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Abstract. We study point processes on the real line whose configurations X can
be ordered decreasingly and evolve by increments which are functions of correlated
gaussian variables. The correlations are intrinsic to the points and quantified by a
matrix Q = {qij}. Quasi-stationary systems are those for which the law of (X, Q)
is invariant under the evolution up to translation of X . It was conjectured by
Aizenman and co-authors that the matrix Q of robustly quasi-stationary systems
must exhibit a hierarchal structure. This was established recently, up to a natural
decomposition of the system, whenever the set SQ of values assumed by qij is
finite. In this paper, we study the general case, where SQ may be infinite. Using
the past increments of the evolution, we show that the law of robustly quasi-
stationary systems must obey the Ghirlanda-Guerra identities, which first appear
in the study of spin glass models. This provides strong evidence that the above
conjecture also holds in the general case.
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1. Introduction

1.1. Background. Competing particle systems are point processes X = {Xi} on
R whose configurations can be ordered in decreasing order X1 ≥ X2 ≥ .... We
study a dynamics of X where the particles compete in the sense that, at each time
step, the positions are evolved by increments whose correlations depend on intrinsic
characteristics of the points. Precisely, we assign to each X a covariance or overlap

matrix Q = {qij}. The overlap qij quantifies the similarity between the i-th point
and the j-th point. We set the overlap to 1 when the particles are identical i.e. qii = 1
for all i. As Q is a covariance matrix, it follows that |qij | ≤ 1. The overlaps are not
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affected by the dynamics and are simply permuted under evolution. Precisely, let ψ

be some real function, the dynamics is (X,Q) 7→ (X̃, Q̃) with

X̃i = Xπ(i) + ψ(κπ(i))

q̃ij = qπ(i)π(j) ,(1)

where π is a permutation of N which reorders X̃i and κ is a gaussian field independent
of X with covariance given by an entry-wise power of Q.

The question of interest is to characterize the distributions on the pair (X,Q) which
are quasi-stationary in the sense that the joint law of the gaps of X and Q is
invariant under the stochastic evolution (1) (see also [7] and [11] for related setups).
The uncorrelated case where Q is the identity was handled in [13]. Under mild
assumptions on X, it was shown that quasi-stationarity implies that the statistics
of the gaps are those of a Poisson process on R with exponential density. The
correlated case was first studied in [3]. It was proven that, under some robustness
conditions on the quasi-stationary property and up to a natural decomposition of
the system, Q must exhibit a hierarchal structure whenever the state space of the
overlaps was finite i.e. the possible values taken by qij . The aim of this paper is to
provide evidence that the hierarchal structure is also necessary for quasi-stationarity
to hold when the state space is infinite. Namely, we establish that Q must satisfy
constraining identities which are consistent with the hierarchal structure. These
identities are known as the Ghirlanda-Guerra identities in statistical mechanics [9].

For our purpose, we can assume that X has infinitely many particles a.s. because
no finite systems can be quasi-stationary due to the spreading of the gaps under
evolution [13]. As in [3], we restrict ourselves to X for which there exists β > 0
such that

∑
i e
βXi < ∞ a.s. In this case, one can see (X,Q) as a Random Overlap

Structure or ROSt (ξ, Q) by mapping X to the exponentials of the position:

(2) ξi =
eβXi

∑
i e
βXi

.

Definition 1.1. A ROSt is a random variable on the space Ωos := Pm×Q where Pm
is the space of sequences (si, i ∈ N) such that s1 ≥ s2 ≥ ... ≥ 0 with

∑
i si ≤ 1 and

Q is the space of positive semi-definite symmetric matrices with 1 on the diagonal.

The space Ωos is equipped with the uniform topology on the sequences s together
with the topology on Q inherited from the product topology on [−1, 1]N×N. This
renders the space Ωos compact and separable (see [3] for details). From the ROSt
perspective, we may assume that Q is supported on positive definite matrix i.e. that
|qij| < 1. Indeed, we simply identify two particles i and j for which qij = 1 and add
their weight. From (2), we see that the competitive evolution (1) becomes

(3) (ξ, Q) 7→ Φψ(κ)(ξ, Q) :=



(

ξie
ψ(κi)

∑
j ξje

ψ(κj )
, i ∈ N

)

↓

, π ◦Q ◦ π−1


 .

Again, π is the reshuffling induced by the mapping and the symbol ↓ means that the
weights are reordered in decreasing order after evolution. The evolved weights are
normalized to sum up to 1. For simplicity, we will sometimes drop the dependence
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on ψ and write Φr for the mapping (3) where κ has covariance Q∗r, the r-th entry-
wise power of Q. Since the normalized weights depend only on the gaps of X,
quasi-stationarity of (X,Q) under (1) translates into the invariance of the law of
(ξ, Q) under Φr.

Definition 1.2. Fix ψ : R → R. A ROSt (ξ, Q) is quasi-stationary under Φr if

Φr(ξ, Q)
D
= (ξ, Q)

where the symbol
D
= means equality in distribution. It is said to be robustly quasi-

stationary if it is quasi-stationary under Φr for infinitely many r ∈ N.

Note that quasi-stationary ROSt’s must satisfy
∑

i ξi = 1 a.s. due to renormalization
of the weights. As Ωos is compact and separable, one can decompose a quasi-
stationary ROSt under Φr into ergodic ROSt’s for which the only functions f :
Ωos → Ωos satisfying Er

[
f (Φr(ξ, Q))

∣∣ξ, Q
]

= f(ξ, Q) a.s. are the constants.

A sufficient condition for the evolution (3) to be non-singular and for Φr(ξ, Q) to be
a ROSt is the finiteness of the expectation of eψ(κ). Throughout this paper, ψ will
be fixed and assumed to belong to the following class of functions which ensures this
condition. This class also allows a good control on the evolution.

Assumptions 1.3. The function ψ : R → R is in C2(R) with bounded derivatives.

Furthermore, for Y a standard gaussian variable, the law of ψ(Y ) is absolutely

continuous with respect to the Lebesgue measure.

1.2. Main Results. The only known examples of quasi-stationary ROSt’s for all ψ
satisfying Assumption 1.3 are given by the so-called Ruelle Probability Cascades or
RPC’s [12, 6, 2]. The RPC’s are constructed from Poisson-Dirichlet variables and
the Bolthausen-Sznitman coalescent. This coalescent is a Markov process Γ = (∼t

, t ≥ 0) on the space of equivalence relations on N for which i ∼t j implies i ∼s j
for all s ≥ t. For more on these processes, the reader is referred to [5, 6].

Definition 1.4. Let x : q 7→ x(q) be a distribution function on [0, 1] with x(1−) 6= 1.
A RPC with parameter x is the ROSt (ξ, Q) where ξ is a Poisson-Dirichlet vari-

able PD(x(1−), 0) and Q is as follows. Let Γ be a Bolthausen-Sznitman coalescent

independent of ξ. Then

qij = x−1(e−τij )

where τij := min{t : i ∼t j} and x−1 is the right-continuous inverse of x. In

particular, P(qij ≤ q) = x(q) for all i 6= j.

It was conjectured by Aizenman et al that the RPC’s were the only ROSt’s that
are quasi-stationary in a robust sense, where the notion of robustness was to still be
determined [2]. The striking point of the conjecture, if proven true, is the necessity
of hierarchal correlations for stability under competitive evolution. Indeed, the RPC
inherits a hierarchal structure from the coalescent i.e.

(4) (qij = q and qjk = r) =⇒ qik = min{q, r} .

A proof of a version of the conjecture was given in [3] for systems with finite state-
space i.e. for which the random set SQ := {qij : 1 ≤ i < j < ∞} is finite a.s.
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Such systems can be decomposed into subsystems called Q-factors for which the
sets SQ(i) := {qij : j 6= i} are identical for each i. It was proven that if (ξ, Q)
is robustly quasi-stationary and ergodic for multiples of a smooth function ψ, then
each of its Q-factors is a RPC. Our first result is to show that the decomposition into
Q-factors is not necessary whenever quasi-stationarity is assumed under ψ(βκ+ h)
for all r ∈ N provided ψ′(h) 6= 0.

Theorem 1.5. Let h ∈ R be such that ψ′(h) 6= 0. If a ROSt with finite state

space is quasi-stationary and ergodic under Φr with function ψ(βκ + h) for β in a

neighborhood of 0 and for all r ∈ N, then it is a RPC. In particular, Q satisfies (4)
almost surely.

In the general case where SQ may be infinite, it was shown in [3] that:

Theorem 1.6 (Theorem 4.2 in [3]). Let (ξ, Q) be a ROSt that is robustly quasi-

stationary and ergodic for some function ψ satisfying Assumption 1.3. The following

hold:

(1) ξ is a Poisson-Dirichlet variable independent of Q;

(2) Q is directed by a random probability measure µ on a Hilbert space H:

for i 6= j, qij = (φi, φj) where (φi, i ∈ N) are iid µ-distributed.

In the case of finite state space, the directing measure is discrete. It is then possible
to carry an induction argument on the cardinality of the state space to prove that the
directing measure is again a cascade. In the present paper, we provide strong iden-
tities that must be generally satisfied by the directing measure of a quasi-stationary
ROSt. Our main result is:

Theorem 1.7. Let h ∈ R be such that ψ′(h) 6= 0. Consider a ROSt that is quasi-

stationary and ergodic under Φr with function ψ(βκ+h) for all β in a neighborhood

of 0 and for every r ∈ N. Then, its directing measure µ satisfies

(5) E

[
s⊗

t=1

µ (qs,s+1 ∈ A|Fs)

]
=

1

s
E [µ⊗ µ (q12 ∈ A)] +

1

s

s−1∑

l=1

χA(qls)

for every s ∈ N where A ⊆ [−1, 1], χA is the identity function of the set A and Fs

is the σ-field generated by the Gram matrix of s vectors.

When ψ is linear, quasi-stationarity for β in any open interval is sufficient for the
identities to be valid. In fact, the assumption that this interval contains 0 is only
used to reduce the general case to the linear one. The identities (5) are known as the
Ghirlanda-Guerra identities in the study of spin glass models [9, 8]. It is a non-trivial
fact that they arise in the general setting of competing particle systems. They are
satisfied by the RPC’s and hence consistent with hierarchal overlaps. In fact, the
Ghirlanda-Guerra identities have a simple interpretation: conditionally on the inner
product of s vectors q12 ... qs−1,s, the inner product of an additional vector drawn
under µ with a previous one is independent of the given frame with probability 1/s
or takes the value qls, 1 ≤ l ≤ s− 1, each with probability 1/s.
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The main concept used to derive Theorems 1.7 and 1.5 is the so-called past veloc-

ity. Precisely, in Section 2, we consider independent time-steps of the evolution Φr

keeping track of the past time-steps. The past velocity is simply defined as the
time-average of the past increments. It is shown to exist and to be common to all
particles whenever the system is quasi-stationary. Similarly as in [3], the study of the
evolution for a generic ψ can be reduced to a linear ψ by a Central Limit Theorem
argument as explained in Appendix B. It turns out that the collection of velocities
obtained from the different linear evolutions single out the parameter of the RPC
thereby yielding Theorem 1.5. In Section 3, we used the fact that the velocity is
common (and deterministic for ergodic systems) to conclude that the distribution
of Q satisfies the Ghirlanda-Guerra identities. The argument is very similar to the
proof of these identities for spin glass models in the sense that the common velocity
plays the role of the self-averaging of the internal energy. Along the way, we also
prove that quasi-stationary ROSt’s obey the so-called Aizenman-Contucci identities,
which can be seen as a weaker version of the Ghirlanda-Guerra identities [1].

2. The Past Velocity

2.1. Definition. The past velocity naturally appears when re-expressing the evo-
lution (3) as a deterministic mapping on a space that includes the past and future
increments of the evolution.

Let νQ∗r be the law of the gaussian field κ with covariance Q∗r and P the law of
some ROSt. We consider Pr the probability measure on Ωos ×

∏∞
t=0 R

N consisting
of P, coupled through Q, with independent copies of the field:

(6) dPr = dP(ξ, Q) ×
∏

t≥0

dνQ∗r(κ(t)).

Clearly, the future increments (κ(t), t ≥ 0) are exchangeable given (ξ, Q) as they are
simply iid. We are interested in extending the probability measure Pr in a consistent
way to include the past increments (κ(t), t < 0) and thus get a probability measure
on

Ω := Ωos ×
∏

t∈Z

R
N.

The relevant dynamics on the space Ω is the evolution (3) on (ξ, Q) together with
a time-shift of the fields. We stress that the field κ must also be reindexed after
evolution.

Definition 2.1. Let Φψ(·) be of the form (3). We define the mapping Λ : Ω → Ω

Λ(ω) = Λ(ξ, Q, (κ(t), t ∈ Z)) :=
(
Φψ(κ(0))(ξ, Q), (κ↓(t+ 1), t ∈ Z)

)

where ↓ stands for the reindexing of the gaussian field with respect to the ordering

of the points after evolution by Φψ(κ(0)).

It is shown in Appendix A that the extension of Pr to Ω exists whenever the system
is quasi-stationary. Furthermore, similarly as for the future increments, the sequence
of past increments is exchangeable conditionally on (ξ, Q).
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Lemma 2.2 (Appendix A). Let (ξ, Q) be a quasi-stationary ROSt under Φr for

some r ∈ N. There exists a unique Λ-invariant probability measure on Ω whose

restriction on Ωos is the law of (ξ, Q). This measure is ergodic under Λ if and only

if (ξ, Q) is ergodic.

Moreover, the sequence of past increments (κ(t), t < 0) is exchangeable under this

probability measure conditionally on (ξ, Q).

From now on, we will also write Pr for the extension of the probability measure (6)
to Ω. Even though Pr now explictly depends on ψ, we omit it to lighten notation.

Definition 2.3. The past velocity of the i-th point is the time-average of its past

increments i.e. for ω ∈ Ω

(7) vi(ω) := lim
T→∞

1

T

T∑

t=1

ψ(κi(−t)).

It is important to bear in mind that the velocity is in essence very different from the
time-average of the future increments due to the reordering. Indeed, the i-th point
moved in front of all but i−1 points during the course of the competitive evolution.
Thus its past increments are by nature atypical. The existence of the limit (7) is a
simple consequence of the exchangeability of the increments.

Proposition 2.4. Let (ξ, Q) be a quasi-stationary ROSt under Φr for some r ∈ N.

For all i ∈ N, the limit vi(ω) exists Pr-a.s. Moreover, the velocity is intrinsic to a

particle in the sense that

(8) vi(ω) = vπ(i)(Λω)

where π is the permutation induced by the evolution ω 7→ Λω.

Proof. By de Finetti’s theorem and the exchangeability of the past increments as-
serted in Lemma 2.2, the fields (κ(t), t < 0) are iid given (ξ, Q) and α, the empirical
distribution of (κ(t), t < 0). On the other hand, it is proven in Lemma A.2 of Ap-
pendix A that Er

[
|ψ(κi(−1))|

∣∣ξ, Q, α
]
<∞ a.s. Thus the first claim follows by the

law of large numbers. The equality (8) is clear as the past velocity depends only on
increments in the distant past. �

2.2. The velocity is common. We now make rigorous the intuitive idea that the
points must share a common velocity for the system to be stable.

Proposition 2.5. If (ξ, Q) is a quasi-stationary ROSt under Φr for all functions

λψ, λ in some open set of R. Then vi(ω) ≡ v(ω) for all i ∈ N Pr-a.s.

If it is ergodic, then the past velocity is deterministic and

v(ω) = Er

[
∑

i

ξi ψ(κi(−1))

]
Pr-a.s.
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Before proving the proposition, we need to introduce the generating function of the
cumulants of the past increments. Let (ξ, Q) be a ROSt. For λ ∈ R, we set

(9) Pr(λ) := Er

[
log
∑

i

ξie
λψ(κi(0))

]
.

Pr(λ) is well-defined in the case ψ satisfies Assumption 1.3 since by Jensen’s in-
equality

0 ≤ Pr(λ) ≤ log

∫

R

e−z
2/2

√
2π

eλψ(z)dz .

In the case where (ξ, Q) is quasi-stationary, we have for all T ∈ N

(10) Pr(λ) =
1

T
Er

[
log
∑

i

ξie
λ

PT−1
t=0

ψ(κi(t))

]
.

The function Pr(λ) is a good tool to compare the past increments of a point i with
the ξ-averaged increment.

Lemma 2.6. Let (ξ, Q) be a quasi-stationary ROSt under Φr for all functions λψ,

λ in some open set of R. Define Si(T ;ω) := 1
T

∑T
t=1 ψ(κi(−t)) and 〈S(T )〉ω :=∑

i ξi Si(T ;ω). Then for all T ∈ N

d

dλ
Pr(λ) = Er [〈S(T )〉ω] = Er

[
∑

i

ξi ψ(κi(−1))

]

and

1

T

d2

dλ2
Pr(λ) = Er

[
∑

i

ξi (Si(T ;ω) − 〈S(T )〉ω)2

]
.

In particular,

(11) lim
T→∞

Er

[
∑

i

ξi (Si(T ;ω) − 〈S(T )〉ω)2

]
= 0 .

Proof. The two expression of the derivatives are obtained by explicitly differentiat-
ing equation (10) inside the expectation. We note that the expectation does not
depend implicitly on λ in this case since only future increments are considered. The
condition that quasi-stationarity holds for λ in an open set of R is necessary for the
identity (10) to hold in a neighborhood of the point where the derivative is taken.
Linearity of expectation and the exchangeability of the increments yield the second
equality for d

dλ
Pr(λ). The limit T → ∞ follows directly from the fact that Pr(λ)

has a finite second derivative. �

Proof of Proposition 2.5. We claim that there exists a sequence Tn ∈ N such that
for all i ∈ N as n→ ∞
(12)

∣∣Si(Tn;ω) − 〈S(Tn)〉ω
∣∣→ 0 Pr-a.s.
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Indeed, it follows from equation (11) of Lemma 2.6 that as T → ∞
∑

i

ξi (Si(T ;ω) − 〈S(T )〉ω)2 → 0 in L1(Pr) .

This ensures the existence of the subsequence for which the convergence (12) holds
Pr-a.s. for all i ∈ N. On this subsequence, we also have that Si(Tn;ω) → vi(ω) a.s.
for every i ∈ N by Proposition 2.4. We conclude that vi(ω) = limn→∞〈S(Tn)〉ω a.s.
The first part of the proposition is proven.

As the past velocity is common, the following equality holds by equation (8)

v(ω) =
1

T

T−1∑

t=0

v(Λtω) .

We now take the limit T → ∞. Birkhoff’s ergodic theorem can be applied since
v(ω) ∈ L1(Pr). Indeed,

Er[|v(ω)|] = Er

[
lim
n→∞

〈S(Tn)〉ω
]
≤ Er

[
∑

i

ξi |ψ(κi(−1))|
]

where we used Fatou’s Lemma and exchangeability. The r.h.s. is finite by the proof
of Lemma A.2. Therefore, we have v(ω) = Er[v(ω)] Pr-a.s. whenever (ξ, Q) is
ergodic. In particular, by dominated convergence and Lemma 2.6

Er[v(ω)] = Er

[
lim
n→∞

〈S(Tn)〉ω
]

= Er

[
∑

i

ξi ψ(κi(−1))

]
.

�

2.3. Velocity and Decomposability. The velocity and the generating function
Pr(λ) take a simple form when the evolution Φr is governed by a linear function.

Lemma 2.7. Let (ξ, Q) be a quasi-stationary ROSt under the evolution Φr for all

linear functions ψ(κ) = λκ, λ in some open set of R. One has

(13) Pr(λ) =
λ2

2

∫ 1

−1

(1 − qr) dx(q)

where x(q) is the ξ-sampled distribution function E

[∑
i,j ξiξj χ{qij≤q}

]
.

In particular, if (ξ, Q) is ergodic then

(14) v(ω) = λ

∫ 1

−1

(1 − qr) dx(q) Pr-a.s.

Proof. We take the derivatives of (9) using the gaussian differentiation formula (see
e.g. Appendix A in [2])

d

dλ
Pr(λ) = λ

(
1 − Er

[∑
i,j ξiξje

λκi(0)eλκj(0) qrij∑
i,j ξiξje

λκi(0)eλκj(0)

])
.
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As the ROSt is quasi-stationary, the right-hand side simply becomes

λ

(
1 − E

[
∑

i,j

ξiξj q
r
ij

])
= λ

∫ 1

−1

(1 − qr) dx(q) .

Integration over λ yields the first assertion. The second is obtained from Lemma
2.6 and Proposition 2.5. �

We remark that the full collection of velocities of the evolutions Φr, r ∈ N, singles
out the probability measure dx(q) because it determines all the moments. This
simple observation is applied to prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma B.1 proven in Appendix B, if (ξ, Q) is quasi-
stationary for the functions ψ(βκ+h) for all β in a neighborhood of 0, then it must
be quasi-stationary for the linear functions. In particular, we can conclude from
Theorem 4.4 in [3] that the Q-factors of (ξ, Q) must be RPC’s. On the other hand,
the velocities of each point must be common and deterministic by Proposition 2.5.
In particular, the velocities of each Q-factor must correspond for every evolution
Φr, r ∈ N. We deduce that the measure dx(q) of each Q factor is the same since
the collection of velocities determines the moments by equation (14). Recall from
Definition 1.4 that the parameter x(q) characterizes the law of a RPC. We conclude
that (ξ, Q) has only one Q-factor and the claim follows. �

3. The Distributional Identities

We present the proof of Theorem 1.7 in this section. In essence, the Ghirlanda-
Guerra identities follow from the fact that the velocity is common to all particles
and deterministic when the system is ergodic under the considered evolutions. This
property can be seen as the equivalent of the self-averaging of the internal energy
for spin glass models. As a first step, we remark that quasi-stationary systems
satisfy the weaker Aizenman-Contucci identities which were derived prior to the
Ghirlanda-Guerra identities for spin glasses [1].

3.1. The Aizenman-Contucci identities. It is convenient to introduce a notation
for the ξ-sampled measure on overlaps. Namely, let Fs(q) be a bounded measurable
function on the overlaps of s points, we write

E
(s)[Fs(q)] := E

[
∑

i1,...,is

ξi1...ξis Fs({qil,il′}l<l′)
]
.

Such an expectation is plainly invariant under evolution for quasi-stationary ROSt’s
e.g. for linear ψ

(15) Er

[∑
i1,...,is

ξi1e
λκi1 ...ξise

λκis Fs(q)∑
i1,...,is

ξi1e
λκi1 ...ξise

λκis

]
= E

(s)[Fs(q)].

In particular, the right-hand side of the above equation does not depend on λ. This
simple fact yields moment relations for quasi-stationary ROSt’s.
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Proposition 3.1. Let h ∈ R be such that ψ′(h) 6= 0. If (ξ, Q) is a quasi-stationary

ROSt under Φr with function ψ(βκ + h) for all β in a neighborhood of 0, then for

any s ∈ N, its law satisfies

s− 1

2
E

(s) [qr12Fs(q)] = s E
(s+1)

[
qrs,s+1Fs(q)

]
− s+ 1

2
E

(s+2)
[
qrs+1,s+2Fs(q)

]
.

Proof. By Lemma B.1, (ξ, Q) is quasi-stationary under Φr for all linear functions λκ,
λ in an interval containing 0. Therefore, equation (15) holds for these λ. Straight-
forward gaussian differentiation with respect to λ on both sides of (15) yields the
desired relation. �

The above is a slight generalization of the Aizenman-Contucci identities derived for
mean-field spin glass models where Fs is a polynomial [1]. It is a simple exercise to
check that these identities are implied by the Ghirlanda-Guerra identities (see e.g.
[9]). Therefore, one could ask what extra condition should the system fulfill in order
to satisfy the latter. It turns out that ergodicity suffices.

3.2. The Ghirlanda-Guerra identities. The key lemma used in the proof of our
main result is a factorization of the expectation for observables of a specific form.
A similar factorization was used in the case of spin glass systems to prove the
Ghirlanda-Guerra identities (see equation (12) in [9]).

Lemma 3.2. Let (ξ, Q) be a ROSt that is quasi-stationary and ergodic under Φr

for all linear function ψ(κ) = λκ for λ in an interval containing 0. Consider Fs(q)
a bounded function on the overlaps of s points. Then the following holds

(16) Er

[
∑

i1,...,is

ξi1...ξis κi1(−1)Fs(q)

]
= Er

[
∑

i

ξi κi(−1)

]
E

(s) [Fs(q)] .

Proof. The exchangeability in time of the past increments yields

(17) Er

[
∑

i1,...,is

ξi1...ξis κi1(−1)Fs(q)

]
= Er

[
∑

i1,...,is

ξi1...ξis

(
1

T

T∑

t=1

κi1(−t)
)
Fs(q)

]

for all T ∈ N. Recall that Fs is bounded, say |Fs(q)| ≤ C for some C > 0, so

∣∣∣Er

[
∑

i1,...,is

ξi1...ξis

(
1

T

T∑

t=1

κi1(−t)
)
Fs(q)

] ∣∣∣ ≤ CEr

[
∑

i

ξi |κi(−1)|
]

which is finite by Lemma A.2. Therefore we can take the limit T → ∞ of equation
(17) and by dominated convergence we get

lim
T→∞

Er

[
∑

i1,...,is

ξi1 ...ξis

(
1

T

T∑

t=1

κi1(−t)
)
Fs(q)

]
= Er

[
∑

i

ξi κi(−1)

]
E

(s) [Fs(q)]

since the velocity is common and deterministic by Proposition 2.5. �
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The next proposition claims the moment version of the Ghirlanda-Guerra identities
under the stability hypothesis.

Proposition 3.3. Let ψ, Fs and (ξ, Q) be as in Proposition 3.1. If (ξ, Q) is also

ergodic under the considered evolutions, then for any s ∈ N its law satisfies

(18) E
(s+1)

[
qrs,s+1Fs(q)

]
=

1

s
E

(2)[qr12]E
(s)[Fs(q)] +

1

s

s−1∑

l=1

E
(s)[qrlsFs(q)]

Proof. As in the proof of Proposition 3.1, (ξ, Q) must be quasi-stationary under Φr

for all linear functions λκ for λ in an interval containing 0. In particular, it fulfills
the hypothesis of Lemma 3.2. We take the λ-derivative on both sides of the identity
(16). A quick computation of the gaussian derivative of the left-hand side is possible
as Proposition 3.1 and the factorization property show that only the terms where
κi1 is hit by the derivative are relevant. The straightforward calculation yields for
the left-hand side

s∑

l=1

E
(s) [qrlsFs(q)] − sE(s+1)

[
qrs,s+1Fs(q)

]
.

The derivative of the r.h.s is simply (1−E
(2)[qr12])E

(s) [Fs] by Lemma 2.7. The claim
follows by combining both sides. �

Theorem 1.7 is now an easy corollary of the proposition.

Proof of Theorem 1.7. By the hypothesis of the theorem, the ROSt is quasi-stationary
under Φr for all r ∈ N. In particular, the identities (18) hold for every r ∈ N and
hence for the distribution conditioned on the σ-field Fs generated by the overlaps
of s points

P
(s+1) (qs,s+1 ∈ A |Fs) =

1

s
P

(2)(q12 ∈ A) +
1

s

s−1∑

l=1

χA(qls)

where A ⊆ [−1, 1]. On the other hand, ξ is independent of Q by Theorem 1.6.
Therefore, equation (18) actually holds for every fixed integer i1, ..., is

P
(
qis,is+1

∈ A |Fs

)
=

1

s
P(qi1i2 ∈ A) +

1

s

s−1∑

l=1

χA(qil,is).

Moreover, we know that given the directing measure µ on H, Q is constructed as
the Gram matrix of iid µ-distributed elements. Hence the above can be rewritten
as

E

[
s⊗

t=1

µ (qs,s+1 ∈ A|Fs)

]
=

1

s
E [µ⊗ µ (q12 ∈ A)] +

1

s

s−1∑

l=1

χA(qls)

and the theorem is proven.

�
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Appendix A. The evolution Φ revisited

In this section, we prove Lemma 2.2 on the existence of a Λ-invariant probability
measure on Ω = Ωos ×

∏
t∈Z

E
N which extends the law of a quasi-stationary ROSt.

The exchangeability of the past time-steps of the evolution is also shown. We split
the proof into two lemmas.

Lemma A.1. Let (ξ, Q) be a quasi-stationary ROSt under Φr. There exists a unique

Λ-invariant probability measure on Ω whose restriction on Ωos is the law of (ξ, Q).
Moreover, this measure is ergodic under Λ if and only if (ξ, Q) is ergodic.

Proof. For convenience, we denote the evolution Φψ(κ(t)) by Φt to lighten notation.
We also write Λ for the map on the space Ω−T := Ωos ×

∏
t≥−T R

N whose action is
to evolve the configuration recording the present increment as the last one:

Λ : Ω−T → Ω−T−1

(ξ, Q, (κ(t), t ≥ −T )) 7→
(
Φψ(κ(0))(ξ, Q), (κ↓(t+ 1), t ≥ −T − 1)

)

First, consider the collection of measures P
(T )
r := Pr ◦ Λ−T , T ∈ N, where Pr is of

the form (6). We will prove that these measures are consistent: for all T ∈ N,

(19) P
(T+1)
r

∣∣∣
Ω−T

= P
(T )
r .

The extension of Pr to Ω then follows by Kolmogorov’s extension theorem. By

definition, P
(T )
r is the distribution of

(20) (ΦT−1 ◦ ... ◦ Φ0(ξ, Q), (κ↓(t+ T ), t ≥ −T ))

under Pr. Similarly, P
(T+1)
r restricted to Ω−T corresponds to the distribution of

(ΦT ◦ ... ◦ Φ1 (Φ0(ξ, Q)) , (κ↓(t+ T + 1), t ≥ −T )) .

By stationarity, Φ0(ξ, Q), has the same distribution as (ξ, Q) though its law depends
explicitly on κ(0). However, as the field (κ(t + T + 1), t ≥ −T ) depends only on
κ(0) through Q and as the distribution of Q is preserved under evolution, we have

that the restriction of P
(T+1)
r is the law of

(ΦT ◦ ... ◦ Φ1(ξ, Q), (κ↓(t+ T + 1), t ≥ −T ))

which only differs from (20) by a mere relabeling of t. Equation (19) is established
and the existence is proven. The invariance under Λ is straightforward from the
construction of the measure. Moreover, the extension is ergodic as it is extremal in
the set of Λ-invariant measure if and only if the law of (ξ, Q) is extremal. �

Lemma A.2. The sequence of past increments (κ(t), t < 0) is exchangeable condi-

tionally on (ξ, Q) under the probability measure constructed in Lemma A.1.

Let α be the empirical measure of (κ(−t), t ∈ N). The random variables ψ(κi(−t))
have finite p-moments under the probability measure Pr( · |ξ, Q, α) for any i, t ∈ N

and 1 ≤ p <∞ a.s.
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Proof. Denote by σ(X) the σ-algebra generated by a random variable X. Define

Si(T − 1) :=
∑T−1

t=0 ψ(κi(t)) where the indexing i is done through the ordering at
time 0. We claim that

(21) σ
(
ξ, Q, (Si(T − 1), i ∈ N)

)
= σ

(
ΦT−1 ◦ ... ◦ Φ0(ξ, Q), (S̃j(T − 1), j ∈ N)

)

where (S̃j(T − 1), j ∈ N) := (Si(T − 1), i ∈ N)↓ are the increments of the T time-
steps reindexed with respect to the ordering after evolution. To shorten notation,
let us write G for the left-hand side and G̃ for the right-hand side. For convenience,
we write ξ̃ for the evolved ξ after T time-steps i.e.

ξ̃ :=

(
ξie

Si(T−1)

∑
k ξke

Sk(T−1)
, i ∈ N

)

↓
.

It is clear from the above expression that ξ̃ is G-measurable. As the reindexing of
Q and Si(T − 1) induced by the evolution depends only on ξ̃, we see that actually

ΦT−1◦ ...◦Φ0(ξ, Q) and (S̃j(T−1), j ∈ N) are G-measurable. The ⊇ part of equation
(21) is proven. For the ⊆ part, it is easy to check that

ξ =

(
ξ̃je

−S̃j(T−1)

∑
k ξ̃ke

−S̃k(T−1)
, j ∈ N

)

↓

.

Similarly as before, we conclude that (ξ, Q) and (Si(T −1), i ∈ N) are G̃-measurable.
Equation (21) is proven

Recall that the fields κ(t) , 0 ≤ t ≤ T − 1, indexed by the ordering at time 0 are
iid-distributed conditionally on (ξ, Q). In particular, they are exchangeable given
the sums (Si(T − 1), i ∈ N). Therefore, for any permutation ρ of T elements, the
following holds

Pr(κ(t) ∈ At, 0 ≤ t ≤ T − 1 |G) = Pr(κ(ρt) ∈ At, 0 ≤ t ≤ T − 1 |G)

for any At, 0 ≤ t ≤ T −1, Borel sets of R
N. Moreover, the fields κ(t) can be indexed

with the ordering at time T as this ordering is G-measurable. From (21), it follows
that

Pr(κ(t) ∈ At, 0 ≤ t ≤ T − 1 |G̃) = Pr(κ(ρt) ∈ At, 0 ≤ t ≤ T − 1 |G̃).

The first claim is obtained from the above by integrating over (S̃j(T − 1), j ∈ N)↓
and using invariance under Λ.

For the second claim, we can assume without loss of generality that p is an integer.
By exchangeability in t, it suffices to prove the claim for ψ(κi(−1)), i ∈ N. The
conclusion will be obtained by proving that Er [

∑
i ξi |ψ(κi(−1))|p ] <∞. We have

by definition of the past increment

Er

[
∑

i

ξi |ψ(κi(−1))|p
]

= Er

[∑
i ξie

ψ(κi(0)) |ψ(κi(0))|p∑
j ξj e

ψ(κj (0))

]
.

The Cauchy-Schwarz inequality followed by applications of Jensen’s inequality with
the functions f(y) = y2 and f(y) = 1/y2 shows that the right-hand side is smaller
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than

Er

[
∑

i

ξie
2ψ(κi(0)) ψ(κi(0))2p

]1/2

Er

[
∑

i

ξie
−2ψ(κi(0))

]1/2

.

As κ is independent of ξ conditionally on Q, we can take the expectation over each

κi through to get
(
d2p

d2p g(2)
)1/2

g(−2)1/2 where g(λ) :=
∫

R

e−z2/2
√

2π
eλψ(z)dz. But this is

finite whenever ψ satisfies Assumption 1.3. �

Appendix B. Reduction to the linear case

The proof of the main theorem in [3] was achieved by reducing the evolution with a
smooth ψ to an evolution with a linear ψ by a central limit theorem argument. In
brief, one considers T independent steps of the evolution

(22) Φλψ(κ(T−1)) ◦ ... ◦ Φλψ(κ(0))

together with the scaling λ → λ/
√
T . In the limit T → ∞, the dynamics has

simply gaussian increments with an effective covariance q̂ij := E[ψ(κi)ψ(κj)]. We

could conclude that the Q-factors of (ξ, Q̂) are RPC’s from the analysis of the linear
case. Monotonicity of the function qrij 7→ q̂ij(r) for r large enough and properties

of the RPC’s permitted to deduce that (ξ, Q) is a RPC whenever (ξ, Q̂) is. A
similar reduction to the linear case can be carried when quasi-stationarity is assumed
for a collection of functions ψ(β · +h). Under the new assumption, the limiting
linear dynamics turns out to be somewhat simpler as it produces the same effective
covariance matrix as the original system. The proof is very similar to the proof of
Lemma 4.8 in [3]. We present it for completeness.

Lemma B.1. Let h ∈ R be such that ψ′(h) 6= 0. If (ξ, Q) is a quasi-stationary

ROSt under Φr with function ψ(βκ+h) for all β in a neighborhood of 0, then (ξ, Q)
is also quasi-stationary under Φr with function λκ for all λ in a neighborhood of 0.

Proof. First, we recall that the law of a ROSt is determined by the class of continuous
functions that depend only on a finite number of points (Proposition 1.2 in [3]). Let
f : Ωos → R be a continuous function depending on the first n points for some n ∈ N

i.e. f(ξ, Q) = f(ξ1, ..., ξn;Qn) where Qn = {qij}1≤i,j≤n. Consider T independent
copies of the gaussian field κ: (κ(t), 0 ≤ t ≤ T − 1). Define the evolution by T
independent steps

(23) ΦT := Φψ(βκ(T−1)+h) ◦ ... ◦ Φψ(βκ(0)+h) .

To prove the claim, we need to show that for any such f : Ωos → Ωos and under an
appropriate scaling of β

(24) Er[f(ξ, Q)] = lim
T→∞

Er[f(ΦT (ξ, Q))] = Er[f(Φλκ(ξ, Q))]

for some λ ∈ R. The first equality holds by the quasi-stationarity hypothesis for all
β in a neighborhood of 0. We prove the second one.
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We choose the scaling

β = β(T ) =
λ

|ψ′(h)|
√
T
.

It is straightforward to check, by expanding ψ around h and using the boundedness
of the second derivatives, that with this choice

lim
T→∞

T−1∑

t=0

Er

[(
ψ(βκi(t) + h) − ψ(h)

)(
ψ(βκj(t) + h) − ψ(h)

) ∣∣∣ Q
]

= λ2qrij .

Note that, because of the normalization of the dynamics, the effective increment of
each particle can be taken to be ψ(βκi+h)−ψ(h). Hence, by the finite-dimensional
central limit theorem and the above convergence, the increments of a fixed number
of particles converge to a centered gaussian field with covariance matrix λ2qrij. It
remains to prove that the limit T → ∞ of (24) is well-approximated by considering
a large but finite number of particles.

For δ′, δ ∈ (0, 1] and δ′ < δ, we define the function fδ and fδ,δ′ as

fδ(ξ1, ..., ξn;Qn) := f(ξ1, ..., ξn;Qn)χ{ξn≥δ}

and

fδ,δ′(ξ1, ..., ξn;Qn) := fδ(ξ1/Nδ′, ..., ξn/Nδ′;Qn)

where Nδ′ :=
∑

i:ξi≥δ′ ξi. Clearly, fδ → f a.s. when δ → 0 as ξn > 0 a.s. Notice also
that Nδ′ → 1 when δ′ → 0. Therefore, by continuity

lim
δ→0

lim
δ′→0

fδ,δ′(ξ1, ..., ξn;Qn) = f(ξ1, ..., ξn;Qn) a.s.

Let AcN,δ′,T be the event that all evolved points in [δ′, 1] after T steps come from
the first N before evolution. We write Φr(ξ, Q)|N for the evolution restricted to the
first N points of (ξ, Q). Because the function fδ,δ′(Φr(ξ, Q)) on the event AcN,δ′,T is
effectively a function of Φr(ξ, Q)|N , one has

(25)
∣∣∣Er[fδ,δ′(ΦT (ξ, Q))] − Er [fδ,δ′(ΦT (ξ, Q)|N)]

∣∣∣ ≤

Er

[∣∣fδ,δ′(ΦT (ξ, Q)) − fδ,δ′(ΦT (ξ, Q)|N)
∣∣χAN,δ′,T

]
.

The limit (24) will thus hold by respectively taking the limits T → ∞, N → ∞ and
δ, δ′ → 0 if we can show that the probability of the event AN,δ′,T is small for N large
uniformly in T . But this is clear from the fact that under the chosen scaling of β
(see Lemma 4.1 of [3] for details) :

Pr (AN,δ′,T ) ≤ K
∑

i>N

E[ξi]

for some constant K that only depends on ψ, δ′ and λ. �
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