)

Hence, by (3.6) and (4.31), we obtain from (4.37) that

|∆uk0|2 ≤ C
(
1 + max{B(m)

k0−1 α, |uk0|∞}
) ∣∣∣•uk0

∣∣∣
2
+ C α |vk0|∞

≤ C α (1 + max{B(m)
k0−1 α, |uk0|∞, |vk0|∞}). (4.39)

We proceed as in (4.35)�(4.36) to obtain

|uk0|∞ ≤ C α (1 + max{B(m)
k0−1α, |uk0|∞, |vk0|∞})2/3.

From (4.36) we conclude that

max{|uk0|∞, |vk0|∞} ≤ C α (1 + max{B(m)
k0−1α, |uk0|∞, |vk0|∞})2/3. (4.40)

Assume that B(m)
k0

> B
(m)
k0−1 . Then

B
(m)
k0

=
1

α
max{|uk0|∞, |vk0|∞} ≤ C (1 + α0B

(m)
k0

)2/3,

hence B(m)
k0

≤ max{C,B(m)
k0−1} with a constant C independent of k and m , and the

desired estimate (4.32) follows. Inequalities (4.35), (4.39) imply in particular that
|∆uk|2 + |∆vk|2 ≤ Cα for all k = 1, . . . ,m . (4.41)
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4.7 Passage to the limit

For each �xed time step τ , we associate with the sequences {uk}, {vk} constructed
above their piecewise linear and piecewise constant time interpolates according to the
following scheme, similar to (4.7)�(4.9):

ū
(τ)
+ (x, t) = uk(x), w̄

(τ)
+ (x, t) = wk(x), v̄

(τ)
+ (x, t) = vk(x),

ū
(τ)
− (x, t) = uk−1(x), w̄

(τ)
− (x, t) = w̃k−1(x), v̄

(τ)
− (x, t) = vk−1(x),

}
(4.42)

and
û(τ)(x, t) = uk−1(x) + t−(k−1)τ

τ
(uk(x)− uk−1(x))

ŵ(τ)(x, t) = wk−1(x) + t−(k−1)τ
τ

(wk(x)− wk−1(x))

v̂(τ)(x, t) = vk−1(x) + t−(k−1)τ
τ

(vk(x)− vk−1(x))

b̄(τ)(x, t) = ū
(τ)
− (x, t) + w̄

(τ)
− (x, t)





(4.43)

for x ∈ Ω and t ∈ [(k − 1)τ, kτ) , k = 1, 2, . . . ,m , continuously extended to t = T .
We have

w̄
(τ)
+ = WR[λ, ū

(τ)
+ ], w̄

(τ)
− = W̃R[λ, ū

(τ)
− ]. (4.44)

As a consequence of the estimates (4.31) and (4.41), we see that there exist functions
u ∈ L∞(0, T ;V ∩W 2,2(Ω)) , v ∈ L∞(0, T ;V ∩W 2,2(Ω,R2)) , w ∈ L∞(0, T ;W 1,2(Ω)) ,
with ut ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V ) , vt ∈ L∞(0, T ;H) ∩ L2(0, T ;V) , wt ∈
L∞(0, T ;L2(Ω)) , such that, along a subsequence as τ → 0 , we have

û(τ) → u weakly star in L∞(0, T ;W 2,2(Ω)),

ŵ(τ) → w weakly star in L∞(0, T ;L2(Ω)),

v̂(τ) → v weakly star in L∞(0, T ;W 2,2(Ω;R2)),

û
(τ)
t → ut weakly star in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V ),

ŵ
(τ)
t → wt weakly star in L∞(0, T ;L2(Ω)),

v̂
(τ)
t → vt weakly star in L∞(0, T ;H) ∩ L2(0, T ;V).





(4.45)

By compact embedding, we have, passing again to a subsequence, if necessary,

∇û(τ) → ∇u strongly in L2(ΩT ;R2),

∇v̂(τ) → ∇v strongly in L2(ΩT ;R2×2),

û(τ) → u uniformly in C0(Ω̄T ),

v̂(τ) → v uniformly in C0(Ω̄T ;R2).





(4.46)
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We further have for every τ and every (x, t) ∈ ΩT that

|û(τ)(x, t)− ū
(τ)
± (x, t)|2 ≤ max

k
|uk(x)− uk−1(x)|2 ≤

m∑

k=1

|uk(x)− uk−1(x)|2,

|v̂(τ)(x, t)− v̄
(τ)
± (x, t)|2 ≤ max

k
|vk(x)− vk−1(x)|2 ≤

m∑

k=1

|vk(x)− vk−1(x)|2,

|ŵ(τ)(x, t)− w̄
(τ)
+ (x, t)|2 ≤ max

k
|wk(x)− wk−1(x)|2 ≤ C

m∑

k=1

|uk(x)− uk−1(x)|2,

and similarly

|∇û(τ)(x, t)−∇ū(τ)
± (x, t)|2 ≤

m∑

k=1

|∇uk(x)−∇uk−1(x)|2,

|∇v̂(τ)(x, t)−∇v̄
(τ)
± (x, t)|2 ≤

m∑

k=1

|∇vk(x)−∇vk−1(x)|2.

From (4.31) it follows that

‖û(τ) − ū
(τ)
± ‖L2(Ω;G+(0,T )) + ‖ŵ(τ) − w̄

(τ)
+ ‖L2(Ω;G+(0,T ))

+ ‖v̂(τ) − v̄
(τ)
± ‖L2(0,T ;H) ≤ C

√
τ , (4.47)

‖∇û(τ) −∇ū(τ)
± ‖L2(ΩT ;R2) + ‖∇v̂(τ) −∇v̄

(τ)
± ‖L2(ΩT ;R2×2) ≤ C

√
τ . (4.48)

Hence, ū(τ)
± converge to u strongly in L2(Ω;G+(0, T )) as τ → 0 . By Proposition 2.3,

we may pass to the limit in (4.44) and obtain

w̄
(τ)
+ → w = WR[λ, u] strongly in L2(Ω;G+(0, T )),

w̄
(τ)
− → w̃ = W̃R[λ, u] strongly in L2(Ω;G+(0, T )).



 (4.49)

This, (4.47), and (4.48) yield
ŵ(τ) → w strongly in L2(Ω;G+(0, T )),

v̄
(τ)
± → v strongly in L2(0, T ;V).



 (4.50)

System (4.1) is of the form
∫

Ω

(
û

(τ)
t φ+ ŵ

(τ)
t φ− b̄(τ) v̄

(τ)
+ · ∇φ+∇ū(τ)

+ · ∇φ
)
dx = 0,

∫

Ω

(
v̂

(τ)
t · φ+ (v̄

(τ)
− · ∇) v̄

(τ)
+ · φ+ (∇v̄

(τ)
+ ,∇φ) + b̄(τ)∇ū(τ)

+ · φ
)
dx = 0,





(4.51)

for every φ ∈ V , φ ∈ V . The convergences (4.45)�(4.46), (4.49)�(4.50) and inequality
(4.48) enable us to pass to the limit as τ → 0 and obtain

∫

Ω

((ut + wt)φ− (u+ w̃)v · ∇φ+∇u · ∇φ) dx = 0,

∫

Ω

(vt · φ+ (v · ∇)v · φ+ (∇v,∇φ) + (u+ w̃)∇u · φ) dx = 0.





(4.52)
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The L∞ bound (4.32) is preserved in the limit, hence, choosing α ≤ R/B , we obtain

|u(x, t)| ≤ R, a. e. in ΩT .

Since K ≤ R , it follows e. g. from [18, Lemma II.2.4] that the integration domain in
(2.26) and (2.28) is contained in DR , hence the truncations in (2.25) and (2.27) never
become active, and we have

w = w̃ = W [λ, u] .

This completes the existence part of the proof of Theorem 3.2. ¥

5 Uniqueness for Problem 3.1

5.1 A uniqueness theorem

We �rst prove the following theorem.

Theorem 5.1. If the solution to Problem 3.1 established in Theorem 3.2 (i) has the
additional regularity

ut ∈ L∞(ΩT ), (5.1)
then it is unique.

In Subsection 5.2, we show by means of a discrete Moser iteration scheme that the
regularity (5.1) is available under the hypotheses of Theorem 3.2 (ii).

Proof of Theorem 5.1. Let (u1,v1) and (u2,v2) be two solutions to Problem 3.1
with the prescribed regularity. We write (3.2) and (3.3) �rst for (u1,v1) and (u2,v2) ,
choose φ = u1−u2 , φ = v1−v2 , and subtract the two equations. Setting for i = 1, 2

wi = W [λ, ui] , bi = ui + wi ,

and
uª = u1 − u2 , vª = v1 − v2 , bª = b1 − b2 ,

we obtain
∫

Ω

(
bªt u

ª + vªt vª +
∣∣∇uª

∣∣2 +
∣∣∇vª

∣∣2
)
dx

=

∫

Ω

(
bª (v2 · ∇uª − vª · ∇u2)− (vª · ∇)v2 · vª

)
dx . (5.2)

We �rst estimate the right hand side of (5.2). We use the symbol C to denote any con-
stant independent of t ∈ [0, T ] . Note that ∆ui,∆vi are bounded in L∞(0, T ;L2(Ω)) .
By Sobolev embedding, this yields a uniform bound in time for |∇ui|p, |∇vi|p for every
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p <∞ . Using the Gagliardo-Nirenberg inequality (6.15), we thus obtain
∣∣∣∣
∫

Ω

(vª · ∇)v2 · vªdx
∣∣∣∣ ≤

∣∣vª
∣∣2
4
|∇v2|2 ≤ C

∣∣vª
∣∣
2

∣∣∇vª
∣∣
2
≤ C

∣∣vª
∣∣2
2
+

1

4

∣∣∇vª
∣∣2
2
, (5.3)

∣∣∣∣
∫

Ω

bª v2 · ∇uª dx
∣∣∣∣ ≤

∣∣bª
∣∣
2
|v2|∞

∣∣∇uª
∣∣
2
≤ C

∣∣bª
∣∣2
2
+

1

2

∣∣∇uª
∣∣2
2
, (5.4)

∣∣∣∣
∫

Ω

bª vª · ∇u2 dx
∣∣∣∣ ≤

∣∣bª
∣∣
2

∣∣vª
∣∣
4
|∇u2|4 ≤ C

∣∣bª
∣∣
2

∣∣vª
∣∣1/2

2

∣∣∇vª
∣∣1/2

2

≤ C
∣∣bª∣∣2

2
+

∣∣vª∣∣2
2
+

1

4

∣∣∇vª
∣∣2
2
. (5.5)

The term |bª|22 has to be estimated carefully. The generating function g of the
Preisach operator W in Assumption 2.7 has for every (r, v1), (r, v2) ∈ DR the property

AR (v1 − v2)
2 ≤ (g(r, v1)− g(r, v2))(v1 − v2) ≤ (AR +RCR) (v1 − v2)

2 . (5.6)

As in Proposition 2.6, set

ξi
r(x, t) = ℘r[λ, ui](x, t) , ξªr = ξ1

r − ξ2
r .

The memory evolution only takes place in DR , and we obtain directly from (2.21)
that ∣∣bª(x, t)

∣∣ ≤
∣∣uª(x, t)

∣∣ + C

∫ R

0

∣∣ξªr (x, t)
∣∣ dr a. e.,

and ∣∣bª(t)
∣∣2
2
≤ C

(∣∣uª(t)
∣∣2
2
+

∫ R

0

∣∣ξªr (t)
∣∣2
2
dr

)
. (5.7)

We now need a lower bound for the term bªt u
ª of (5.2). By hypothesis (5.1) and

inequality (2.18), we have ∣∣∣∣
∂ξi

r

∂t
(x, t)

∣∣∣∣ ≤ C ;

from the elementary identity

(ξ1
r − ξ2

r )
∂

∂t
(g(r, ξ1

r )− g(r, ξ2
r )) =

∂ξ2
r

∂t
(ξ1

r − ξ2
r )(ψ(r, ξ1

r )− ψ(r, ξ2
r ))

+
1

2

∂

∂t

(
ψ(r, ξ1

r ) |ξªr |2
)− 1

2

∂ξ1
r

∂t

∂ψ

∂v
(r, ξ1

r )
∣∣ξªr

∣∣2

and Assumption 2.7 we thus deduce the inequality

(ξ1
r − ξ2

r )
∂

∂t
(g(r, ξ1

r )− g(r, ξ2
r )) ≥

1

2

∂

∂t

(
ψ(r, ξ1

r )
∣∣ξªr

∣∣2
)
− C

∣∣ξªr
∣∣2 , (5.8)

and Proposition 2.6 yields the pointwise inequality

bªt u
ª ≥ 1

2

∂

∂t

(∣∣uª
∣∣2 +

∫ R

0

ψ(r, ξ1
r )

∣∣ξªr
∣∣2 dr

)
− C

∫ R

0

∣∣ξªr
∣∣2 dr . (5.9)
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We now integrate Eq. (5.2) from 0 to t and use the fact that the solutions satisfy the
same initial condition. Using (5.3)�(5.5), (5.7), (5.9), and Assumption 2.7, we obtain

∣∣uª(t)
∣∣2
2
+ AR

∫ R

0

∣∣ξªr (t)
∣∣2
2
dr +

∣∣vª(t)
∣∣2
2
+

∫ t

0

(∣∣∇uª(t′)
∣∣2
2
+

∣∣∇vª(t′)
∣∣2
2

)
dt′

≤ C

∫ t

0

(∣∣uª(t′)
∣∣2
2
+

∫ R

0

∣∣ξªr (t′)
∣∣2
2
dr +

∣∣vª(t′)
∣∣2
2

)
dt′ . (5.10)

From the Gronwall argument it follows u1 = u2,v1 = v2 , which we wanted to prove.
¥

5.2 Further regularity

We go back to the time discrete system (4.1), for which we already have the bounds
(4.31) and (4.41), more speci�cally,

|un|∞ + |vn|∞ ≤ R∣∣∣•un

∣∣∣
2
+

∣∣∣ •vn

∣∣∣
2
+ |∆un|2 + |∆vn|2 ≤ C

τ

n∑

k=1

(∣∣∣∇ •
uk

∣∣∣
2

2
+

∣∣∣∇ •
vk

∣∣∣
2

2

)
≤ C





for all n = 1, . . . ,m . (5.11)

The dependence of C on α is not relevant any more. As in Section 4, C denotes any
constant independent of τ . We now come back to the time increment equation (4.16),
and choose φ = Fk :=

•
uk | •uk |p−2 for p ≥ 2 . This is admissible, as by (5.11), •

uk

belongs to W 1,2
0 (Ω) ∩ L∞(Ω) (with a bound that for the moment still depends on τ ,

indeed). Using the Young inequality, (6.4), (5.11), and the pointwise inequality (4.20),
we get
1

p

∫

Ω

(∣∣∣•uk

∣∣∣
p

+
•
wk Fk −

∣∣∣•uk−1

∣∣∣
p

− •
wk−1 Fk−1

)
dx+ τ (p− 1)

∫

Ω

∣∣∣∇ •
uk

∣∣∣
2 ∣∣∣•uk

∣∣∣
p−2

dx

≤ −τ
∫

Ω

•
vk ∇bk−1

•
uk

∣∣∣•uk

∣∣∣
p−2

dx + τ (p− 1)

∫

Ω

vk−1

•
bk−1 ∇ •

uk

∣∣∣•uk

∣∣∣
p−2

dx

≤ τ

∫

Ω

∣∣∣ •vk

∣∣∣ |∇bk−1|
∣∣∣•uk

∣∣∣
p−1

dx + C τ (p− 1)

∫

Ω

∣∣∣•uk−1

∣∣∣
∣∣∣∇ •

uk

∣∣∣
∣∣∣•uk

∣∣∣
p−2

dx. (5.12)

We �rst estimate the initial condition as in Subsection 4.4. In the �rst equation of
(4.1) corresponding to k = 1 , we set φ = F1 and obtain
∫

Ω

(∣∣∣•u1

∣∣∣
p

+
•
w1 F1

)
dx+ (p− 1)

∫

Ω

∇u1 · ∇ •
u1

∣∣∣•u1

∣∣∣
p−2

dx ≤
∫

Ω

|v1| |∇b0|
∣∣∣•u1

∣∣∣
p−1

dx .

Using the estimates (5.11) and hypothesis (3.7), we obtain
∫

Ω

(∣∣∣•u1

∣∣∣
p

+
•
w1 F1

)
dx+ τ (p− 1)

∫

Ω

∣∣∣∇ •
u1

∣∣∣
2 ∣∣∣•u1

∣∣∣
p−2

dx

≤
∫

Ω

|∆u0|
∣∣∣•u1

∣∣∣
p−1

dx+ C

∫

Ω

∣∣∣•u1

∣∣∣
p−1

dx ≤ C

∫

Ω

∣∣∣•u1

∣∣∣
p−1

dx . (5.13)
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Using Hölder's inequality it follows
∫

Ω

(∣∣∣•u1

∣∣∣
p

+
•
w1 F1

)
dx+ τ(p− 1)

∫

Ω

∣∣∣∇ •
u1

∣∣∣
2 ∣∣∣•u1

∣∣∣
p−2

dx ≤ Cp . (5.14)

Summing (5.14) with (5.12) over k = 2, . . . , n for n = 2, . . . ,m , we deduce

1

p

∫

Ω

(∣∣∣•un

∣∣∣
p

+
•
wn Fn

)
dx+ τ (p− 1)

n∑

k=1

∫

Ω

∣∣∣∇ •
uk

∣∣∣
2 ∣∣∣•uk

∣∣∣
p−2

dx

≤ 1

p
Cp + C τ

n∑

k=2

∫

Ω

∣∣∣ •vk

∣∣∣ |∇bk−1|
∣∣∣•uk

∣∣∣
p−1

dx

+C τ (p− 1)
n∑

k=2

∫

Ω

∣∣∣•uk−1

∣∣∣
∣∣∣∇ •

uk

∣∣∣
∣∣∣•uk

∣∣∣
p−2

dx. (5.15)

This, (4.13), and Hölder's inequality imply for n = 1, . . . ,m that

1

p

∫

Ω

∣∣∣•un

∣∣∣
p

dx+ τ
(p− 1)

2

n∑

k=1

∫

Ω

∣∣∣∇ •
uk

∣∣∣
2 ∣∣∣•uk

∣∣∣
p−2

dx

≤ 1

p
Cp + Cτ

n∑

k=2

∫

Ω

∣∣∣ •vk

∣∣∣ |∇bk−1|
∣∣∣•uk

∣∣∣
p−1

dx+ Cτ(p− 1)
n∑

k=2

∫

Ω

∣∣∣•uk−1

∣∣∣
2 ∣∣∣•uk

∣∣∣
p−2

dx .

We have ∣∣∣•uk−1

∣∣∣
∣∣∣•uk

∣∣∣
p−2

≤ 1

p− 1

∣∣∣•uk−1

∣∣∣
p−1

+
p− 2

p− 1

∣∣∣•uk

∣∣∣
p−1

,

hence, setting •
u0 := 0 ,

1

p

∫

Ω

∣∣∣•un

∣∣∣
p

dx+ τ
(p− 1)

2

n∑

k=1

∫

Ω

∣∣∣∇ •
uk

∣∣∣
2 ∣∣∣•uk

∣∣∣
p−2

dx

≤ 1

p
Cp + C τ (p− 1)

n∑

k=1

∫

Ω

(∣∣∣ •vk

∣∣∣ |∇bk−1|+
∣∣∣•uk−1

∣∣∣ +
∣∣∣•uk

∣∣∣
) ∣∣∣•uk

∣∣∣
p−1

dx.

With the intention to apply Lemma 6.3, we check that the sequence

fk :=
∣∣∣ •vk

∣∣∣ |∇bk−1|+
∣∣∣•uk−1

∣∣∣ +
∣∣∣•uk

∣∣∣

has the property

τ

n∑

k=1

∣∣∣•uk

∣∣∣
4

4
≤ C , τ

n∑

k=1

|fk|qq ≤ C for some q > 2 . (5.16)

The inequality for | •uk | holds as a consequence of (5.11) and the Gagliardo-Nirenberg
inequality ∣∣∣•uk

∣∣∣
4

4
≤ C

∣∣∣•uk

∣∣∣
2

2

∣∣∣∇ •
uk

∣∣∣
2

2
,
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and similarly for | •uk−1 | and | •vk | . To estimate |∇bk−1| , we use formula (4.38), choose
q̂ from hypothesis (3.7), and obtain

|∇bk−1|q̂+1
q̂+1 ≤ C

(
1 +

∫

Ω

max
j=0,...,k−1

|∇uj(x)|q̂+1 dx
)

≤ C

(
1 + |∇u0|q̂+1

q̂+1 +

∫

Ω

k−1∑
j=1

∣∣∣|∇uj(x)|q̂+1 − |∇uj−1(x)|q̂+1
∣∣∣ dx

)

≤ C

(
1 + τ (q̂ + 1)

k−1∑
j=1

∫

Ω

∣∣∣∇ •
uj (x)

∣∣∣ |∇uj(x)|q̂ dx
)

≤ C

(
1 + τ

k−1∑
j=1

∣∣∣∇ •
uj

∣∣∣
2
|∇uj|q̂2q̂

)

≤ C


1 +

(
τ

k−1∑
j=1

∣∣∣∇ •
uj

∣∣∣
2

2

)1/2 (
τ

k−1∑
j=1

|∇uj|2q̂
2q̂

)1/2

 , (5.17)

hence, by virtue of (5.11) and the embedding of W 2,2(Ω) in W 1,2q̂(Ω) , we have

max
k
|∇bk−1|q̂+1 ≤ C . (5.18)

In particular, the product | •vk | |∇bk−1| satis�es (5.16) with q = 4(q̂ + 1)/(q̂ + 5) > 2 .
Hence, from Lemma 6.3, we conclude that the norms | •un |∞ are bounded indepen-
dently of n and τ . This property is preserved when passing to the limit as τ → 0 ,
which means for the solution u of Problem 3.1 that

||ut||L∞(ΩT ) ≤ C. (5.19)

By Theorem 5.1, the solution to Problem 3.1 is unique, which completes the proof of
Theorem 3.2. ¥

6 Appendix: auxiliary results

6.1 A discrete �rst order energy inequality

We establish here a discrete counterpart of the equation (ii) in Proposition 2.5. We set
ξr
k(x) := ξk(x, r) where ξk(x, r) has been introduced in (4.6). As a discrete counterpart
of (2.1) and (2.2), it follows from (4.6) that

(ξr
k − ξr

k−1) (xk − z) ≥ 0 ∀ |z| ≤ r,

where xk := uk − ξr
k . For z = r sign (ξr

k − ξr
k−1) , this yields

(ξr
k − ξr

k−1)xk ≥ r |ξr
k − ξr

k−1|. (6.1)
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Let ψ be an arbitrary function satisfying Assumption 2.1. We de�ne the discrete
versions of the Preisach potential energy E and dissipation operator S , introduced in
(2.15) and (2.17) respectively, as

Ek(x) =

∫ ∞

0

G(r, ξr
k(x)) dr,

and
Sk(x) =

∫ ∞

0

r g(r, ξr
k(x)) dr ,

with G given by (2.16). This implies that

Ek − Ek−1 =

∫ ∞

0

∫ ξr
k

ξr
k−1

v ψ(r, v) dv dr .

We also have, by (4.4), that

wk − wk−1 =

∫ ∞

0

∫ ξr
k

ξr
k−1

ψ(r, v) dv dr. (6.2)

Now, suppose that ξr
k > ξr

k−1 (the other case is analogous); we have

(wk − wk−1)uk − (Ek − Ek−1) =

∫ ∞

0

∫ ξr
k

ξr
k−1

(uk − v)ψ(r, v) dv dr

=

∫ ∞

0

1

ξr
k − ξr

k−1

∫ ξr
k

ξr
k−1

(ξr
k − ξr

k−1) (xk + ξr
k − v)ψ(r, v) dv dr.

Now we remark that

(ξr
k − ξr

k−1) (xk + ξr
k − v) = (ξr

k − ξr
k−1)xk + (ξr

k − ξr
k−1) (ξr

k − v)
(6.1)
≥ r |ξr

k − ξr
k−1|,

as v ∈ (ξr
k−1, ξ

r
k) ; therefore we deduce

(wk − wk−1)uk − (Ek − Ek−1) ≥
∫ ∞

0

∫ ξr
k

ξr
k−1

r ψ(r, v) dv dr = |Sk − Sk−1|. (6.3)

Remark 6.1. Inequality (6.3) is valid for every function ψ satisfying Assumption 2.1.
We use it in Subsection 4.4 in the special case ψ = ψR .

6.2 A discrete second order energy inequality

We show here the connection between the convexity of the Preisach hysteresis loops
and a second order energy inequality in the time discrete case. The time continuous
case with p = 2 is treated in detail in [18, Sections II.3 and II.4]. Let p ≥ 2 be
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arbitrary and set Fk =
•
uk

∣∣∣•uk

∣∣∣
p−2

, with the notations in (4.2). Our aim is to prove
that for every k = 2, . . . , n , n ∈ {1, . . . ,m} and a. e. x ∈ Ω we have

( •
wk − •

wk−1

)
Fk ≥ 1

p

( •
wk Fk− •

wk−1 Fk−1

)
. (6.4)

To prove (6.4), let Ω′ ⊂ Ω be the set of full measure (meas (Ω \ Ω′) = 0 ) for which
(4.4)�(4.6) hold for all k = 1, . . . ,m , and �x x ∈ Ω′ . Let us de�ne the function
p̂(r, v) = P [ξk−2(x, ·), v](r) , where P has been introduced in (2.10). By (4.4)�(4.6) we
have (omitting the argument x )

wk−1 =

∫ ∞

0

gR(r, p̂(r, uk−1)) dr, wk−2 =

∫ ∞

0

gR(r, p̂(r, uk−2)) dr. (6.5)

In the second identity we used the obvious implication

v − r ≤ λ(r) ≤ v + r ⇒ P [λ, v](r) = λ(r). (6.6)

Hence wk−1 = wk−2 whenever uk−1 = uk−2 . Inequality (6.4) is automatically ful�lled
if uk = uk−1 or uk−1 = uk−2 .
We may assume from now on that uk 6= uk−1 , uk−1 6= uk−2 and set

Lk =
wk − wk−1

uk − uk−1

≥ 0.

Then (6.4) reads
(

1− 1

p

)
Lk

∣∣∣•uk

∣∣∣
p

+
1

p
Lk−1

∣∣∣•uk−1

∣∣∣
p

≥ Lk−1
•
uk−1 Fk. (6.7)

If •
uk

•
uk−1< 0 , then (6.7) holds automatically, since its right-hand side is nonpositive.

Otherwise, we estimate it as

Lk−1
•
uk−1 Fk ≤ Lk−1

∣∣∣•uk−1

∣∣∣
∣∣∣•uk

∣∣∣
p−1

≤ Lk−1

((
1− 1

p

) ∣∣∣•uk

∣∣∣
p

+
1

p

∣∣∣•uk−1

∣∣∣
p
)
,

hence (6.7) will be proved if we can show that

Lk ≥ Lk−1, whenever uk−2 < uk−1 < uk or uk−2 > uk−1 > uk . (6.8)

Assume �rst that uk−2 < uk−1 < uk . In addition to (6.5), we have in this case

wk =

∫ ∞

0

gR(r, p̂(r, uk)) dr, (6.9)

using the fact that P [ξk−1, uk](r) = P [ξk−2, uk](r) = max{uk − r, ξk−2(r)} . Hence,

wj = Φ(uj) for j = k − 2, k − 1, k , (6.10)
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where
Φ(v) =

∫ ∞

0

gR(r,max{v − r, ξk−2(r)}) dr. (6.11)

Set
mk−2(v) = min{r ≥ 0; v ≤ r + ξk−2(r)}.

Then
Φ′(v) =

∫ mk−2(v)

0

ψR(r, v − r) dr.

The function mk−2 is increasing; for uk−2 ≤ v1 < v2 ≤ uk we have mk−2(v2) −
mk−2(v1) ≥ 1

2
(v2 − v1) and

Φ′(v2)−Φ′(v1) =

∫ mk−2(v2)

mk−2(v1)

ψR(r, v2−r) dr+

∫ mk−2(v1)

0

(ψR(r, v2−r)−ψR(r, v1−r)) dr.

Using Assumption 2.7 (ii), we see that
∫ mk−2(v2)

mk−2(v1)

ψR(r, v2 − r) dr ≥ AR(mk−2(v2)−mk−2(v1)) ≥ 1

2
AR (v2 − v1)

and ∣∣∣∣∣
∫ mk−2(v1)

0

(ψR(r, v2 − r)− ψR(r, v1 − r)) dr
∣∣∣∣∣ ≤ RCR (v2 − v1),

hence
Φ′(v2)− Φ′(v1) ≥

(
1

2
AR −RCR

)
(v2 − v1)

(2.24)
= KR (v2 − v1).

We see that Φ is convex (as KR > 0 ), hence Lk ≥ Lk−1 and (6.4) follows.
The case uk−2 > uk−1 > uk can be treated in an analogous way.
Similarly to (6.5), we have

w̃k−1 =

∫ ∞

0

g̃R(r, p̂(r, uk−1)) dr, w̃k−2 =

∫ ∞

0

g̃R(r, p̂(r, uk−2)) dr, (6.12)

hence

|w̃k−1 − w̃k−2| ≤
∣∣∣∣∣
∫ ∞

0

∫ p̂(r,uk−1)

p̂(r,uk−2)

ψ̃R(r, v) dv dr
∣∣∣∣∣ ≤ b̃1(R) |uk−1 − uk−2|, (6.13)

with b̃1 given by (2.12).

6.3 The Gagliardo-Nirenberg inequality

We recall the Gagliardo-Nirenberg inequality (for more details see for example [2, 13]).
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Proposition 6.2. Let Ω ⊂ RN , with N ≥ 2 be a bounded Lipschitzian domain, and
let 1 ≤ q1, q2, q3 ≤ ∞ be given. Then there exists a constant Cq1,q2,q3 > 0 such that
for every v ∈ W 1,q3(Ω) we have

|v|q1 ≤ Cq1,q2,q3 (|v|q2 + |v|1−ρ
q2

|∇v|ρq3
), (6.14)

provided

ρ =

1
q2
− 1

q1

1
N

+ 1
q2
− 1

q3

,
1

q2
>

1

q1
>

1

q3
− 1

N
,

with the convention 1/∞ = 0 . If moreover v ∈ W 1,q3

0 (Ω) , then (6.14) can be written
in the form

|v|q1 ≤ Cq1,q2,q3 |v|1−ρ
q2

|∇v|ρq3
. (6.15)

6.4 A discrete Moser iteration lemma

We prove here the following lemma, inspired by [20, Lemma 5.6, Chapter II]).

Lemma 6.3. Let Ω ⊂ RN be a bounded domain with Lipschitzian boundary, N ≥ 2 ,
and let q > q0 := (N/2) + 1 and sequences {fkm;m ∈ N , k = 1, . . . ,m} in Lq(Ω) ,
{Ukm;m ∈ N , k = 1, . . . ,m} in W 1,2

0 (Ω) ∩ L∞(Ω) be given. Assume that there exist
constants M > 0 , E > 0 , and a polynomial H , all independent of m , such that

(
1

m

m∑

k=1

|Ukm|q
′

q′

)1/q′

≤M ,

(
1

m

m∑

k=1

|fkm|qq
)1/q

≤M , (6.16)

where q′ is the conjugate exponent to q , and

1

p

∫

Ω

|Unm|p dx+
p

m

n∑

k=1

∫

Ω

|∇Ukm|2 |Ukm|p−2 dx

≤ 1

p
Ep +

H(p)

m

n∑

k=1

∫

Ω

|fkm| |Ukm|p−1 dx ∀ p ≥ 2 ∀n = 1, . . . ,m. (6.17)

Then we have
sup
m∈N

max
k=1,...,m

|Ukm|∞ <∞. (6.18)

Proof. We denote by p′ the conjugate exponent to p for every p ≥ 2 , and by C any
constant independent of k , p , and m . For j ∈ N ∪ {0} we de�ne the sequence

pj = 2(1 + κ)j , κ =
q′0
q′
− 1 > 0 . (6.19)

Let {Z(j)
km} be the sequence

Z
(j)
km := Ukm |Ukm|

pj
2
−1 , (6.20)
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so that ∣∣∣Z(j)
km

∣∣∣
2

= |Ukm|pj ,
∣∣∣∇Z(j)

km

∣∣∣
2

=
p2

j

4
|∇Ukm|2 |Ukm|pj−2. (6.21)

By (6.17), Hölder's inequality with exponents q , pjq
′ , and p′jq′ , and hypothesis (6.16),

we have for all admissible indices
∫

Ω

∣∣Z(j)
nm

∣∣2 dx+
4

m

n∑

k=1

∫

Ω

∣∣∣∇Z(j)
km

∣∣∣
2

dx

≤ Epj + pjH(pj)
1

m

n∑

k=1

∫

Ω

|fkm|
∣∣∣Z(j)

km

∣∣∣
2/p′j dx

≤ Epj + pjH(pj)

(
1

m

n∑

k=1

|fkm|qq
)1/q (

1

m

n∑

k=1

|1|pjq′
pjq′

)1/pjq′ (
1

m

n∑

k=1

∣∣∣Z(j)
km

∣∣∣
2q′

2q′

)1/p′jq′

≤ Epj + |Ω|1/pjq′M pjH(pj)


 1

pj

+
1

p′j

(
1

m

n∑

k=1

∣∣∣Z(j)
km

∣∣∣
2q′

2q′

)1/q′

 . (6.22)

From the Gagliardo-Nirenberg inequality (6.15) with q1 := 2q′0 , q2 = q3 := 2 , ρ =
N/(N + 2) , it follows ∣∣∣Z(j)

km

∣∣∣
2q′0

2q′0
≤ C

∣∣∣Z(j)
km

∣∣∣
4/N

2

∣∣∣∇Z(j)
km

∣∣∣
2

2
,

hence, by Young's inequality,
(

1

m

n∑

k=1

∫

Ω

∣∣∣Z(j)
km

∣∣∣
2q′0 dx

)1/q′0

≤ C

(
max

k=1,...,n

∫

Ω

∣∣∣Z(j)
km

∣∣∣
2

dx+
1

m

n∑

k=1

∫

Ω

∣∣∣∇Z(j)
km

∣∣∣
2

dx
)
.

(6.23)
By virtue of (6.22)�(6.23), there exists another polynomial H̃ independent of m and
j such that

(
1

m

m∑

k=1

∫

Ω

∣∣∣Z(j)
km

∣∣∣
2q′0 dx

)1/q′0

≤ H̃(pj) max



1, Epj ,

(
1

m

m∑

k=1

∫

Ω

∣∣∣Z(j)
km

∣∣∣
2q′

dx
)1/q′



 .

(6.24)
By (6.19), we have q′pj = q′0pj−1 ; in view of (6.20), inequality (6.24) is thus equivalent
to
(

1

m

m∑

k=1

∫

Ω

|Ukm|q
′
0pj dx

)1/q′0

≤ H̃(pj) max



1, Epj ,

(
1

m

m∑

k=1

∫

Ω

|Ukm|q
′
0pj−1 dx

)1/q′


 .

(6.25)
Set

dj :=

(
1

m

m∑

k=1

∫

Ω

|Ukm|q
′
0pj dx

)1/q′0pj

. (6.26)

Then (6.25) can be written as

dj ≤ H̃(pj)
1/pj max {1, E, dj−1} . (6.27)
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For Dj := max{1, E, dj} , this yields in particular

Dj ≤ H̃(pj)
1/pjDj−1 , (6.28)

hence

Dj ≤ D0

j∏
i=1

H̃(pi)
1/pi ≤ C D0 . (6.29)

A bound for D0 follows from the inequalities (6.23) with j = 0 , (6.17) with p = 2 ,
and (6.16). Consequently, for all j ∈ N we have the estimate

(
1

m

m∑

k=1

∫

Ω

|Ukm|q′0pj dx
)1/q′0pj

≤ C . (6.30)

Assume that there exist ε > 0 , 1 ≤ k ≤ m , and a set Ωkm ⊂ Ω such that |Ukm(x)| ≥
C + ε for x ∈ Ωkm , with C from (6.30). Then (|Ωkm|/m)(C + ε)q′0pj ≤ Cq′0pj for all
j ∈ N by virtue of (6.30). Letting j → ∞ we obtain |Ωkm| = 0 ; hence, (6.18) holds
and the proof is complete. ¥
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