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Abstract

We construct a family of stochastic growth models in 2 + 1 dimensions,
that belong to the anisotropic KPZ class. Appropriate projections of these
models yield 1 + 1 dimensional growth models in the KPZ class and random
tiling models. We show that correlation functions associated to our models
have determinantal structure, and we study large time asymptotics for one of
the models.

The main asymptotic results are: (1) The growing surface has a limit
shape that consists of facets interpolated by a curved piece. (2) The one-
point fluctuations of the height function in the curved part are asymptotically
normal with variance of order ln(t) for time t ≫ 1. (3) There is a map of
the (2 + 1)-dimensional space-time to the upper half-plane H such that on
space-like submanifolds the multi-point fluctuations of the height function are
asymptotically equal to those of the pullback of the Gaussian free (massless)
field on H.
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1 Introduction

In recent years there has been a lot of progress in understanding large time fluc-
tuations of driven interacting particle systems on the one-dimensional lattice, see
e.g. [1, 2, 4, 7–9, 11, 22, 24, 25, 31, 38, 40–42]. Evolution of such systems is commonly
interpreted as random growth of a one-dimensional interface, and if one views the
time as an extra variable, the evolution produces a random surface (see e.g. Fig-
ure 4.5 in [36] for a nice illustration). In a different direction, substantial progress
have also been achieved in studying the asymptotics of random surfaces arising from
dimers on planar bipartite graphs, see the review [27] and references therein.

Although random surfaces of these two kinds were shown to share certain asymptotic
properties (also common to random matrix models), no direct connection between
them was known. One goal of this paper is to establish such a connection.

We construct a class of two-dimensional random growth models (that is, the principal
object is a randomly growing surface, embedded in the four-dimensional space-time).
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In two different projections these models yield random surfaces of the two kinds
mentioned above (one reduces the spatial dimension by one, the second projection
is fixing time). We partially compute the correlation functions of an associated
(three-dimensional) random point process and show that they have determinantal
form that is typical for determinantal point processes.

For one specific growth model we compute the correlation kernel explicitly, and
use it to establish Gaussian fluctuations of the growing random surface. We then
determine the covariance structure.

Let us describe our results in more detail.

1.1 A two-dimensional growth model

Consider a continuous time Markov chain on the state space of interlacing variables
(n = 1, 2, . . . )

S(n) =
{

{xm
k }k=1,...,m

m=1,...,n
⊂ Z

n(n+1)
2 | xm

k−1 < xm−1
k−1 ≤ xm

k

}

(1.1)

with the following evolution. Each of the particles xm
k has an independent exponen-

tial clock of rate one, and when the xm
k -clock rings the particle attempts to jump to

the right by one. If at that moment xm
k = xm−1

k − 1 then the jump is blocked. If
that is not the case, we find the largest c ≥ 1 such that xm

k = xm+1
k+1 = · · · = xm+c−1

k+c−1 ,
and all c particles in this string jump to the right by one.

Informally speaking, the particles with smaller upper indices are heavier than those
with larger upper indices, so that the heavier particles block and push the lighter
ones in order for the interlacing conditions to be preserved. This anisotropy is
essential, see more details in Section 1.4.

In this paper we consider only one initial condition for this Markov chain: at time
moment t = 0 we have xm

k (0) = k − m − 1 for all k, m. For any t ≥ 0 denote by
M(n)(t) the resulting measure on S(n) at time moment t.

Observe that S(n1) ⊂ S(n2) for n1 ≤ n2, and the definition of the evolution implies
that M(n1)(t) is a marginal of M(n2)(t) for any t ≥ 0. Thus, we can think of M(n)’s
as marginals of the measure M = lim

←−
M(n) on S = lim

←−
S(n). In other words, M(t)

are measures on the space S of infinite point configurations {xm
k }k=1,...,m, m≥1.

There are a number different viewpoints for these Markov chains and their parts.

1. The evolution of x1
1 is the one-dimensional Poisson process of rate one.

2. The row {xm
1 }m≥1 evolves as a Markov chain known as the Totally Asymmetric

Simple Exclusion Process (TASEP), and the initial condition xm
1 (0) = −m is

commonly referred to as step initial condition.

3. The row {xm
m}m≥1 also evolves as a Markov chain that is sometimes called

“long range TASEP”; it was also called PushASEP in [7].
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Figure 1.1: From particle configurations (left) to 3d visualization via lozenge tilings
(right). The corner with the white circle has coordinates (x, n, h) = (−1/2, 0, 0).

4. For our initial condition, the evolution of each row {xm
k }k=1,...,m, m = 1, 2, . . . ,

is also a Markov chain. It was called Charlier process in [30] because of its
relation to the classical orthogonal Charlier polynomials. It can be defined
as h-Doob transform for m independent rate one Poisson processes with the
harmonic function h equal to the Vandermonde determinant.

5. Infinite point configurations {xm
k } ∈ S can be viewed as Gelfand-Tsetlin

schemes. Then M(t) is the “Fourier transform” of a suitable irreducible char-
acter of the infinite-dimensional unitary group U(∞), see [13]. Interestingly
enough, increasing t corresponds to a deterministic flow on the space of irre-
ducible characters of U(∞).

6. Elements of S can also be viewed as lozenge tilings of a sector in the plane.
To see that one surrounds each particle location by a rhombus of one type and
draws edges through locations where there are no particles, see Figure 1.1.

7. Figure 1.1 has a clear three-dimensional connotation. Given the random con-
figuration {xn

k(t)} ∈ S at time moment t, define the random height function

h : (Z + 1
2
) × Z>0 × R≥0 → Z≥0, h(x, n, t) = #{k ∈ {1, . . . , n} | xn

k(t) > x}.
(1.2)

In terms of the tiling on Figure 1.1, the height function is defined at the
vertices of rhombi, and it counts the number of particles down from a given
vertex. (This definition is different by a simple linear function of (x, n) from the
standard definition of the height function for lozenge tilings, see e.g. [27, 28].)

Thus, our Markov chain can be viewed as a random growth model of the surface
given by the height function. In terms of the step surface of Figure 1.1, the evolu-
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tion consists of removing all columns of (x, n, h)-dimensions (1, ∗, 1) that could be
removed, independently with exponential waiting times of rate one.

One of the goals of this paper is to study asymptotic properties of the random height
function as the time becomes large.

1.2 Determinantal formula, limit shape and one-point fluc-
tuations

The first result about the Markov chain M(t) that we prove is the (partial) deter-
minantal structure of the correlation functions. Introduce the notation

(n1, t1) ≺ (n2, t2) iff n1 ≤ n2, t1 ≥ t2, and (n1, t1) 6= (n2, t2). (1.3)

Theorem 1.1. For any N = 1, 2, . . . , pick N triples

κj = (xj , nj , tj) ∈ Z × Z≥0 × R≥0

such that
t1 ≤ t2 ≤ · · · ≤ tN , n1 ≥ n2 ≥ · · · ≥ nN . (1.4)

ThenP{For each j = 1, . . . , N there exists a kj ,

1 ≤ kj ≤ nj such that x
nj

kj
(tj) = xj} = det [K(κi, κj)]

N
i,j=1, (1.5)

where

K(x1, n1, t1; x2, n2, t2) = − 1

2πi

∮

Γ0

dw

wx2−x1+1

e(t1−t2)/w

(1 − w)n2−n1
1[(n1,t1)≺(n2,t2)]

+
1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
et1/w

et2/z

(1 − w)n1

(1 − z)n2

wx1

zx2+1

1

w − z
, (1.6)

the contours Γ0, Γ1 are simple closed paths, positively oriented, they include the poles
0 and 1, respectively, and no other poles.

The above kernel has in fact already appeared in [7] in connection with PushASEP.
The determinantal structure makes it possible to study the asymptotics. Set

D = {(ν, η, τ) ∈ R
3
>0 | (

√
η −√

τ)2 < ν < (
√

ν +
√

τ)2}. (1.7)

It is exactly the set of triples (ν, η, τ) ∈ R3
>0 for which there exists a nondegenerate

triangle with side lengths (
√

ν,
√

η,
√

τ). Denote by (πν , πη, πτ ) the angles of this
triangle that are opposite to the corresponding sides (see Figure 3.1 too).
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Theorem 1.2. For any (ν, η, τ) ∈ D we have the moment convergence of random
variables

lim
L→∞

h([
(
ν − η)L] + 1

2
, [ηL], τL

)
−E (h([

(
ν − η)L] + 1

2
, [ηL], τL

))

√

κ ln(L)
= ξ ∼ N (0, 1),

(1.8)
with κ = (2π2)−1. In particular,

lim
L→∞

E (h([
(
ν − η)L] + 1

2
, [ηL], τL

))

L
=: h̄(ν, η, τ)

=
1

π

(

−νπη + η(π − πη) + τ
sin πν sin πη

sin πτ

)

. (1.9)

Theorem 1.2 describes the limit shape of our growing surface, and the domain D
describes the points where this limit shape is curved. The remaining part consists of
facets of the limit shape, that are just subsets of the facets in the initial condition.
The logarithmic fluctuations is essentially a consequence of the asymptotic local
behavior being governed by the sine kernel (this local behavior occurs also in tiling
models [21, 26, 35]).

Using the connection with Charlier ensemble, see above, the formula (1.9) for the
limit shape can be read off the formulas of [5].

Using Theorem 1.1 it is not hard to verify (although we do not do this in the
paper) that near every point of the limit shape in the curved region, at any fixed
time moment the random lozenge tiling approaches the unique translation invariant
measure Mπν ,πη,πτ

on lozenge tilings of the plane with prescribed slope (see [14,27,29]
and references therein for discussions of these measures). The slope is exactly the
slope of the tangent plane to the limit shape, given by

∂h̄

∂ν
= −πη

π
,

∂h̄

∂η
= 1 − πν

π
. (1.10)

This implies in particular, that (πν/π, πη/π, πτ/π) are the asymptotic proportions of
lozenges of three different types in the neighborhood of the point of the limit shape.

One also computes
∂h̄

∂τ
=

1

π

sin πν sin πη

sin πτ
. (1.11)

Since the right-hand side depends only on the slope of the tangent plane, this suggest
that it should be possible to extend the definition of our surface evolution to the
random surfaces distributed according to measures Mπν ,πη,πτ

; these measures have
to remain invariant under evolution, and the speed of the height growth should be
given by the right-hand side of (1.11). This is an interesting open problem that we
do not address in this paper.

6



1.3 Complex structure and multipoint fluctuations

Set H = {z ∈ C | Im(z) > 0} and define a map Ω : D → H by

|Ω(ν, η, τ)| =
√

ν/
√

τ , |1 − Ω(ν, η, τ)| =
√

η/
√

τ . (1.12)

Observe that arg Ω = πν and arg(1 − Ω) = −πη. The preimage of any Ω ∈ H is a
ray in D that consists of triples (ν, η, τ) with constant ratios (ν : η : τ). Denote this
ray by RΩ. One sees that RΩ’s are also the level sets of the slope of the tangent
plane to the limit shape. Since h̄(αν, αη, ατ) = αh̄(ν, η, τ) for any α > 0, the height
function grows linearly with time along each RΩ.

Note also that the map Ω satisfies

(1 − Ω)
∂Ω

∂ν
= Ω

∂Ω

∂η
= −∂Ω

∂τ
, (1.13)

and the first of these relations is the complex Burgers equation.

Denote by

G(z, w) = − 1

2π
ln

∣
∣
∣
∣

z − w

z − w̄

∣
∣
∣
∣

(1.14)

the Green function of the Laplace operator on H with Dirichlet boundary conditions.

Theorem 1.3. For any N = 1, 2, . . . , let κj = (νj , ηj, τj) ∈ D be any N triples such
that

τ1 < τ2 < · · · < τN , η1 ≥ η2 ≥ · · · ≥ ηN . (1.15)

Denote

HL(ν, η, τ) :=
√

π
[
h([(ν−η)L]+ 1

2
, [ηL], τL)−E(h([(ν−η)L]+ 1

2
, [ηL], τL))

]
, (1.16)

and Ωj = Ω(νj , ηj , τj). Then

lim
L→∞

E (HL(κ1) · · ·HL(κN )) =







∑

σ∈FN

N/2∏

j=1

G(Ωσ(2j−1), Ωσ(2j)), N is even,

0, N is odd,

(1.17)

where the summation is taken over all fixed point free involutions σ on {1, . . . , N}.

In addition to Theorem 1.3, a simple corollary of Theorem 1.2 givesE (HL(κ1) · · ·HL(κN )) = O(Lǫ), L → ∞, (1.18)

for any κj ∈ D and any ǫ > 0. This bounds the moments of HL(κj) for infinitesi-
mally close points κj .

Conjecture 1.4. The statement of Theorem 1.3 holds without the assumption
(1.15).
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Figure 1.2: A configuration of the model analyzed with N = 100 particles at time
t = 25, using the same representation as in Figure 1.1. In [20] there is a Java
animation of the model.

Theorem 1.3 and Conjecture 1.4 indicate that the fluctuations of the height function
along the rays RΩ grow slower than in any other space-time direction. This statement
can be rephrased more generally: The height function has smaller fluctuations along
the curves where the slope of the limit shape remains constant. We have been able
to find evidence for such a claim in one-dimensional random growth models as well.

Remark 1.5. In Figure 1.2 one can clearly see two facets and the curved part. This
last region corresponds to the bulk for the particle system we analyze. Theorem 1.3
describes the fluctuations in the curved part of the surface. As shown in [7, 9, 25],
the fluctuations of ledge bordering the surface are asymptotically described by the
Airy2 process [39], see also Section 1.6 below.
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1.4 Universality class

In the terminology of physics literature, see e.g. [3], our Markov chain falls into the
class of local growth models with relaxation and lateral growth, described by the
Kardar-Parisi-Zhang (KPZ) equation

∂th = ∆h + Q(∂xh, ∂yh) + white noise, (1.19)

where Q is a quadratic form. Relations (1.10) and (1.11) imply that for our growth
model the determinant of the Hessian of ∂th, viewed as a function of the slope, is
strictly negative, which means that the form Q in our case has signature (−1, 1). In
such a situation the equation (1.19) is called anisotropic KPZ or AKPZ equation.

An example of such system is growth of vicinal surfaces, which are naturally
anisotropic because the tilt direction of the surface is special. Using non-rigorous
renormalization group analysis based on one-loop expansion, Wolf [45] predicted that
large time fluctuations of the growth models described by AKPZ equation should
be similar to those of linear models described by the Edwards-Wilkinson equation
(heat equation with random term)

∂th = ∆h + white noise. (1.20)

Our results can be viewed as the first rigorous analysis of a non-equilibrium growth
model in the AKPZ class. (Some results, like logarithmic fluctuations, for an AKPZ
model in a steady state were obtained in [37]. Another model with some numer-
ical results is described in [23]). Indeed, Wolf’s prediction correctly identifies the
logarithmic behavior of height correlations and the appearance of the Gaussian free
field. It does not predict, however, the complete structure (map Ω) of the fluctua-
tions described in the previous section.

On the other hand, universality considerations imply that analogs of Theorems 1.2
and 1.3, as well as possibly Conjecture 1.4, should hold in any AKPZ growth model.

1.5 More general growth models

It turns out that the determinantal structure of the correlations functions stated in
Theorem 1.1 holds for a much more general class of two-dimensional growth models.
In the first half of the paper we develop an algebraic formalism needed to show that.
At least three examples where this formalism applies, other than the Markov chain
considered above, are worth mentioning.

1. In the Markov chain considered above one can make the particle jump rates
depend on the upper index m in an arbitrary way. One can also allow the
particles jump both right and left, with ratio of left and right jump rates
possibly changing in time [7].

9



2. The shuffling algorithm for domino tilings of Aztec diamonds introduced in [19]
also fits into our formalism. The corresponding discrete time Markov chain
is described in Section 2 below, and its equivalence to domino shuffling is
established in the recent paper [32].

3. A shuffling algorithm for lozenge tilings of the hexagon has been constructed
in [12] using the formalism developed in this paper, see [12] for details.

Our original Markov chain is a suitable degeneration of each of these examples.

We expect our asymptotic methods to be applicable to many other two-dimensional
growth models produced by the general formalism, and we plan to return to this
discussion in a later publication.

1.6 Other connections

We have so far discussed the global asymptotic behavior of our growing surface, and
its bulk properties (measures Mπν ,πη,πτ

), but have not discussed the edge asymp-
totics. As was mentioned above, rows {xm

1 }m≥1 and {xm
m}m≥1 can be viewed as

one-dimensional growth models on their own, and their asymptotic behavior was
studied in [7] using essentially the same Theorem 1.1. This is exactly the edge
behavior of our two-dimensional growth model.

Of course, the successive projections to {xm
1 }m≥1 and then to a fixed (large) time

commute. In the first ordering, this can be seen as the large time interface associated
to the TASEP. In the second ordering, it corresponds to considering a tiling problem
of a large region and focusing on the border of the facet.

Interestingly enough, an analog of Theorem 1.1 remains useful for the edge compu-
tations even in the cases when the measure on the space S is no longer positive (but
its projection to {xm

1 }m≥1 and {xm
m}m≥1 remains positive). These computations lead

to the asymptotic results of [7–11,42] for one-dimensional growth models with more
general types of initial conditions.

Another natural asymptotic question that was not discussed is the limiting behavior
of M(n)(t) when t → ∞ but n remains fixed. After proper normalization, in the
limit one obtains the Markov chain investigated in [44].

Two of the four one-dimensional growth models constructed in [18] (namely,
“Bernoulli with blocking” and “Bernoulli with pushing”) are projections to {xm

1 }m≥1

and {xm
m}m≥1 of one of our two-dimensional growth models, see Section 2 below. It

remains unclear however, how to interpret the other two models of [18] in a similar
fashion.

Finally, let us mention that our proof of Theorem 1.1 is based on the argument of [16]
and [43], the proof of Theorem 1.3 uses several ideas from [28], and the algebraic
formalism for two-dimensional growth models employs a crucial idea of constructing
bivariate Markov chains out of commuting univariate ones from [17].

10



Outline. The rest of the paper is organized as follows. It has essentially two
main parts. The first is Section 2. It contains the construction of the Markov
chains, with the final result being the determinantal structure and the associated
kernel (Theorem 2.27). Its continuous time analogue is Corollary 2.28, whose further
specialization to particle-independent jump rate leads to Theorem 1.1. The second
main part concerns the limit results for the continuous time model that we analyze.
We start by collecting various geometric identities in Section 3. We also shortly
discuss why our model is in the AKPZ class. In Section 4 we give a shifted version
of the kernel, whose asymptotic analysis is the content of Section 7. These results
allow then us to prove Theorem 1.2 in Section 5 and Theorem 1.3 in Section 6.

Acknowledgments. The authors are very gateful to P. Diaconis, E. Rains, and
H. Spohn for numerous illuminating discussions. The first named author (A. B.)
was partially supported by the NSF grant DMS-0707163.

2 Two dimensional dynamics

All the constructions below are based on the following basic idea. Consider two
Markov operators P and P ∗ on state spaces S and S∗, and a Markov link Λ : S∗ → S
that intertwines P and P ∗, that is ΛP = P ∗Λ. Then one can construct Markov
chains on (subsets of) S∗ × S that in some sense has both P and P ∗ as their
projections. There are more than one way to realize this idea, and in this paper we
employ two variants.

In one of them the image (y∗, y) of (x∗, x) ∈ S∗ × S under the Markov operator is
determined by sequential update: One first chooses y according to P (x, y), and then
one chooses y∗ so that the needed projection properties are satisfied. A characteristic
feature of the construction is that x and y∗ are independent, given x∗ and y. This
bivariate Markov chain is denoted PΛ; its construction is borrowed from [17].

In the second variant, the images y∗ and y are independent, given (x, x∗), and we
say that they are obtained by parallel update. The distribution of y is still P (x, y),
independently of what x∗ is. This Markov chain is denoted P∆ for the operator
∆ = ΛP = P ∗Λ that plays an important role.

By induction, one constructs multivariate Markov chains out of finitely many uni-
variate ones and links that intertwine them. Again, we use two variants of the
construction — with sequential and parallel updates.

The key property that makes these constructions useful is the following: If the
chains P , P ∗, and Λ, are h-Doob transforms of some (simpler) Markov chains, and
the harmonic functions h used are consistent, then the transition probabilities of the
bivariate Markov chains do not depend on h. Thus, participating univariate Markov
chains may be fairly complex, while the transition probabilities of the univariate
Markov chains remain simple.

11



Below we first explain the abstract construction of PΛ, P∆, and their multivariate
extensions. Then we exhibit a class of examples that are of interest to us. Finally, we
show how the knowledge of certain averages (correlation functions) for the univariate
Markov chains allows one to compute similar averages for the multivariate chains.

2.1 Bivariate Markov chains

Let S and S∗ be discrete sets, and let P and P ∗ be stochastic matrices on these
sets: ∑

y∈S
P (x, y) = 1, x ∈ S;

∑

y∗∈S∗
P ∗(x∗, y∗) = 1, x∗ ∈ S∗. (2.1)

Assume that there exists a third stochastic matrix Λ = ‖Λ(x∗, x)‖x∗∈S∗, x∈S such
that for any x∗ ∈ S∗ and y ∈ S

∑

x∈S
Λ(x∗, x)P (x, y) =

∑

y∗∈S∗
P ∗(x∗, y∗)Λ(y∗, y). (2.2)

Let us denote the above quantity by ∆(x∗, y). In matrix notation

∆ = ΛP = P ∗Λ. (2.3)

Set

SΛ = {(x∗, x) ∈ S∗ × S |Λ(x∗, x) > 0},
S∆ = {(x∗, x) ∈ S∗ × S |∆(x∗, x) > 0}.

Define bivariate Markov chains on SΛ and S∆ by their corresponding transition
probabilities

PΛ((x∗, x), (y∗, y)) =







P (x, y)P ∗(x∗, y∗)Λ(y∗, y)

∆(x∗, y)
, ∆(x∗, y) > 0,

0, otherwise,
(2.4)

P∆((x∗, x), (y∗, y)) =
P (x, y)P ∗(x∗, y∗)Λ(y∗, x)

∆(x∗, x)
. (2.5)

It is immediately verified that both matrices PΛ and P∆ are stochastic.

The chain PΛ was introduced by Diaconis-Fill in [17], and we are using the notation
of that paper.

One could think of PΛ and P∆ as follows.

For PΛ, starting from (x∗, x) we first choose y according to the transition matrix

P (x, y), and then choose y∗ using P ∗(x∗,y∗)Λ(y∗,y)
∆(x∗,y)

, which is the conditional distribution
of the middle point in the successive application of P ∗ and Λ provided that we start
at x∗ and finish at y.

12



For P∆, starting from (x∗, x) we independently choose y according to P (x, y) and y∗

according to P ∗(x∗,y∗)Λ(y∗,x)
∆(x∗,x)

, which is the conditional distribution of the middle point
in the successive application of P ∗ and Λ provided that we start at x∗ and finish at
x.

Lemma 2.1. For any (x∗, x) ∈ SΛ, y ∈ S, we have

∑

y∗∈S∗:(y∗,y)∈SΛ

PΛ((x∗, x), (y∗, y)) = P (x, y),

∑

y∗∈S∗:(y∗,y)∈S∆

P∆((x∗, x), (y∗, y)) = P (x, y),
(2.6)

and for any x∗ ∈ S∗, (y∗, y) ∈ SΛ,

∑

x∈S:(x∗,x)∈SΛ

Λ(x∗, x)PΛ((x∗, x), (y∗, y)) = P ∗(x∗, y∗)Λ(y∗, y),

∑

x∈S:(x∗,x)∈S∆

∆(x∗, x)P∆((x∗, x), (y∗, y)) = P ∗(x∗, y∗)∆(y∗, y).
(2.7)

Proof of Lemma 2.1. Straightforward computation using the relation ∆ = ΛP =
P ∗Λ.

Proposition 2.2. Let m∗(x∗) be a probability measure on S∗. Consider the evolution
of the measure m(x∗)Λ(x∗, x) on SΛ under the Markov chain PΛ and denote by
(x∗(j), x(j)) the result after j = 0, 1, 2, . . . steps. Then for any k, l = 0, 1, . . . the
joint distribution of

(x∗(0), x∗(1), . . . , x∗(k), x(k), x(k + 1), . . . , x(k + l)) (2.8)

coincides with the stochastic evolution of m∗ under transition matrices

(P ∗, . . . , P ∗
︸ ︷︷ ︸

k

, Λ, P, . . . , P
︸ ︷︷ ︸

l

). (2.9)

Exactly the same statement holds for the Markov chain P∆ and the initial condition
m∗(x∗)∆(x∗, x) with Λ replaced by ∆ in the above sequence of matrices.

Proof of Proposition 2.2. Successive application of the first relations of Lemma 2.1
to evaluate the sums over x∗(k + l), . . . , x∗(k + 1), and of the second relations to
evaluate the sums over x(1), . . . , x(k − 1).

Note that Proposition 2.2 also implies that the joint distribution of x∗(k) and x(k)
has the form m∗k(x

∗(k))Λ(x∗(k), x(k)), where m∗k is the result of k-fold application
of P ∗ to m∗.

The above constructions can be generalized to the nonautonomous situation.
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Assume that we have a time variable t ∈ Z, and our state spaces as well as transition
matrices depend on t, which we will indicate as follows:

S(t), S∗(t), P (x, y | t), P ∗(x∗, y∗ | t), Λ(x∗, x | t), P (t), P ∗(t), Λ(t).
(2.10)

The commutation relation (1.3) is replaced by Λ(t)P (t) = P ∗(t)Λ(t + 1) or

∆(x∗, y | t) :=
∑

x∈S(t)

Λ(x∗, x | t)P (x, y | t) =
∑

y∗∈S∗(t+1)

P ∗(x∗, y∗ | t) Λ(y∗, y | t + 1).

(2.11)

Further, we set

SΛ(t) = {(x∗, x) ∈ S∗(t) × S(t) |Λ(x∗, x | t) > 0},
S∆(t) = {(x∗, x) ∈ S∗(t) × S(t + 1) |∆(x∗, x | t) > 0}, (2.12)

and

PΛ((x∗, x), (y∗, y) | t) =







P (x, y | t)P ∗(x∗, y∗ | t)Λ(y∗, y | t + 1)

∆(x∗, y | t) , ∆(x∗, y | t) > 0,

0, otherwise,

(2.13)

P∆((x∗, x), (y∗, y) | t) =
P (x, y | t + 1)P ∗(x∗, y∗ | t)Λ(y∗, x | t + 1)

∆(x∗, x | t) . (2.14)

The nonautonomous generalization of Proposition 2.2 is proved in exactly the same
way as Proposition 2.2. Let us state it.

Proposition 2.3. Fix t0 ∈ Z, and let m∗(x∗) be a probability measure on S∗(t0).
Consider the evolution of the measure m(x∗)Λ(x∗, x | t0) on SΛ(t0) under the Mar-
kov chain PΛ(t), and denote by (x∗(t0 + j), x(t0 + j)) ∈ SΛ(t0 + j) the result after
j = 0, 1, 2, . . . steps. Then for any k, l = 0, 1, . . . the joint distribution of

(x∗(t0), x
∗(t0 + 1), . . . , x∗(t0 + k), x(t0 + k), x(t0 + k + 1), . . . , x(t0 + k + l)) (2.15)

coincides with the stochastic evolution of m∗ under transition matrices

P ∗(t0), . . . , P
∗(t0 + k − 1), Λ(t0 + k), P (t0 + k), . . . , P (t0 + k + l − 1) (2.16)

(for k = l = 0 only Λ(t0) remains in this string).

A similar statement holds for the Markov chain P∆(t) and the initial condition
m∗(x∗)∆(x∗, x | t0): For any k, l = 0, 1, . . . the joint distribution of

(x∗(t0), x
∗(t0+1), . . . , x∗(t0+k), x(t0+k+1), x(t0+k+2), . . . , x(t0+k+l+1)) (2.17)

coincides with the stochastic evolution of m∗ under transition matrices

P ∗(t0), . . . , P
∗(t0 + k − 1), ∆(t0 + k), P (t0 + k + 1), . . . , P (t0 + k + l). (2.18)

Remark 2.4. Observe that there is a difference in the sequences of times used in
(2.8) and (2.17). The reason is that for nonautonomous P∆, the state space at time
t is a subset of S∗(t) × S(t + 1), and we denote its elements as (x∗(t), x(t + 1)). In
the autonomous case, an element of the state space S∆ at time t was denoted as
(x∗(t), x(t)).
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2.2 Multivariate Markov chains

We now aim at generalizing the constructions of Section 2.1 to more than two state
spaces.

Let S1, . . . ,Sn be discrete sets, P1, . . . , Pn be stochastic matrices defining Markov
chains on them, and let Λ2

1, . . . , Λ
n
n−1 be stochastic links between these sets:

Pk : Sk × Sk → [0, 1],
∑

y∈Sk

Pk(x, y) = 1, x ∈ Sk, k = 1, . . . , n;

Λk
k−1 : Sk × Sk−1 → [0, 1],

∑

y∈Sk−1

Λk
k−1(x, y) = 1, x ∈ Sk, k = 2, . . . , n.

(2.19)

Assume that these matrices satisfy the commutation relations

∆k
k−1 := Λk

k−1Pk−1 = PkΛ
k
k−1, k = 2, . . . , n. (2.20)

The state spaces for our multivariate Markov chains are defined as follows

S(n)
Λ =

{

(x1, . . . , xn) ∈ S1 × · · · × Sn |
n∏

k=2

Λk
k−1(xk, xk−1) 6= 0

}

,

S(n)
∆ =

{

(x1, . . . , xn) ∈ S1 × · · · × Sn |
n∏

k=2

∆k
k−1(xk, xk−1) 6= 0

}

.

(2.21)

The transition probabilities for the Markov chains P
(n)
Λ and P

(n)
∆ are defined as (we

use the notation Xn = (x1, . . . , xn), Yn = (y1, . . . , yn))

P
(n)
Λ (Xn, Yn) =







P1(x1, y1)
n∏

k=2

Pk(xk, yk)Λ
k
k−1(yk, yk−1)

∆k
k−1(xk, yk−1)

,
n∏

k=2

∆k
k−1(xk, yk−1) > 0,

0, otherwise,

(2.22)

P
(n)
∆ (Xn, Yn) = P (x1, y1)

n∏

k=2

Pk(xk, yk)Λ
k
k−1(yk, xk−1)

∆k
k−1(xk, xk−1)

. (2.23)

One way to think of P
(n)
Λ and P

(n)
∆ is as follows.

For P
(n)
Λ , starting from X = (x1, . . . , xn), we first choose y1 according to the transi-

tion matrix P (x1, y1), then choose y2 using
P2(x2,y2)Λ2

1(y2,y1)

∆2
1(x2,y1)

, which is the conditional

distribution of the middle point in the successive application of P2 and Λ2
1 provided

that we start at x2 and finish at y1, after that we choose y3 using the conditional
distribution of the middle point in the successive application of P3 and Λ3

2 provided
that we start at x3 and finish at y2, and so on. Thus, one could say that Y is
obtained by the sequential update.
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For P
(n)
∆ , starting from X = (x1, . . . , xn) we independently choose y1, . . . , yn accord-

ing to P1(x1, y1) for y1 and
Pk(xk,yk)Λk

k−1(yk ,xk−1)

∆k
k−1(xk,xk−1)

, for yk, k = 2, . . . , n. The latter

formula is the conditional distribution of the middle point in the successive appli-
cation of Pk and Λk

k−1 provided that we start at xk and finish at xk−1. Thus, it is
natural to say that this Markov chains corresponds to the parallel update.

We aim at proving the following generalization of Proposition 2.2.

Proposition 2.5. Let mn(xn) be a probability measure on Sn. Consider the evolu-
tion of the measure

mn(xn)Λn
n−1(xn, xn−1) · · ·Λ2

1(x2, x1) (2.24)

on S(n)
Λ under the Markov chain P

(n)
Λ , and denote by (x1(j), . . . , xn(j)) the result after

j = 0, 1, 2, . . . steps. Then for any k1 ≥ k2 ≥ · · · ≥ kn ≥ 0 the joint distribution of

(xn(0), . . . , xn(kn), xn−1(kn), xn−1(kn + 1), . . . , xn−1(kn−1),

xn−2(kn−1), . . . , x2(k2), x1(k2), . . . , x1(k1))

coincides with the stochastic evolution of mn under transition matrices

(Pn, . . . , Pn
︸ ︷︷ ︸

kn

, Λn
n−1, Pn−1, . . . , Pn−1

︸ ︷︷ ︸

kn−1−kn

, Λn−1
n−2, . . . , Λ

2
1, P1, . . . , P1
︸ ︷︷ ︸

k1−k2

). (2.25)

Exactly the same statement holds for the Markov chain P
(n)
∆ and the initial condition

m(xn)∆n
n−1(xn, xn−1) · · ·∆2

1(x2, x1) (2.26)

with Λ’s replaced by ∆’s in the above sequence of matrices.

The following lemma is useful.

Lemma 2.6. Consider the matrix Λ : Sn × S(n−1)
Λ → [0, 1] given by

Λ(xn, (x1, . . . , xn−1)) := Λn
n−1(xn, xn−1) · · ·Λ2

1(x2, x1). (2.27)

Then ΛP
(n−1)
Λ = PnΛ. If we denote this matrix by ∆ then

P
(n)
Λ (Xn, Yn) =







P
(n−1)
Λ (Xn−1, Yn−1)Pn(xn, yn)Λ(yn, Yn−1)

∆(xn, Yn−1)
, ∆(xn, Yn−1) > 0,

0, otherwise.

(2.28)
Also, using the same notation,

P
(n)
∆ (Xn, Yn) =

P
(n−1)
∆ (Xn−1, Yn−1)Pn(xn, yn)Λ(yn, Xn−1)

∆(xn, Xn−1)
. (2.29)
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Proof of Lemma 2.6. Let us check the commutation relation ΛP
(n−1)
Λ = PnΛ. We

have

ΛP
(n−1)
Λ (xn, Yn−1) =

∑

x1,...,xn−1

Λn
n−1(xn, xn−1) · · ·Λ2

1(x2, x1)

× P1(x1, y1)
n−1∏

k=2

Pk(xk, yk)Λ
k
k−1(yk, yk−1)

∆k
k−1(xk, yk−1)

, (2.30)

where the sum is taken over all x1, . . . , xn−1 such that
∏n−1

k=2 ∆k
k−1(xk, yk−1) > 0.

Computing the sum over x1 and using the relation Λ2
1P1 = ∆2

1 we obtain

ΛP
(n−1)
Λ (xn, Yn−1) =

∑

x2,...,xn−1

Λn
n−1(xn, xn−1) · · ·Λ3

2(x3, x2)

× P2(x2, y2)Λ
2
1(y2, y1)

n−1∏

k=3

Pk(xk, yk)Λ
k
k−1(yk, yk−1)

∆k
k−1(xk, yk−1)

. (2.31)

Now we need to compute the sum over x2. If ∆2
1(x2, y1) = 0 then P2(x2, y2) =

0 because otherwise the relation ∆2
1 = P2Λ

2
1 implies that Λ2

1(y2, y1) = 0, which

contradicts to the hypothesis that Yn−1 ∈ S(n−1)
Λ . Thus, we can extend the sum to

all x2 ∈ S2, and the relation Λ3
2P2 = ∆3

2 gives

ΛP
(n−1)
Λ (xn, Yn−1) =

∑

x3,...,xn−1

Λn
n−1(xn, xn−1) · · ·Λ4

3(x4, x3)

× P3(x3, y3)Λ
3
2(y3, y2)Λ

2
1(y2, y1)

n−1∏

k=4

Pk(xk, yk)Λ
k
k−1(yk, yk−1)

∆k
k−1(xk, yk−1)

. (2.32)

Continuing like that we end up with

Λn−1
n−2(yn−1, yn−2) · · ·Λ2

1(y2, y1)
∑

xn−1

Λn
n−1(xn, xn−1)Pn−1(xn−1, yn−1), (2.33)

which, by Λn
n−1Pn−1 = PnΛn

n−1 is exactly PnΛ(xn, Yn−1). Let us also note that

∆(xn, Yn−1) = ∆n
n−1(xn, yn−1)Λ

n−1
n−2(yn−1, yn−2) · · ·Λ2

1(y2, y1). (2.34)

The needed formulas for P
(n)
Λ and P

(n)
∆ are now verified by straightforward substi-

tution.

Proof of Proposition 2.5. Let us give the argument for P
(n)
Λ ; for P

(n)
∆ the proof is

literally the same. By virtue of Lemma 2.6, we can apply Proposition 2.2 by taking

S∗ = Sn, S = S(n−1)
Λ , P ∗ = Pn, P = P

(n−1)
Λ , k = kn, l = k1 − kn, (2.35)

and Λ(xn, Xn−1) as in Lemma 2.6. Proposition 2.2 says that the joint distribution

(xn(0), xn(1), . . . , xn(kn), Xn−1(kn), Xn−1(kn + 1), . . . , Xn−1(k1)) (2.36)
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is the evolution of mn under

(Pn, . . . , Pn
︸ ︷︷ ︸

kn

, Λ, P
(n−1)
Λ , . . . , P

(n−1)
Λ

︸ ︷︷ ︸

k1−kn

). (2.37)

Induction on n completes the proof.

As in the previous section, Proposition 2.5 can be also proved in the nonautonomous
situation. Let us give the necessary definitions.

We now have a time variable t ∈ Z, and our state spaces as well as transition
matrices depend on t:

Sk(t), Pk(x, y | t), k = 1, . . . , n, Λk
k−1(xk, xk−1 | t), k = 2, . . . , n. (2.38)

The commutation relations are

∆k
k−1(t) := Λk

k−1(t)Pk−1(t) = Pk(t)Λ
k
k−1(t + 1), k = 2, . . . , n. (2.39)

The multivariate state spaces are defined as

S(n)
Λ =

{

(x1, . . . , xn) ∈ S1(t) × · · · × Sn(t) |
n∏

k=2

Λk
k−1(xk, xk−1 | t) 6= 0

}

,

S(n)
∆ =

{

(x1, . . . , xn) ∈ S1(t + n − 1) × · · · × Sn(t) |
n∏

k=2

∆k
k−1(xk, xk−1 | t + n − k) 6= 0

}

.

Then the transition matrices for P
(n)
Λ and P

(n)
∆ are defined as

P
(n)
Λ (Xn, Yn | t) = P1(x1, y1 | t)

n∏

k=2

Pk(xk, yk | t)Λk
k−1(yk, yk−1 | t + 1)

∆k
k−1(xk, yk−1 | t)

(2.40)

if
∏n

k=2 ∆k
k−1(xk, yk−1 | t) > 0 and 0 otherwise; and

P
(n)
∆ (Xn, Yn) = P (x1, y1 | t + n − 1)

×
n∏

k=2

Pk(xk, yk | t + n − k)Λk
k−1(yk, xk−1 | t + n − k + 1)

∆k
k−1(xk, xk−1 | t + n − k)

. (2.41)

Proposition 2.7. Fix t0 ∈ Z, and let mn(xn) be a probability measure on Sn(t0).
Consider the evolution of the measure

mn(xn)Λn
n−1(xn, xn−1 | t0) · · ·Λ2

1(x2, x1 | t0) (2.42)

on S(n)
Λ (t0) under P

(n)
Λ (t). Denote by (x1(t0 + j), . . . , xn(t0 + j)) the result after

j = 0, 1, 2, . . . steps. Then for any k1 ≥ k2 ≥ · · · ≥ kn ≥ t0 the joint distribution of

(xn(t0), . . . , xn(kn), xn−1(kn), xn−1(kn + 1), . . . , xn−1(kn−1),

xn−2(kn−1), . . . , x2(k2), x1(k2), . . . , x1(k1))
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coincides with the stochastic evolution of mn under transition matrices

Pn(t0), . . . , Pn(kn − 1), Λn
n−1(kn), Pn−1(kn), . . . , Pn−1(kn−1 − 1),

Λn−1
n−2(kn−1), . . . , Λ

2
1(k2), P1(k2), . . . , P1(k1 − 1).

A similar statement holds for the Markov chain P
(n)
∆ (t) and the initial condition

m(xn)∆n
n−1(xn, xn−1 | t0) · · ·∆2

1(x2, x1 | t0 + n − 2). (2.43)

For any k1 > k2 > · · · > kn ≥ t0 the joint distribution of

(xn(t0), . . . , xn(kn), xn−1(kn + 1), xn−1(kn + 2), . . . , xn−1(kn−1),

xn−2(kn−1 + 1), . . . , x2(k2), x1(k2 + 1), . . . , x1(k1))

coincides with the stochastic evolution of mn under transition matrices

Pn(t0), . . . , Pn(kn − 1), ∆n
n−1(kn), Pn−1(kn + 1), . . . , Pn−1(kn−1 − 1),

∆n−1
n−2(kn−1), . . . , ∆

2
1(k2), P1(k2 + 1), . . . , P1(k1 − 1).

The proof is very similar to that of Proposition 2.5.

2.3 Toeplitz-like transition probabilities

The goal of this section is to provide some general recipe on how to construct
commuting stochastic matrices.

Proposition 2.8. Let α1, . . . , αn be nonzero complex numbers, and let F (x) be an
analytic function in an annulus A centered at the origin that contains all α−1

j ’s.

Assume that F (α−1
1 ) · · ·F (α−1

n ) 6= 0. Then

1

F (α−1
1 ) · · ·F (α−1

n )

∑

y1<···<yn∈Z

det [α
yj

i ]
n

i,j=1 det [f(xj − yi)]
n
i,j=1 = det [α

xj

i ]
n

i,j=1

(2.44)
where

f(m) =
1

2πi

∮
F (z)dz

zm+1
, (2.45)

and the integral is taken over any positively oriented simple loop in A.

Proof of Proposition 2.8. Since the left-hand side is symmetric with respect to per-
mutations of yj’s and it vanishes when two yj’s are equal, we can extend the sum to
Zn and divide the result by n!. We obtain

∑

y1,...,yn∈Z

det [α
yj

i ]
n

i,j=1 det [f(xj − yi)]
n
i,j=1 = n! det

[ +∞∑

y=−∞
αy

kf(xj − y)
]n

k,j=1
. (2.46)
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Further,

+∞∑

y=−∞
αy

kf(xj − y) =

+∞∑

y=−∞

1

2πi

∮
αy

kF (z)dz

zxj−y+1

=
1

2πi

∮

|z|=c1<|αk|−1

F (z)dz
+∞∑

y=xj+1

αy
k

zxj−y+1
+

1

2πi

∮

|z|=c2>|αk|−1

F (z)dz

xj∑

y=−∞

αy
k

zxj−y+1

=
1

2πi

∮

|z|=c1<|αk|−1

α
xj+1
k F (z)

1 − αkz
− 1

2πi

∮

|z|=c2>|αk|−1

α
xj+1
k F (z)

1 − αkz
= α

xj

k F (α−1
k ).

Proposition 2.9. In the notation of Proposition 2.8, assume that the variable yn

is virtual, yn = virt, and set f(xk − virt) = αxk
n for any k = 1, . . . , n. Then

1

F (α−1
1 ) · · ·F (α−1

n−1)

∑

y1<···<yn−1∈Z

det [α
yj

i ]
n−1

i,j=1 det [f(xj − yi)]
n
i,j=1 = det [α

xj

i ]
n

i,j=1.

(2.47)

Proof of Proposition 2.9. Expansion of det [f(xj − yi)]
n
i,j=1 along the last row gives

det [f(xj − yi)]
n
i,j=1 =

n∑

k=1

(−1)n−kαxk
n · det [f(xj − yi)] i=1,...,n−1

j=1,...,k−1,k+1,...,n
. (2.48)

The application of Proposition 2.8 to each of the resulting summands in the left-
hand side of the desired equality produces the expansion of det [α

xj

i ]
n

i,j=1 along the
last row.

For n = 1, 2, . . . , denote

Xn = {(x1, . . . , xn) ∈ Z
n | x1 < · · · < xn}. (2.49)

In what follows we assume that the (nonzero) complex parameters α1, α2, . . . are
such that the ratios det[α

xj

i ]
n

i,j=1/ det [αj−1
i ]

n

i,j=1 are nonzero for all n = 1, 2, . . . and
all (x1 . . . , xn) in X

n. This holds, for example, when all αj ’s are positive. The Van-
dermonde determinant in the denominator is needed to make sense of det[α

xj

i ]
n

i,j=1

when some of the αj’s are equal.

Under this assumption, define the matrices Xn × Xn and Xn × Xn−1 by

Tn(α1, . . . , αn; F )(X, Y ) =
det [α

yj

i ]
n

i,j=1

det [α
xj

i ]
n

i,j=1

det [f(xi − yj)]
n
i,j=1

∏n
j=1 F (α−1

j )
, X, Y ∈ Xn,

T n
n−1(α1, . . . , αn; F )(X, Y ) =

det [α
yj

i ]
n−1

i,j=1

det [α
xj

i ]
n

i,j=1

det [f(xi − yj)]
n
i,j=1

∏n−1
j=1 F (α−1

j )
, X ∈ Xn, Y ∈ Xn−1,

20



where in the second formula yn = virt. By Propositions 2.8 and 2.9, the sums
of entries of these matrices along rows are equal to 1. We will often omit the
parameters αj from the notation so that the above matrices will be denoted as
Tn(F ) and T n

n−1(F ).

We are interested in these matrices because they have nice commutation relations,
as the following proposition shows.

Proposition 2.10. Let F1 and F2 be two functions holomorphic in an annulus
containing α−1

j ’s, that are also nonzero at these points. Then

Tn(F1)Tn(F2) = Tn(F2)Tn(F1) = Tn(F1F2),

Tn(F1)T
n
n−1(F2) = T n

n−1(F1)Tn−1(F2) = T n
n−1(F1F2).

(2.50)

Proof of Proposition 2.10. The first line and the relation T n
n−1(F1)Tn−1(F2) =

T n
n−1(F1F2) are proved by straightforward computations using the fact the Fourier

transform of F1F2 is the convolution of those of F1 and F2. The only additional
ingredient in the proof of the relation Tn(F1)T

n
n−1(F2) = T n

n−1(F1F2) is

∑

y∈Z

f1(x − y)f2(y − virt) =
∑

y∈Z

f1(x − y)αy
n = F1(α

−1
n )αx

n. (2.51)

Remark 2.11. In the same way one proves the commutation relation

T n
n−1(F1)T

n−1
n−2 (F2) = T n

n−1(F2)T
n−1
n−2 (F1) (2.52)

but we will not need it later.

2.4 Minors of some simple Toeplitz matrices

The goal of the section is to derive explicit formulas for Tn(F ) and T n
n−1(F ) from

the previous section for some simple functions F .

Lemma 2.12. Consider F (z) = 1 + pz, that is

f(m) =







p, m = 1,

1, m = 0,

0, otherwise.

(2.53)

Then for integers x1 < · · · < xn and y1 < · · · < yn

det [f(xi − yj)]
n
i,j=1 =

{

p
∑n

i=1(xi−yi), if yi − xi ∈ {−1, 0} for all 1 ≤ i ≤ n,

0, otherwise.

(2.54)
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Proof of Lemma 2.12. If xi < yi for some i then xk < yl for k ≤ i and l ≥ i,
which implies that f(xk −yl) = 0 for such k, l, and thus the determinant in question
vanishes. If xi > yi + 1 then xk > yl + 1 for k ≥ i and l ≤ i, which means
f(xk − yl) = 0, and the determinant vanishes again. Hence, it remains to consider
the case when xi − yi ∈ {0, 1} for all 1 ≤ i ≤ n.

Split {xi}n
i=1 into blocks of neighboring integers with distance between blocks being

at least 2. Then it is easy to see that det [f(xi − yj)] splits into the product of
determinants corresponding to blocks. Let (xk, . . . , xl−1) be such a block. Then
there exists m, k ≤ m < l, such that xi = yi + 1 for l ≤ i < m, and xi = yi

for m ≤ i < l. The determinant corresponding to this block is the product of
determinants of two triangular matrices, one has size m − k and diagonal entries
equal to p, while the other one has size l−m and diagonal entries equal to 1. Thus,
the determinant corresponding to this block is equal to pm−k, and collecting these
factors over all blocks yields the result.

Lemma 2.13. Consider F (z) = (1 − qz)−1, that is

f(m) =

{

qm, m ≥ 0,

0, otherwise.
(2.55)

(i) For integers x1 < · · · < xn and y1 < · · · < yn

det [f(xi − yj)]
n
i,j=1 =

{

q
∑n

i=1(xi−yi), xi−1 < yi ≤ xi, 1 ≤ i ≤ n,

0, otherwise.
(2.56)

(The condition x0 < y1 above is empty.)

(ii) For integers x1 < · · · < xn and y1 < · · · < yn−1, and with virtual variable
yn = virt such that f(x − virt) = qx,

det [f(xi − yj)]
n
i,j=1 =

{

(−1)n−1q
∑n

i=1 xi−
∑n−1

i=1 yi, xi < yi ≤ xi+1, 1 ≤ i ≤ n − 1,

0, otherwise.

(2.57)

Proof of Lemma 2.13. (i) Let us first show that the needed inequalities are satisfied.
Indeed, if xi < yi for some i then det [f(xi − yj)] = 0 by the same reasoning as in
the previous lemma. On the other hand, if xi−1 ≥ yi then xk ≥ yl for k ≥ i − 1,
l ≤ i. Let i be the smallest number such that xi−1 ≥ yi. Then columns i and i + 1
have the form [

0 . . . 0 qxi−1−yi−1 qxi−yi−1 ∗ ∗ . . .
0 . . . 0 qxi−1−yi qxi−yi ∗ ∗ . . .

]T

, (2.58)

where the 2 × 2 block with powers of q is on the main diagonal. This again implies
that the determinant vanishes. On the other hand, if the interlacing inequalities are
satisfied then the matrix [f(xi − yj)] is triangular, and computing the product of its
diagonal entries yields the result.

22



(ii) The statement follows from (i). Indeed, we just need to multiply both sides of
(i) by qy1, denote y1(≤ x1) by virt, and then cyclically permute yj’s.

Lemma 2.14. Consider F (z) = p + qz(1 − qz)−1, that is

f(m) =







p, m = 0,

qm, m ≥ 1,

0, otherwise.

(2.59)

(i) For integral x1 < · · · < xn and y1 < · · · < yn

det [f(xi − yj)]
n
i,j=1 = q

∑n
i=1(xi−yi)p#{i | xi=yi}(1 − p)#{i | xi−1=yi} (2.60)

if xi−1 ≤ yi ≤ xi for all 1 ≤ i ≤ n, and 0 otherwise.

(ii) For integral x1 < · · · < xn and y1 < · · · < yn−1, and with virtual variable
yn = virt such that f(x − virt) = qx,

det [f(xi − yj)]
n
i,j=1 = (−1)n−1q

∑n
i=1 xi−

∑n−1
i=1 yip#{i |xi+1=yi}(1 − p)#{i |xi=yi} (2.61)

if xi ≤ yi ≤ xi+1 for all 1 ≤ i ≤ n − 1, and 0 otherwise.

Proof of Lemma 2.14. (i) The interlacing conditions are verified by the same ar-
gument as in the proof of Lemma 2.13(i) (although the conditions themselves are
slightly different). Assuming that they are satisfied, we observe that the matrix
elements of [f(xi−yj)] are zero for j ≥ i+2 because xi ≤ yi+1 < yi+2 and f(m) = 0
for m < 0. Further, the (i, i + 1)-element is equal to p if xi = yi+1 or 0 if xi < yi+1.
Thus, the matrix is block-diagonal, with blocks being either of size 1 with entry
f(xi − yi), or of large size having the form









qxk−yk p 0 . . . 0
qxk+1−yk qxk+1−yk+1 p . . . 0
qxk+2−yk qxk+2−yk+1 qxk+2−yk+2 . . . 0

. . . . . . . . . . . . . . .
qxl−yk qxl−yk+1 qxl−yk+2 . . . qxl−yl









(2.62)

with xk = yk+1, . . . , xl−1 = yl, and xk−1 < yk, xl < yl+1. The determinant of (2.62)
is computable via Lemma 1.2 of [6], and it is equal to

qxl−yk(1 − p)l−k = qxk+···+xl−(yk+···+yl)(1 − p)l−k. (2.63)

Collecting all the factors yields the desired formula.

The proof of (ii) is very similar to that of Lemma 2.13(ii).

Although the next statement is not used in the sequel, it is still interesting that the
minors can also be explicitly evaluated in slightly more complicated cases.
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Lemma 2.15. Consider

F (z) =
(a − b)z

(1 − az)(1 − bz)
, that is f(m) =

{

am − bm, m ≥ 1,

0, otherwise.
(2.64)

(i) For integral x1 < · · · < xn and y1 < · · · < yn

det [f(xi − yj)]
n
i,j=1 =

n−1∏

k=1

(ab)max(xk−yk+1,0)
n∏

k=1

f
(
min(xk, yk+1) − max(xk−1, yk)

)
.

(2.65)

(ii) For integral x1 < · · · < xn and y1 < · · · < yn−1, and with virtual variable
yn = virt such that f(x − virt) = ax,

det [f(xi − yj)]
n
i,j=1

= (−1)n−1amin(x1,y1)
n−1∏

k=1

(ab)max(xk−yk,0)
n∏

k=1

f
(
min(xk+1, yk+1) − max(xk, yk)

)
.

Remark 2.16. Because of the definition of f , the right-hand side of (i) is nonzero
iff xk > yk > xk−2 for all k such that the inequalities makes sense. Similarly, the
right-hand side of (ii) is nonzero iff xk+1 > yk > xk−1 for all k.

Proof of Lemma 2.15. We use the Cauchy-Binet formula

det [f(xi − yj)]
n
i,j=1

(a − b)n
=

∑

z1<···<zn

det [fa(xi − zj)]
n
i,j=1 det [fb(zi − yj − 1)]ni,j=1 (2.66)

with fa(m) = am, fb(m) = bm for m ≥ 0 and fa(m) = fb(m) = 0 for m < 0.
Here the denominator (a − b)n is responsible for the factor (a − b) in the formula
for F (z), and the shift by 1 in the last determinant comes from the factor z in
F (z). The determinants with fa and fb have been computed in Lemma 2.13(i).
Possible locations of zk are determined from two groups of inequalities coming from
Lemma 2.13(i):

xk−1 < zk ≤ xk, yk < zk ≤ yk+1. (2.67)

Denote by zmin
k and zmax

k the minimal and maximal zk satisfying these inequalities:

zmin
k = max(xk−1, yk) + 1, zmax

k = min(xk, yk+1). (2.68)

Clearly, the segments [zmin
k , zmax

k ] do not intersect, and the condition that none of
them is empty coincides with the conditions of nonvanishing from the remark above.
We can now write

det [f(xi − yj)]
n
i,j=1

(a − b)n
=

∑

zmin
k
≤zk≤zmax

k
k=1,...,n

a
∑n

i=1(xi−zi)b
∑n

i=1(zi−yi−1)

= a
∑n

i=1(xi−zmax
i )b

∑n
i=1(z

min
i −yi−1)

n∏

k=1

azmax
k
−zmin

k
+1 − bzmax

k
−zmin

k
+1

a − b
,

24



which concludes the proof of (i).

(ii) In the formula of (i) let us take y1 very negative. Observe that for any m ∈ Z

f(m − y1)

a−y1
=

am−y1 − bm−y1

a−y1
→ am (2.69)

as y1 → −∞ provided that |a| < |b|. Thus, multiplying both sides of (i) by ay1 ,
sending y1 → −∞, and cyclically permuting yj’s we arrive at (ii). The restriction
|a| < |b| is irrelevant as the statement is a polynomial identity in a and b.

2.5 Examples of bivariate Markov chains

We now use the formulas from the previous two sections to make the constructions
of the first two sections more explicit.

Let us start with bivariate Markov chains. Set S∗ = Xn and S = Xn−1, where the
sets Xm, m = 1, 2, . . . , were introduced in Section 2.3. We will also take

Λ = T n
n−1(α1, . . . , αn; (1 − αnz)−1) (2.70)

for some fixed α1, . . . , αn > 0.

The first case we consider is

P = Tn−1(α1, . . . , αn−1; 1 + βz), P ∗ = Tn(α1, . . . , αn; 1 + βz), β > 0. (2.71)

Then Proposition 2.10 implies that

∆ = ΛP = P ∗Λ = T n
n−1(α1, . . . , αn; (1 + βz)/(1 − αnz)). (2.72)

According to (2.22), (2.23), we have to compute expressions of the form

P ∗(x∗, y∗)Λ(y∗, y)

∆(x∗, y)
,

P ∗(x∗, y∗)Λ(y∗, x)

∆(x∗, x)

for the sequential and parallel updates, respectively.

We start with the condition probability needed for the Markov chain PΛ.

Proposition 2.17. Assume that x∗ ∈ S∗ and y ∈ S are such that ∆(x∗, y) > 0,
that is, x∗k ≤ yk ≤ x∗k+1 for all 1 ≤ k ≤ n − 1. Then the probability distribution

P ∗(x∗, y∗)Λ(y∗, y)

∆(x∗, y)
, y∗ ∈ S∗, (2.73)

has nonzero weights iff

y∗k − x∗k ∈ {−1, 0}, yk−1 ≤ y∗k < yk, k = 1, . . . , n, (2.74)
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(equivalently, max(x∗k − 1, yk−1) ≤ y∗k ≤ min(x∗k, yk − 1) for all k), and these weights
are equal to

∏

max(x∗

k
−1,yk−1)<min(x∗

k
,yk−1)

k=1,...,n

(
β

αn + β

)x∗

k
−y∗

k
(

αn

αn + β

)1−x∗

k
+y∗

k

(2.75)

with empty product equal to 1.

Remark 2.18. One way to think about the distribution of y∗ ∈ S∗ is as follows. For
each k there are two possibilities for y∗k: Either max(x∗k − 1, yk−1) = min(x∗k, yk − 1),
in which case y∗k is forced to be equal to this number, or max(x∗k − 1, yk−1) = x∗k − 1
and min(x∗k, yk − 1) = x∗k, in which case y∗k is allowed to take one of the two values
x∗k or x∗k − 1. Then in the latter case, x∗k − y∗k are i. i. d. Bernoulli random variables
with the probability of the value 0 equal to αn/(αn + β).

Proof of Proposition 2.17. The conditions for non-vanishing of the weights follow
from those of Lemmas 2.12 and 2.13, namely from (2.54) and (2.57). Using these
formulas we extract the factors of P ∗(x∗, y∗)Λ(y∗, y) that depend on y∗. This yields
(αn/β)

∑n
i=1 y∗

i . Normalizing these weights so that they provide a probability distri-
bution leads to the desired formula.

Let us now look at the conditional distribution involved in the definition of the
Markov chain P∆. The following statement is a direct consequence of Proposi-
tion 2.17.

Corollary 2.19. Assume that x∗ ∈ S∗ and x ∈ S are such that ∆(x∗, x) > 0, that
is, x∗k ≤ xk ≤ x∗k+1 for all 1 ≤ k ≤ n − 1. Then the probability distribution

P ∗(x∗, y∗)Λ(y∗, x)

∆(x∗, x)
, y∗ ∈ S∗, (2.76)

has nonzero weights iff max(x∗k − 1, xk−1) ≤ y∗k ≤ min(x∗k, xk − 1), and these weights
are equal to

∏

max(x∗

k
−1,xk−1)<min(x∗

k
,xk−1)

k=1,...,n

(
β

αn + β

)x∗

k
−y∗

k
(

αn

αn + β

)1−x∗

k
+y∗

k

. (2.77)

Let us now proceed to the case

P = Tn−1(α1, . . . , αn−1; (1 − γz)−1), P ∗ = Tn(α1, . . . , αn; (1 − γz)−1). (2.78)

We assume that 0 < γ < min{α1, . . . , αn}.
By Proposition 2.10

∆ = ΛP = P ∗Λ = T n
n−1

(
α1, . . . , αn; 1/((1 − αnz)(1 − γz))

)
. (2.79)

Again, let us start with PΛ.
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Proposition 2.20. Assume that x∗ ∈ S∗ and y ∈ S are such that ∆(x∗, y) > 0,
that is, x∗k−1 < yk − 1 < x∗k+1 for all k. Then the probability distribution

P ∗(x∗, y∗)Λ(y∗, y)

∆(x∗, y)
, y∗ ∈ S∗, (2.80)

has nonzero weights iff

x∗k−1 < y∗k ≤ x∗k, yk−1 ≤ y∗k < yk, k = 1, . . . , n − 1, (2.81)

(equivalently, max(x∗k−1+1, yk−1) ≤ y∗k ≤ min(x∗k, yk−1) for all k), and these weights
are equal to

n∏

k=1

(αn/γ)y∗

k

min(x∗

k
,yk−1)
∑

l=max(x∗

k−1+1,yk−1)

(αn/γ)l

. (2.82)

Here max(x∗0 + 1, y0) is assumed to denote −∞.

Remark 2.21. Less formally, these formulas state the following: Each y∗k has to
belong to the segment [max(x∗k−1 +1, yk−1), min(x∗k, yk −1)], and the restriction that
∆(x∗, y) > 0 guarantees that these segments are nonempty. Then the claim is that
y∗k’s are independent, and the distribution of y∗k in the corresponding segment is pro-

portional to the weights (αn/γ)y∗

k . In other words, this is the geometric distribution
with ratio αn/γ conditioned to live in the prescribed segment.

Proof of Proposition 2.20. Similarly to the proof of Proposition 2.17, we use Lem-
mas 2.13 to derive the needed inequalities and to single out the part of the ratio
P ∗(x∗, y∗)Λ(y∗, y)/∆(x∗, y) that depends on y∗. One readily sees that it is equal to

(αn/γ)
∑n

k=1 y∗

k , and this concludes the proof.

Let us state what this computation means in terms of the conditional distribution
used in the construction of P∆.

Corollary 2.22. Assume that x∗ ∈ S∗ and x ∈ S are such that ∆(x∗, x) > 0, that
is, x∗k−1 < xk − 1 < x∗k+1 for all k. Then the probability distribution

P ∗(x∗, y∗)Λ(y∗, x)

∆(x∗, x)
, y∗ ∈ S∗, (2.83)

has nonzero weights iff max(x∗k−1 + 1, xk−1) ≤ y∗k ≤ min(x∗k, xk − 1) for all k, and
these weights are equal to

n∏

k=1

(αn/γ)y∗

k

min(x∗

k
,xk−1)
∑

l=max(x∗

k−1+1,xk−1)

(αn/γ)l

. (2.84)
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In the four statements above we computed the ingredients needed for the construc-
tions of the bivariate Markov chains for the simplest possible Toeplitz-like transition
matrices. In these examples we always had x∗k ≥ y∗k, or, informally speaking, “par-
ticles jump to the left”. Because of the previous works on the subject, it is more
convenient to deal with the case when particles “jump to the right”. The arguments
are very similar, so let us just state the results.

Consider

P = Tn−1(α1, . . . , αn−1; 1 + βz−1), P ∗ = Tn(α1, . . . , αn; 1 + βz−1), β > 0.
(2.85)

• For PΛ, we have max(x∗k, yk−1) ≤ y∗k ≤ min(x∗k +1, yk−1). This segment consists
of either 1 or 2 points, in the latter case y∗k−x∗k are i. i. d. Bernoulli random variables
with the probability of 0 equal to (1 + αnβ)−1.

• For P∆, we have max(x∗k, xk−1) ≤ y∗k ≤ min(x∗k + 1, xk − 1), and the rest is the
same as for PΛ.

Now consider

P = Tn−1(α1, . . . , αn−1; (1 − γz−1)−1), P ∗ = Tn(α1, . . . , αn; (1 − γz−1)−1), (2.86)

for 0 < γ < min{α−1
1 , . . . , α−1

n }.
• For PΛ, we have max(x∗k, yk−1) ≤ y∗k ≤ min(x∗k+1, yk)−1, and y∗k are independent
geometrically distributed with ratio (αnγ) random variables conditioned to stay in
these segments.

• For P∆, we have max(x∗k, xk−1) ≤ y∗k ≤ min(x∗k+1, xk) − 1, and the rest is the
same as for PΛ.

Thus, we have so far considered eight bivariate Markov chains. It is natural to
denote them as

PΛ(1 + βz±1), P∆(1 + βz±1), PΛ((1 − γz±1)−1), P∆((1 − γz±1)−1). (2.87)

Observe that although all four chains of type PΛ live on one and the same state
space, all four chains of type P∆ live on different state spaces. For the sake of
completeness, let us list those state spaces:

SΛ = {(x∗, x) ∈ Xn × Xn−1 | x∗k + 1 ≤ xk ≤ x∗k+1 for all k}
S∆(1 + βz) = {(x∗, x) ∈ Xn × Xn−1 | x∗k ≤ xk ≤ x∗k+1 for all k}

S∆(1 + βz−1) = {(x∗, x) ∈ Xn × Xn−1 | x∗k + 1 ≤ xk ≤ x∗k+1 + 1 for all k}
S∆((1 − γz)−1) = {(x∗, x) ∈ Xn × Xn−1 | x∗k−1 + 2 ≤ xk ≤ x∗k+1 for all k}

S∆((1 − γz−1)−1) = {(x∗, x) ∈ Xn × Xn−1 | x∗k + 1 ≤ xk ≤ x∗k+2 − 1 for all k}

In the above formulas we always use the convention that if an inequality involves a
nonexistent variable (like x0 or x∗n+1), it is omitted.
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2.6 Examples of multivariate Markov chains

Let us now use some of the examples of the bivariate Markov chains from the previous
section to construct explicit examples of multivariate (not necessarily autonomous)
Markov chains following the recipe of Section 2.1.

For any m ≥ 0 we set Sm = Xm, which is the set of strictly increasing m-tuples of
integers. In this section we will denote these integers by xm

1 < · · · < xm
m.

Fix an integer n ≥ 1, and choose n positive real numbers α1, . . . , αn. We take the
maps Λk

k−1 to be

Λk
k−1 = T k

k−1(α1, . . . , αk; (1 − αkz)−1), k = 2, . . . , n. (2.88)

We consider the Markov chain S
(n)
Λ , i.e. the sequential update, first. Its state space

has the form

S
(n)
Λ =

{

(x1, . . . , xn) ∈ S1 × · · · × Sn |
n∏

m=2

Λm
m−1(x

m, xm−1) > 0
}

=
{

{xm
k }m=1,...,n

k=1,...,m
⊂ Z

n(n+1)
2 | xm+1

k < xm
k ≤ xm+1

k+1 for all k, m
}

.

(2.89)

In other words, this is the space of n interlacing integer sequences of length 1, . . . , n.

Let t be an integer time variable. We now need to choose the transition probabilities
Pm(t), m = 1, . . . , n.

Let {Ft(z)}t≥t0 be a sequence of functions each of which has one of the four possi-
bilities:

Ft(z) = (1 + β+
t z) or (1 + β−t /z) or (1 − γ+

t z)−1 or (1 − γ−t /z)−1. (2.90)

Here we assume that

β±t , γ±t > 0, γ+
t < min{α1, . . . , αn}, γ−t < min{α−1

1 , . . . , α−1
n }. (2.91)

We set
Pm(t) = Tm(α1, . . . , αm; Ft(z)), m = 1, . . . , n. (2.92)

Then all needed commutation relations are satisfied, thanks to Proposition 2.10.

The results of Section 2.5 enable us to describe the resulting Markov chain on S(n)
Λ

as follows.

At time moment t we observe a (random) point {xm
k (t)} ∈ S

(n)
Λ . In order to obtain

{xm
k (t +1)}, we perform the sequential update from level 1 to level n. When we are

at level m, 1 ≤ m ≤ n, the new positions of the particles xm
1 < · · · < xm

m are decided
independently.

(1) For Ft(z) = 1 + β+
t z, the particle xm

k is either forced to stay where it is if
xm−1

k−1 (t + 1) = xm
k (t), or it is forced to jump to the left by 1 if xm−1

k (t + 1) = xm
k (t),
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or it chooses between staying put or jumping to the left by 1 with probability of
staying equal to 1/(1 + β+

t α−1
m ). This follows from Proposition 2.17.

(2) For Ft(z) = 1 + β−t /z, the particle xm
k is either forced to stay where it is if

xm−1
k (t + 1) = xm

k (t) + 1, or it is forced to jump to the right by 1 if xm−1
k−1 (t + 1) =

xm
k (t) + 1, or it chooses between staying put or jumping to the right by 1 with

probability of staying equal to 1/(1 + β−t αm).

(3) For Ft(z) = (1− γ+
t z)−1, the particle xm

k chooses its new position according to
a geometric random variable with ratio αm/γ+

t conditioned to stay in the segment

[max(xm
k−1(t) + 1, xm−1

k−1 (t + 1)), min(xm
k (t), xm−1

k (t + 1) − 1)]. (2.93)

In other words, it tries to jump to the left using the geometric distribution of jump
length, but it is conditioned not to overcome xm

k−1(t) + 1 (in order not to “interact”
with the jump of xm

k−1), and it is also conditioned to obey the interlacing inequalities
with the updated particles on level m − 1. This follows from Proposition 2.20.

(4) For Ft(z) = (1 − γ−t /z)−1, the particle xm
k chooses its new position according

to a geometric random variable with ratio αmγ−t conditioned to stay in the segment

[max(xm
k (t), xm−1

k−1 (t + 1)), min(xm
k+1(t), x

m−1
k (t + 1)) − 1]. (2.94)

In other words, it tries to jump to the right using the geometric distribution of jump
length, but it is conditioned not to overcome xm

k+1(t)−1 (so that it does not interact
with jumps of xm

k+1), and it is also conditioned to obey the interlacing inequalities
with the updated particles on level m − 1.

Projection to {xm
1 }m≥1. A remarkable property of the Markov chain P

(n)
Λ with

steps of the first three types is that its projection onto the n-dimensional subspace
{x1

1 > x2
1 > · · · > xn

1} (the smallest coordinates on each level) is also a Markov
chain. Moreover, since these are the leftmost particles on each level, they have no
interlacing condition on their left to be satisfied, which makes the evolution simpler.
Let us describe these Markov chains.

At time moment t we observe {x1
1(t) > x2

1(t) > · · · > xn
1 (t)}. In order to obtain

{xm
1 (t + 1)}n

m=1, we perform the sequential update from x1
1 to xn

1 .

(1) For Ft(z) = 1 + β+
t z, the particle xm

1 is either forced to jump (it is being
pushed) to the left by 1 if xm−1

1 (t + 1) = xm
1 (t), or it chooses between not moving at

all or jumping to the left by 1 with probability of not moving equal to 1/(1+β+
t α−1

m ).

(2) For Ft(z) = 1 + β−t /z, the particle xm
1 is either forced to stay where it is if

xm−1
1 (t + 1) = xm

1 (t) + 1, or it chooses between staying put or jumping to the right
by 1 with probability of staying equal to 1/(1 + β−t αm).

(3) For Ft(z) = (1 − γ+
t z)−1, the particle xm

1 chooses its new position according
to a geometrically distributed with ratio γ+

t /αn jump to the left from the point
min(xm

1 (t), xm−1
1 (t + 1) − 1). That is, if xm

1 (t) < xm−1
1 (t + 1) then xm

1 simply jumps
to the left with the geometric distribution of the jump, while if xm

1 (t) ≥ xm−1
1 (t +1)
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then xm
1 is first being pushed to the position xm−1

1 (t + 1) − 1 and then it jumps to
the left using the geometric distribution.

(4) For the transition probability with Ft(z) = (1 − γ−t /z)−1, the particle xm
1 is

conditioned to stay below min(xm
2 (t), xm−1

1 (t + 1)) − 1, which involves xm
2 , thus the

projection is not Markovian.

The Markov chains on {x1
1 > · · · > xn

1} corresponding to 1 + β+
t z and 1 + β−t /z

are the “Bernoulli jumps with pushing” and “Bernoulli jumps with blocking” chains
discussed in [18].

Projection to {xm
m}m≥1. Similarly, the projection of the “big” Markov chain to

{x1
1 ≤ x2

2 ≤ · · · ≤ xn
n} is Markovian for the steps of types one, two, and four, but it

is not Markovian for the step of the third type Ft(z) = (1 − γ+
t z)−1.

Let us now consider the parallel update Markov chain P
(n)
∆ , or rather one of them.

Choose a sequence of functions Gt(z) = 1 + βtz
−1 with βt ≥ 0, and set

Pm(t) = Tm(α1, . . . , αm; Gt(z)), m = 1, . . . , n. (2.95)

In case βt = 0, Pm(t) is the identity matrix. As before, the needed commutation
relations are satisfied by Proposition 2.10.

The (time-dependent) state space of our Markov chain is

S(n)
∆ (t) =

{

(x1, . . . , xn) ∈ S1 × · · · × Sn |
n∏

m=2

∆m
m−1(x

m, xm−1 | t + n − m) > 0
}

=
{

{xm
k }m=1,...,n

k=1,...,m
⊂ Z

n(n+1)
2 | xm

k < xm−1
k ≤ xm

k+1 if βt+n−m = 0,

xm
k < xm−1

k ≤ xm
k+1 + 1 if βt+n−m > 0

}

. (2.96)

The update rule follows from the analog of Corollary 2.19 for (1 + βtz
−1). Namely,

assume we have {xm
k (t)} ∈ S

(n)
∆ (t). Then we choose {xm

k (t)} independently of each
other as follows. We have

max(xm
k (t), xm−1

k−1 (t)) ≤ xm
k (t + 1) ≤ min(xm

k (t) + 1, xm−1
k (t) − 1). (2.97)

This segment consists of either 1 or 2 points, and in the latter case xm+1
k (t + 1) has

probability of not moving equal to (1 + αmβt−n+m)−1, and it jumps to the right by
1 with remaining probability. In particular, if βt−n+m = 0 then xm

k (t + 1) = xm
k (t)

for all k = 1, . . . , m.

Less formally, each particle xm
k either stays put or moves to the right by 1. It is forced

to stay put if xm
k (t) = xm−1

k (t)−1, and it is forced to move by 1 if xm
k (t) = xm−1

k−1 (t)−1.
Otherwise, it jumps with probability 1 − (1 + αnβt−n+m)−1.

Projection to {xm
1 }m≥1. Once again, the projection of this Markov chain to {x1

1 >
· · · > xn

1} is also a Markov chain, and its transition probabilities are as follows: Each
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particle xm
1 at time moment t is either forced to stay if xm

1 (t) = xm−1
1 (t)−1 or it stays

with probability (1+αnβt−n+m)−1 and jumps to the right by 1 with complementary
probability. This Markov chain has no pushing because xm

1 ’s do not have neighbors
on the left. This is the “TASEP with parallel update”, see e.g. [10].

Projection to {xm
m}m≥1. We can also restrict our “big” Markov chain to the

particles {x1
1, x

2
2, . . . , x

n
n}. Then at time moment t they satisfy the inequalities

xm−1
m−1(t) ≤ xm

m(t) if βt+n−m = 0, xm−1
m−1(t) ≤ xm

m(t) + 1 if βt+n−m > 0,
(2.98)

and the update rule is as follows. If xm−1
m−1(t) = xm

m(t) + 1 then xm
m moves to the

right by 1: xm
m(t + 1) = xm

m(t). However, if xm−1
m−1(t) ≤ xm

m(t) then xm
m stays put with

probability (1+αnβt−n+m)−1, and it jumps to the right by 1 with the complementary
probability.

In the special case when all αj = 1,

βk =

{

β, k ≥ n − 1,

0, k < n − 1,
(2.99)

and with the densely packed initial condition xm
k (n − m) = k − m − 1, the Markov

chain P
(n)
∆ discussed above is equivalent to the so-called shuffling algorithm on

domino tilings of the Aztec diamonds that at time n produces a random domino
tiling of the diamond of size n distributed according to the measure that assigns to
a tiling the weight proportional to β raised to the number of vertical tiles, see [32].

2.7 Continuous time multivariate Markov chain

Many of the (discrete time) Markov chains considered above admit degenerations
to continuous time Markov chains. Let us work out one of the simplest examples.

As in the previous sections, we fix an integer n ≥ 1 and n positive real numbers
α1, . . . , αn, and take

Λk
k−1 = T k

k−1(α1, . . . , αk; (1 − αkz)−1), k = 2, . . . , n. (2.100)

We will consider a limit of the Markov chain S
(n)
Λ , so our state space is

S
(n)
Λ =

{

{xm
k }m=1,...,n

k=1,...,m
⊂ Z

n(n+1)
2 | xm+1

k < xm
k ≤ xm+1

k+1 for all k, m
}

. (2.101)

In the notation of the previous section, let us take Ft(z) = 1 + β−/z for a fixed

β− > 0 and t = 1, 2, . . . . Thus, we obtain an autonomous Markov chain on S(n)
Λ ,

whose transition probabilities are determined by the following recipe.

In order to obtain {xm
k (t+1)} from {xm

k (t)}, we perform the sequential update from
level 1 to level n. When we are at level m, 1 ≤ m ≤ n, for each k = 1, . . . , m the
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particle xm
k is either forced to stay if xm−1

k (t+1) = xm
k (t)+1, or it is forced to jump

to the right by 1 if xm−1
k−1 (t + 1) = xm

k (t) + 1, or it chooses between staying put or
jumping to the right by 1 with probability of staying equal to (1 + β−αm)−1. Note
that, since particles can only move to the right, it is easy to order the elements of
the state space so that the matrix of transition probabilities is triangular.

We are now interested in taking the limit β− → 0.

Lemma 2.23. Let A(ǫ) be a (possibly infinite) triangular matrix, whose matrix
elements are polynomials in an indeterminate ǫ > 0:

A(ǫ) = A0 + ǫA1 + ǫ2A2 + . . . , (2.102)

and assume that A0 = 1. Then for any τ ∈ R,

lim
ǫ→0

(A(ǫ))[τ/ǫ] = exp(τA1). (2.103)

Proof of Lemma 2.23. For the finite size matrix the claim is standard, and the
triangularity assumption reduces the computation of any fixed matrix element of
(A(ǫ))[τ/ǫ] to the finite matrix case.

This lemma immediately implies that the transition probabilities of the Markov
chain described above converge, in the limit β− → 0 and time rescaling by β−, to
those of the continuous time Markov chain on S

(n)
Λ , whose generator is the linear in

β− term of the generator of the discrete time Markov chain. Let denote this linear
term by L(n). Its off-diagonal entries are easy to compute:

L(n)

(

{xm
k }m=1,...,n

k=1,...,m
, {ym

k }m=1,...,n
k=1,...,m

)

= 1 (2.104)

if there exists 1 ≤ a ≤ b, 1 ≤ b ≤ n, 0 ≤ c ≤ n − b such that

xb
a = xb+1

a+1 = · · · = xb+c
a+c = x,

yb
a = yb+1

a+1 = · · · = yb+c
a+c = x + 1,

and xm
k = ym

k for all other values of (k, m), and

L(n)

(

{xm
k }m=1,...,n

k=1,...,m
, {ym

k }m=1,...,n
k=1,...,m

)

= 0 (2.105)

in all other cases.

Less formally, this continuous time Markov chain can be described as follows. Each
of the particles xm

k has its own exponential clock, all clocks are independent. When
xb

a-clock rings, the particle checks if its jump by one to the right would violate the
interlacing condition. If no violation happens, that is, if

xb
a < xb−1

a − 1 and xb
a < xb+1

a+1, (2.106)
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then this jump takes place. If xb
a = xb−1

a − 1 then the jump is blocked. On the other
hand, if xb

a = xb+1
a+1 then we find the longest string xb

a = xb+1
a+1 = · · · = xb+c

a+c and move
all the particles in this string to the right by one. One could think that the particle
xb

a has pushed the whole string.

We denote this continuous time Markov chain by P(n).

Similarly to P
(n)
Λ , each of the Markov chains Pm on Sm also has a continuous limit

as β− → 0. Indeed, the transition probabilities of the Markov chain generated by
Tm(α1, . . . , αm; 1 + β−/z) converge to (xm, ym ∈ Sm)

(

lim
β−→0

(
Tm(α1, . . . , αm; 1 + β−/z)

)[τ/β−]
)

(xm, ym)

=
det [α

ym
j

i ]
m

i,j=1

det [α
xm

j

i ]
m

i,j=1

det [exp(τ(ym
i − xm

j ))]m
i,j=1

exp(mτ)
. (2.107)

Thus, the limit of Pm is the Doob h-transform of m independent Poisson processes
by the harmonic function h(x1, . . . , xm) = det [α

xj

i ]
m

i,j=1, cf. [33]. Let us denote
this continuous time Markov chain by Pm, and the above matrix of its transition
probabilities over time τ by Pm(τ).

Taking the same limit β− in Proposition 2.5 leads to the following statement.

Proposition 2.24. Let mn(xn) be a probability measure on Sn. Consider the evo-
lution of the measure

mn(xn)Λn
n−1(x

n, xn−1) · · ·Λ2
1(x

2, x1) (2.108)

on S(n)
Λ under the Markov chain P(n), and denote by (x1(t), . . . , xn(t)) the result

after time t ≥ 0. Then for any

0 = t0n ≤ · · · ≤ tc(n)
n = t0n−1 ≤ · · · ≤ tn−1

c(n−1) = t0n−2 ≤ · · · ≤ t
c(2)
2 = t01 ≤ · · · ≤ t

c(1)
1

(2.109)
(here c(1), . . . , c(n) are arbitrary nonnegative integers) the joint distribution of

xn(t0n), . . . , xn(tc(n)
n ), xn−1(t0n−1), x

n−1(t1n−1), . . . , x
n−1(t

c(n−1)
n−1 ),

xn−2(t0n−2), . . . , x
2(t

c(2)
2 ), x1(t01), . . . , x

1(t
c(1)
1 )

coincides with the stochastic evolution of mn under transition matrices

Pn(t1n − t0n), . . . ,Pn

(
tc(n)
n − tc(n)−1

n

)
, Λn

n−1,

Pn−1(t
1
n−1 − t0n−1), . . . ,Pn−1

(
t
c(n−1)
n−1 − t

c(n−1)−1
n−1

)
, Λn−1

n−2, . . . ,

. . . , Λ2
1,P1(t

1
1 − t01), . . . ,P1

(
t
c(1)
1 − t

c(1)−1
1

)
.

Remark 2.25. It is not hard to see that if in the construction of P
(n)
Λ we used

Ft(z) = (1 − γ−/z)−1 and took the limit γ− → 0 then the resulting continuous
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Markov chains would have been exactly the same. On the other hand, if we used
Ft(z) = (1+β+z) or Ft(z) = (1−γ+z)−1 then the limiting continuous Markov chain
would have been similar to P(n), but with particles jumping to the left.

It is slightly technically harder to establish the convergence of Markov chains with
alternating steps, for example,

F2s(z) = 1 + β+(s)z, F2s+1 = 1 + β−(s)/z, (2.110)

because the transition matrix is no longer triangular (particles jump in both direc-
tions). It is possible to prove, however, the following fact:

For any two continuous functions a(τ) and b(τ) on R+ with a(0) = b(0) = 0, consider

the limit as ǫ → 0 of the Markov chain P
(n)
Λ with alternating Ft’s as above,

β−(s) = ǫa(ǫs), β+(s) = ǫb(ǫs), (2.111)

and the time rescaled by ǫ. Then this Markov chain converges to a continuous time
Markov chain, whose generator at time τ is equal to a(τ) times the generator of P(n)

plus b(τ) times the generator of the Markov chain similar to P(n) but with particles
jumping to the left.

The statement of Proposition 2.24 also remains true, but in the definition of the
Markov chains Pm one needs to replace the Poisson process by the one-dimensional
process whose generator is a(τ) times the generator of the Poisson process plus b(τ)
times the generator of the Poisson process jumping to the left.

2.8 Determinantal structure of the correlation functions

The goal of this section is to compute certain averages often called correlation func-
tions for the Markov chains P

(n)
Λ and P

(n)
∆ with Ft(z) = (1+β±t z±1) or (1−γ±t z±1)−1,

and their continuous time counterpart P(n), starting from certain specific initial con-
ditions.

As usual, we begin with P
(n)
Λ . The initial condition that we will use is natural to

call densely packed initial condition. It is defined by

xm
k (0) = k − m − 1, k = 1, . . . , m, m = 1, . . . , n. (2.112)

Definition 2.26. For any M ≥ 1, pick M points

κj = (yj, mj, tj) ∈ Z × {1, . . . , n} × Z≥0 or Z × {1, . . . , n} × R≥0, (2.113)

j = 1, . . . , M . The value of the Mth correlation function ρM of P
(n)
Λ (or P

(n)
∆ ) at

(κ1, . . . , κM) is defined as

ρM(κ1, . . . , κM) = Prob{For each j = 1, . . . , M there exists a kj,

1 ≤ kj ≤ mj, such that x
mj

kj
(tj) = yj}. (2.114)
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The goal of this section is to partially evaluate the correlation functions correspond-
ing to the densely packed initial condition.

Introduce a partial order on pairs (m, t) ∈ {1, . . . , n} × Z≥0 or {1, . . . , n} × R≥0 via

(m1, t1) ≺ (m2, t2) iff m1 ≤ m2, t1 ≥ t2 and (m1, t1) 6= (m2, t2). (2.115)

In what follows we use positive numbers α1, . . . , αn that specify the links Λk
k−1 as in

Section 2.6, and as before we assume that

β±t , γ±t > 0, γ+
t < min{α1, . . . , αn}, γ−t < min{α−1

1 , . . . , α−1
n }. (2.116)

Theorem 2.27. Consider the Markov chain P
(n)
Λ with the densely packed initial

condition and Ft(z) = (1 + β±t z±1) or (1 − γ±t z±1)−1. Assume that triplets κj =
(yj, mj, tj), j = 1, . . . , M , are such that any two distinct pairs (mj , tj), (mj′, tj′) are
comparable with respect to ≺. Then

ρM(κ1, . . . , κM) = det [K(κi, κj)]
M
i,j=1, (2.117)

where

K(y1, m1, t1; y2, m2, t2) = − 1

2πi

∮

Γ0

dw

wy2−y1+1

∏t1−1
t=t2

Ft(w)
∏m2

l=m1+1(1 − αlw)
1[(m1,t1)≺(m2,t2)]

+
1

(2πi)2

∮

Γ0

dw

∮

Γ
α−1

dz

∏t1−1
t=0 Ft(w)

∏t2−1
t=0 Ft(z)

∏m1

l=1(1 − αlw)
∏m2

l=1(1 − αlz)

wy1

zy2+1

1

w − z
,

the contours Γ0, Γα−1 are closed and positively oriented, and they include the poles
0 and {α−1

1 , . . . , α−1
n }, respectively, and no other poles.

This statement obviously implies

Corollary 2.28. For the Markov chain P(n), with the notation of Theorem 2.27
and densely packed initial condition, the correlation functions are given by the same
determinantal formula with the kernel

K(y1, m1, τ1; y2, m2, τ2) = − 1

2πi

∮

Γ0

dw

wy2−y1+1

e(t1−t2)/w

∏m2

l=m1+1(1 − αlw)
1[(m1,t1)≺(m2,t2)]

+
1

(2πi)2

∮

Γ0

dw

∮

Γ
α−1

dz
et1/w

et2/z

∏m1

l=1(1 − αlw)
∏m2

l=1(1 − αlz)

wy1

zy2+1

1

w − z
.

Remark 2.29. For the more general continuous time Markov chain described in
Remark 2.25 a similar to Corollary 2.28 result holds true, where one needs to replace
the function et/w by ea(t)/w+b(t)w .

Proof of Theorem 2.27. The starting point is Proposition 2.7. The densely packed
initial condition is a measure on S(n)

Λ of the form mn(xn)Λn
n−1(x

n, xn−1) · · ·Λ2
1(x

2, x1)
with mn being the delta-measure at the point (−n,−n + 1, . . . ,−1) ∈ Sn.
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This delta-measure can be rewritten (up to a constant) as det[Ψn
n−l(x

n
k)]k,l=1,...,n with

Ψn
n−l(x) =

1

2πi

∮

Γ0

n∏

j=l+1

(1 − αjw)wx+l dw

w
, l = 1, . . . , n. (2.118)

Indeed, Span(Ψn
n−l | l = 1, . . . , n) is exactly the space of all functions on Z supported

by {−1, . . . ,−n}.
We are then in a position to apply Theorem 4.2 of [7]. (In fact, the change of notation
that facilitates the application was already used in Proposition 2.24 above.) The
computation of the matrix M−1 of that theorem follows verbatim the computation
in the proof of Theorem 3.2 of [13], where θj of [13] have to be replaced by α−1

j for
all j = 1, . . . , n. Arguing exactly as in that proof we arrive at the desired integral
representation for the correlation kernel.

Finally, one can also derive similar formulas for the Markov chain P
(n)
∆ . As the state

space S(n)
∆ is now

S(n)
∆ (t) = {(xn(t), xn−1(t + 1), . . . , x1(t + n − 1)}, (2.119)

we need to define the densely packed initial condition differently, cf. the end of
Section 2.6. We set

xm
k (n − m) = k − m − 1, k = 1, . . . , m, m = 1, . . . , n, (2.120)

and assume that Ft(z) ≡ 1 for t = 0, . . . , n − 2. This means that

∆m
m−1(x

m, xm−1 |n − m) = Λm
m−1(x

m, xm−1), m = 2, . . . , n, (2.121)

and our initial condition is of the form (2.43).

Corollary 2.30. For the Markov chain P
(n)
∆ , with the above assumptions, notation

of Theorem 2.27, and densely packed initial condition, under the additional assump-
tion that for any two pairs (mj , tj) ≺ (mj′, tj′) we have

tj − tj′ ≥ mj′ − mj ,

the correlation functions are given by the same determinantal formula as in Theo-
rem 2.27.

Proof of Corollary 2.30. Comparing the formulas for the joint distributions for P
(n)
Λ

and P
(n)
∆ in Proposition 2.7 we see that with the densely packed initial conditions

they simply coincide. Hence, the correlation functions are the same.

Note that according to the remark at the end of Section 2.6, the correlation functions
for the shuffling algorithm of domino tilings of Aztec diamonds can be obtained from
Theorem 2.27 and Corollary 2.30.
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3 Geometry

3.1 Macroscopic behavior, limit shape

It is more convenient for us to slightly modify the definition of the height function
(1.2) by assuming that its first argument varies over Z, and

h(x, n, t) = |{k|xn
k(t) > x}| . (3.1)

Clearly, this modification has no effect on asymptotic statements.

We are interested in large time behavior of the interface. The macroscopic choice of
variable is

x = [(ν − η)L], n = [ηL], t = τL, (3.2)

where (ν, η, τ) ∈ R3
+ and L ≫ 1 is a large parameter setting the macroscopic scale.

For fixed η and τ , h(x, n, t) = n for ν small enough (e.g., ν = 0) and h(x, n, t) = 0 for
ν large enough. Define the x-density of our system as the average number of particles
in the x-direction. Then, for large L, one expects that −L−1∂h/∂ν ≃ x-density.
Thus, our model has facets when the x-density is constant (equal to 0 or 1 in our
situation), which are interpolated by curved pieces of the surface, see Figure 1.2.

Claim 3.1. The domain D ⊂ R3
+, where the x-density of our system is asymptoti-

cally strictly between 0 and 1 is given by

|√τ −√
η| <

√
ν <

√
τ +

√
η. (3.3)

Equivalently, x-density ∈ (0, 1) iff there exists a (non-degenerate) triangle with
sides

√
ν,
√

η,
√

τ . Denote by πν , πη and πτ the angles of this triangle as indicated
in Figure 3.1.

√
η

√
τ

√
ν

πη

πτ

πν

Ω

0 1

√

η/τ
√

ν/τ

Figure 3.1: The triangle of (3.3) on the left and its scaled version defined by inter-
section of circles on the right.

The condition (3.3) is also equivalent to saying that the circle centered at 0 of radius
√

η/τ has two disjoints intersections with the circle centered at 1 of radius
√

ν/τ .
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In that case, the two intersections are complex conjugate. Denote by Ω(ν, η, τ) the
intersection in

H = {z ∈ C | Im(z) > 0}. (3.4)

Then, we have the following properties

|Ω|2 =
η

τ
, |1 − Ω|2 =

ν

τ
, arg(Ω) = πν , arg(1 − Ω) = −πη. (3.5)

The cosine rule gives the angles π∗’s in (0, π) by

πν = arccos

(
τ + η − ν

2
√

τη

)

,

πη = arccos

(
τ + ν − η

2
√

τν

)

, (3.6)

πτ = arccos

(
η + ν − η

2
√

νη

)

.

Proposition 3.2 (Bulk scaling limit). For any k = 1, 2, . . . , consider

κj(L) = (xj(L), nj(L), tj(L)), j = 1, . . . , k,

such that for any i 6= j and any L > 0 either κi(L) ≺ κj(L) or κj(L) ≺ κi(L).
Assume that

lim
L→∞

xj

L
= ν, lim

L→∞

nj

L
= η, lim

L→∞

tj
L

= τ, j = 1, . . . , k;

we have (ν, η, τ) ∈ D; and also all the differences xi−xj, ni−nj, ti−tj do not depend
on the large parameter L. Then the k-point correlation function ρ(k)(κ1, . . . , κk)
converges to the determinant det[Kbulk

ij ]1≤i,j≤k, where

Kbulk
ij =

1

2πi

∫ 1−Ω(ν,η,τ)

1−Ω(ν,η,τ)

dw
(1 − w)ni−nje(tj−ti)w

wxi−xj+1
, (3.7)

where for (ni, ti) 6≺ (nj , tj) the integration contour crosses R−, while for (ni, ti) ≺
(nj, tj) the contour crosses R+.

Proof of Proposition 3.2. One follows exactly the same steps as in Section 3.2 of [34],
replacing the double integral (35) in there by (4.1). The deformed paths are then
like in Figure 7.3 but with zc = wc.

Corollary 3.3. Let ρ denote the asymptotic x-density. Then, in D, it is given by

ρ(ν, η, τ) = lim
L→∞

ρ(1)([νL], [ηL], τL) = πη/π ∈ [0, 1]. (3.8)

Consequently,

lim
L→∞

E (h([(ν − η)L], [ηL], τL))

L
= h̄(ν, η, τ) :=

1

π

∫ (
√

τ+
√

η)2

ν

πη(ν
′, η, τ)dν ′. (3.9)
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Below we perform the integral in (3.9) to get an explicit expression for the limit
shape h̄. Along the way we derive some interesting geometric relations. First of all,
h̄ is homogeneous of degree one (since it is the scaling limit under same scaling in
all directions).

Lemma 3.4. For any α > 0,

h̄(αν, αη, ατ) = αh̄(ν, η, τ), (3.10)

from which it follows
(

ν
∂

∂ν
+ η

∂

∂η
+ τ

∂

∂τ

)

h̄(ν, η, τ) = h̄(ν, η, τ). (3.11)

Proof of Lemma 3.4. It follows directly from the geometric property πη(αν, αη, ατ) =
πη(ν, η, τ).

Therefore, we need just to compute the partial derivatives, then the limit shape h̄
will be determined by the l.h.s. of (3.11).

Proposition 3.5. The partial derivatives of the limit shape h̄ are given by

∂h̄

∂ν
= −πη

π
,

∂h̄

∂η
= 1 − πν

π
,

∂h̄

∂τ
=

sin(πν) sin(πη)

π sin(πτ )
. (3.12)

As a corollary of Lemma 3.4 and Proposition 3.5, the limit shape is given as follows.

Corollary 3.6. For (ν, η, τ) ∈ D, we have

h̄(ν, η, τ) =
1

π

(

−νπη + η(π − πν) + τ
sin(πν) sin(πη)

sin(πτ )

)

. (3.13)

Proof of Proposition 3.5. From (3.9) we immediately have the first relation: ∂h̄/∂ν =
−πη/π. In the derivative of h̄ with respect to τ and η we have one term coming from
the boundary term and one from the internal derivative. The boundary terms will
actually be zero, since the density at the upper edge is zero. We need to compute

∂πη

∂η
=

1
√

4ητ − (ν − η − τ)2
,

∂πη

∂τ
=

ν − η − τ

2τ
√

4ητ − (ν − η − τ)2
. (3.14)

Then, we apply the indefinite integrals
∫

dx

a2 − x2
= arcsin(x/|a|) + C,

∫
xdx√
a2 − x2

= −
√

a2 − x2 + C. (3.15)

For the derivative with respect to η,

π
∂h̄

∂η
=

∫ (
√

η+
√

τ)2

ν

∂πη

∂η
dν ′ + (1 +

√

τ/η)πη

(
(
√

η +
√

τ )2, η, τ
)

= π/2 + arcsin

(
η + τ − ν

2
√

ητ

)

= π − arccos

(
η + τ − ν

2
√

ητ

)

, (3.16)

40



η
ν

ρ(ν, η, 1)

0
0

11 22
3

3

4

4
0

0.2

0.4

0.6

0.8

1

η
ν

h̄(ν, η, 1)

0123401
2

3
4

0

1

2

3

4

Figure 3.2: (a) Limiting density of the particles with τ = 1. (b) The associated
limiting height function. Two facets are visible.

the latter being πν . Finally,

π
∂h̄

∂τ
=

∫ (
√

η+
√

τ)2

ν

∂πη

∂τ
dν ′ + (1 +

√

η/τ)πη

(
(
√

η +
√

τ)2, η, τ
)

=

√

4ητ − (ν − η − τ)2

2τ
=
√

η/τ sin(πν), (3.17)

and by the sinus theorem to the triangle of Figure 3.1 we have
√

η/
√

τ =
sin(πη)/ sin(πτ ).

3.2 Growth model in the anisotropic KPZ class

For fixed τ , the macroscopic slopes of the interface in the x- and n-directions are
given by ux = ∂ν h̄ and un = ∂ηh̄. The speed of growth of the surface, ∂τ h̄, depends
only on these two slopes. Indeed, by (3.12), we can rewrite

v =
∂h̄

∂τ
= −1

π

sin(πux) sin(πun)

sin(π(ux + un))
. (3.18)

Remark that the speed of growth is monotonically decreasing with the slope

∂v(ux, un)

∂ux
< 0,

∂v(ux, un)

∂un
< 0 (3.19)

for ux, un, ux + un ∈ (0, 1).

To see in which universality class our model belongs to, we need to compute the
determinant of the Hessian of v = v(ux, un). Explicit computations give

∣
∣
∣
∣

∂ux
∂ux

v ∂ux
∂un

v
∂un

∂ux
v ∂un

∂un
v

∣
∣
∣
∣
= −4π2 sin(πux)

2 sin(πun)
2

sin(π(ux + un))4
< 0 (3.20)
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for ux, un, ux + un ∈ (0, 1), i.e., for (ν, η, τ) ∈ D. Thus, our model belongs to the
anisotropic KPZ universality class of growth models in 2 + 1 dimensions.

Let us give a more intuitive explanation. Consider Figure 1.1 and focus on the
random surface seen from the (n, h) plane; call y(n, h, t) the function whose graph is
the surface. Along the direction of fixed n, an increase of the density corresponds to
a larger slope ∂y/∂h. Along this direction, the particles evolve according to TASEP
dynamics. Therefore, a larger slope corresponds to a smaller speed of growth for
∂y/∂t. Secondly, consider the direction of fixed h. Also in this case, a larger density
implies a larger slope ∂y/∂n. But along this direction, particles evolve as PushASEP
dynamics, i.e., a larger slope corresponds to a larger speed of growth. Therefore,
the speed of growth will be monotonically increasing with ∂y/∂h and −∂y/∂n.

3.3 A few other geometric properties

During the asymptotic analysis we will use a few more geometric quantities, which
we collect in this section. The key function to be analyzed is

G(w) ≡ G(w|ν, η, τ) = τw + ν ln(1 − w) − η ln(w), w ∈ C. (3.21)

The critical points of G coincide with Ω as stated below.

Proposition 3.7. Away from {0, 1}, the function G has two critical points(counted
with multiplicities). These two points are distinct and complex conjugate if and only
if (ν, η, τ) ∈ D, in which case the critical points are {Ω, Ω}.

Proof of Proposition 3.7. The derivative of G gives

G′(w) =
τ

w(w − 1)

((

w − η + τ − ν

2τ

)2

+
4ητ − (η + τ − ν)2

4τ 2

)

, (3.22)

and we have two distinct complex conjugate solutions iff 4ητ − (η + τ −ν)2 > 0, i.e.,
iff (ν, η, τ) ∈ D. Also, from (3.5) and (3.6) we get

Re(Ω) =
η + τ − ν

2τ
, Im(Ω) =

√

4ητ − (η + τ − ν)2

2τ
. (3.23)

Thus, Ω and Ω are the two solutions of G′(w) = 0, i.e., the two critical points.

The main formulas needed later are the partial derivatives of Ω as well as G′′(Ω).

Proposition 3.8. Denote κ = 2τ Im(Ω) =
√

4ητ − (η + τ − ν)2. Then we have

G′′(Ω) =
−iκ

Ω(1 − Ω)
, (3.24)

which implies

|G′′(Ω)| =
κ

|Ω(1 − Ω)| , arg(G′′(Ω)) = −π

2
− πν + πη. (3.25)
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Moreover,
∂Ω

∂ν
=

iΩ

κ
,

∂Ω

∂η
=

i(1 − Ω)

κ
,

∂Ω

∂τ
=

−iΩ(1 − Ω)

κ
. (3.26)

Proof of Proposition 3.8. From (3.22) we get

G′′(Ω) =
2τ

Ω(Ω − 1)
(Ω − Re(Ω)) =

2iτ Im(Ω)

Ω(Ω − 1)
. (3.27)

The modulus is immediate, while the argument is obtained using (3.5).

Since Ω is the intersection point of the circles |z| =
√

η/τ and |1 − z| =
√

ν/τ ,
the direction of ∂νΩ is orthogonal to the vector Ω and ∂ηΩ is orthogonal to 1 − Ω.
Therefore, for some c1, c2 ∈ R,

∂Ω

∂ν
= c1Ωi,

∂Ω

∂η
= c2(1 − Ω)i. (3.28)

Looking at the real part of these equations, we get ∂νRe(Ω) = −c1Im(Ω), and
∂νRe(Ω) = c2Im(Ω). On the other hand,

Re(Ω) =
η + τ − ν

2τ
⇒ ∂νRe(Ω) = − 1

2τ
, ∂ηRe(Ω) =

1

2τ
. (3.29)

From this we conclude that

∂νΩ =
iΩ

2τ Im(Ω)
, ∂ηΩ =

i(1 − Ω)

2τ Im(Ω)
. (3.30)

To get ∂τΩ, we can use the following property: Ω(aν, aη, aτ) = Ω(ν, η, τ) for any
a > 0, which implies

(ν∂ν + η∂η + τ∂τ )Ω = 0. (3.31)

This equation leads to

∂τΩ = − i

2τ Im(Ω)

(ν

τ
Ω +

η

τ
(1 − Ω)

)

= − iΩ(1 − Ω)

2τ Im(Ω)
, (3.32)

using |Ω|2 = η/τ and |1 − Ω|2 = ν/τ , see (3.5).

Another important function appearing in the asymptotics of the kernel is the imag-
inary part of G(Ω) (and their derivatives).

Proposition 3.9. We have

γ(ν, η, τ) := Im(G(Ω)) = τ Im(Ω) − νπη − ηπν , (3.33)

Its derivatives are

∂Im(G(Ω))

∂ν
= −πη,

∂Im(G(Ω))

∂η
= −πν , (3.34)

and
∂2Im(G(Ω))

∂ν∂η
= −1

κ
, κ = 2τ Im(Ω). (3.35)

Proof of Proposition 3.9. The relation (3.33) is a direct consequence of (3.5). The
rest are just simple computations.
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4 Kernel representations

For the analysis of the variance we will use a representation in terms of Charlier
polynomials. These polynomials are defined on Z+ = {0, 1, 2, . . .}, while our parti-
cles at level n live on {−n,−n + 1, . . .}. Thus, it is convenient to shift the position
at level n by −n, i.e., the positions of particles at level n will be denoted by −n+x,
x ≥ 0. With this shift, the kernel (1.6) is equivalent to the following one.

K(x1, n1, t1; x2, n2, t2)

=







et1−t2

(2πi)2

∮

Γ1
dz
∮

Γ0
dw zn1

et1z(1−z)x1+1
et2w(1−w)x2

wn2

1
w−z

, (n1, t1) 6≺ (n2, t2)

et1−t2

(2πi)2

∮

Γ1
dz
∮

Γ0,z
dw zn1

et1z(1−z)x1+1
et2w(1−w)x2

wn2

1
w−z

, (n1, t1) ≺ (n2, t2)
(4.1)

To get it, we just have to do the change of variables z → 1/(1−w) and w → 1/(1−z),
followed by a conjugation. We can get this kernel also from (3.11) in [7] (and change
of variable: z → 1 − w, w → 1 − z).

We can write the kernel also using Charlier polynomials Cn(x, t).

Proposition 4.1 (Charlier extended kernel). The extended kernel is given by

K(x1, n1, t1; x2, n2, t2) =

{ ∑n2

k=1 Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2), (n1, t1) 6≺ (n2, t2)

−∑∞l=0 Ψn1,t1
n1+l(x1)Φ

n2,t2
n2+l(x2), (n1, t1) ≺ (n2, t2)

(4.2)

where

Ψn,t
k (x) =

tx/2et/2

√
x!

√
k!

tk/2
qk(x, t), Φn,t

k (x) =

(
tx/2et/2

√
x!

√
k!

tk/2

)−1

qk(x, t), (4.3)

where

qn(x, t) = wt(x)1/2 tn/2

√
n!

Cn(x, t), (4.4)

wt(x) =
e−ttx

x!
, Cn(x, t) =

n!

tn
1

2πi

∮

Γ0

dw
(1 − w)xewt

wn+1
.

Remark 4.2. For later use, we rewrite qn as

qn(x, t) = Bn,t(x)In,t(x), Bn,t(x) =
e−t/2tx/2

√
x!

√
n!

tn/2
, (4.5)

and

In,t(x) =
1

2πi

∮

Γ0

dw
(1 − w)xewt

wn+1
. (4.6)

Then, we will have to do the asymptotics of the integral In,t.
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Remark 4.3. In the proof of Theorem 1.3 we will use the following property

−∂s′K(m, n, s; m′, n′, s′) = K(m, n, s; m′ + 1, n′, s′), (4.7)

which holds for both (4.1) and (4.2). We could have conjugated out the prefactor
et1−t2 in (4.1) to obtain an equivalent kernel. But then (4.7) would not hold (there
would be a shift in n′ instead) and it might have been confusing.

Proof of Proposition 4.1. From [10], Proposition 3.1, Lemma 3.2 and Lemma 3.3
(just need to shift the positions at level n by −n, so that x ≥ 0), we have the
formula for the starting extended kernel, namely,

K(x1, n1, t1; x1, n2, t2) = −φ((n1,t1),(n2,t2))(x1, x2) +

n2∑

k=1

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2) (4.8)

with

Ψn,t
k (x) =

1

2πi

∮

Γ0,1

dw
etw(1 − w)k

wx+1
,

Φn,t
k (x) =

−1

2πi

∮

Γ1

dz
zxe−tz

(1 − z)k+1
, (4.9)

φ((n1,t1),(n2,t2))(x1, x2) =
1

2πi

∮

Γ0,1

dw
ew(t1−t2)

wx1−x2+1(w − 1)n2−n1
1[(n1,t1)≺(n2,t2)].

Using the integral representations, it is not difficult to check that

∑

k≥0

Ψn1,t1
k (x)Φn2,t2

k (y) = φ((n1,t1),(n2,t2))(x, y). (4.10)

Thus (4.8) becomes (4.2). This new expression is good because in (4.9) we never have
the case when the pole at 0 in Ψn,t

k survives. Finally, using the integral representation
(4.4) of the Charlier polynomials and the relation Cn(x, t) = Cx(n, t), we can express
the Ψ and the Φ in terms of them.

The same formula can be obtained starting from (4.2). For example, when (n1, t1) 6≺
(n2, t2), one uses the geometric series z/(z − w) =

∑

k≥0(w/z)k to go back to (4.8).

For the computation of the variance, we will need only the kernel at fixed (n, t).
Thus, we denote Kn,t(x, y) ≡ K(x, n, t; y, n, t).

Corollary 4.4. The kernel Kn,t is given by

Kn,t(x, y) =
√

nt
qn−1(x, t)qn(y, t) − qn(x, t)qn−1(y, t)

x − y
. (4.11)

Proof of Corollary 4.4. The proof is just a specialization of Proposition 4.1 to the
case n1 = n2 = n, t1 = t2 = t, and then use Christoffel-Darboux formula.
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5 Gaussian fluctuations

In this section we look only at the height function at given time. Therefore, it
is convenient to set λ = ν/τ and c = η/τ so that we have n = [ηL] = [ct] and
x = [νL] = [λt]. In these variables, the equation for the bulk region given by (3.3)
rewrites as

(1 −√
c)2 < λ < (1 +

√
c)2. (5.1)

First we compute the variance of the height.

Proposition 5.1. For any λ ∈ ((1 −√
c)2, (

√
c + 1)2),

lim
t→∞

Var(h([(λ − c)t], [ct], t))

ln(t)
=

1

2π2
. (5.2)

With this we can prove Theorem 1.2.

Proof of Theorem 1.2. It is a consequence of Proposition 5.1 and [43]. More precisely,
in Section 2 of [43] the convergence in distribution (a generalization of the result
for the sine kernel of [16]) is stated. However, following the proof of the theorem,
one realizes that it is done by controlling the cumulants, i.e., also the moments
converge.

Proof of Proposition 5.1. The variance can be written in terms of the one and two
point correlation functions ρ(1) and ρ(2). Namely,

Var(h([(λ − c)t], [ct], t)) =
∑

x,y>[λt]

ρ(2)(x, y) +
∑

x>[λt]

ρ(1)(x) −
( ∑

x>[λt]

ρ(1)(x)
)2

, (5.3)

where ρ(2)(x, y) = Kn,t(x, x)Kn,t(y, y)−Kn,t(x, y)Kn,t(y, x) and ρ(1)(x) = Kn,t(x, x).
Using K2

n,t = Kn,t on ℓ2(Z+), we have

Var(h([(λ − c)t], [ct], t)) =
∑

x>[λt]

Kn,t(x, x) −
∑

x,y>[λt]

Kn,t(x, y)Kn,t(y, x)

=
∑

x>[λt]

∞∑

y=0

Kn,t(x, y)Kn,t(y, x) −
∑

x,y>[λt]

Kn,t(x, y)Kn,t(y, x)

=
∑

x>[λt]

∑

y≤[λt]

(Kn,t(x, y))2 , n = [ct]. (5.4)

We use the expression (4.11) for the kernel Kn,t. We decompose the sum in (5.4)
into the following three sets:

M = {x, y ∈ Z
2
+|x > [λt], y ≤ [λt], y − x ≤ ε1t},

R1 = {x, y ∈ Z
2
+|x > [λt], y ≤ [λt], ε1t < y − x < ε2t}, (5.5)

R2 = {x, y ∈ Z
2
+|x > [λt], y ≤ [λt], ε2t ≤ y − x},
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where the parameter ε2 = 1
2
min{(1 +

√
c)2 − λ, λ− (1−√

c)2} is chosen so that R1

is a subset of the bulk. Thus

Var(h([(λ − c)t], [ct], t)) = Mt + Rt,1 + Rt,2, (5.6)

with
Mt =

∑

x,y∈M

|Kn,t(x, y)|2 , Rt,k =
∑

x,y∈Rk

|Kn,t(x, y)|2 . (5.7)

Remark: The parameter ε1, small, will be chosen t-dependent in the end.

(1) Bound on Rt,2. For x, y ∈ R2, we use y − x ≥ ε2t, and and extend the sum to
infinities

Rt,2 ≤ 1

ε2
2

∑

x≥λt

∑

y≤λt

(
|q[ct](x, t)|2|q[ct]−1(y, t)|2 + |q[ct]−1(x, t)|2|q[ct](y, t)|2|

+2|q[ct]−1(x, t)q[ct](x, t)||q[ct]−1(y, t)q[ct](y, t)|
)
≤ 4

ε2
2

. (5.8)

The last inequality follows from Cauchy-Schwarz and the property
∑

x≥0

|qk(x, t)|2 = 〈Ψn,t
k , Φn,t

k 〉 = 1, for all k. (5.9)

(2) Bound on Rt,1. Since this time x, y ∈ R1 are always in the bulk, we just use
the bound of Lemma 7.10 and get

Rt,1 ≤ const
∑

x,y∈R1

1

(x − y)2
= const

[ε2t]
∑

z=[ε1t]

1

z

= Ψ([ε2t] + 1) − Ψ([ε1t]), (5.10)

where Ψ(x) is the digamma function, which has the series expansion at infinity given
by

Ψ(x) = ln(x) − 1/(2x) + O(1/x2). (5.11)

Thus
Rt,1 ≤ const ln(1/ε1), (5.12)

with const t-independent.

(3) Limit value for Mt. This time we need more than just a bound. Remind that
n = ct and set x = [λt] + ξ1, y = [λt] − ξ2. We have 1 ≤ ξ1 + ξ2 ≤ ε1t. Lemma 7.7
gives

q[ct]−ℓ(λt + ξ, t) =
1√
π

t−1/2

4

√

c − (1+c−λ)2

4

[

O(t−1/2) + O(ε1)

+ cos
[

tα(c, λ + ξ/t) + β(c, λ) − ℓ∂cα(c, λ)
]
]

. (5.13)
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We use it with ℓ = 0, 1, together with the trigonometric identity

cos(b1 + δ) cos(b2) − cos(b1) cos(b2 + δ) = sin(δ) sin(b2 − b1), (5.14)

with δ = −∂cα(c, λ), b1 = tα(c, λ + ξ1/t) + β(c, λ), b2 = tα(c, λ − ξ1/t) + β(c, λ).
The factor sin2(δ) cancels the 4

√· · · term exactly. We obtain

Mt =

[ε1t]
∑

ξ1=1

ξ1−1
∑

ξ2=0

1

π2

1

(ξ1 + ξ2)2

[

O(t−1/2) + O(ε1)

+ sin2
[

t(α(c, λ − ξ2/t) − α(c, λ + ξ1/t))
]
]

(5.15)

The contribution of the error terms can be bounded by ln(ε1t)O(t−1/2, ε1) and the
remainder is

[ε1t]
∑

ξ1=1

ξ1−1
∑

ξ2=0

1

π2

1

(ξ1 + ξ2)2
sin2

[

t(α(c, λ − ξ2/t) − α(c, λ + ξ1/t))
]

. (5.16)

Let b(λ) = −α(c, λ), then

b′(λ) = arccos

(
1 + λ − c

2
√

λ

)

∈ (0, π), for (1 −√
c)2 < λ < (1 +

√
c)2. (5.17)

By Lemma 5.2 below, for large t the leading term in the sum is identical to the one
where sin2(· · · ) is replaced by its mean, i.e., 1/2. Thus

(5.16) = (1 + O(ε1, (ε
2
1

√
t)−1)

[ε1t]
∑

ξ1=1

ξ1−1
∑

ξ2=0

1

2π2

1

(ξ1 + ξ2)2

=
1

2π2
ln(ε1t)(1 + O(ε1, (ε

2
1

√
t)−1)). (5.18)

Thus,

Mt = ln(ε1t)

(
1

2π2
+ O(t−1/2, ε1, (ε

2
1

√
t)−1)

)

. (5.19)

Now we choose ε1 = 1/ ln(t). Then,

Var(h([(λ − c)t], [ct], t)) =
1

2π2
ln(t) + O

(
1, ln(ln(t)), (ln(t))3/

√
t
)
, (5.20)

from which it follows (5.2).

Lemma 5.2. Let b(x) be a smooth function (C2 is enough) with b′(0) ∈ (0, π). Then

[εt]
∑

ξ1=1

ξ1−1
∑

ξ2=0

sin2 [tb(ξ1/t) − tb(−ξ2/t)]

(ξ1 + ξ2)2
=

[εt]
∑

ξ1=1

[εt]−1
∑

ξ2=0

1

2(ξ1 + ξ2)2

(

1 + O
(

ε;
1

ε2
√

t

))

.

(5.21)
uniformly for ε > 0 small enough.
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Proof of Lemma 5.2. We divide the sum into two regions.

I1 = {ξ1 ≥ 1, ξ2 ≥ 0|1 ≤ ξ1 + ξ2 ≤ ε
√

t}, (5.22)

I2 = {ξ1 ≥ 1, ξ2 ≥ 0|ε
√

t < ξ1 + ξ2 ≤ εt}.
Let us evaluate the contribution to (5.21) of (ξ1, ξ2) ∈ I1. We set z = ξ1 + ξ2 and
get

[ε
√

t]
∑

z=1

z∑

ξ1=1

1

z2
sin2 [tb(ξ1/t) − tb((ξ1 − z)/t)] . (5.23)

Series expansion around zero leads to

tb(ξ1/t) − tb((ξ1 − z)/t) = zb′(0) + O(ε2). (5.24)

Thus

(5.23) =

[ε
√

t]
∑

z

1

z

(
sin2 [zb′(0)] + O(ε2)

)
. (5.25)

The sum with the sinus square can be explicitly obtained,

M∑

z=1

sin2(σz)

z
=

1

2
ln(M) + O(1), as M → ∞ (5.26)

provided 0 < σ < π. Since
∑M

z=1 1/z = ln(M)/2 + O(1/M), we have

M∑

z=1

sin2(σz)

z
=

M∑

z=1

1

2z
(1 + O(1/M)) . (5.27)

Using M = [ε
√

t] and going back to the original variables (ξ1, ξ2) we have

∑

(ξ1,ξ2)∈I1

sin2 [tb(ξ1/t) − tb(−ξ2/t)]

(ξ1 + ξ2)2
=

∑

(ξ1,ξ2)∈I1

1

2(ξ1 + ξ2)2

(

1 + O
( 1

ε
√

t
, ε2
))

.

(5.28)

Now we evaluate the contribution to (5.21) of (ξ1, ξ2) ∈ I2. Let (X, Y ) ∈ I2, then we
have X +Y ≥ ε

√
t. We consider a neighborhood of size M = [ε2

√
t] around (X, Y ),

namely the contribution

M∑

x,y=0

1

(X + Y + x + y)2
sin2 [tb((X + x)/t) − tb(−(Y + y)/t)] . (5.29)

Since sin2(· · · ) ≥ 0 and 1
(X+Y )2

− 1
(X+Y +x+y)2

≥ 0, if we replace 1
(X+Y +x+y)2

by 1
(X+Y )2

in (5.29) the error made is bounded by

M∑

x,y=0

(
1

(X + Y )2
− 1

(X + Y + x + y)2

)

(5.30)

=

M∑

x,y=0

1

(X + Y )2

(

1 − 1

(1 + O(ε))2

)

=

M∑

x,y=0

1

(X + Y )2
O(ε).
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because (x + y)/(X + Y ) ≤ 2ε. This relation can be inverted and we also get

M∑

x,y=0

1

(X + Y )2
=

M∑

x,y=0

1

(X + Y + x + y)2
(1 + O(ε)) . (5.31)

Therefore we have

(5.29) =

M∑

x,y=0

O(ε)

(X + Y + x + y)2
+

M∑

x,y=0

sin2 [tb((X + x)/t) − tb(−(Y + y)/t)]

(X + Y )2
.

(5.32)

Now we apply series expansion to the argument in the sinus square. Denote by
κ1 = tb(X/t) − tb(−Y/t), θ1 = b′(X/t) and θ2 = b′(−Y/t). Then the argument in
the sin2(· · · ) is κ1 + θ1x + θ2y + O(ε2). The ε2 error term is smaller than the O(ε)
in (5.32), thus

(5.32) =

M∑

x,y=0

O(ε)

(X + Y + x + y)2
+

M∑

x,y=0

sin2 [κ1 + θ1x + θ2y]

(X + Y )2
. (5.33)

Since b is smooth and b′(0) ∈ (0, π), also in a neighborhood of 0, b′ ∈ (0, π). Thus,
for ε small enough, 0 < θ1, θ2 < π uniformly in t, because |Y |/t ≤ ε and |X|/t ≤ ε.
Also this sum can be carried out explicitly. For 0 < θ1, θ2 < π we have the identity

M∑

x,y=0

sin2 [κ1 + θ1x + θ2y]

=
(M + 1)2

2
− cos(2κ1 + θ1M + θ2M) sin(θ1(M + 1)) sin(θ2(M + 1))

2 sin(θ1) sin(θ2)

=
M∑

x,y=0

1

2
(1 + O(1/M2)). (5.34)

We replace (5.34) into (5.33) and finally obtain

M∑

x,y=0

sin2 [tb((X + x)/t) − tb(−(Y + y)/t)]

(X + Y + x + y)2

=
M∑

x,y=0

1

2(X + Y + x + y)2

(
1 + O(ε, (ε4t)−1)

)
. (5.35)

This estimate holds for all the region I2, thus

∑

(ξ1,ξ2)∈I2

sin2 [tb(ξ1/t) − tb(−ξ2/t)]

(ξ1 + ξ2)2
=

∑

(ξ1,ξ2)∈I2

1

2(ξ1 + ξ2)2

(
1 + O(ε, (ε4t)−1)

)
.

(5.36)
The estimates of (5.28) and (5.36) imply the statement of the Lemma.
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Figure 6.1: Example of how the integration over time is actually used.

6 Correlations along space-like paths

6.1 Height differences as time integration of fluxes

In this section we will prove Theorem 1.2. To determine the height function at a
position (m, n) at a given time t, one can act in several ways. Let η(x, n, t) be the
point process at (n, t) and site x given by the occupancy of particles. Then,

h(m, n, t) =
∑

x>m

η(x, n, t). (6.1)

This formula is however not very practical when dealing with joint distributions
of height functions at different points (m1, n, t), . . . , (mK , n, t), because then the
height functions are linear functions but not of disjoint regions of the point process
η. The consequence are tedious formulas. However, the height function can be also
computed as follows:

h(m, n, t) = h(m, n, t′) + Jt′,t(m, n), (6.2)

where Jt′,t(m, n) is the number of particles which jumped from site (m, n) to site
(m + 1, n) from time t′ to t. Therefore, the expressionE( N∏

k=1

[h(mk, nk, tk) −E(h(mk, nk, tk))]

)

(6.3)

can be expressed as a sum of terms of the formE( M∏

k=1

[h(mk, nk, tk) −E(h(mk, nk, tk))]
N∏

j=M+1

[

Jt′
j
,tj (mj , nj) −E(Jt′

j
,tj (mj, nj))

])

.

(6.4)
In the example of Figure 6.1, the coordinates of the points are:

1 ≡ (m1, n1, t1), 2 ≡ (m2, n2 = n1, t2 = t1), 2′ ≡ (m2, n2, t
′
2),

3 ≡ (m3, n3 = n1, t3 = t1), 3′ ≡ (m3, n3, t
′
3),

4 ≡ (m4, n4, t4), 5 ≡ (m5, n5 = n4, t5 = t4), 5′ ≡ (m5, n5, t
′
5).
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We now derive a formula for (6.4).

Lemma 6.1. Denote the paths πk = {(x, nk, tk)| x > mk} and π̃j = {(mj , nj, t)| t ∈
[t′j , tj]}. Assume that these paths do not intersect. Also, assume that {(nk, tk), k =
1, . . . , M} together with {(nj, tj), (nj, t

′
j), j = M + 1, . . . , N} are space-like. Then,E( M∏

k=1

[h(mk, nk, tk) −E(h(mk, nk, tk))]

×
N∏

j=M+1

[

Jt′j ,tj (mj, nj) −E(Jt′j ,tj (mj , nj))
])

(6.5)

=
∑

x1>m1

· · ·
∑

xM >mM

∫ tM+1

t′
M+1

dsM+1 · · ·
∫ tN

t′
N

dsN det

[
A1,1 A1,2

A2,1 A2,2

]

,

with the matrix blocks Ai,j as follows:

A1,1 = [(1 − δi,j)K(xi, ni, ti; xj, nj , tj)]1≤i,j≤M ,

A1,2 =
[
−∂sj

K(xi, ni, ti; mj , nj, sj)
]

1≤i≤M, M+1≤j≤N
,

A2,1 = [K(mi, ni, si; xj , nj, tj)]M+1≤i≤N, 1≤j≤N ,

A2,2 =
[
−(1 − δi,j)∂sj

K(mi, ni, si; mj, nj , sj)
]

M+1≤i,j≤N
.

(6.6)

Proof of Lemma 6.1. Below we prove thatE( M∏

k=1

h(mk, nk, tk)
N∏

j=M+1

Jt′j ,tj (mj , nj)

)

(6.7)

is equal to (6.5) but without the 1 − δi,j terms. The fact that the subtraction of
the averages is given by putting zeros on the diagonal is a simple but important
property, which was already noticed for example in [28] (see proof of Theorem 7.2).

For M = N , (6.7) is true because for space-like paths η is a determinantal point
process. The flux of particle can be written as

Jt′,t(m, n) = lim
D→∞

D∑

ℓ=1

η(m, n, τi−1)(1 − η(m, n, τi)) (6.8)

with τi = t′ + i∆τ , i = 0, . . . , D, ∆τ = (t − t′)/D. The quantity η(m, n, τi−1)(1 −
η(m, n, τi)) is one only if site (m, n) was occupied at time τi−1 and empty at time τi.
Each particle try to jump independently with an exponentially waiting time. Every
time a particle try to move, if succeeds it can also push other particles. Anyway,
since there is a finite number of particles, the probability that a particle has more
than one jump during ∆τ is of order ∆τ 2. Thus, the limit ∆τ → 0 is straightforward.

To obtain (6.7) we have to determine expression at first order in ∆τ ofE(η(m, n, τi−1)(1 − η(m, n, τi))

Q∏

j=1

η(mj, nj , tj)

)

. (6.9)
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Then, in the ∆τ → 0 limit we will get an integral from t′ to t.

Denote by Kx,n(t1; t2) =
∑n−1

k=0 Ψn,t1
k (x)Φn,t2

k (x). Remark that in (4.8),
φ((n,τi),(n,τi−1))(x, x) = 1. Then, since τi > τi−1, from (4.8) we obtain

(6.9) = det





Km,n(τi−1; τi−1) Km,n(τi−1; τi) K(m, n, τi−1; q)

1 − Km,n(τi; τi−1) 1 − Km,n(τi; τi) −K(m, n, τi, m; q)
K(q; m, n, τi−1) K(q; m, n, τi) K(q, q)



 (6.10)

where with q we denoted the triples (mj , nj, tj), for j ∈ {1, . . . , Q}. The second line
is just one in the diagonal minus the entries of the kernel. Written in terms of K
it becomes as above, since the (2, 1) entry has a 1 coming from φ. Next we do two
operations keeping the determinant invariant:

Second row → Second row + First row

Second column → Second column − First column.

We get that (6.10) is equal to

det





Km,n(τi−1; τi−1) ∆τ∂2Km,n(τi−1; τi−1) K(m, n, τi−1; q)
1 −O(∆τ) O(∆τ 2) O(∆τ)

K(q; m, n, τi−1) ∆τ∂2K(q; m, n, τi−1) K(q, q)





= −∆τ det

[
∂2Km,n(τi−1; τi−1) K(m, n, τi−1; q)
∂2K(q; m, n, τi−1) K(q, q)

]

+ O(∆τ 2) (6.11)

where ∂2 means the derivative with respect to τi−1 in the second entry of the kernel.
This formula and (6.8) implyE(Jt′,t(m, n)

Q
∏

j=1

η(mj , nj, tj)

)

(6.12)

=

∫ t

t′
ds det

[
−∂2K(m, n, s; m, n, s) K(m, n, s; mj, nj , tj)
−∂2K(mi, ni, ti; m, n, s) K(mi, ni, ti; mj, nj , tj)

]

1≤i,j≤Q

.

The case of several factors J is obtained by induction.

6.2 Proof of Theorem 1.3

In the proof of the theorem, we take advantage of the above trick. We also use the
asymptotics of the kernel, which is contained in Section 7.

Proof of Theorem 1.3. First we want to prove that we have a Gaussian process and
then we will compute the covariance. ConsiderE( N∏

k=1

[h(mk, nk, tk) −E(h(mk, nk, tk))]

)

(6.13)
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Figure 6.2: Complex plane mapping of the paths of Figure 6.1.
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Figure 6.3: A typical configuration of paths which comes from the decomposition of
the paths in Figure 6.1.

and determine its limit as L → ∞ under the macroscopic scaling: tk = [τkL],
nk = [ηkL], mk = [(νk − ηk)L], with νk ∈ ((

√
ηk − √

τk)
2, (

√
ηk +

√
τk)

2). (6.13) is
given as linear combinations of expressions in Lemma 6.1. The summations are of
the type of Figure 6.3.

Let SN be the permutation group of {1, . . . , N}. In the case M = N , the determinant
in (6.5) writes

∑

σ∈SN

(−1)|σ|(1 − δi,σi
)

N∏

i=1

K(xi, ni, ti; xσi
, nσi

, tσi
). (6.14)

Similarly, for M < N , but where some of the K replaced by ∂sσj
K.

The contribution of all permutations with fixed points is zero (because the diagonal
matrix elements are zeroes). All other permutations can be written as unions of
several cycles of length ℓ ≥ 2. The contributions of the permutations only with
cycles of length 2 is the final result, i.e., to prove the Theorem we need to show that
the sum of the contributions of cycles of length ℓ ≥ 3 is zero in the L → ∞ limit.

Consider all cycles of length ℓ ≥ 3 and use the indices 1, . . . , ℓ to the corresponding
points ti, ni, mi. Let us order them so that

η1 ≥ η2 ≥ . . . ≥ ηℓ, τ1 ≤ τ2 ≤ . . . ≤ τℓ, no double points, (6.15)
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i.e., (ηj , τj) ≺ (ηj−1, τj−1) (as in Figure 6.3).

The signature is constant for cycles of same length. So, for a ℓ-cycle of Sℓ we need
to take the product of the kernels (or their time derivatives depending on the case),
and do the summation over y1 ≤ ν1L or the integration over [τ ′iL, τiL] depending on
whether in (6.5) we have an integral or a sum. We will need to take in account the
signature just when computing the covariance (a 2-cycle).

We first collect all the factors related with the point with index i. There are two
possible cases:

(a) The point i is related with a summation variable. Then we have to analyze:
∑

x>[νiL]

K(x, ηiL, τiL; xσi
, nσi

, tσi
)K(xσ−1

i
, nσ−1

i
, tσ−1

i
; x, ηiL, τiL); (6.16)

(b) The point i is related with an integrated variable. We have in this case
∫ τiL

τ ′

iL

dtK(νiL, ηiL, t; xσi
, nσi

, tσi
)K(xσ−1

i
, nσ−1

i
, tσ−1

i
; νiL + 1, ηiL, t). (6.17)

We analyze these two expression in the L → ∞ limit using results of Section 7.3.

First of all, since wc − zc remains bounded away from zero all along the inte-
grals/sums, the bounds of Section 7.3 imply that the sum of all contributions of
the error term O(L−5/12) in (7.42) is of the same order, namely O(L−5/12). There-
fore we can get rid of it immediately. We first consider case (a) and divide the sum
in three parts for which we use Propositions 7.11-7.15. Let

I1 = {x ∈ N, x ≥ (
√

τi +
√

ηi)
2 − ℓL1/3},

I2 = {x ∈ N, (
√

τi +
√

ηi)
2 − L2/3 < x < (

√
τi +

√
ηi)

2 − ℓL1/3},
I3 = {x ∈ N, [νiL] < x ≤ (

√
τi +

√
ηi)

2 − L2/3}. (6.18)

Then, by Propositions 7.14-7.15,
∣
∣
∣
∣

∑

x∈I1

K(x, ηiL, τiL; xσi
, nσi

, tσi
)K(xσ−1

i
, nσ−1

i
, tσ−1

i
; x, ηiL, τiL)

∣
∣
∣
∣

≤
∑

x∈I1

const

L2/3
exp

(

−2
x − (

√
τi +

√
ηi)

2L

(τiL)1/3

)

× terms in σi, σ
−1
i

≤ const

L1/3
× terms in σi, σ

−1
i . (6.19)

Therefore, as L → ∞, the contribution of this part of the facet/edge goes to zero.
By Proposition 7.13,

∣
∣
∣
∣

∑

x∈I2

K(x, ηiL, τiL; xσi
, nσi

, tσi
)K(xσ−1

i
, nσ−1

i
, tσ−1

i
; x, ηiL, τiL)

∣
∣
∣
∣

≤
∑

x∈I2

const

L
√

ηiτi − 1
4
(τi + ηi − x/L)2

× terms in σi, σ
−1
i

≤ const

L1/6
× terms in σi, σ

−1
i . (6.20)
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Therefore, as L → ∞, this contribution also vanishes.

Finally, we need to compute the sum over I3. Define the function

A(ν, η, τ) =
1

2πB(ν, η, τ)2
√

ν/τ
(6.21)

with B given in (7.44). Then, by Proposition 7.11 we have
∑

x∈I3

K(x, ηiL, τiL; xσi
, nσi

, tσi
)K(xσ−1

i
, nσ−1

i
, tσ−1

i
; x, ηiL, τiL)

=
∑

x∈I3

A(x/L, ηi, τi)

L

[
e−iβ1(i)

ω(σi) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

+
e−iβ1(i)

ω(σi) − ω(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

e−2iF (x/L,ηi,τi)

+
eiβ1(i)

ω(σi) − ω̄(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

e2iF (x/L,ηi,τi)

+
eiβ1(i)

ω(σi) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

+ 	

]

× terms in σi, σ
−1
i (6.22)

where we used the notation ω(i) = Ω(νi, ηi, τi) and 	 means the other 12 terms
obtained by replacing ω(σi) by ω̄(σi) and/or ω(σ−1

i ) by ω̄(σ−1
i ).

First we want to show that the terms with F in the exponential are irrelevant in
the L → ∞ limit. For that, we sum over N = L1/3 positions around any νL in the
bulk. Then, for 0 ≤ x ≤ L1/3 it holds

F (ν + x/L, η, τ) = Lγ(ν, η, τ) + x∂νγ(ν, η, τ) + O(L−1/3). (6.23)

All the other functions (A, β1, β2, and ω(i)) are smooth functions in νi, i.e., over an
interval L1/3 vary only by ∼ L−2/3. Then, for 0 < b < π, we use

1

N

N−1∑

x=0

eibx =
eibN − 1

N(eib − 1)
. (6.24)

In our case, b is strictly between 0 and π as soon as we are away from the facet.
When we reach the lower facet, b → 0. However, in the sum over I3 we are at least
at a distance L2/3 from the facet, i.e., b ≥ const L−1/6. Therefore

|(6.24)| ≤ const /(bN) ≤ L−1/6. (6.25)

Since this holds uniformly in the domain I3, we have shown that the contribution
of the terms where the exp(±2iF ) is present is at worst of order L−1/6. Therefore
the only non-vanishing terms in (6.22) are

∑

x∈I3

A(x/L, ηi, τi)

L

[
e−iβ1(i)

ω(σi) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

+
eiβ1(i)

ω(σi) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

+ 	

]

× terms in σi, σ
−1
i . (6.26)
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The last step is a change of variable. All the functions appearing now are smooth
and changing over distances x ∼ L. Thus, defining x = νL, the sum becomes, up
to an error of order O(L−1/3), the integral

∫ (
√

τi+
√

ηi)2

νi

dνA(ν, ηi, τi)

[
e−iβ1(i)

ω(σi) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

+
eiβ1(i)

ω(σi) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

+ 	

]

× terms in σi, σ
−1
i . (6.27)

The final step is a change of variable. For the term with ω(i), we set z+
i = ω(i) =

Ω(ν, ηi, τi). Denote the new integration path by Γi
+ = {Ω(ν, ηi, τi), ν : (

√
τi+

√
ηi)

2 →
νi}. The Jacobian was computed in Proposition 3.8, namely

∂ω(i)

∂ν
=

iω(i)

κ
= 2πiA eiβ2(i)e−iβ1(i). (6.28)

For the term with ω̄(i) we set z−i = ω̄(i) = Ω(ν, ηi, τi) and Γi
− = Γ̄i

+. Then (6.27)
becomes

−1

2πi

∑

εi=±
εi

∫

Γi
εi

dzi
εi

[
1

zi
εi
− ω(σi)

1

ω(σ−1
i ) − zi

εi

+ 	

]

× terms in σi, σ
−1
i . (6.29)

The factor −1 comes from the orientation of Γi
εi
, see Figure 6.2.

The second case to be considered is (b), namely when we do an integration over a
time interval. This time we do not have to deal with the edges, since, by assumption,
we remain in the bulk of the system. We need to compute

∫ τiL

τ ′

iL

dtK(νiL, ηiL, t; xσi
, nσi

, tσi
)K(xσ−1

i
, nσ−1

i
, tσ−1

i
; νiL + 1, ηiL, t)

=

∫ τi

τ ′

i

dτA(νi, ηi, τ)

[
e−iβ1(i)

ω(σi) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

(1 − ω(i))

+
e−iβ1(i)

ω(σi) − ω(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

(1 − ω̄(i))e−2iF (νi,ηi,τ)

+
eiβ1(i)

ω(σi) − ω̄(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

(1 − ω(i))e2iF (νi,ηi,τ) (6.30)

+
eiβ1(i)

ω(σi) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

(1 − ω̄(i))+ 	

]

× terms in σi, σ
−1
i .

The only rapidly changing function is F , which, as for the sum, makes the contri-
butions of the term with it vanishing small as L → ∞. We do the same change of
variable as above, i.e., z+

i = ω(i) = Ω(νi, ηi, τ). Denote the new integration path
by Γi

+ = {Ω(νi, ηi, τ), τ ∈ [τ ′i , τi]}. The Jacobian is computed in Proposition 3.8,
namely

∂ω(i)

∂τ
=

−iω(i)(1 − ω(i))

κ
= −2πiAeiβ2(i)e−iβ1(i)(1 − ω(i)). (6.31)
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Thus, we obtain again (6.29).

So, after summing / integrating all the ℓ variables, we get the contribution of the
ℓ-cycles, namely

(−1)ℓ

(2πi)ℓ

∑

ε1,...,εℓ=±

ℓ∏

i=1

εi

∫

Γ1
ε1

dzε1
1 · · ·

∫

Γℓ
εℓ

dzεℓ

ℓ

ℓ∏

i=1

1

zεi

i − z
εσi
σi

,

=
(−1)ℓ

(2πi)ℓ

∑

ε1,...,εℓ=±

ℓ∏

i=1

εi

∫

Γ1
ε1

dzε1
1 · · ·

∫

Γℓ
εℓ

dzεℓ

ℓ

ℓ∏

i=1

1

z
εσi
σi − z

εσi−1
σi−1

, (6.32)

where we set σ0 := σℓ. By Lemma 7.3 in [28], which refers back to [15],

∑

ℓ−cycle in Sℓ

ℓ∏

i=1

1

Yσi
− Yσi−1

= 0, for ℓ ≥ 3. (6.33)

Therefore, the sum of (6.32) over the ℓ-cycles gives zero for ℓ ≥ 3.

We have shown that we have a Gaussian type formula (sum over all couplings) for
points macroscopically away. We still need to compute explicitly the covariance
for such points. The covariance is obtained by (6.32) for ℓ = 2. We need now to
consider the signature, which for a 2-cycle is −1. It is a sum of 4 terms which can
be put together into

1

(2πi)2

∫ Ω(ν1,η1,τ1)

Ω̄(ν1,η1,τ1)

dz1

∫ Ω(ν2,η2,τ2)

Ω̄(ν2,η2,τ2)

dz2
1

(z1 − z2)2
(6.34)

=
−1

4π2
ln

(
(Ω(ν1, η1, τ1) − Ω(ν2, η2, τ2))(Ω(ν1, η1, τ1) − Ω(ν2, η2, τ2))

(Ω(ν1, η1, τ1) − Ω(ν2, η2, τ2))(Ω(ν1, η1, τ1) − Ω(ν2, η2, τ2))

)

.

We finally prove the short distance bound (1.18).

Lemma 6.2. For any κj ∈ D and any ε > 0, we haveE (HL(κ1) · · ·HL(κN)) = O(Lǫ), L → ∞. (6.35)

Proof of Lemma 6.2. Theorem 1.2 implies, for any integer m ≥ 1,E(HL(κj)
2m) = O(ln(L)m). (6.36)

By Chebyshev inequality,P(|HL(κj)| ≥ X ln(L)) = O(1/X2m), P(|HL(κj)| ≥ Y ) = O(ln(L)m/Y 2m).
(6.37)

The final ingredient is that |HL(κj)| ≤ O(L), since we have O(L) points. Therefore,
for any Y , we can bound

|E(HL(κ1) · · ·HL(κN ))| ≤ P(|HL(κ1)| ≤ Y, . . . , |HL(κN )| ≤ Y )Y N

+ P(∃j s.t. |HL(κj)| > Y )O(L)N

≤ O(Y N ) + O(LN ln(L)m/Y 2m). (6.38)
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Taking Y = Lε/2 and m ≫ 1 large enough, we obtain

|E(HL(κ1) · · ·HL(κN ))| ≤ O(Lε), for any given ε > 0. (6.39)

7 Asymptotics analysis

7.1 Asymptotics at the edge

Now we first determine the edge asymptotics of In,t. For the asymptotic analysis of
In,t at the edges we apply exactly the same strategy as in previous papers. Here we
write down only the difference, namely the functions, their series expansion around
the critical point and we also determine the steep descent paths used in the proof.
The rest of the argument of the proofs of Lemma 7.1 and 7.3 below, is identical to
the one of Propositions 15 and 17 in [10].

In the following, we will determine first the asymptotics for the upper edge, x ≃
(1 +

√
c)2. Then, for completeness, we state the analogue result for the lower edge,

x ≃ (1 −√
c)2 (although it will not be used).

Lemma 7.1. Let n = ct and x = (1 +
√

c)2t + st1/3, for any c > 0. Then,

lim
t→∞

t1/3In,t(x)
(−√

c)n

e−
√

ct(1 +
√

c)x
= κ̃2Ai(κ2s), (7.1)

uniformly for s in bounded sets, with κ2 = c1/6(1 +
√

c)−2/3, and
κ̃2 = (1 +

√
c)1/3c−1/3.

Proof of Lemma 7.1. (7.1) is (up to a − sign) equal to (5.15) in [10], with the
following replacements. The critical point is zc = −√

c, and the functions f0 to f3

are

f0(z) = g(z) − g(zc), g(z) = z + (1 +
√

c)2 ln(1 − z) − c ln(z),

f1(z) = 0,

f2(z) = s ln(1 − z),

f3(z) = − ln(z). (7.2)

Their series expansions around the critical point are

f0(z) = 1
3
κ0(z +

√
c)3 + O((z +

√
c)4), κ0 = 1/(

√
c(1 +

√
c)),

f2(z) = f2(−
√

c) − s

1 +
√

c
(z +

√
c) + O((z +

√
c)2),

f3(z) = − ln(−√
c) + O(z +

√
c). (7.3)
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The steep descent path used in the analysis is made up pieces of the two following
paths, γρ and γloc. γρ = {−ρeiφ, φ ∈ (−π, π]}. For ρ ∈ (0,

√
c], γρ is steep descent

path for f0. In fact, we get

dRe(f0(z = ρeiφ))

dφ
= − ρ sin φ

|1 − z|2 (c − ρ2 + 2
√

c − 2ρ cos φ). (7.4)

The last term is minimal for φ = 0, where his value becomes

(
√

c − ρ)(ρ +
√

c + 2) ≥ 0, (7.5)

for ρ ∈ (0,
√

c]. γρ is a steep descent path for f0 because the value zero is attained
only for ρ =

√
c and, in that case, only at one point, φ = 0. However, close to the

critical point it is not optimal. Let us consider γloc = {−√
c + e−πi/3 sgn(x)|x|, x ∈

[0,
√

c/2]}. By symmetry, consider just x ≥ 0, then we compute

dRe(f0(z = −√
c + e−πi/3x))

dx
= − x2Q(x)

|z|2|1 − z|2 , (7.6)

with Q(x) =
√

c(1 +
√

c) − x(1 + x)/2 − √
cx. Q(0) > 0, and the computation of

the (at most) two zeros of Q(x) shows that none are in the interval [0,
√

c/2]. Thus
γloc is also a steep descent path for f0. Since this is the steepest descent path for f0

around the critical point, we choose as path Γ0 in In,t(x) the one formed by γloc close
to the critical point, until it intersect γ

ρ=
√

3c/4
and then we follow γ√

3c/4
. The result

of Lemma 7.1 follows then from the same argument as the proof of Proposition 15
in [10].

Lemma 7.2. Let n = ct with 0 < c < 1 and x = (1 −√
c)2t − st1/3. Then,

lim
t→∞

t1/3In,t(x)
cn/2

e
√

ct(1 −√
c)x

= κ̃1Ai(κ1s), (7.7)

uniformly for s in bounded sets, with κ1 = c1/6(1 −√
c)−2/3, and

κ̃1 = (1 −√
c)1/3c−1/3.

Proof of Lemma 7.2. The proof is analogue of Lemma 7.1. The only relevant differ-
ence is that instead of (7.5) we have

(
√

c − ρ)(2 − ρ −√
c) ≥ 0 (7.8)

for ρ ∈ (0,
√

c], provided that 0 < c < 1. This is not just a technical restriction,
because for c > 1 the lower edge has a density going to one instead of zero, and the
asymptotics is different.

Lemma 7.3. Fix an ℓ > 0 and consider the scaling of Lemma 7.1. Then
∣
∣
∣
∣
t1/3In,t(x)

(−√
c)n

e−
√

ct(1 +
√

c)x

∣
∣
∣
∣
≤ const e−s, (7.9)

uniformly for s ≥ −ℓ and where const is a constant independent of t.
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Proof of Lemma 7.3. For s ∈ [−ℓ, 2ℓ] it is a consequence of Lemma 7.1. For s ≥ 2ℓ,
the proof is analogue the one of Proposition 17 in [10]. Here we just indicate the
differences. In Lemma 7.1 we already showed that γρ is steep descent path for f0,
for any ρ ∈ (0,

√
c]. Let s̃ = (s + 2ℓ)t−2/3 > 0 and f̃0(z) = f0(z) + s̃ ln(1− z). Since

s̃ > 0, γρ is also steep descent for s̃ ln(1 − z). We set then

ρ =

{
−√

c + (s̃/κ0)
1/2, if 0 ≤ s̃ ≤ ε,

−√
c + (ε/κ0)

1/2, if s̃ ≥ ε.
(7.10)

with κ0 in (7.3).

Lemma 7.4. Fix an ℓ > 0 and consider the scaling of Lemma 7.2. Then
∣
∣
∣
∣
t1/3In,t(x)

√
c
n

e
√

ct(1 −√
c)x

∣
∣
∣
∣
≤ const e−s, (7.11)

uniformly for s ≥ −ℓ and where const is a constant independent of t.

To get the needed bound on qn around the edge, we use the bound of Lemma 7.4
on In,t which has still to be multiplied by Bn,t(x).

Lemma 7.5. Let n = ct and x = (1 +
√

c)2t + st1/3. Fix an ℓ > 0, then

|qn(x, t)| ≤ const t−1/3e−s, (7.12)

for any s ≥ −ℓ, and const is a t-independent constant.

Proof of Lemma 7.5. This result follows from Lemma 7.3 if

B̃n,t(x) =
∣
∣
∣Bn,t(x)

e−
√

ct(1 +
√

c)x

(−√
c)n

∣
∣
∣ ≤ const . (7.13)

For the factorials we use Stirling formula, namely

n! =
√

2πn
(n

e

)n

efn ,
1

1 + 12n
≤ fn ≤ 1

12n
. (7.14)

We obtain

B̃ct,t((1 +
√

c)2t) = 4

√

c/(1 +
√

c)2(1 + O(1/t)). (7.15)

For x = ξt, ξ ∈ [(1 −√
c)2,∞), we compute

B̃ct,t(ξt)

B̃ct,t((1 +
√

c)2t)
= 4

√

(1 +
√

c)2/ξ(1 + O(1/t))eth(ξ), (7.16)

with h(ξ) = 1
2
ξ(1 − ln(ξ) + 2 ln(1 +

√
c)) − 1

2
(1 +

√
c)2. It satisfies dh(ξ)

dξ
= 1

2
ln((1 +√

c)2/ξ) ≤ 0 for ξ ≥ (1 +
√

c)2.

Lemma 7.6. Let n = ct with 0 < c < 1 and x = (1 −√
c)2t − st1/3. Fix an ℓ > 0,

then
|qn(x, t)| ≤ const t−1/3e−s, (7.17)

for any s ≥ −ℓ, and const is a t-independent constant.
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7.2 Asymptotics in the bulk

In this section we derive a precise expansion for x = λt, λ ∈ ((1−√
c)2, (1 +

√
c)2).

Let n = ct and x = λt for any fixed c > 0. Then

In,t(x) =
1

2πi

∮

Γ0

dw

w
etg(w), g(w) = G(w|λ, c, 1). (7.18)

Recall a few results from Section 3. For λ ∈ ((1 − √
c)2, (1 +

√
c)2), g has two

complex conjugate critical points, wc and w̄c, with wc = Ω(λ, c, 1). In particular,
|wc| =

√
c, |1 − wc| =

√
λ, and |g′′(wc)| = 1√

λc

√

4c − (1 + c − λ)2 Denote by πc the
angle πη with η = c, τ = 1, and by πλ the angle πν with ν = λ, τ = 1. Then

Re(g(wc)) =
1 + c − λ

2
− c

2
ln(c) +

λ

2
ln(λ),

Im(g(wc)) = Im(wc) − λπc − cπλ.
(7.19)

Lemma 7.7. Let us set α = Im(g(wc)) and β = −1
2
(πc + πλ − π/2). Then,

Ict,t(λt) =
etRe(g(wc))

√

|g′′(wc)|t

[√

2

π|wc|2
cos(tα + β) (7.20)

+O(t−1/2) + O
(√

|g′′(wc)|te−const |g′′(wc)|δ2t
)
]

,

for some 0 < δ ≪ |g′′(wc)|. The errors are uniform for λ in a compact subset of
((1 −√

c)2, (1 +
√

c)2).

Proof of Lemma 7.7. The critical points of g, the points such that g′(w) = 0, are
wc and its complex conjugate. Close to the critical point the series expansion has a
first relevant term which is quadratic,

g(w) = g(wc) + 1
2
g′′(wc)(w − wc)

2 + O((w − wc)
3). (7.21)

Now we construct the steep descent path used in the asymptotics. By symmetry
we consider only Im(w) ≥ 0, the path for Im(w) ≤ 0 will be the complex conjugate
image of the first one. Let γρ = {w = ρeiφ, φ ∈ [0, π]}, then

d

dφ
(Re(g(w = ρeiφ))) = ρ sin(φ)

[
λ

|1 − w|2 − 1

]

. (7.22)

This is positive if we |1 − w| <
√

λ, and negative otherwise.

Locally, consider the path γloc = {w = wc + θ̂x, x ∈ [−δ, δ]}. Then

g(w) = g(wc) + 1
2
g′′(wc)θ̂

2x2 + O(x3), (7.23)

where we choose

θ̂ = exp

(
iπ

2
− i

2
arg(g′′(wc))

)

. (7.24)
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0 1

wc

Γ0

√
c

√
λ

Figure 7.1: Illustration of the steep descent path.

This corresponds to, for −δ < x < 0, our path being closer to 1 than
√

λ, and for
0 < x < δ our path is farther from 1 than from

√
λ. This is possible since our θ

must have an angle between π/4 and 3π/4 to the tangent to the circle |1−w| =
√

λ
(otherwise it would be in contradiction with (7.22)).

So, the steep descent path used is the following: we extend γloc by adding two
circular arcs of type γρ, for adequate ρ, which connect to the real axis; finally we
add the complex conjugate image, see Figure 7.1 too.

In this way, we have a steep descent path. Thus,

In,t(x) = etRe(g(wc))O(e−µt) + 2Re

(
1

2πi

∫

γloc

dw

w
etg(w)

)

(7.25)

with µ ∼ |g′′(wc)|δ2, as soon as |g′′(wc)| > 0, i.e., as soon as the second order
expansion dominates all higher order terms in the series expansion.

The term in the real part of the last term in (7.25) is given by

1

2πi

∫

γloc

dw

w
etg(w) =

1

2πi

∫ δ

−δ

dx
θ̂

wc

etg(wc)e−
1
2

t|g′′(wc)|x2

eO(tx3)O(x)

=
1

2πi

θ̂

wc

∫ δ

−δ

dxetg(wc)e−
1
2

t|g′′(wc)|x2

+ E1 (7.26)

where

E1 =
1

2πi

θ̂

wc

∫ δ

−δ

dxetg(wc)e−
1
2

t|g′′(wc)|x2

eO(tx3)O(tx3, x). (7.27)

Here we used |ex − 1| ≤ |x|e|x|. By change of variable y = x
√

t, we get that

|E1| ≤ const etRe(g(wc))
1

t

∫ δ
√

t

−δ
√

t

dye−|g
′′(wc)|y2/2O(y)eO(y3/

√
t)

≤ const
etRe(g(wc))

t
√

|g′′(wc)|
(7.28)
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for δ small enough, i.e., for 0 < δ ≪ |g′′(wc)|. In this small neighborhood, the
quadratic term controls the higher order ones. The final step is to extend the
integral on the rest of r.h.s. of (7.26) to ±∞ instead of ±δ. This can be made up
to an error etRe(g(wc))O(e−µt) as above.

Resuming we have

In,t = etRe(g(wc))
[

O(e−µt) + O(1/(t
√

|g′′(wc)|)
]

+2Re

(

1

2πi

θ̂

wc

∫

R

dxetg(wc)e−
1
2

t|g′′(wc)|x2

)

. (7.29)

The error terms are the one indicated in (7.20), and the Gaussian integral for the
last term gives

2etRe(g(wc))

√

2πt |wc|2 |g′′(wc)|
Re

(

−iθ̂
|wc|
wc

eitIm(g(wc))

)

. (7.30)

We then define β = arg(−iθ̂/wc), which is computed by using (3.5) and (3.25). For
λ in a compact subset of ((1−√

c)2, (1+
√

c)2), |g′′(wc)| is uniformly bounded away
from zero and infinity. Thus the Lemma is proven.

The consequence for q is the following asymptotics.

Lemma 7.8. With the notations of Lemma 7.7,

qct(λt, t) =
1√
π

t−1/2

4

√

c − (1+c−λ)2

4

[

cos(tα + β) + O(t−1/2)

]

. (7.31)

The errors are uniform for λ in a compact subset of ((1 −√
c)2, (1 +

√
c)2).

Proof of Lemma 7.8. We just have to compute the prefactor Bct,t(λt)etRe(g(wc)). We
have (7.19) and applying Stirling formula for the factorials in Bct,t(λt) we get that

Bct,t(λt)etRe(g(wc)) = 4
√

λ/c(1 + O(1/t)). (7.32)

Remark 7.9. Actually, it is not difficult to see that the expression (7.31) holds also
until λ = (1±√

c)2 ∓ t−1/3 but with the error term O(t−1/2) changed into O(t−5/12).
Indeed, in this limit regime, |g′′(wc)| ∼ t−1/6 and the previous analysis in unchanged
if we set δ = t−1/4.

The result of Lemma 7.8 is needed since we will have to know the density at one
point. Now we need to fill the gap between the bulk and the edge. In this region we
do not need a precise asymptotics, just a bound. Approaching the edge, g′′(wc) goes
to zero, so also δ has to be taken to zero. This is not a real problem as |g′′′(wc)| 6= 0
at the edges.
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Lemma 7.10. For ε0 > 0 fixed but small enough, and ℓ > 0 large, fixed, let either

λ ∈ [(1 +
√

c)2 − ε0, (1 +
√

c)2 − ℓt−2/3], for any c ≥ 0, (7.33)

or
λ ∈ [(1 −√

c)2 + ℓt−2/3, (1 −√
c)2 + ε0], for any c ∈ (0, 1). (7.34)

Then we have the uniform bound

|qct(λt, t)| ≤ const
t−1/2

4

√

c − (1+c−λ)2

4

. (7.35)

Proof of Lemma 7.10. Close to the edges, say for ε0 > 0 small enough, we can
compute explicitly the direction θ̂. It is a continuous function and, as λ ↑ (1+

√
c)2,

θ̂ ↑ ei5π/4, while as λ ↓ (1−√
c)2, then θ̂ ↓ ei3π/4 (with 0 < c < 1). Since we need just

a bound, we choose θ̂ = ei5π/4 or θ̂ = ei3π/4 respectively. The second derivative of g
vanishes at the boundary, but the third derivative not: g′′′(wc) → −2/

√
c(1 − √

c)
as λ → (1−√

c)2, see (7.3), and g′′′(wc) → −2/
√

c(1 +
√

c) as λ → (1 +
√

c)2. Once
more we see the restriction 0 < c < 1 at the lower edge is essential.

Therefore, in this case we can replace the error term O(e−const |g′′(wc)|δ2t) in
Lemma 7.7, by an error term O(e−const |g′′′(wc)|δ3t) and keep 0 < δ ≪ 1 not vanishing
(the condition δ ≪ |g′′(wc)| is not required anymore). The rest of the estimates of
Lemma 7.7 carry over here too. The only difference is that in (7.27) higher order
are controlled by the third term expansion.

7.3 Asymptotic of the kernel

It is convenient to conjugate the kernel. For the lower edge, we will use (compare
with Lemma 7.4 and Remark 4.3)

Wi,l = exp
(√

niti + xi ln(1 −
√

ni/ti) − ni ln(
√

ni/ti) − ti

)

, (7.36)

for the upper edge (compare with Lemma 7.3 and Remark 4.3)

Wi,u = exp
(

−
√

niti + xi ln(1 +
√

ni/ti) − ni ln(−
√

ni/ti) − ti

)

, (7.37)

and in the bulk (see Lemma 7.7 and Remark 4.3)

Wi,b = exp
(

1
2
(ti + ni − xi) − 1

2
ni ln(ni/ti) + 1

2
xi ln(xi/ti) − ti

)
. (7.38)

Then, define the conjugation as

Wi =







Wi,l, for xi ≤ (
√

ti −
√

ni)
2,

Wi,b, for (
√

ti −
√

ni)
2 ≤ xi ≤ (

√
ti +

√
ni)

2,
Wi,u, for xi ≥ (

√
ti +

√
ni)

2.
(7.39)

Remark that Wi is continuous. Moreover, |Wi,l − Wi,b| ≤ O(L−1/3) for xi ≤ (
√

ti −√
ni)

2 − ℓL−1/3 for ℓ bounded. Similarly for the upper edge. Therefore in such a
neighborhood it is actually irrelevant which formula to use.
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Proposition 7.11. Let us consider

xi = [νiL], ni = [ηiL], ti = τiL. (7.40)

Define the function Gi(w) = G(w|νi, ηi, τi), wc = Ω(ν2, η2, τ2) and zc = Ω(ν1, η1, τ1)
where Ω is given in (3.5). Assume zc 6= wc. Then, for

(
√

τi −
√

ηi)
2 + L−1/3 ≤ νi ≤ (

√
τi +

√
ηi)

2 − L−1/3, (7.41)

the asymptotic expansion

K(x1, n1, t1; x2, n2, t2) =
W2/W1

2πL
√

B(ν2, η2, τ2)B(ν1, η1, τ1)ν1/τ1

[

O(L−5/12)

+
1

wc − zc

eiF (ν2,η2,τ2)+iβ2

eiF (ν1,η1,τ1)+iβ1
+

1

wc − z̄c

eiF (ν2,η2,τ2)+iβ2

e−iF (ν1,η1,τ1)−iβ1

+
1

w̄c − zc

e−iF (ν2,η2,τ2)−iβ2

eiF (ν1,η1,τ1)+iβ1
+

1

w̄c − z̄c

e−iF (ν2,η2,τ2)−iβ2

e−iF (ν1,η1,τ1)−iβ1

]

. (7.42)

holds, with the error uniform in L for L ≥ L0 ≫ 1. The phases β1 and β2 are
defined by

β1 = −3π

4
− πν1

2
− πη1

2
, β2 =

5π

4
+

πν2

2
− πη2

2
. (7.43)

The function F and B are given by

F (ν, η, τ) = LIm(G(Ω(ν, η, τ))), B(ν, η, τ) =
2τ√
ην

√

ητ − 1
4
(τ + η − ν)2. (7.44)

Proof of Proposition 7.11. The analysis is made on the double integral representation
(4.1) of the kernel. The analysis for the cases (n1, t1) 6≺ (n2, t2) and (n1, t1) ≺ (n2, t2)
are very similar. Let us explain the first case. The asymptotics are very close to
the one of Lemma 7.7. The first case corresponds to η1 > η2 and τ1 < τ2, or
(η1, τ1) = (η2, τ2). Since the asymptotic analysis is very close to the of of Lemma 7.7,
we introduce the notations

ci = ηi/τi ⇒ ni = citi, λi = νi/τi ⇒ xi = λiti. (7.45)

The conjugation factor et1−t2 will not appear in the following computations, since it
comes trivially in the factors W1/W2. We need to analyze, see (4.1),

1

(2πi)2

∮

Γ0

dw

∮

Γ1

dzet2g2(w)−t1g1(z) 1

(1 − z)(w − z)
(7.46)

with gi(w) = w + λi ln(1 − w) − ci ln(w) ≡ G(w|λi, ci, 1), i = 1, 2.

For a moment, ignore the fact that the paths Γ0 and Γ1 do not intersect, i.e., do not
care about the factor 1/(w − z). The critical points of g2(w) and g1(z) are given by

wc = Ω(λ2, c2, 1) = Ω(ν2, η2, τ2), zc = Ω(λ1, c1, 1) = Ω(ν1, η1, τ1). (7.47)
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Figure 7.2: Illustration of the steep descent paths.
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Γ1 Γ1 Γ′′1

Figure 7.3: The subdivision of the integration (7.46). The first integral in (b) is in
the Principal Value sense. We have |zc| ≥ |wc| and when |zc| = |wc|, they are not at
the same position.

The integrals over w is, up to the factor w/(z − w), as in Lemma 7.7. Therefore,
the steep descent path Γ0 is chosen as in Lemma 7.7 and the steep descent path
Γ1 in a similar way. We illustrate these paths in the case if the critical point are
ζc, see Figure 7.2. In particular, |wc| =

√

η2/τ2 and |zc| =
√

η1/τ2. In our case,
we have |wc| ≤ |zc| and |wc − zc| > 0. The steep descent paths described above
actually intersect. Therefore, we have to correct (7.46) by subtracting the residue at
z = w, as indicated in Figure 7.3. The integral with the paths Γ0 and Γ1 crossing,
is intended as the principal value integral.

Both integrals can be divided as the part on H and their complex conjugate. There-
fore, in the final expression we get the sum of four terms. Now, we restrict our
attention to the integral over Γ0 and Γ1 restricted to H. The analysis of the integral
over Γ0 is the same as in Lemma 7.7 except for the missing 1/wc factor and that
instead of 2Re(· · · ) we just have (· · · ) in (7.29). The integral over Γ1 is on the
same line. Moreover, in the δ-neighborhood of the critical points wc and zc, we have
|w − z| > 0 uniformly for δ small enough. Therefore, the first part of the Principal
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Value integral is given by
[

et2Re(g2(wc))O
(

e−µ2t2 , 1/(t2
√

|g′′2(wc)|)
)

+
et2g2(wc)θ̂2(wc)
√

2πt2|g′′2(wc)|

]

×
[

e−t1Re(g1(zc))O
(

e−µ1t1 , 1/(t1
√

|g′′1(zc)|)
)

+
e−t1g1(zc)θ̂1(zc)
√

2πt1|g′′1(zc)|
eiπη1

|1 − zc|

]

× 1

wc − zc

(7.48)

with µ1 ∼ |g′′1(zc)|δ2
1, µ2 ∼ |g′′2(wc)|δ2

2, and 0 < δ1 ≪ |g′′1(zc)|, 0 < δ2 ≪ |g′′2(wc)|.
The term eiπη1 is the phase of 1/(1 − zc), while θ̂i are the directions of the steepest
descent path at the critical point. Explicitly,

θ̂1(zc) = exp(i(π − 1
2
arg(g′′(zc)))), θ̂2(wc) = exp(i(π

2
− 1

2
arg(g′′(wc)))). (7.49)

We can rewrite it as

et2Re(g2(wc))−t1Re(g1(zc))

2π
√

t1t2|1 − zc|2|g′′2(wc)||g′′1(zc)|
θ̂2(wc)θ̂1(zc)e

iπη1

wc − zc
(7.50)

×
[

O
(√

|g′′2(wc)|t2e−const |g′′2 (wc)|δ2
2t2 , 1/

√
t2)
)

+ eit2Im(g2(wc))
]

×
[

O
(√

|g′′1(zc)|t1e−const |g′′1 (zc)|δ2
1t1 , 1/

√
t1)
)

+ e−it1Im(g1(zc))
]

.

For λ1 in a compact subset of ((1−√
c1)

2, (1 +
√

c1)
2), the error terms are O(t

−1/2
1 )

since |g′′1(zc)| is uniformly away form zero. However, we can do more. The estimate
(7.50) holds even closer to the facets. Namely, we can extend it without problems

until λ1 = (1±√
c1)

2 ∓ t
−1/3
1 . Indeed, in that case, |g′′1(zc)| ∼ t

−1/6
1 , therefore we can

choose δ = t
−1/4
1 and get a bound on the error term O(t

−5/12
1 ). Thus, for

(1 −√
ci)

2 + t
−1/3
i ≤ λi ≤ (1 +

√
ci)

2 − t
−1/3
i , i = 1, 2, (7.51)

the complete contribution of the Principal Value integral is given by

et2Re(g2(wc))−t1Re(g1(zc))

2π
√

t1t2|1 − zc|2|g′′2(wc)||g′′1(zc)|

[

O(L−5/12)

+
1

wc − zc

eit2Im(g2(wc))+iβ2

eit1Im(g1(zc))+iβ1
+

1

wc − z̄c

eit2Im(g2(wc))+iβ2

e−it1Im(g1(zc))−iβ1

+
1

w̄c − zc

e−it2Im(g2(wc))−iβ2

eit1Im(g1(zc))+iβ1
+

1

w̄c − z̄c

e−it2Im(g2(wc))−iβ2

e−it1Im(g1(zc))−iβ1

]

. (7.52)

Finally, we replace Gi(w)L = gi(w)ti and et2Re(g2(wc))−t1Re(g1(zc)) = W2/W1 to get
(7.42).

We still have to estimate the contribution of the residue (the last case of Figure 7.3).
This term is given by

1

2πi

∫ ζ̄

ζ

dz
e(τ2−τ1)Lze(η1−η2)L ln(z)

(1 − z)(ν1−ν2)L+1
, (7.53)
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where ζ and ζ̄ are the two intersection points of the steep descent path Γ0 and Γ1

in the Principal Value integral. Since τ2 − τ1 ≥ 0, η1 − η2 ≥ 0, and |1 − z| = const
along the piece of Γ1 inside Γ0, we have Re(z) ≤ Re(ζ) and Re(ln(z)) ≤ Re(ln(ζ)).
Therefore,

|(7.53)| ≤ et2Re(g2(ζ))−t1Re(g1(ζ)) ≤ et2Re(g2(wc))−t1Re(g1(zc))O(e−µ1t1e−µ2t2), (7.54)

for some µ1 ≥ 0 and µ2 ≥ 0, but not simultaneously equal to zero. This follows
from the fact that either one (or both) critical points are away of order one from ζ ,
and ζ lies on the steep descent paths of g2(w) and −g1(z).

We will also need the following corollary when we do time integration.

Corollary 7.12. In the same setting of Proposition 7.11, the formula for
K(x1, n1, t1; x2 + 1, n2, t2) is the same as (7.42) but with an extra factor (1 − wc)
(resp. (1 − w̄c)) to the terms with eiβ2 (resp. e−iβ2).

Proof of Corollary 7.12. It follows by the same analysis by noticing that in (7.46)
we have an extra term (1 − w).

Proposition 7.13. Consider the setting of Proposition 7.11, but with one or both
of the νi close to the edge. More precisely, with

(
√

τi −
√

ηi)
2 + ℓL−2/3 ≤ νi ≤ (

√
τi −

√
ηi)

2 + L−1/3

or (
√

τi +
√

ηi)
2 − L−1/3 ≤ νi ≤ (

√
τi +

√
ηi)

2 − ℓL−2/3. (7.55)

Then, there exists a ℓ large enough, such that

|K(x1, n1, t1; x2, n2, t2)| ≤ const
W2/W1

L
∏2

i=1
4

√

ηiτi − 1
4
(τi + ηi − νi)2

(7.56)

uniformly in L for L ≥ L0 ≫ 1.

Proof of Proposition 7.13. The proof follows the same argument as Lemma 7.10 for
the variables which are close to the edge. For the one which is away from the edges,
it is a consequence of the analysis Proposition 7.11.

When one or both positions are at the edge, we need a different bound. We state it
first in the case when ν1 is at the lower edge and ν2 in the bulk. Similar bounds are
obtained in the same way when ν1 is at the upper edge.

Proposition 7.14. Consider the setting of Proposition 7.11, but now with ν1 at the
edge or in the facet. More precisely, with

ν1 ≥ (
√

τ1 +
√

η1)
2 − ℓL−2/3 (7.57)
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for any fixed ℓ. Then,

|K(x1, n1, t1; x2, n2, t2)| ≤ const W2/W1
√

L 4

√

η2τ2 − 1
4
(τ2 + η2 − ν2)2

(7.58)

× 1

L1/3
exp

(

−x1 − (
√

τ1 +
√

η1)
2L

(τ1L)1/3

)

,

uniformly in L for L ≥ L0 ≫ 1.

Proof of Proposition 7.14. The proof is obtained along the same lines as Lemmas 7.1
and 7.3 for the upper edge, and Lemmas 7.2 and 7.4 for the lower edge. With respect
to those cases, the integral has however an extra factor 1/(w − z). Since we need
just a bound, it can simply be replaced by 1/(wc − zc) as follows. In Lemma 7.1
wc is replaced by −√

c, while in Lemma 7.3, we need to replace wc by ρ in (7.10).
Notice that we can take |wc +

√
c| as small as desired. In particular, we take it small

enough so that, even when two integrals will be at the lower edge, they this pole
will not collide.

In the case when both ν1 and ν2 are at the lower edge we have the following state-
ment.

Proposition 7.15. Consider the setting of Proposition 7.11, but now with ν1 at the
edge or in the facet. More precisely, with

νi ≥ (
√

τi +
√

ηi)
2 − ℓL−2/3, i = 1, 2, (7.59)

for any fixed ℓ. Then,

|K(x1, n1, t1; x2, n2, t2)| ≤ const W2/W1 (7.60)

1

L2/3
exp

(

−x2 − (
√

τ2 +
√

η2)
2L

(τ2L)1/3

)

exp

(

−x1 − (
√

τ1 +
√

η1)
2L

(τ1L)1/3

)

,

uniformly in L for L ≥ L0 ≫ 1.

Proof of Proposition 7.15. The proof is like Proposition 7.14.
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