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Abstract

We study in this paper a respond of an elastic half-plane to random boundary
excitations. We treat both the white noise excitations and more generally, homoge-
neous random fluctuations of displacements prescribed on the boundary. Solutions
to these problems are inhomogeneous random fields which are however homogeneous
with respect to the longitudinal coordinate. This is used to represent the displace-
ments as series expansions involving a complete set of deterministic functions with
corresponding random coefficients. We construct the Karhunen-Loève (K-L) series
expansion which is based on the eigen-decomposition of the correlation operator.
The K-L expansion can be used to calculate the statistical characteristics of other
functionals of interest, in particular, the strain and stress tensors and the elastic
energy tensor.

1 Introduction.

Boundary value problems for PDEs with random coefficients and other stochastically fluctuating
parameters are used in many fields of science and technology to describe uncertainty, probabilistic
distribution of irregularities, or large ensembles of measurements under similar but randomly
fluctuating conditions. The most famous example is the turbulence governed by a Navier-
Stokes equation with stochastic source [16]. Stochastically driven Navier-Stokes equations with a
stochastic forcing are studied intensively, they have very long history and interesting applications
[3]. We mention here the analysis of synoptic meteorological data [14], and fundamental full
developed turbulence study [15], where the Karhunen-Loève expansions are used.

Very well known is the example with flows in porous media and soils governed by the Darcy
equation with a random hydraulic conductivity coefficient [2], [22], [11], as well as biological tis-
sues [28], and in geodesy [19], [24]. In electrical impedance tomography [9] important problem is
to evaluate a global response to random boundary excitations, and to estimate local fluctuations
of the solution fields. Similar analysis is made in the inverse problems of elastography [18], [21],
recognition technology [5], acoustic scattering from rough surfaces [27], fluid dynamics [1], and
reaction-diffusion equations with white noise boundary perturbations [26].

It should be noted that most widely used are homogeneous Gaussian random field models because
in this case, there are many convenient and efficient methods based on the spectral decomposi-
tion. Among those, we mention both deterministic and randomized spectral methods (e.g., see
[25], [4], [20], [13], [12]).

The first study of random boundary excitations for the Laplace equation under random Dirichlet
and Neumann boundary conditions, biharmonic equation, and the Lamé equation governing a
2D elastostatics problem for a disc, published by K. Sabelfeld in [21], is here extended to the
case of an elastic half-plane.

The motivation to study the correlation structure of the displacement vector field of an elastic
half-plane comes from different direct and inverse problems in structural mechanics [4], and
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seismology [8], [30]. In the last paper, the Karhunen-Loève (K-L) expansion is applied to the
separation of diffractions from reflections, for the model problem of a rigid half-plane. We
mention also the problem of X-ray diffraction analysis of epitaxial layers [10]. The difference
between lattice parameters of a desired epitaxial layer and that of available substrate crystals
gives rise to elastic strains. The dislocation densities vary from several dislocations per sample
at initial stages of the relaxation process to a dislocation per dozen lattice spacing in completely
relaxed heteroepitaxial systems with large mismatch. In [12], the case of dislocations uniformly
distributed on the boundary was studied. We construct an exact Karhunen-Loève expansion of
the correlation tensor and the displacement vector field under white noise and general homoge-
neous random excitations on the boundary in the 2D elastostatics problem for a half-plane. It
should be stressed that we give here the optimal orthogonal decomposition for the random vector
of displacements which implies, that the method enables to construct Monte Carlo algorithm
for calculation of statistical characteristics for any desired functional, e.g., the strain tensor,
the elastic energy, etc. For illustration, we present some numerical analysis, and compare the
calculations against the exact results.

2 The system of Lamé equations governing an elastic

half-plane.

Let us consider the Dirichlet problem for the system of Lamé equations in the domain D+ ⊂ R2,
the upper half-plane with the boundary Γ = {y : y = 0}:

∆u(x) + α grad divu(x) = 0, x ∈ D+, u(x′) = g(x′) x′ ∈ Γ = ∂D+, (1)

where u(x) = (u1(x, y), u2(x, y))
T is a column vector of displacements, and g = (g1, g2)

T is the
vector of displacements prescribed on the boundary. The elastic constant α

α =
λ+ µ

µ

is expressed through the Lamé constants of elasticity λ and µ.

2.1 Poisson formula for the upper half-plane

The Poisson formula for the problem (1) has the form (see Appendix)

u(x, y) =

∞
∫

−∞

K(x− x′, y)Q(x− x′, y)g(x′) dx′ , (2)

where
K(x− x′, y) =

y

π((x− x′)2 + y2)

is the kernel of the well-known Poisson formula for the Laplace equation (e.g., see [21], [23]) and

Q(x− x′, y) = I +
β

(x− x′)2 + y2









(x− x′)2 − y2 2(x− x′)y
2(x− x′)y −((x− x′)2 − y2)








, (3)

where I is the identity matrix, and β = λ+µ
λ+3µ .
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3 Stochastic boundary value problem.

3.1 Correlation tensor.

Assume the prescribed boundary displacements gi, i = 1, 2 are homogeneous random processes.
Then, the solution u(x, y) is a random field, and our goal is to find its main statistical character-
istics, the correlation tensor, and to construct a simulation formula for the samples of u. Here
we note that from the Poisson formula (2) it can be easily found that 〈u〉 = 〈g〉, so without loss
of generality we assume that 〈g〉 = 0. For simplicity, we deal here with Gaussian random fields,
so we suppose that gi are Gaussian random processes, which implies due to (2) that u(x, y)
is also a Gaussian random field. Then, this zero mean random field is uniquely defined by its
correlation tensor.

By the Poisson formula (2) for u, the correlation tensor Bu(x1, y1;x2, y2) for the displacements
can be written as follows

Bu(x1, y1;x2, y2) = 〈u(x1, y1) ⊗ u(x2, y2)〉 = 〈u(x1, y1)u
T (x2, y2)〉

=

∞
∫

−∞

∞
∫

−∞

K(x1 − x′1, y1)K(x2 − x′2, y2)Q(x1 − x′1, y1)Bg(x
′
1;x

′
2)Q

T (x2 − x′2, y2) dx
′
1 dx

′
2 .

We use here the notation ⊗ for the direct product of vectors u(x1, y1) and u(x2, y2), and
Bg(x1;x2) for the correlation tensor of the random boundary vector g

Bg(x
′
1;x

′
2) = 〈g(x′1) ⊗ g(x′2)〉 .

Let us consider the case when g is a white noise. This implies that

{Bg(x
′
1;x

′
2)}ij = δijδ(x

′
1 − x′2) , i, j = 1, 2 .

Here we use standard notations, δij for the Kronecker symbol, and δ(x′1 − x′2) for the Dirac
δ-function. In this case,

Bu(x1, y1;x2, y2) =

∞
∫

−∞

K(x1 − x′1, y1)K(x2 − x′1, y2)Q(x1 − x′1, y1)Q
T (x2 − x′1, y2) dx

′
1 .

To integrate the right-hand side we use the Fourier transformation. Let us take a change of
variables z = x′1 − x2, this yields

Bu(x1, y1;x2, y2)

=

∞
∫

−∞

K(x1 − x2 − z, y1)K(−z, y2)Q(x1 − x2 − z, y1)Q
T (−z, y2) dz ,

and here in turn we use a new variable τ = x1 − x2:

Bu(x1, y1;x2, y2) =

∞
∫

−∞

K(τ − z, y1)Q(τ − z, y1)Q
T (−z, y2)K(−z, y2) dz . (4)

To write the integral in the form of a convolution, we notice that K(−z, y2) = K(z, y2) , and
define the matrix Q1(z, y2) by Q1(z, y2) = Q(−z, y2),

Q1(z, y2) = Q(−z, y2) = I +
β

z2 + y2
2









z2 − y2
2 −2zy2

−2zy2 −(z2 − y2
2)








.
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From (4), which has a convolution form, it is seen that Bu(x1, y1;x2, y2) depends on τ = x1−x2,
so we will write Bu(τ, y1, y2) instead of Bu(x1, x2; y1, y2). Thus the convolution (4) is written
shortly as

Bu(τ, y1, y2) = K(τ, y1)Q(τ, y1) ∗ Q1(z, y2)K(z, y2) .

The Fourier transform property for convolutions yields

F−1[Bu] = F−1[K(τ, y1)Q(τ, y1)]F
−1[K(z, y2)Q1(z, y2)] . (5)

So we have to find the inverse transforms F−1[KQ] and F−1[KQ1]. Using the next simple
Fourier transform formulae (see Appendix)

F−1[
y

π(τ2 + y2)
] = e−|ξ|y,

F−1[
τ2 − y2

π(τ2 + y2)2
] = −|ξ|e−|ξ|y, (6)

F−1[
−2τy

π(τ2 + y2)2
] = ıξe−|ξ|y,

we get

F−1[K(τ, y1)Q(τ, y1)] =
1

2π
e−|ξ|y1

(

I − β









|ξ|y1 ıξy1

ıξy1 −|ξ|y1









)

. (7)

and similar formula for F−1[KQ1]. As a result, we arrive at

F−1[Bu] = e−|ξ|(y1+y2)
(

I − βy1









|ξ| ıξ
ıξ −|ξ|









)(

I − βy2









|ξ| −ıξ
−ıξ −|ξ|









)

. (8)

Note that we have taken the inverse Fourier transform of the correlation tensor with respect to
only one variable, the coordinate x. This tensor is known as a partial spectral tensor (e.g., see
[20]). Let us denote it by Su:

Su(ξ, y1, y2) = F−1[Bu(τ, y1, y2)] =
1

2π

∞
∫

−∞

e−iξτ Bu(τ, y1, y2) dτ .

It is convenient to introduce a matrix S′(ξ, y1, y2) by S′ = e|ξ|(y1+y2)Su, so from (8)

S′ =









1 + 2β2y1y2ξ
2 − β|ξ|(y1 + y2) −ı(ξβ(y1 − y2) + 2β2y1y2ξ|ξ|)

ı(−ξβ(y1 − y2) + 2β2y1y2ξ|ξ|) 1 + 2β2y1y2ξ
2 + β|ξ|(y1 + y2)








. (9)

So we will find now the correlation tensor Bu by using the relevant Fourier transform properties.
Indeed, using the Fourier transform formulae (6) and (e.g., see [6])

F−1[
2(y1 + y2)((y1 + y2)

2 − 3τ2)

π(τ2 + (y1 + y2)2)3
] = ξ2e−|ξ|(y1+y2),

F−1[
2τ(3(y1 + y2)

2 − τ2)

π(τ2 + (y1 + y2)2)3
] = −ıξ|ξ|e−|ξ|(y1+y2),

we finally get from (8) and (9) the desired representation for the tensor Bu

Bu =
y1 + y2

π(τ2 + (y1 + y2)2)
I (10)

+
β(y1 + y2)

π(τ2 + (y1 + y2)2)2









τ2 − (y1 + y2)
2 2τ(y1 − y2)

2τ(y1 − y2) −(τ2 − (y1 + y2)
2)









+
4y1y2β

2

π(τ2 + (y1 + y2)2)3









(y1 + y2)((y1 + y2)
2 − 3τ2) τ(3(y1 + y2)

2 − τ2)
−τ(3(y1 + y2)

2 − τ2) (y1 + y2)((y1 + y2)
2 − 3τ2)








.
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3.2 Spectral representations for partially homogeneous random

fields.

So we deal with the case when the solution random field u(x, y) is homogeneous with respect to
the variable x, it means that

Bu = 〈u(x1, y1) ⊗ u(x2, y2)〉 = Bu(x1 − x2, y1, y2) .

As mentioned above, the random fields with this property are called partially homogeneous
random fields [20], with the partial spectral tensor

Su(ξ, y1, y2) =
1

2π

∞
∫

−∞

Bu(τ, y1, y2)e
−iτξ dτ .

Randomization spectral methods are well developed for simulation of homogeneous random fields
(e.g., see [25], [4], [20], [7]). They can be also applied to simulate partially homogeneous random
fields u(x, y) as described in [20]. Here the random field u is homogeneous with respect to the
first variable x, and inhomogeneous with respect to the second variable, y. The method enables
to reduce the problem to a simulation of a inhomogeneous random field of smaller dimension,
with respect to the second (inhomogeneous) variable y.

However in some special cases, when the partial spectral tensor Su(ξ, y1, y2) can be factorized in
a product of the matrix G and its complex conjugate transpose, G(y1)G

∗(y2), the Randomization
method can be also applied to reproduce the desired correlation tensor.

The Randomization spectral model for the partial homogeneous field presented in [20] has the
form

û(x, y) =
1

[p(ξ)]1/2

[

ζξ(y) cos(ξx) + ηξ(y) sin(ξx)
]

, (11)

where the random variable ξ has the distribution density p(ξ) in the wave space, and a real-valued
4-dimensional field (ζξ(y), ηξ(y))

T for fixed ξ has the correlation tensor

B(ζ,η)(y1, y2) =









〈ζξ(y1) ⊗ ζξ(y2)〉 〈ζξ(y1) ⊗ ηξ(y2)〉
〈ηξ(y1) ⊗ ζξ(y2)〉 〈ηξ(y1) ⊗ ηξ(y2)〉








=









ℜSu(ξ, y1, y2) ℑSu(ξ, y1, y2)
−ℑSu(ξ, y1, y2) ℜSu(ξ, y1, y2)









= e−|ξ|(y1+y2)









ℜS′(ξ, y1, y2) ℑS′(ξ, y1, y2)
−ℑS′(ξ, y1, y2) ℜS′(ξ, y1, y2)








. (12)

Here we use the notation ℜS and ℑS for the real and imaginary part of S, respectively. The
probability density p(ξ) is quite arbitrary but satisfies some natural weak conditions (see the
discussion in [20] where it is suggested to take p(ξ) proportional to the trace of the spectral
matrix Su).

The correlation tensor in the right-hand side of (12) is symmetric, B(ζ,η)(y1, y2) = BT
(ζ,η)(y2, y1),

and positive definite, see [20], p.39.

Now we decompose S′
u in a product, S′

u = G(y1)G
∗(y2), where G is the matrix from (7), i.e.,

G(y) = I − βy









|ξ| ıξ
ıξ −|ξ|








, (13)

and the star sign stands for the complex conjugate transpose.
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It is easy to verify that









ℜSu ℑSu

−ℑSu ℜSu








= e−|ξ|(y1+y2)









ℜG(y1) ℑG(y1)
−ℑG(y1) ℜG(y1)

















ℜG(y2) ℑG(y2)
−ℑG(y2) ℜG(y2)









T

.

Then the 4-dimensional vector field (ζξ(y), ηξ(y))
T defined by









ζξ
ηξ








= e−|ξ|y









ℜG ℑG
−ℑG ℜG

















ζ
η








, (14)

where ζ and η are independent 2-dimensional Gaussian random vectors with zero mean and unit
covariance matrix, has the desired correlation tensor (12).

Thus we have a Randomization spectral model of type (11) where the random vectors ζξ and ηξ

are constructed by (14), and ξ is sampled according an arbitrary density p in the wave space.

This model has the desired correlation tensor, i.e., Bû = Bu,

Bu(τ, y1, y2) =

∞
∫

−∞

Su(ξ, y1, y2)e
iτξ dξ

=

∞
∫

−∞

[

ℜSu(ξ, y1, y2) cos(ξτ) −ℑSu(ξ, y1, y2) sin(ξτ)
]

dξ , (15)

here τ = x1 − x2, (see [20]). To get (15) we used the fact that the real part, ℜSu, is symmetric
on the real line, i.e., ℜSu(ξ) = ℜSu(−ξ), while ℑSu is antisymmetric, i.e., ℑSu(ξ) = −ℑSu(−ξ).
Let us show that the model (11) has the desired correlation tensor. Indeed, by (11) and (14)

〈û(x1, y1) ⊗ û(x2, y2)〉

=
〈 e−|ξ|(y1+y2)

p(ξ)

(

(ℜG(y1)ζ + ℑG(y1)η) cos(ξx1) + (ℜG(y1)η −ℑG(y1)ζ) sin(ξx1)
)

⊗
(

(ℜG(y2)ζ + ℑG(y2)η)
T cos(ξx2) + (ℜG(y2)η −ℑG(y2)ζ)

T sin(ξx2)
) 〉

=
〈 e−|ξ|(y1+y2)

p(ξ)

[(

ℜG(y1)ℜGT (y2)〈ζ2〉 + ℑG(y1)ℑGT (y2)〈η2〉
)

cos(ξx1) cos(ξx2)

+
(

ℜG(y1)ℜGT (y2)〈η2〉 + ℑG(y1)ℑGT (y2)〈ζ2〉
)

sin(ξx1) sin(ξx2)

+
(

ℜG(y1)ℑGT (y2)〈η2〉 − ℑG(y1)ℜGT (y2)〈ζ2〉
)

sin(ξx1) cos(ξx2)

−
(

ℜG(y1)ℑGT (y2)〈ζ2
〉

+ ℑG(y1)ℜGT (y2)〈η2〉
)

cos(ξx1) sin(ξx2)
] 〉

=
〈 e−|ξ|(y1+y2)

p(ξ)

[(

ℜG(y1)ℜGT (y2) + ℑG(y1)ℑGT (y2)
)

cos(ξ(x1 − x2))

+
(

ℜG(y1)ℑGT (y2) −ℑG(y1)ℜGT (y2)
)

sin(ξ(x1 − x2))
] 〉

=

∞
∫

−∞

[

ℜS′
u(ξ, y1, y2) cos(ξ(x1 − x2)) −ℑS′

u(ξ, y1, y2) sin(ξ(x1 − x2))
]

e−|ξ|(y1+y2)dξ

=

∞
∫

−∞

Su(ξ, y1, y2)e
i(x1−x2)ξ dξ = Bu(x1 − x2, y1, y2) .
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Here we used the fact that ζ and η are random vectors with a unit covariance matrix.

Concerning the sampling of the wave vectors, one of the simplest choice is a uniform distribution.
Then however we have to cut-off the range where the wave number ξ is defined, say from −R to
R, R being large enough. In addition, to ensure that all the high-dimensional distributions of
the model are close to Gaussian, one usually takes a sum of independent realizations of modes
(11 ). In another version, one makes a partition of the wave number space into bins, and takes
a sum of samples with wave number modes sampled independently within each bin [20].

This is generally different from a deterministic approximation of the stochastic integral repre-
sentation of the random field with the correlation tensor (15) where the integration is taken
from −R to R. This leads to an approximation in the form

u(x, y) ≈ 1√
R

∞
∑

k=1

e−
πky

R

[(

ℜGk(y)ζk+ℑGk(y)ηk

)

cos(
π k x

R
)+

(

ℜGk(y)ηk−ℑGk(y)ζk

)

sin(
π k x

R
)
]

(16)
where Gk(y) is the matrix G defined in (13) with the value ξ taken as ξ = πk/R, and ηk, ζk are
families of independent standard Gaussian vectors.

This model has a correlation tensor which is an approximation to the original correlation tensor
Bu:

Bu(τ, y1, y2) ≈
1

R

∞
∑

k=1

e−
πk
R

(y1+y2)
(

ℜS′(
π k

R
, y1, y2) cos(

π k τ

R
) −ℑS′(

π k

R
, y1, y2) sin(

π k τ

R
)
)

.

All these arguments are basically rigorous and use essentially the important properties that
(1) the solution random field is partially homogeneous, and (2) the partial spectral tensor
Su(ξ, y1, y2) can be represented as a product of two matrices, G(y1) and G∗(y2).

In the next section we treat the solution as a general inhomogeneous random field, and obtain
the Karhunen-Loève expansion for the random field itself, and for its correlation tensor.

3.3 The Karhunen-Loève expansion.

The Karhunen-Loève expansion has the form (e.g., see [29], [17])

u(x) =
∞

∑

k=1

√

λk ηk hk(x) ,

where ηk is a family of random variables, λk and hk(x) are the eigen-values and eigen-functions
of the covariance operator Bu, i.e.,

∫

Bu(x1,x2)hk(x2)dx2 = λkhk(x1) .

In our case u is partially homogeneous, that means, it is homogeneous with respect to the
variable x, and is inhomogeneous with respect to y. It implies, that the correlation tensor
depends on τ = x1 − x2 and on both points, y1 and y2: Bu = B(x1 − x2, y1, y2). Thus the
eigen-value problem reads

∞
∫

0

∞
∫

−∞

Bu(x1 − x2, y1, y2)hk(x2, y2) dx2 dy2 = λk hk(x1, y1) . (17)
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For the correlation tensor the Karhunen-Loève expansion looks like

Bu(x1 − x2, y1, y2) =
∞
∑

k=1

λk (hk(x1, y1) ⊗ hk(x2, y2)) .

For our domain D+ we apply a cut-off integration, from −R to R in the eigen-value problem,
i.e., we solve the eigen-value problem

∞
∫

0

R
∫

−R

Bu(x2 − x1, y1, y2)hk(x2, y2) dx2 dy2 = λk hk(x1, y1), (18)

where R is sufficiently large. In what follows and throughout the paper we preserve for simplicity
the notation u = (u1, u2)

T and Bu for the problem with the introduced cut-off, that means the
problem (1) is considered in the region {(x, y) : −R ≤ x ≤ R, y > 0}.
Theorem. The solution random field u(x, y) has the following Karhunen-Loève expansion









u1(x, y)
u2(x, y)








=

1√
R

∞
∑

k=1

e−
π k
R

y

{









λ11

(

ζk cos[π k x/R] + ζ̃k sin[π k x/R]
)

λ21

(

ζk sin[π k x/R] − ζ̃k cos[π k x/R]
)









+









−λ12

(

ηk cos[π k x/R] − η̃k sin[π k x/R]
)

λ22

(

ηk sin[π k x/R] + η̃k cos[π k x/R]
)









}

, (19)

where ζk, ζ̃k and ηk, η̃k are independent standard Gaussian random variables, and the coefficients
λij are explicitly given by

λ11(y, k) = 1 − β
π k

R
y , λ12(y, k) = β

π k

R
y , (20)

λ22(y, k) = 1 + β
π k

R
y , λ21(y, k) = λ12(y, k) . (21)

The correlation tensor is represented by the series

Bu =
1

R

∞
∑

k=1

e−
π k
R

(y1+y2)











Λ11 cos πk(x1−x2)
R Λ12 sin πk(x1−x2)

R

Λ21 sin πk(x1−x2)
R Λ22 cos πk(x1−x2)

R











(22)

where

Λ11 = Λ11(y1, y2, k) = λ11(y1, k)λ11(y2, k) + λ12(y1, k)λ12(y2, k) ,

Λ12 = Λ12(y1, y2, k) = −λ11(y1, k)λ21(y2, k) + λ12(y1, k)λ22(y2, k)) ,

Λ21 = Λ21(y1, y2, k) = λ21(y1, k)λ11(y2, k) − λ22(y1, k)λ12(y2, k) ,

Λ22 = Λ22(y1, y2, k) = λ21(y1, k)λ21(y2, k) + λ22(y1, k)λ22(y2, k) .

Proof. The derivation of expansions (19) and (22) will immediately follow from the solution of
the eigen-value problem for the correlation tensor (18).

To get the Karhunen-Loève expansions for u we split it into two independent random fields:

u(x, y) = V1(x, y) + V2(x, y) . (23)
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Since V1 and V2 are independent, the correlation tensor can be represented in the form

Bu = 〈u(x1, y1) ⊗ u(x2, y2)〉 = 〈V1(x1, y1) ⊗ V1(x2, y2)〉 + 〈V2(x1, y1) ⊗ V2(y2, y2)〉 . (24)

So we have to solve the eigen-value problems for the correlation tensors BV1 and BV1

∞
∫

0

R
∫

−R

BVi
(x2 − x1, y1, y2)hi,k(x2, y2) dx2 dy2 = λi,k hi,k(x1, y1), (25)

for i = 1, 2.

In the following statement we solve these two eigen-value problems.

Lemma. The eigen-value problems (25) have the following systems of solutions: the eigen-values

λ1,2k−1 = λ1,2k =
(1 − β + β2)R

2πk
, k = 1, 2, . . .

and corresponding eigen-functions,

h1,2k−1(x, y) =
e−

π ky

R

∆1









λ11(y, k) cos π k
R x

λ21(y, k) sin π k
R x








, h1,2k(x, y) =

e−
π ky

R

∆1









λ11(y, k) sin π k
R x

−λ21(y, k) cos π k
R x








,

(26)
and eigen-values

λ2,2k−1 = λ2,2k =
(1 + β + β2)R

2πk
,

with the relevant eigen-functions

h2,2k−1(x, y) =
e−

π ky

R

∆2









−λ12(y, k) cos π k
R x

λ22(y, k) sin π k
R x








, h2,2k(x, y) =

e−
π ky

R

∆2









−λ12(y, k) sin π k
R x

−λ22(y, k) cos π k
R x








,

(27)
where

∆1 =
R

√

1 − β + β2

√
2πk

, ∆2 =
R

√

1 + β + β2

√
2πk

.

Here the subindexes 1 and 2 stand for the first and second series of eigen-functions.

Proof. Each of the four systems of the chosen functions (26), (27) is orthonormal, i.e.,

∞
∫

−∞

R
∫

−R

(ψk(x, y) · ψl(x, y))dy dx = δkl

where we use for brevity the notation ψk for the functions of each of the four systems, h1,2k−1,
h1,2k, h2,2k−1, or h2,2k, and δkl is the Kronecker symbol. Moreover, these vectors are pairwise
orthogonal, i.e.,

∞
∫

−∞

∫ R

−R
(h1,2k−1(x, y) · h1,2k(x, y)) dy dx = 0,

∞
∫

−∞

∫ R

−R
(h2,2k−1(x, y) · h2,2k(x, y)) dydx = 0

9



holds for k = 1, 2 . . .. The normalization follows from

‖h1,2k−1‖2 =
1

∆2
1

∞
∫

0

∫ R

−R
(h1,2k−1(x, y) · h1,2k−1(x, y)) dx dy

=
1

∆2
1

∞
∫

0

∫ R

−R
e−2yξk

[

(1 − βy|ξk|)2 cos2(ξkx) + β2y2ξ2k sin2(ξkx)
]

dx dy

=
R

∆2
1

∞
∫

0

(1 − 2βy|ξk| + 2β2ξ2ky
2) e−2yξk dy =

R2(1 − β + β2)

2πk∆2
1

= 1 ,

where we use the notation ξk = πk/R. Note that ‖h1,2k‖2 = ‖h1,2k−1‖2. Similar evaluations

yield ‖h2,2k−1‖2 = ‖h2,2k‖2 = R2(1+β+β2)
2πk∆2

2
= 1.

Thus we conclude that we have two orthonormal systems of functions, the first one, {h1,2k−1, h1,2k},
k = 1, 2 . . ., and the second one, {h2,2k−1, h2,2k}, k = 1, 2 . . .. It is not difficult to see that BV1

has a bilinear expansion over the functions of the first system, and BV2 is expanded in a series
over the functions of the second system, i.e.,

BV1 =

∞
∑

k=1

λ1,2k

{

h1,2k−1(x1, y1) ⊗ h1,2k−1(x2, y2) + h1,2k(x1, y1) ⊗ h1,2k(x2, y2)
}

, (28)

and

BV2 =
∞
∑

k=1

λ2,2k

{

h2,2k−1(x1, y1) ⊗ h2,2k−1(x2, y2) + h2,2k(x1, y1) ⊗ h2,2k(x2, y2)
}

. (29)

From the general Hilbert-Schmidt theorem on the bilinear expansion of symmetric integral
operators it follows that {h1,2k−1, h1,2k} and {h2,2k−1, h2,2k} solve the eigen-value problems

∞
∫

0

R
∫

−R

BVi
(x1 − x2, y1, y2)hi,k(x2, y2) dx2 dy2 = λi,k hi,k(x1, y1), (30)

for i = 1, 2, respectively. This can be derived directly by substituting (28) and (29) in (30), and
carrying out the integration over dx2 dy2 in (30) and using the orthonormality property. This
procedure immediately gives also the expressions for the eigen-values.

Another way to find the eigen-values is the following. Let us introduce complex-valued vectors
H1,k and H2,k by H1,k = h1,2k−1 + ıh1,2k, and H2,k = h2,2k−1 + ıh2,2k. From (26) and (27) we
get

H1,k(x, y) = e−
π ky

R eıξkx









λ11(y, k)
−ıλ21(y, k)








,

and

H2,k(x, y) = e−
π ky

R eıξkx









−λ12(y, k)
−ıλ22(y, k)








.

Since λi,2k−1 = λi,2k, we can rewrite (25) in the form

∞
∫

0

R
∫

−R

BVi
(x1 − x2, y1, y2)Hi,k(x2, y2) dx2 dy2 = λi,2k Hi,k(x1, y1) , i = 1, 2 . (31)
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Let us first consider this eigen-value problem for BV1. Substituting H1,k we find that

∞
∫

0

R
∫

−R

BV1(x1 − x2, y1, y2)e
−

π ky2
R eıξx2









λ11(y2, k)
−ıλ21(y2, k)








dx2dy2 = λ1,2k e

−
π ky1

R eıξx1









λ11(y1, k)
−ıλ21(y1, k)








,

or

∞
∫

0

R
∫

−R

e−ıξ(x1−x2)BV1(x1 − x2, y1, y2) dx2









λ11(y2, k)
−ıλ21(y2, k)








e−

π k(y2−y1)
R dy2 = λ1,2k









λ11(y1, k)
−ıλ21(y1, k)








.

We notice that the inner integral can be approximated by the relevant value of the spectral
tensor

SV1(ξ, y1, y2) =

∞
∫

−∞

e−ıξτBV1(τ, y1, y2) dτ .

Therefore,

SV1(ξ, y1, y2) ≈ SV1(ξk, y1, y2) =

R
∫

−R

e−ıξkτBV1(τ, y1, y2) dτ , ξk = π k/R .

The spectral tensor SV1 has the form

SV1(ξk, y1, y2) = e−|ξk|(y1+y2) ×








1 + β2y1y2ξ
2
k − β|ξk|(y1 + y2) −ı(ξkβ(y1 − y2) + β2y1y2ξk|ξk|)

ı(−ξkβ(y1 − y2) + β2y1y2ξk|ξk|) β2y1y2ξ
2
k








. (32)

We decompose SV1 as SV1 = e−|ξk|(y1+y2)G(y1, ξk)G1(y2, ξk) where G(y1) is defined by (13), and
G1(y2) is defined by

G1(y2, ξk) =









1 − β|ξk|y2 ıξkβy2

0 0








, (33)

hence

∞
∫

0

G(y1, ξk)G1(y2, ξk) e
−

2π ky2
R









λ11(y2, k)
−ıλ21(y2, k)








dy2 = λ1,2k









λ11(y1, k)
−ıλ21(y1, k)








.

Multiplying both sides of the last equation by

G−1(y1, ξk) =
(

I + βy1









|ξk| ıξk
ıξk −|ξk|









)

we arrive at

∞
∫

0

G1(y2, ξk) e
−

2π ky2
R









λ11(y2, k)
−ıλ21(y2, k)








dy2 = λ1,2k G

−1(y1, ξk)









λ11(y1, k)
−ıλ21(y1, k)








.
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Substituting λij from (20)-(21) yields

∞
∫

0

e−
2π ky2

R









1 − 2βξky2 + 2β2ξ2ky
2
2

0








dy2 = λ1,2k









1
0








.

After integration we get the result

λ1,2k =
1 − β + β2

2ξk
. (34)

For the second series of eigen-vectors we obtain analogous formula

∞
∫

0

e−
2π ky2

R









0
−ı(1 + 2βξky2 + 2β2ξ2ky

2
2)








dy2 = λ2,k









0
−ı








,

hence

λ2,2k =
1 + β + β2

2ξk
. (35)

The proof of Lemma is complete.

The expansions given in Theorem follow now from Lemma and the splittings (23) and (24).

3.4 Simulation results for the white noise excitations.

To test the K-L expansions (19) for the displacements obtained in Theorem, we have carried
out calculations of the correlation tensor by averaging the relevant products ui uj, i = 1, 2 over
10000 samples of (19), and compared the results with the exact expressions given by (10). In
Figure 1 we present this comparison for the longitudinal B11 and transverse B22 correlation
functions versus the longitudinal coordinate x, for α = 1/3, and fixed heights y1 = y2 = 1 (left
panel), and transverse coordinate y (α = 2, right panel). The cut-off parameter was taken as
R = 100, and the number of harmonics n = 100. The maximum error (for small values of x and
y) was about one percent which was however easily decreased by increasing the parameter R to
300, and n to 200.

Note that the elasticity parameter α affects much the behaviour of the correlations. In Figure
2 (left panel) we show the same curves that are given in Figure 1 (left panel), but for α = ∞.
It is seen that the characteristic correlation lengths are decreased about two times compared to
the case α = 1/3, while the fluctuation intensities are increased about 3 times for the transverse
correlations, and only 1.5 times for the longitudinal correlations.

In the right panel of Figure 2 the cross-correlations B12 and B21 versus the longitudinal coordi-
nate x are plotted for α = ∞, at the heights y1 = y2. It is seen that for correlations less than
about ±0.001 the accuracy is high, while after x ∼ 3 the simulated curves begin to oscillate.

To see how the elasticity parameter affects the cross-correlations we present in Figure 3 the
functions B12(x) and B21(x) at the height y1 = y2 = 1, for different values of α. The sensitivity
analysis clearly shows that the elasticity parameter α can be easily recovered from the behaviour
of the functions B12(x) and B21(x) which is a typical inverse problem in elastography (e.g., see
[18]).
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Figure 1: Comparison of the Monte Carlo simulations (MC) against the exact result for the

case of white noise boundary excitations. The longitudinal B11 and transverse B22 correlation

functions versus the longitudinal coordinate x (α = 1/3, y1 = y2 = 1, left panel), and transverse

coordinate y (α = 2, right panel).

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

B
11

 exact

B
11

 MC

B
22

 exact

B
22

 MC

X

B
ii
(X)

0 1 2 3 4 5 6 7 8 9 10

−0.1

−0.05

0

0.05

0.1

 

 

B
21

(x)

B
12

(x)

X

Figure 2: Comparison of the Monte Carlo simulations (MC) against the exact result for the

case of white noise boundary excitations. The longitudinal B11 and transverse B22 correlation
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4 Homogeneous excitations.

Let us consider the boundary value problem (1) when g is a zero mean Gaussian vector random
process with the correlation matrix

Bg(x
′
1;x

′
2) = 〈g(x′1) ⊗ g(x′2)〉 .

Then by the Poisson formula (2) for u(x, y)

Bu(x1, y1;x2, y2) = 〈u(x1, y1) ⊗ u(x2, y2)〉

=

∞
∫

−∞

∞
∫

−∞

K(x1 − x′1, y1)Q(x1 − x′1, y1)Bg(x
′
1;x

′
2)K(x2 − x′2, y2)Q

T (x2 − x′2, y2) dx
′
1 dx

′
2. (36)

Now we consider the case when Bg(x
′
1;x

′
2) is homogeneous, it means that Bg(x

′
1;x

′
2) = Bg(τ

′),
where τ ′ = x′1 − x′2. The relevant spectral tensor Sg is related to Bg by

Bg(τ
′) = F [Sg] =

∞
∫

−∞

eıτ
′ξSg(ξ) dξ, Sg(ξ) = F−1[Bg] =

1

2π

∞
∫

−∞

e−ıτ ′ξBg(τ
′) dτ ′ . (37)

From (36) and (37), we obtain, using the change the variables x′1 = τ ′ + x′2,

Bu(x1, y1;x2, y2) =

∞
∫

−∞

dξ

∞
∫

−∞

dx′2

[

∞
∫

−∞

dτ ′K(x1 − x′2 − τ ′, y1)Q(x1 − x′2 − τ ′, y1)e
ıτ ′ξ

]

×Sg(ξ)K(x2 − x′2, y2)Q
T
1 (x2 − x′2, y2) . (38)
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Now taking the new variable z = x1 − x′2 − τ ′ we get

Bu(x1, y1;x2, y2) =

∞
∫

−∞

dξ F−1[KQ](ξ, y1)Sg(ξ)

×
∞
∫

−∞

K(x2 − x′2, y2)Q
T
1 (x2 − x′2, y2)e

ı(x1−x′

2)ξ dx′2 . (39)

Using the change of variable z1 = x2 − x′2 we finally arrive at

Bu(x1, y1;x2, y2) =

∞
∫

−∞

F−1[KQ](ξ, y1)Sg(ξ)F
−1[KQT

1 ](ξ, y2)e
ı(x1−x2)ξ dξ . (40)

From the last formula we see that the correlation tensor Bu depends on the difference x1 − x2,
i.e. u is partially homogeneous, with the partial spectral tensor

Su(ξ) = F−1[KQ](ξ, y1)Sg(ξ)F
−1[KQT

1 ](ξ, y2) .

Inserting the explicit form (7) we rewrite it as follows:

Su(ξ) = e−|ξ|(y1+y2)
(

I − βy1









|ξ| ıξ
ıξ −|ξ|









)

Sg(ξ)
(

I − βy2









|ξ| −ıξ
−ıξ −|ξ|









)

. (41)

Notice that in the case of a white noise Sg is an identity matrix, (41) becomes (8).

To express Bu through Bg, we substitute the representation (37) in (40)

Bu(τ, y1, y2) =

∞
∫

−∞

∞
∫

−∞

e−|ξ|(y1+y2) × (42)

(

I − βy1









|ξ| ıξ
ıξ −|ξ|









)

Bg(τ
′)

(

I − βy2









|ξ| −ıξ
−ıξ −|ξ|









)

eı(τ−τ ′)ξ dξ dτ ′ .

We introduce a new notation by arranging the entries of the correlation tensor in a 4-dimensional
column vector. This notation is convenient when expressing the relation between the correlation
tensors Bu and Bg. Let B̂u = (Bu,11, Bu,12, Bu,21, Bu,22)

T , and B̂g = (Bg,11, Bg,12, Bg,21, Bg,22)
T .

The representation (42) can be conveniently rewritten in the form

B̂u(τ, y1, y2) =

∞
∫

−∞

A(τ, τ ′, y1, y2)B̂g(τ
′) dτ ′

where

A(τ, τ ′, y1, y2)4×4 =

∞
∫

−∞

e−|ξ|(y1+y2) × (43)

(

I − βy1









|ξ| ıξ
ıξ −|ξ|









)

⊗
(

I − βy2









|ξ| −ıξ
−ıξ −|ξ|









)

eı(τ−τ ′)ξ dξ .

Here we denote by ⊗ a tensor product of two matrices which is defined in our case as a 4 × 4
matrix represented as a 2 × 2 block matrix each block being a 2 × 2 matrix of the form Gij G

∗,
i, j = 1, 2, where G is defined in (13).
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The entries aij , i, j = 1, . . . , 4 can be evaluated explicitly. Since the matrix A is symmetric we
present the entries aij with j ≥ i. We denote for simplicity ∆τ = τ − τ ′,

a11 = F [e−|ξ|(y1+y2)(1 − βy1|ξ|)(1 − βy2|ξ|)]

=
y1 + y2

π((∆τ)2 + (y1 + y2)2)

[

1 + β
(∆τ)2 − (y1 + y2)

2

((∆τ)2 + (y1 + y2)2)
+ 2β2y1y2

(y1 + y2)
2 − 3(∆τ)2

((∆τ)2 + (y1 + y2)2)2

]

,

a12 = F [e−|ξ|(y1+y2)(1 − βy1|ξ|)βıy2ξ]

= −2βy2
(∆τ)(y1 + y2)

π((∆τ)2 + (y1 + y2)2)2
+ 2β2y1y2

(∆τ)(3(y1 + y2)
2 − (∆τ)2)

π((∆τ)2 + (y1 + y2)2)3
,

a13 = F [e−|ξ|(y1+y2)(−βy1ξ)(1 − βıy2|ξ|)]

= 2βy1
(∆τ)(y1 + y2)

π((∆τ)2 + (y1 + y2)2)2
− 2β2y1y2

(∆τ)(3(y1 + y2)
2 − (∆τ)2)

π((∆τ)2 + (y1 + y2)2)3
,

a14 = a23 = F [e−|ξ|(y1+y2)β2y1y2ξ
2] = 2β2y1y2

(y1 + y2)((y1 + y2)
2 − 3(∆τ)2)

π((∆τ)2 + (y1 + y2)2)3
,

a22 = a33 = F [e−|ξ|(y1+y2)(1 − βy1|ξ|)(1 + βy2|ξ|)]

=
y1 + y2

π((∆τ)2 + (y1 + y2)2)
+ β(y1 − y2)

(∆τ)2 − (y1 + y2)
2

π((∆τ)2 + (y1 + y2)2)

− 2β2y1y2
(y1 + y2)((y1 + y2)

2 − 3(∆τ)2)

π((∆τ)2 + (y1 + y2)2)3
,

a24 = F [e−|ξ|(y1+y2)(−βy1ξı)(1 + βy2|ξ|)]

= 2βy1
(∆τ)(y1 + y2)

π((∆τ)2 + (y1 + y2)2)2
+ 2β2y1y2

(∆τ)(3(y1 + y2)
2 − (∆τ)2)

π((∆τ)2 + (y1 + y2)2)3
,

a34 = F [e−|ξ|(y1+y2)(1 + βy1|ξ|)βıy2|ξ|]

= −2βy2
(∆τ)(y1 + y2)

π((∆τ)2 + (y1 + y2)2)2
− 2β2y1y2

(∆τ)(3(y1 + y2)
2 − (∆τ)2)

π((∆τ)2 + (y1 + y2)2)3
,

a44 = F [e−|ξ|(y1+y2)(1 + βy1|ξ|)(1 + βy2|ξ|)]

=
y1 + y2

π((∆τ)2 + (y1 + y2)2)

[

1 − β
(∆τ)2 − (y1 + y2)

2

((∆τ)2 + (y1 + y2)2)
+ 2β2y1y2

(y1 + y2)
2 − 3(∆τ)2

((∆τ)2 + (y1 + y2)2)2

]

.

Let us consider the case when the zero mean boundary Gaussian random process g is given by
the spectral expansion of its correlation tensor

Bg =
1

R

∞
∑

k=1

e−ıτξkSg(ξk) , (44)

where

Sg(ξk) =
1

2π

R
∫

−R

e−ıτ ′ξkBg(τ) dτ
′, ξk =

πk

R
. (45)
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Using the representation (41) and the cut-off integration, and take ξk instead of ξ, we get the
series expansion for the correlation tensor Bu:

Bu =
1

R

∞
∑

k=1

e−ıτξkSu(ξk)

=
1

R

∞
∑

k=1

e−ıτξke−ξk(y1+y2)
(

I − βy1









ξk ıξk
ıξk −ξk









)

Sg(ξk)
(

I − βy2









ξk −ıξk
−ıξk −ξk









)

. (46)

4.1 Finite correlation length boundary excitations.

In this section we analyze an exact solvable example with boundary excitations having a finite
correlation length.

So let us consider the boundary problem (1) when the homogeneous Gaussian random process
g is defined by the following correlation tensor

Bg(τ
′) =











σ1/((
τ ′

L1
)2 + 1) 0

0 σ2/((
τ ′

L2
)2 + 1)











where σ1 and σ2 are the fluctuation intensities, and L1 and L2 are the correlation lengths of g1
and g2, respectively. Its spectral tensor can be easily evaluated

Sg(ξ) =









σ1L1 e
−|ξ|L1 0

0 σ2L2 e
−|ξ|L2








. (47)

Now we substitute Sg in (40) and carry out the integration explicitly. This yields

Bu(τ, y1, y2)11 = a1
11(1) + a2

11(1) + a3
11(1) + a3

11(2)

Bu(τ, y1, y2)12 = a1
21(1)y2 + a2

21(1) − a1
21(2)y1 + a2

21(2)

Bu(τ, y1, y2)21 = −a1
21(1)y1 − a2

21(1) + a1
21(2)y2 − a2

21(2)

Bu(τ, y1, y2)22 = a3
11(1) + a1

11(2) − a2
11(2) + a3

11(2) (48)

where

a1
11(i) = Liσi

y1 + y2 + Li

π(τ2 + (y1 + y2 + Li)2)
,

a2
11(i) = Liσiβ(y1 + y2)

τ2 − (y1 + y2 + Li)
2

π(τ2 + (y1 + y2 + Li)2)2
,

a3
11(i) = 2Liσiβ

2y1y2(y1 + y2 + Li)
(y1 + y2 + Li)

2 − 3τ2

π(τ2 + (y1 + y2 + Li)2)3
,

a1
21(i) = −2Liσiβ

τ(y1 + y2 + Li)

π(τ2 + (y1 + y2 + Li)2)2
,

a2
21(i) = 2Liσiβ

2y1y2
τ(3(y1 + y2 + Li)

2 − τ2)

π(τ2 + (y1 + y2 + Li)2)3
.

These exact representations were used to test the numerical simulation based on the Karhunen-
Loève expansions (46).
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Figure 4: Boundary excitations with finite correlation lengths: the longitudinal B11 and trans-

verse B22 correlation functions (left panel), and the cross-correlations B12 and B21 (right panel)

versus the longitudinal coordinate x, for α = 1/3, for different values of y = y1 = y2 and fixed

correlation length L1 = L2 = 1.

Note that the relevant Karhunen-Loève expansion for the displacements for the considered ex-
ample has the form

u(x, y) ≈ 1√
R

∞
∑

k=1

e−
πky

R S1/2
g (ξk)

[(

ℜGk(y) ζk + ℑGk(y) ηk

)

cos(
π k x

R
)

+
(

ℜGk(y) ηk −ℑGk(y) ζk

)

sin(
π k x

R
)
]

, (49)

where ξk = πk/R, ζk and ηk are families of independent Gaussian vectors with zero mean and

unit correlation matrix. From (47) we find the matrix S
1/2
g (ξk) which is diagonal: {S1/2

g (ξk)}jj =
√

σjLj e
−ξkLj/2, j = 1, 2.

4.2 Simulation results for the finite correlation length boundary

excitations.

In this section we analyse the correlation tensor for the example of finite correlation length
excitations presented above by the expansions (46) and (49) and the exact expressions (48).

In Figure 4 we show how the correlation functions depend on the height y. We present the
longitudinal B11 and transverse B22 correlation functions (left panel), and the cross-correlations
B12 and B21 (right panel) versus the longitudinal coordinate x, for α = 1/3, for different values
of y = y1 = y2 and fixed correlation length L1 = L2 = 1. The results show clearly that with
the height, the correlation length is increasing while the fluctuation intensity is decreasing. It
should be noted that the elasticity constant α affects the behaviour of the curves very interesting.
In Figure 5 we show the same curves as in Figure 4, but for α = ∞. It is seen that for
B22, the intensity is increased about two times, with a little decrease of the correlation length.
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Figure 5: The same curves as in Figure 4, but for α = ∞.

Remarkably, the correlation function B11 at y1 = y2 = 1 shows a kind of two characteristic
correlation lengths behaviour.

In Figure 6 we analyze the dependence of the correlation functions on the input correlation
lengths L1 and L2. Here we show the longitudinal B11 and transverse B22 correlation func-
tions (left panel), and the cross-correlations B12 and B21 (right panel) versus the longitudinal
coordinate x, for α = 2, for different values of the correlation length L1, and fixed L2 = 1, at
y1 = y2 = 1. From the results presented in the right panel it is seen that the change of the
correlation length L1 (L2 fixed) affects only the correlations B11, and does not influence the
correlations B22. In contrast, both B12 and B21 are quite sensitive to the change of L1 (see the
right panels of Figures 5 and 6 where L2 was fixed at L2 = 1).

Note that all the above functions were evaluated at fixed equal heights y1 = y2. It is seen
from the exact formulae that the most height contributions come form y1 + y2, but in some
cases also weighted by the product y1y2, so it is interesting to analyze the correlation functions
behaviour for different values of y1 and y2. In Figure 7 we show the correlation functions B11,
B22, B12 and B21 versus x, for α = 222, for different values of the heights, y1 = 0.5, y2 = 2,
and different correlation lengths L1 = 0.1, L2 = 1 (left panel), and L1 = 1, L2 = 1 (right
panel). It should be noted here that we plot B12(x, y1, y2) and B21(x, y1, y2), which are not
antisymmetric, so B12(x, y1, y2) 6= −B21(x, y1, y2) instead of the previous Figures where we had
B12(x, y, y) = −B21(x, y, y). We can see a drastic change in the correlation functions behaviour
from the results presented in Figure 8 where we show the same curves as in Figure 7 but for
different heights y1, y2 and different correlation lengths.

Finally let us consider the behaviour of the correlations as functions of the height y. In Figure
9 we plot the longitudinal B11 (dash lines) and transverse B22 (solid lines) correlations versus
the transverse coordinate y, for 4 different values of x = x1 −x2: from up to down: x = 1, 2, 3, 5
for the correlation lengths L1 = L2 = 1 and α = 2 (left panel), and the same curves for
α = 222 (right panel). From these curves it is seen that the increase of the longitudinal distance
x = x1 − x2 leads to a rapid increase of the correlation length and a decrease of the fluctuation
intensities. The same is true for the cross-correlations shown in Figure 10.
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Figure 6: Boundary excitations with finite correlation lengths: the longitudinal B11 and trans-

verse B22 correlation functions (left panel), and the cross-correlations B12 and B21 (right panel)

versus the longitudinal coordinate x, for α = 2, for different values of the correlation length L1,

and fixed L2 = 1, at y1 = y2 = 1.
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Figure 7: Boundary excitations with finite correlation lengths: the longitudinal B11, transverse

B22, and the cross-correlations B12 and B21 versus the longitudinal coordinate x, for α = 222,

for different values of the heights, y1 = 0.5, y2 = 2, and different correlation lengths L1 = 0.1,

L2 = 1 (left panel), and L1 = 1, L2 = 1 (right panel).
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Figure 8: Boundary excitations with finite correlation lengths: the longitudinal B11, transverse

B22, and the cross-correlations B12 and B21 versus the longitudinal coordinate x, for different

values of the heights, y1 = 5, y2 = 0.1, for different correlation lengths L1 = 1, L2 = 0.1 and

α = 2 (left panel), and equal correlation lengths L1 = L2 = 1 and α = 222 (right panel).
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In Figure 11 we present the longitudinalB11 and transverse B22 correlations versus the transverse
coordinate y, for ∆x = x1 − x2 = 1, for different values of the correlation length L1 = 0.3, 5, 10,
fixed L2 = 1, and α = 222 (left panel). It is clearly seen that the transverse correlations B22 are
not affected by the change of the correlation length L1. The relevant cross-correlations B12 are
shown in the right panel.

Appendix: The Poisson formula for the upper half-plane

Let us denote by U(ξ, y) = (U1(ξ, y), U2(ξ, y)) the inverse Fourier transform of the displacements
u(x, y) over the variable x:

U(ξ, y) = F−1[u(x, y)] =
1

2π

∞
∫

−∞

e−ıxξu(x, y) dx .

If we apply the inverse Fourier transform to the system of Lam’e equation (1) we obtain the
system

−(λ+ 2µ)ξ2U1(ξ, y) + µ
∂2

∂y2
U1(ξ, y) + ı(λ+ µ)ξ

∂

∂y
U2(ξ, y) = 0

−µξ2U2(ξ, y) + (λ+ 2µ)
∂2

∂y2
U2(ξ, y) + ı(λ+ µ)ξ

∂

∂y
U1(ξ, y) = 0 ,

here we use the simple property of the Fourier transformation

F−1[Dα
xui] = (ıξ)αF−1[ui] .

The solution of this system of ordinary differential for y ≥ 0 is

U1(ξ, y) =
[

(1 − λ+ µ

λ+ 3µ
|ξ|y)U1(ξ, 0) −

λ+ µ

λ+ 3µ
ıξyU2(ξ, 0)

]

e−|ξ|y

U2(ξ, y) =
[

(1 +
λ+ µ

λ+ 3µ
|ξ|y)U2(ξ, 0) −

λ+ µ

λ+ 3µ
ıξyU1(ξ, 0)

]

e−|ξ|y ,

where the vector U(ξ, 0) is the inverse Fourier transform of the boundary displacements g(x′).
Now we present every member in the right-hand side of last equations as the inverse Fourier
transform, too. Now using simple Fourier transform formulae (e.g., see [6])

F−1[
y

π(x2 + y2)
] = e−|ξ|y,

F−1[
x2 − y2

π(x2 + y2)2
] = F−1[

∂

∂y

( y

π(x2 + y2)

)

] = −|ξ|e−|ξ|y,

F−1[
−2xy

π(x2 + y2)2
] = F−1[

∂

∂x

( y

π(x2 + y2)

)

] = ıξe−|ξ|y,

and the convolution property
F−1[f ∗ g] = F−1[f ]F−1[g]

we get the desired result, the formula (2)

u(x, y) =

∞
∫

−∞

y Q(x− x′, y)

π((x− x′)2 + y2)
g(x′) dx′

where the matrix Q is given by (3).
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