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Irreversible phase transitions in steel 

by D. Hornberg 

Abstract 

We present a mathematical model for the austenite-pearlite and austenite-
martensite phase transitions in eutectoid carbon steel. The austenite-pearlite phase 
change is described by the Additivity Rule. For the austenite-martensite phase 
change we propose a new rate law, which takes into account its irreversibility. We 
investigate questions of existence and uniqueness for the three-dimensional model 
and finally present numerical calculations of a continous cooling transformation 
diagram for the eutectoid carbon steel Cl080. 

1 Introduction 

In this paper we investigate a mathematical model for the phase changes in carbon steel 
of the so-called eutectoid composition of 0.8 % carbon content. In contrast to a previous 
paper [9] we now take care of the irreversibility of the austenite-martensite phase change. 
For the three-dimensional model we end up with a nonlinear evolution equation for the 
temperature (including a maximal monotone operator of Bt), coupled with two ordinary 
differential equations to describe the phase fractions. Related problems have been studied 
by Colli and Visintin [8], Blanchard, Damlamian and Ghidouche [5], and Blanchard and 
Ghidouche [6]. 
We will now give only a brief phenomenological description of the phase transitions. For 
a more detailed discussion and further references on this subject, we refer to [9]. 
The kinetics of the phase changes can easily be described using an isothermal-transforma-
tion (It-) diagram (see fig.1.1 ). Above a temperature A., eutectoid steel is in the austenitic 
phase. Below this temperature the formation of pearlite starts. For fixed temperature 
the bold faced curves indicate the beginning and the end of the austenite pearlite trans-
formation. The reason for the 'nose-shape' of these curves is that this phase change is a 
nucleation and growth process with opposite temperature dependency of the nucleation 
and the growth rate. The A-P transformation is driven by the diffusion of carbon atoms, 
it is time-dependent and irreversible. 
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Figure 1.1: Isothermal-transformation diagram for the plain carbon steel C1080 (from 
(1]) 

Below a temperature M 11 the formation of martensite starts. This phase transition is 
diffusionless and irreversible. It is temperature-dependent in such a way that the fraction 
of marten.site only increases during nonisothermal stages of the cooling process. 
Both phase transitions taken together are often referred to as the eutectoid transformation. 
The resulting phases pearlite and martensite have different mechanical properties: pearlite 
is soft and ductile while martensite is very hard and brittle. 
This fact has an important application in the heat treatment of steel. In this process 
a workpiece is heated up until it is in the austenitic phase. Then it is cooled down in 
a certain way to get a desired distribution of martensite and pearlite. In a gear wheel, 
for instance, one wants to have a hard (martensitic) outer part to reduce abrasion and a 
softer (pearlitic) inner part to minimize fatigue effects. 
For planning a heat treatment engineers have to know the nonisothermal evolution of the 
phases. This is usually depicted in continuous-cooling-transformation ( CCT-) diagrams 
(see fig. 1.2). Deriving a CCT-diagram experimentally is quite costly, thus there is a 
demand for numerical simulations of these diagrams( cf. [9], [10] and the references given 
there). 
In the next section we formulate an initial value problem which describes the evolution 
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Figure 1.2: Derivation· of a continuous-cooling from an isothermal-transformation dia-
gram (from [4]) 

of the phase fractions of pearlite and martensite. In Section 3 we consider the three-
dimensional case. Section 4 is devoted to presenting numerical simulations of CCT-
diagrams and some concluding remarks on further research. Finally, in the appendix we 
list some properties of maximal monotone operators to be used in Section 3. 
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2 Mathematical description of the phase transition 
kinetics 

2.1 Austenite - pearlite 

The austenite - pearlite phase transition is a nucleation and growth process, which, in 
the isothermal case, can be described by the generalized Johnson-Mehl equation 

(2.1) 

with temperature dependent coefficients a(B) and b(B). (For a more detailed exposition 
we again refer to [9].) 
In the nonisothermal case, we use the Additivity Rule to describe the formation of 
pearlite: 

t 1 J r(e(e),p(t)) de= 1. 
0 

(2.2) 

Here, r( 8, p) denotes the time to transform the fraction p to pearlite at constant temper-
ature B.· Thus, by (2.1); 

1 
((} ) = (- ln(l - p)) arBJ 

T 'p b( B) . (2.3) 

The Additivity Rule coupled with an energy balance equation has been investigated by 
Visintin [16). A different approach to model a nucleation and growth process has been 
chosen by Andreucci et al. [2) in connection with the solidification of polymers. 
Concerning the data functions in (2.1 ), we make the following assumptions: 

(Al) a,b E C1 (1R), 

(A2) there exist positive constants m, M, such that a(x) > m, b(x) > m for all x E 1R 
and llallc1(1R) + llbllc1(1R) :::; M, 

(A3) there exists a constant Ms > Ms, such that a'(x) 2:'.: 0 for all x,:::; Ms. 

Remark 2.1 The graph of a is approximately bell-shaped {cf. {9}, fig. 2.1). Therefore, 
{ A3} poses no unphysical restriction on a. 

As pointed out in [9), the early stages of the pearlitic transformation are inaccurately 
described by the additivity rule. This led to introducing a fixed incubation time t1. 
During this time small grains of pearlite are formed without knowing the exact evolution 

. kinetics. At the end of this stage the process is gauged by claiming that the additivity 
rule shall hold for t = t 1. Thus we consider the following model for the formation of 
pearlite: 
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• Let B : (0, T) -t IR be a given temperature evolution, 

• t1 E (0, T) the fixed incubation time, then, depending on B, 

• Po is defined by 

1tr 1 _(_(_)___;.._) de = i. 
0 T () e 'Po 

(2.4) 

• The fraction of pearlite is determined by the following initial value problem (IVP): 

p(O) 

p(t) 

Po, 

{ j(t,p(t))H(A, - ll(t)) 
'0 < t < t1 
, t0 ~ t < T. 

(2;5a) 

(2.5b) 

Here, f(t,p(t)) results from a formal differentiation of the additivity rule with respect to 
time and has the following form: 

,.. ( r a de )-1 1 
f(t,p(t)) = - lo 8pr(B(e),p(t)) r(B(t),p(t)). (2.6) 

The heaviside function H(.) prevents the formation of pearlite above the critical temper-
ature As. 

2.2 Austenite - martensite 

While the additivity rule is a well investigated decent tool for describing the pearlitic 
transformation there seems to be no satisfactory model at hand for the martensitic trans-
formation. 
Usually, exponential growth laws like the Koistinen and Marburger formula 

m(t) = 1 - e-c(M.-8(t)) (2.7) 

are used ( cf. [9], [11], [12]). 
These equations have all in common that they do not model the irreversibility of the 
austenite - martensite phase transition. Thus, in numerical simulations based on these 
models, owing to the release of latent heat, usually a decrease in the marten.site fraction 
is observed ( cf. [9] and Section 4). 
As mentioned before, the formation of marten.site starts below the critical temperature 
Ms, and the volume fraction of martensite only grows during nonisothermal stages of a 
cooling process. 
Hence we propose the following rate law for the growth of marten.site: 

m(O) - 0, 
m(t) (1 - m(t))G(B(t))H(-Bt(t)). 
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Here again H is the heaviside function. Concerning G( B) we assume: 

(A4) GE C0 •1(lR), 

there is a constant M > 0 s.t. 0:::; G(x):::; M for all x E IR 

and G(x) = 0 for all x ~ M11 • 

The irreversibility of the martensitic transformation now carries over to the model. We 
also tacitly assume that we start with a temperature B(O) ~ M8 • 

2.3 An initial value problem for the eutectoid transformation 

In (2.5b) and (2.8b ), actually, not the fractions p and m occur but the volume fraction of 
austenite which is 1 - p or 1 - m, respectively. Therefore, to combine both models one 
only has to replace these terms by the volume fraction of austenite in the case when both 
pearlite and martensite are present, i.e. 1 - p - m. 
So we end up with the following initial value problem for the phase transitions in eutectoid 
carbon s.teel: 

p(O) 
m(O) 
p(t) 

m(t) 

where we define 

Po, 
0, 

(1 - p(t) - m(t)) f(t,p(t), m(t), B) H(A6 - B(t)), 
- (1 - p(t) - m(t)) G(B(t))H(-Bt(t)), 

( r de )-1ln(l - p - m) 
f(t,p,m,B)) := - lo a(B(e))r(B(e),p,m) r(B(t),p;m) )H(t-tr). 

Here, r(B,p,m) is defined by 

1 
(B ) = (- ln( 1 - p - m)) am r ,p,m b(B) . 

We have the following result for the complete model: 
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Lemma 2.1 Assume {Al) - {A4), let BE H 1(0, T) with B(O) =As and t1 E (0, T). Then 
the fallowing are valid: 

{1) Po is uniquely defined by 

la
t1 1 

( ( de= i. 
0 T B e), Po) 

{2) The !VP {2.9a-d) has a unique solution 

(p, m) E W1
'
00 (0, T) x W1

'
00 (0, T). 

{3) 
Po :::; p(t) + m(t) :::; Ct1 ,T < 1 for all t E (0, T]. 

(4) There exists a constant M > 0, independent of B, s.t. 

For proving this lemma, we need the following result: 

Lemma 2.2 Let z0 E (0, 1), D = [a, b] x [z0 , 1) and g: D-+ IR+ be given, s.t. t H- g(t, z) 
is measurable for all z E [z0 , 1), z H- g(t, z) Lipschitz continuous for t E [a, b] and 
ess sup g( t, z) :::; M < oo. Then, the !VP 

(t,z)ED 

z(a) zo E (0,1) 
.i(t) - -(1 - z) ln(l - z)g(t, z(t)) 

has a unique solution on [a, b] satisfying 

zo ~ z(t) ~ Ca,b < 1 for all t E [O, T]. 

Proof: 

Define F : KC C[a, b]-+ C[a, b] by 

z :=Fz, 

where z is the solution of 

z(a) zo, 

z - -(1 - z) ln(l - z)g(t, z(t)) 
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and 
K : = {f E C [a, b] I zo ~ f ( t) < 1}. (2.15) 

The solution of (2:14) has the following explicit form: 

. z(t) = 1 - eln(l - zo)ef(t)' (2.16) 

with 
t 

J(t) = J a(e, z(e))d( (2.17) 
a 

Hence it follows that 

z(t) ~ 1 _)n(l - zo)(b - a)M =: Ca,b < 1. (2.18) 

Then F : k-+ k with k = {f E K I f(t) ~ Ca,b for all t E [a, b]} is a self-mapping. In 
view of the assumptions on g it is easy to see that F is also a contraction, at least on an 
interval [a, b+], b+ ~ b. Thus applying Banach's fixed point theorem finishes the proof. D 

Proof of Lemma 2.1: 
Asp and m have discontinuous right-hand sides, we can only obtain absolutely continuous 
solutions. It is an easy exercise to show that (2.9 a-d) has a unique local solution on an 
interval [O, T+], with T+ > t1, which we will omit here. 
To obtain a priori estimates for the solution, we add the equations for p and m and get 
the following IVP (with z = p + m): 

z(O) 
i(t) 

Po, 
(1- z(t)) (!(t,z(t),B) + G(B(t))H(-Bt(t)). 

In [O, t1], for the solution of (2.20), we get the bound 

(2.19a) 

(2.19b) 

Po ~ z(t) ~ 1 - (1 - po)e-F(tr) =: z1, for all t E [O, t1] (2.20) 

with F(t1) = f~1 G(B(e))H(-Be(e))de. 
Therefore, we put z(t1) = z1 and solve (2.20) only for t ~ t1. We distinguish between 
three cases: 

(a) G(B(t))H(-Bt(t)) = 0 a.e. in [tI, T]: 

Then we have to solve the IVP 

z(t1) - z1, 
z( t) (1 - z( t) )J ( t, z( t), B)H(A, - B( t) ). 
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Using the same argument as in [9], we obtain a unique solution of (2.22) satisfying 

z1 ~ z(t) ~ CT < 1, for all t E [t1, T]. 

(b) G(B(t))H(-Bt(t))-/= 0 a.e. in [tr, T]. 

In this case we rewrite (2.20) in the following way: 

z(t1) - Z[, 

z(t) - -(1 - z(t)) ln(l - z(t))(f(t, z(t), B) + j 2(B(t), Bt(t))), 

where we define 

and 

t - 1- 1 1 

(2.22) 

(2.23a) 

(2.23b) 

(2.24) 

( 
b(B(t) a(e(e) ( )- - - )-1 i1(t,z(t),B) := - j ~ _1_ - ln(l - z(t)) a(B(t) a(e(e)de H(A!f - B(t)).· 

o b(B(t)a(e(t) 
=:l 

We know that 
() ~ Ma and Bt ~ 0 a.e. in [tr, T], 

therefore, thanks to (A3), for all t 1 , t2 E [tr, T], t 1 ~ t 2 we have 

0 < a(B(t2 )) ~ a(B(t1)). 

Hence utilizing (A2) there exist constants ci, c2 > 0, such that 

Then, in view of (A4) there exists a constant c3 > 0 s.t. 

sup (ii(t, z(t), B) + i2(B(t), Bt(t))) ~ c3. 
(t,z)E[t1,T] x [po,1) 

Applying Lemma 2.2, we obtain a unique solution of (2.23), satisfying 

zr ~ z(t) ~ cr,T < 1, for all t E [t1, T]. 

( c) General case: 
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Although there may exist infinitely many disjoint intervals Jk C [tr, T] such that 

G(B(t))H(-Bt(t)) -:f. 0 a.e. in Jk 

(think for instance of B(t) = Ms+ (t - c) 2 sinC~J, and c > tr), since (} is of bounded 
variation and thanks to (A3) we can dissect [tr, T] in (finitely many) intervals such that 
either inequality (2.28) is valid or G(B(t))H(-B(t)) = 0. Therefore, alternating between 
cases (a) and (b) finitely often, we have proved assertion ( 3). Then assertion ( 4) is a 
direct consequence of (A 1)-(A4) and ( 3). 
Using the apriori estimates (3) and ( 4), the solution can be extended to the whole interval 
[O, T]. 
Assertion (1) finally follows from the strong monotonicity of the function 

rr 1 
P r-+ lo T(e(e),p) d( (2.31) 

0 

For later use, we now replace the Heaviside function H occuring in the expressions H (As -
B) and H(-Bt) with the Yosida approximation H8 of the heaviside graph fI ( c.f. appendix), 
and obtain the following regularized problem: 

p(O) Po, (2.32a) 

m(O) 0, (2.32b) 

p(t) (1 - p(t) - m(t)) f(t,p(t), m(t), B) H8(As - B(t)), (2.32c) 

m(t) (1 - p(t_) - m(t)) G(B(t))H8(-Bt(t)). (2.32d) 

Of course, Lemma 2.1 still holds for (2.32a-d). Furthermore, we get the following result: 

Lemma 2.3 Let (pi, mi), i = 1, 2 be two solutions of {2.32a-d) corresponding to Bi E 
H 1(0, T), i = 1, 2, then under the assumptions of Lemma 2.1, there exist constants L1 , L2 
such that for all t E [O, T] the following is valid: 

(P1(t) - P2(t)) 2 + (m1(t) - m2(t))2 
max{t,tr} t 

::; Li J (B1(e) - B2(e))2de + L2 J (B1,e(e) - e2.e(e))2d( (2.33) 
0 0 

Proof: Using the implicit function theorem, for the initial values p0 ,1 , p0 ,2 as defined in 
(2.4) one easily gets: 

tr 

IPo,1 - Po,2L~ L j IB1(e) - B2(e)lde. (2.34) 
0 

Then (2.33) directly follows from (Al)-(A4) and the Lipschitz continuity of the Yosida 
approximation ( cf. Lemma A.3). D 
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3 Three-dimensional model 

Let n c lR3 be bounded with smooth boundary an=: rand Q := n x (0, T). In a spatial 
model one has to take into account recalescence effects owing to the latent heat of the 
phase transitions. As in [9] we consider the following balance of energy: 

together with boundary and initial conditions 

-k(8) 88 
8v 

B( ., 0) 
1(8)(8 - 8r ), 
A,,, inn. 

in Q, 

in r x (0, T), 

(3.1) 

(3.2a) 

(3.2b) 

Here p is the mass density, k the heat conductivity, c the specific heat at constant pressure, 
I the heat transfer coefficient and Lm, Lp the latent heats of the austenite-martensite and 
the austenite-pearlite phase change, respectively. 
Concerning these data functions, we assume the following: 

(A5) p, c, k, I > 0 constants, 

(A6) Lp, Lm E C0 •1(lR) satisfying 

0 ~ Lp(B) ~ 77, 0 ~ Lm(B) ~ T/ for all() E lR and a positice constant T/· 

Remark 3.1 Assumption {AS) is not essential. Using the Kirchhoff transformation 

8 

J(8) = j p(x)c(x)dx 
A. 

one could allow for temperature dependent coefficients p, c. 

Before studying the general case, we consider the following regularized problem (Ps): 

-k88 
8v 

8(.,0) -
1(8 - 8r ), 
A,,, inn. 

in Q, 

in r x (0, T), 

(3.3a) 

(3.3b) 

(3.3c) 

Here, (p, m) is the solution to (2.32a-d), where we have replaced H(A,, - B) and H(-Bt) 
with H0 (A,, - B) and H0 (-8t) and where H0 again denotes the Yosida approximation of 
the heaviside graph. Furthermore, we. have introduced the notation A0 (.) : = - H0 ( - • ) . 

We have the following result for the regularized problem: 
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Theorem 3.1 Assume (A1}-(A6} and let Br E H 1 (0, T; H 1 (f2)). Then, if the incu-
bation time i1 E (0, T) has been chosen small enough, there exists a unique solution 
fh E H 211 (Q) = H 1 (0, T; L2 (D.)) n L2(0, T; H 2 (D.)) to (PJ). 

Proof: 

The proof is carried through using a fixed point argument. To this end, we define the 
space XT: H 1 (0, T; L2(f2)) endowed with the norm llulliT := llulli2(Q) + llutlli2(Q) and an 
operator 

F : KT c XT -4 XT, () = FB, 

where () is the solution of the following nonlinear parabolic problem: 

(pcl + D1 ( B)AJ) ( Bt) - k~f) 

-k ao = av 
0(.,0) = 

Here we used the abbreviations 

D2(B), in Q, 

r ( fJ - Br), in r x ( 0, T), 
A.,, inn. 

Di(B) pLm(B)(l - m - p)G(B), 
D2(B) - pLp(B)fJt, 

(3.4) 

(3.5a) 

(3.5b) 

(3.5c) 

(3.6) 
(3.7) 

where (p, m) is the solution to (2.9a-d) corresponding to B. Owing to the strong mono-
tonicity of the operator pcl + D1(B)AJ, using Rothe's method of implicit time discretiza-
tion, it is not difficult to prove that (3.5a-c) has a unique solution B. Testing (3.5a) with 
Bt and invoking Gronwall's inequality, we obtain the standard estimate 

t 

pc j j B~dxds + ~ j IV'IJ(t)l
2 
dx + ~ j O(t) 2du ~ M1, (3.8) 

o n n r 

where, thanks to (Al)-(A4) and Lemma 2.1(4), the constant M1 is independent of B. 
Hence, F is well-defined and a self-mapping on 

(3.9) 

for some constant M2 > 0. 
Now, let Bi EXT and Bi:= F(Bi) for i=l,2. 
Then, owing to Lemma 2.3 and (Al) - (A6), the following Lipschitz conditions hold a.e. 
in Q: 

t• t 

ID1(B1) - D1(B2)I < LilB1 - B2I + L2 J IB1 - B2lds + L3 J IB1,s - B2,slds (3.10) 
0 0 
t• t 

JD2(81) - D2(82 )J < LiJtl1 - ll2J + L2 j Jtl1 - tl2Jds +La j JB1,. - 82,.Jds,. (3.11) 
0 0 
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with t* := max{ t, t1 }. Inserting (Bi, Bi), i = 1, 2 into (3.5a-d), subtracting both equations 
and testing with 8t := 81,t - 82,t we find: 

t J J ( D2 (Bi) - D2 ( B2)) 8 8 dxds 
o n 

t t 

= pc j j e; dxds + j j D1 ( B1) (A;( B1,s) - A8( B2,s)) Bs dxds 
o n o n 
t 

+ j j AJ( 82,,) ( D1(61) - D1( 62)) 8, dxds + ~ j JVB(t)l2 dx + V 82(t) da 
o n n r 

t t 

> pc j j e; dxds + + j j A8(B2,s) ( D1(B1) - D1(B2)) Ba dxds. (3.12) 
o n o n 

Using Holder's and Young's inequalities, we get 

t J J A8 ( 82,s) ( D1 ( B1) - D1 ( B2)) 8 s dx ds 
o n 

(3.13) 

and 

(3.14) 

Thanks to (3.10) and the inequality 

(3.15) 

we obtain 
t j j ( D1(B1) - D1(B2) )2 dxds 

o n 
t• t 

< 3(£1 + t•2L2) j j (61 - 62)
2 

dxds + 3L3t2 j j (61,, - 62,.)2 dxds (3.16) 
o n o n 

T 

< 3(L1 + T 2L2)TllB1 - B2 llri°o(o,T;L2(n)) + 3L3T2 j j (81,s - B2,sf dxds. (3.17) 
o n 
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The same inequality holds for D2 ( B1 ) - D2 ( B2 ). Invoking the Poincare inequality 

t j 82 
( x, t) dxds :::; T j j e; ( x, s) dxds, (3.18) 

n o n 

we finally obtain 
(3.19) 

with a strictly increasing polynomial g. Since g(t) -r 0 for t -r 0, there exists r+ such 
that g(T+) < 1. Choosing t1 E (0, T+) the operator Fis well-defined and a contraction 
on KT+, whereby we have obtained a unique local solution of (P0) which in view of the a 
priori estimate (3.8) globally exists. 
Standard parabolic regularity results ( cf. [14)) finally yield that ( P0 ) has a strong solution 
() satisfying 

with a constant M3 > 0 independent of (). This finishes the proof of Theorem 3.1 . D 

Remark 3.2 Instead of assuming the incubation time t1 to be chosen 'small enough' one 
could als·o demand ~1; =· 0 a.e. in (0, t1) or p0 E(0,1) constant, independent of B. 
The first case refers to a heat treatment with a moderate cooling rate, producing pearlite 
and subsequently possibly some martensite. 
The second condition applies to quench cooling, i. e. very fast cooling to achieve a nearly 
pure martensitic structure. In this case it is reasonable to assume p0 to be constant, 
because no more pearlite will be formed during the cooling process. 

We have the following result for the general case: 

Theorem 3.2 Under the assumptions of Theorem 3.1, there exists a triple (8,w,v) E 

H 2 ,1 (Q) X L00 (Q) X L00 (Q), satisfying 

and 

pcBt + pLm(B)G(B)(l - p - m)w - ki6.8 = pLp(B)pt, 

-k ae av 
B( ., 0) 

1( B - Br ), in r x (O,T), 

A,,, inn, 

v E H(A,, - B), 

w E A(Bt), 
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in Q, (3.2la) 

(3.21b) 

(3.21c) 

(3.22) 

(3.23) 



a.e. in Q, where A:= -H(-. ). 
Here, for almost all x En, (p(x, .), m(x, .) ) is the solution to the following (IVP): 

p( x, 0) 
m(x, 0) 

Pt( x, t) 

mt(x, t) 

Po ( B ( x, . ) ) , ( cf. (2.4)) 
0, 

(1- p(x, t) - m(x, t))f(t,p(x, t),m(x, t)fJ(x, .))v(x, t), 

-(l -p(x,t)-m(x,t))G(B(x,t))w(x,t). 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

Proof: For 6 > 0 fixed, let Bd be the solution to (Pd)· Owing to (3.20), there exists a 
subsequence 

weakly in H 211 (Q) (3.25) 

and, inter alia, strongly in L2(Q). Hence, possibly extracting a further subsequence, we 
find 

a.e. in Q. (3.26) 

Vdt --t V, w01 -7 w weakly* inL00 (Q). (3.27) 

For x En\ N fixed, with a set N C n of measure zero, we call (p0(x,.),m0(x,.)) the 
solution to (2.32a-d) corresponding to 80• Thanks to Lemma 2.1(3),(4), there exists a 
constant c > 0 such that 

(3.28) 

Hence, there exist subsequences 

Po'(x, .) --t p(x, .), md1(x, .) -7 m(x, .) weakly* in W1
'
00 (0, T) (3.29) 

and uniformly in C[O, T]. On the other hand, we have 

Thus, possibly extracting a further subsequence, we get 

wd1(x, .) --t w(x, .) weakly* in L00 (0, T). (3.31) 

Moreover, thanks to Lebesgue's theorem, we find 

(1 - pd1(x, .) - md1(x, .))G(Bd1(x, .))cp-+ (1 - m(x, .) - p(x, .))G(B(x, .))cp (3.32) 
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strongly in L1(0, T) for any cp E L1(0, T). Hence, the right-hand side of (3.30) converges 
to (1 - m(x, .) - p(x, .))G(B(x, .)w(x, .) weakly* in L00 (0,T). Next, using (3.29) and 
(Al)-(A3) it is easily confirmed that 

8p6, 
{jt(x, .) --+ (1 - p(x, .) - m(x, .))f(.,p(x, .), m(x, .), 8(x, .))v(x, .), (3.33) 

weakly* in L00 (0,T), and (cf. [9], Lemma 3.1) 

Po (Ba' ( x, . ) ) --t Po ( B ( x, . ) ) . (3.34) 

This means, the limits (p(x, .), m(x, .)) in (3.33) are the solution to the (IVP) (2.32a-
d) with respect to the temperature evolution B(x, .), where we have replaced the terms 
H0( A., - B) and H0 ( -Bt( x,.)) with v( x,.) and w( x,. ), respectively. 
Invoking Lebesgue's theorem once again, we finally obtain: 

Po'--+ P ma' --+ m strongly in Lq( Q) (3.35) 

for any q E [1, oo ). Now we consider the weak formulation of (3.3) for cp E L2 (0, T; H1(f2)) 
chosen arbitrarily: 

T. 

j j (pcBo'," + pLm(B01)(l - Pa'~ ma1)G(Ba1)wa1)cpdxds 
o n 

T T T 

+k j j \1801\lcpdxds +1 j j (801 -Br)cpdads = p j j Lp(B.,)p01,.,cpdxds. (3.36) 
o n o r o n 

In view of (3.20), (3.27) and (3.35), using again Lebesgue's theorem we can pass to the 
limit in (3.36) and obtain 

T 

j j (pcB., + pLm(B)(l - p - m)G(B)w )cpd~ds 
o n 

T T T 
· +k j j '\18\lcpdxds + / j j (e - Br)cpdads = p j j Lp(B)p.,cpdxds. · (3.37) 

o n o r o n 

Furthermore, since Va'~ v weakly in L2(Q) and 801 ~ 8 strongly in L2(Q), using Lemma 
A.l, we can easily verify (3.22). 
Now, the crucial step is to show (3.23), i.e. w E A(Bt)· To this end, we define an operator 
T : L2(Q) ~ L2(Q) by 

T(u) := pLm(B)(l - m - p)G(B)A(u). (3.38) 

According to Lemma A.4, Tisa maximal monotone operator. Thus, to get 

pLm(B)(l - m - p)G(B)w E T(Bt), (3.39) 
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we have to show: 

T j j (PLm(B)(l - m - p)G(B)w -17) (et - e)dxdt ~ 0, (3.40) 
o n · 

for all ( e, TJ) E Graph(/). 
Since Wo' = A01( Bo',t) E A( J01( 801,t) ), we have 

pLm(B)(l - m - p)G(B)wo' E T(J01(801,t)), (3.41) 

therefore, for all (e, TJ) E Graph(/), the following inequality is valid: 

T 

0 < j j (PLm(B)(l - m - p)G(B)wo' - ry) (Jo,(Bo',t) - e)dxdt 
o n 

T T 
- - j j pLm(B)(l - m - ·p)G(B)wo'edxdt - j j ryJo1(80',t)dxdt 

o n o n 
T T 

+ j j ryedxdt + j j p(B)Lm(8)(1 - m - p)G(B)wo,Jo,(Bo',t)dxdt. (3.42) 
o n o n 

Owing to Lemma A.3, we have 

Jo,(Bo',t) = Bo',t-b'wo' 
----+ Bt weakly in L2 (Q) 

and 
T j j pLm(8)(1 - m - p)G(8)w01J01(801,t)dxdt 

o n 
T 

= j j pLm(li)(l - m-: p)G(li)WJ•li8',tdxdt 
o n 

T 

-£' j j p(B)Lm(B)(l - m - p)G(B)w~,dxdt. 
o n 

Therefore, in order to verify (3.40), it suffices to prove 

T 

limsup j j pLm(8)(1 - m - p)G(8)wo'8o',tdxdt 
o n 

T 

~ j j pLm(B)(l - m - p)G(B)wBtdxdt. 
o n 

17 

(3.43) 

(3.44) 

(3.45) 



To this end, we test (3.5a) by Bs',t to obtain 

T 

pc j j Lm(B,i-)(1- P8' - m8')G(B8')w8•B8',tdxdt 
o n 

T 

-pc j j B:.,,dxdt - ~ j IVBo•(T)l2 
dx + ~ j l\7Bol 2 

dx 
o n n n 
T T 

-1 j j ( Bs' - Br )Bs',tdadt + p j j Lp( Bs' )Ps',tBs',tdxdt. (3.46) 
o r o n 

According to Lemma A.5, Hs1(A.,-.) is the subdifferential of a convex function Hs(A.,-.) 
converging to H(A., - . ) and 81-l = fI. Then, in view of (2.9c), defining 

(3.47) 

the last term in (3.46) may be written in the following way: 

T T a j j Lp(B8' )P8',tB8',tdxdt = - j j 98' 8t 1-l8·(A, - 08' )dxdt 
o n o n 

t . a . T a 
= j j (9 - 98•) at 1-l8•(A, - B8•)dxdt.:... j j 9at1-l8·(A, - B8·)dxdt. (3.48) 

o n o n 

Since 98'-+ g strongly in L2(Q) we only have to consider the last integral in (3.47), which 
by integration by parts leads to 

T 

= h1-l8•(A, - 08•)1~ dx - j j ~~1-l8•(A, - 08.)dxds. (3.49) 
n o n 

On the other hand, thanks to (3.37), (3.22) and Lemma A.5(2), we have 

T T a j j gv8tdxdt. = - j jg at H( A., - B)dxdt 
o n o n 

T 

= - j 91-l(A, - BJI~ dx - j j ~~14·(A, - B)dxds. 
n o n 

Thus, invoking Lemma A.5(3) we can pass to the limit in (3.48) and obtain (3.50). 
For the boundary integral in (3.46) we obtain 

(3.50) 

T T 

j j (B8' - Br )B8',,dadt = ~ j Bi·I~ da + j j Br,,Bo·dadt - j BrB8·da. (3.51) 
o r r o r r 
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Hence, taking into account (3.48) - (3.51) and the lower semi-continuity of the norm with 
respect to weak convergence, a comparison with (3.37) shows that we can take lim sup on 
both sides of equation (3.46) to obtain 

T 

limsupp j j Lm(Bo,)(1 - Po' - mo1)G(Bo')w01801,tdxdt 
o n 

T 

~ p j j Lm(B)(l - m - p)G(B)wBtdxdt. 
o n 

This finishes the proof, since the last equation obviously implies (3.45). 

4 Conclusions 

(3.52) 

0 

Figure 4.1 depicts numerical simulations for the carbon steel C 1080 ( cf. Fig. 1.1) using 
the model under study in this paper (a) in comparison with the model in [9), which was 
based on the Koistinen and Marburger formula (b ). Owing to the irreversibility of our 
new model for the austenite-martensite phase transition, the cooling curves intersect the 
dotted Ma -line without showing unphysical heating-up effects seen in the old model. 
Now that an appropriate model for the complete eutectoid transformation is at hand, we 

. see two directions for further research: 

- extending the model to a broader class of steels; i.e. incorporating the formation of 
ferrite and bainite; 

- taking into account mechanical effects, which play an important role at least for the 
austenite-martensite phase transition. 

Finally, one could think of modelling the reverse transformation to austeni te (although 
there still seem to be some open questions concerning metallurgy). Then one would be 
able to describe the complete heat treatment cycle. 
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Figure 4.1: Numerical simulations of a CCT diagram: (a) new model, (b) old model, 
using Koistinen and Marburger formula. 
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Appendix 
Here we will briefly summarize some basic results about maximal monotone graphs, which 
can be found, e.g., in the monographs [3], [7] and in [8]. Throughout this section, we will 
assume that X is a Hilbert space, which we identify with its dual X*. 

Lemma A.1 B : X -+ 2X is maximal monotone, if and only if the statements (a) and 
(b) are equivalent: 

(a} For every (y, v) E Graph(B), < u - v, x - y > > 0. 

(b) u E B(x). 

Lemma A.2 (Minty) 
Let B : X -+ 2x be monotone. It is maximal monotone if and only if I + B is surjective. 

Lemma A.3 Let B : X -+ 2x be maximal monotone. Then, for all 8 > 0 the following 
are valid: 

{1} The resolvent J0 := (I+ 8B)-1 of B is a non-expansive single valued map from X 
to x. 

{2) The Yosida approximation B0 :=~(I - Jo) of B satisfies 

(i) B0(x) C B(Jo(x)), VxEX, 

{ii} B0 is Lipschitzean with constant ~ and maximal monotone. 

· {3} For all x E Dam(B) 

{i} Jo(x) --+ x, 
(ii} B0 (x) --7 m(B(x)), where m(B(x)) is the element of B(x) with minimal 

norm. 

Lemma A.4 Let fI : IR -+ 2lR. be the heaviside graph 

! {1} 
iI(x) = [0,1] 

{O} 

,x > 0, 
,x = 0, 
,x < 0, 

and f E L 2 (0), n C IRn satisfying f(e) ~ 0 a.e. in 0. Then, T : L2(0) -7 2L
2
(n), defined 

by 

is maximal monotone. 
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Proof: 
It is easy to see that T is monotone. We apply Lemma A.2 to verify that T is max-
imal monotone. Let Jo, H0 denote the resolvent and the Yosida approximation of if, 
respectively. 
Given. y E L2 (f2), fore En\ N, with N of measure zero, we define 

Then x is measurable and, since 

using Lemma A.3(1),(2) we have 

i.e. x E L 2 (f2). 

, if f(e) = o, 
, if f(e) > o. 

Moreover, by its definition it is clear that x is a solution of y E (I+ T)(x). 

Lemma A.5 Let fI again denote the heaviside graph, then: 

{ 1} fI is the subdiff erential of the convex function 

1i(x) := { ~ 

(2) Let f E H 1(a, b), then 

! 1i(f(t)) = a.t'(t), 

,x < 0 
,x ~ 0. 

\-/a E H(f(t)). 

{3} Let 1-l0(x) := ~H](x) + 1-l(x), then 81i0 = H0 and 1i0(x)-+ 1-l(x). 
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