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Abstract 

The paper deals with an inverse model problem in linear kinetic theory: the 
identification of a density profile of a scattering medium in a slab geometry from 
measurement of the reflected portion of a particle flux entering the medium. We 
prove well-posedness of the problem and present a robust algorithm for the iden-
tification. 

1 Introduction 

1.1 Identification of scattering media 
Inverse problems in kinetic theory have attracted considerable attention for a couple 
of years. One kind of question one poses is that of determining the optical thickness 
or - more ambitious - the spatial variation of some scattering medium by letting pass 
some test particle fl.ow through the medium and measuring e.g. the transmitted or the 
reflected fl.ow. In this context, different approaches lead to different kinds of mathemat-
ical problems. One of the most well-known examples is that of computer tomography. 
There the part of the fl.ow is measured which passes the medium without interaction. 
The mathematical problem behind is that of the inversion of the Radon transform (see, 
e.g. [15]). This theory is applicable in situations of optically thin media, where in 
particular multiple collision effects are negligible. 

The aim of this paper is to investigate a related inverse problem in a spatially one-
dimensional situation, where multiple collisions cannot be neglected. This is the case 
e.g. if the thickness of the mediu:r:n is in the order of one mean free path or more. 
Reviews in applied sciences where this problem is of interest have been provided in 
[10, 11, 12, 13, 14]. A large variety of methods has been proposed, mainly from a 
practical and experimental view point. However, as far as we know the question of well-
posedness of these problems (in the sense of Hadamard [7]) in a strict mathematical 
sense seems to be open. This is - for a simplified model situation - the subject of this 
paper. 

1.2 The mathematical framework 
In linear kinetic theory, particle transport in some scattering medium n without ab-
sorption is described by an equation of the form 

( :t + b..) J( t, :i:, v) = lR• c(:i:, v')f( t, :i:, v')k( v' _,, v )dv1 
- c( :i:, v )f( t, :i:, v) (1) 

for the density function in phase space f = f(t,x,v), (t,x,v) E IR+ x n x IR3 (see, 
e.g. [6]). Here, c( ., . ) presents the inverse of the mean free path and thus corresponds 
to the density distribution of the medium; for each v E I R3 , k( v ~ . ) is a probability 
density which is related to the cross section of the scatterers. Solutions of an initial 
boundary value problem for this equation are usually well-defined if the initial condition 
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f(O, ., .) inn x IR3 and the inflow at the boundary, i.e. f(t, x,v) for x E an and for 
n(x)v < 0, are known. (n(x) is the outer normal on an at x). Solutions for which 
complete knowledge at the boundary is available (e.g. by measuring the outgoing flow) 
present an overdetermined boundary value problem. The kind of question investigated 
here is that of deriving information about c( ., . ) from this additional knowledge. (For 
the complementary problem of determining k(., .) instead of c(.) see [5].) 

Let us restrict to the case of a slab [O, a] with dependence on one space variable 
only (which for simplicity we again call x; we denote by V:z: the velocity component in 
x-direction). Suppose given an impulse entering the slab at x = 0 at time t = 0. The 
inverse problem of determining c (which we assume not to depend on v) from measur-
ing the reflected flow was studied in [3]. Keypoint was the construction of solutions of 
the initial boundary value problem by means of a related Markov process. The inverse 
problem is then that of finding density profiles of the scattering medium from the dis-
tribution of first exit times from the slab. Introducing a random time transformation it 
was shown that this problem is equivalent to that of determining an unknown function 
l(.) (which is equal to 1/c(r(x)) with a certain transformation r(.)) from the knowledge 
of some reflection operator R.\(O) which describes the Laplace transform of the first 
exit time distribution. R.\( x) is formally determined as the solution of a Riccati-type 
equation in some infinite-dimensional Banach algebra 

(2) 

with an additional condition R.\( a0 ) = 0. Since the right hand side is unbounded, a 
crucial point in the construction of an algorithm is an appropriate discretization of this 
equation. Such an approach was developed in [3] based on the strong Markov property of 
the underlying process. It turned out that this formalism may well be used to identify 
a few unknown parameters describing the function l(.). However, for identification 
problems in higher dimensional - or even infinite dimensional - function spaces the use 
of the Laplace transform causes stability problems. 

Using this as a starting point, we investigate here the inverse problem based on 
the first exit time distribution rather than on its Laplace transform. We restrict to a 
strongly simplified situation - a two-velocity model. This is mainly because such a model 
allows to recognize most clearly the mathematical structure behind the inverse problem. 
Much of the theory presented below should also be applicable in more complicated 
situations. However, the unboundedness of certain operators due to the presence of 
velocities with very small normal velocity components V:z: leads to considerable technical 
problems. On the other hand, as we show at the end of the paper, there is some 
indication that these more complex models may be well-approximated by models without 
singularities. 
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2 The direct problem 

2.1 A kinetic two-velocity model 
The kinetic equation 

(3) 

describes the dynamics of a one-dimensional two-velocity particle system with admissible 
velocities T/, -TJ E IR (we assume T/ > 0) with corresponding densities u +, u- ( u ± = 
u±(x, t)) in a homogeneous medium with density 1. An inhomogeneous medium is 
modelled by multiplying the right hand side with some density profile. Following [3], 
the inverse problem of determining such a profile in a slab [O, a0 ] with an inflow impulse 
at x = 0 at time t = 0 is related to the solution of the Riccati boundary value problem 

d 1 
-d T>.(x) = -(-1+2(1 + .Al(x))r(x) - r 2(x)) 

x T/ 
(4) 

with 

r>.(a)=O (5) 

and 

(6) 

Performing the inverse Laplace transform yields the corresponding problem in the time . 
domain 

21(.)ft - T/fx = -2/ + J * J (7) 

with the boundary conditions 

f(O, t) = u-(o, t) (8) 

and 

f(a,t) = 0 (9) 

f satisfies in addition the compatibility condition f( x, 0) = 1/21( x ), a property which 
may be derived easily from analyzing the associated Markov process for small times (see 
[3]). (In fact, it is this property which we will exploit for the inverse problem.) f * f is 
the convolution 

f * f(t) = ft f(r)f(t - r)dr = /, f(r)f(t - r)dr Jo IR 
(10) 

(Note that we have extended the function f(t) to the negative half-axis by assuming 
f(t) = 0 fort< 0, a convention which we shall follow in all of the paper.) 
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2.2 Solutions of the direct problem 
We choose T/ := 1 and start our investigations with the direct problem, the solution 
f = f(x, t) on [O, a] x IR+ of the differential equation 

2l ( x) ft - f :z; = - 2 f + f * f (11) 

with the boundary conditions 

1 
f(., 0) = 2l(.) , f(a, .) = 0 (12) 

From now on, a > 0 is an arbitrary but fixed number, and l is a measurable function 
on [O, a] satisfying 0 < lmin ~ l(.) ~ lmax < oo. 

This problem will be solved by the method of characteristics. For this we need the 
mapping T which is defined for o: E [O, a], x E [O, o:] by 

(13) 

and for o: 2:: a, x E [O, a] by 

r(x, a):= a - a+ { l(e)df, (14) 

It is easy to see that for each (x,t) E [O,a] x IR+ there exists a unique o: 2:: x such that 
t = T(x, a). Given (x, a), denote 

(- -) { a - a : a> a To := To x, o: := 0 : el~ 

and 
(- -) { a : a< a Xo := xo x, o: := l -a : e se 

(x0, To) is the starting point of the unique characteristics x ~ (x, T(x, o:)) through 
(x, T(x, a)). 

Following the standard terminology of kinetic theory, we define as mild solutions to 
the differential equation all functions satisfying - with (x0, To)= (xo, To)(x, o:) -

f(x, r(x, a))= f(xo, To)+ {o [f * f - 2/j (e, r(e, a))de a..e. (15) 

We .now turn to properties of the solutions of the boundary value problem. 

Properties of solutions 2.1: 

1. Existence and Uniqueness: For each l as described above, there exists a unique 
· mild solution f E L1 of (1),(2). 
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2. Boundedness: This solution is non-negative, and the function 

is given by 

p(x) := lo00 

f(x, t)dt 

a-x 
p(x)-----l+(a-x) 

(16) 

(17) 

3. Upper bound: f E 1 00
, and II Jl[x,a]xlR+ lloo=ll l/21(.)l[x,a] lloo· Fort> 0, f(x, t) < 

1/2lmin· 

4. Domain of Dependency: f(x, t) depends at most on the restriction of l(.) to 
[x, min{ a, x + t/2lmin}]. The support oft~ f(x, t) is contained in [O, 2lmaxa]. 

Proof: (i) Solution of a linear model problem: We start by constructing a solution of 
the linear model equation 

(18) 

with boundary conditions 

f(x, 0) = ¢1(x) , J(a, t) = 0 (19) 

and with given GE L~([O, a] xlR+), ¢1 E L+([O, a]). f is a mild solution, if f(x, r(x, a))= 
exp(2(x - a))g(x,r(x,a)), and g is a mild solution of 2lgt - 9x = G satisfying 

g(x,O) = ¢1(x)exp(2(a-x)), g(a,t) = 0 (20) 

and with G(x,r(x,a)) = exp(2(a - x)G(x,r(x,a)): This means that g is well defined 
by 

(21) 

with g(x0 , r 0 ) given by the boundary conditions. Non.negativeness of g and f is obvious. 
Applying. the transformation rule with 

and dedr = dxdt we estimate 

as follows 

dt = { 2/(a)~ a~a 

a>a 

pg(x) := lo00 

g(x, t)dt 
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Using 

rx:i rxo I\ dr !.a 100 " !.a Ji; lx G(e,r(e,a))dedada = x lo G(x,t)dtdx =: x pe;(x)dx (24) 

follows pg( a) = 0 and 

dp9 (x) = -(2¢1 (x)l(x)exp(2(a - x)) + pe;(x))dx (25) 

which tells us in particular that g E L1 ([0, a] x IR+). Finally, from the construction 
follows that 

sup g(., .) ::; sup[exp(2(a - .))¢1(.)] + J.a sup Gde 
[x,a]xlR+ [x,a] x [e,a]xlR+ 

(26) 

For 

P1(x) := 100 

f(x, t)dt (27) 

we find P1(a) = 0 and 

(28) 

The supremum of f is bounded by the upper bound for g given above. Further, if 
¢P) ~ ¢l2), and Q(l) ~ G(2), and if f(i), g(i), i = 1, 2 are the solutions of the corresponding 
linear problems as constructed above, th,en J(l) ~ j<2). 

(ii) Solution of the nonlinear problem: The nonlinear problem can be solved via iteration: 
Start with f(o) = 0 and define f(n+l) as solution of the linear problem 

(29) 

as shown in (i), with the correct boundary conditions. Then f(n+l) ~ f(n) (since obvi-
ously g(n+l) ~ g(n)), and 

(30) 

is bounded by the unique solution p of p( a) = 0, Px = -1 + 2p - p2 , which is given by 

a-x 
p( x) = 1 + (a - x) (31) 

From Lebesgue's monotone convergence theorem follows that f(n) converges to a non-
negative solution of the nonlinear problem, and that Pi = p. From the estimate for the 
supremum of the linear problem and from 

(32) 

6 



we find by induction 

1 n 1 
sup l(n)(., .) :=:;; -2: 1(a - x)k 

[:z:,a]xlR+ 2lmin o k. 
(33) 

and in particular that the supremum of l is bounded. 
(iii) Uniqueness follows from standard arguments using the Gronwall lemma. 
(iv) Upper bound: Define loo := sup[o,a]xlR+ l(x, t) (which we know is finite), and 
G(., .) =loo· The monotonicity criterion of (i) tells us that l is bounded by the solution 
of the linear problem 2lgt - 9x = -2g + G, g(x, 0) = 1/2lmin, g(a, t) = 1/2lmin, which is 
given by 

g(x, T(x, a))= -
1
1 exp(2(x - x0 )) + loo (1 - exp(2(x - xo))) (34) 

2 min 2 

If 1/2lmin were less or equal to l 00 /2 then 

f.., S sup g(., .) S J; 
[O,a]xlR+ 

(35) 

which is a contradiction. Therefore, 1/2lmin > l 00 /2, and loo :=:;; 1/2lmin· Fort > 0 (i.e. 
for Xo > X ), J( x, t) < 1/2lmin· 
(v) Domain of Dependency: follows from the construction in (i). O 

3 The inverse problem 

3.1 The problem 
The inverse problem to be solved reads: Given an integrable function cp0 , find (in ap-
propriate function spaces) functions l( x, t) and l( x) satisfying 

l(O,.) = ef;o 

1 
l(x, 0) = 2l(x) 

We transform this problem into its integral form. Define 

L(x) := f t(e)de 

Then the differential equation transforms into the integral equation 

(36) 

(37) 

(38) 

(39) 

l(x, t) = <Po(t + 2L(x )) exp(2x) - fo:z: l * J(e, t + 2(L(x) - L(e))) exp(2(x - e))de ( 40) 
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From this representation, the condition J(x,O) = 1/2Z(x) can be reformulated by inte-
grating over x and using the transformation rule. It then reads 

{2L(x) 
lo ¢0 (r)dr 

{x {2(L(x)-L(e)) 
lo exp(-20 lo f * J(e,-r)drde 
1 
2(1 - exp(-2x )) (41) 

If </J0 > 0 a.e., then ~0(x) := J; ¢o(e)de is invertible, and we obtain the final form 

. ( 1 fx { 2(L(x)-L(e)) ) 
2L(x) = <P01 2"(1- exp(-2x)) +lo exp(-2e) lo f * J(e,r)drde (42) 

It is obvious, that properties like global L 00 -boundedness and nonnegativity (and 
as a consequence, global L1-boundedness) which we derived for solutions of the direct 
problem, do not hold in general for solutions of the inverse problem. For these, we 
obtain no more than local bounds. 

Lemma 3.1: Suppose that ll¢ol1L1 ~ 1 and that f E L00 ([0,x],L1(IR+)) satisfies 
the integral equation (.) a.e. Denote 

Pt ( x) : = fo 00 

I J ( x, t) I dt 

and 

foo(x) := llJ(x, .)lloo 
1. Pi is bounded by the solution 

p<i>(x) := 0.5 + x 
0.5-x 

of the initial value problem Px = 1 + 2p + p2 , p(O) = 1. 

2. f 00 is bounded by the solution 

p00(x) := l\</>ol\oo exp ({ (2 + pC1l(O)de) 

of the initial value problem Px = p(2 + p<1)), p(O) = ll<Polloo 

(43) 

(44) 

(45) 

(46) 

The proof of this follows from straightforward calculations and is omitted here. Notice 
that under the hypothesis of nonnegativity of f, we obtain global bounds of the form 
c0 exp(2x) for both Pt and f oo· 

3.2 An auxiliary problem 
In all what follows, we will make the following assumptions on <fa0 • 

Assumptions 3.2: 
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1. </Jo E L1(R+) n L00
, ll</JollL1 ~ 1 and ll</>olloo < 1. 

(The condition on the sup-norm can always be achieved for bounded ¢0 by intro-
ducing an appropriate time scale: replace f(x,t) by ).j(x,).t) (and in the same 
way ¢0 ), and l by l/ ).. This leads to an equivalent boundary value problem.) 

2. x and tare finite positive numbers (to be fixed later) which are related by 

- 1 x 
t = -(1 - exp(-2x)) + I (pC1)(e))2 exp(-2e)de 

2 Jo (47) 

3. There exists a constant cPmin > 0 such that inf [O,t/cf>min] <Po(.) < </>min· (From this 
follows immediately that «P01 l[o,t] is Lipschitz continuous with Lipschitz constant 
bounded by 1 / cPmin.) 

We extend «P01 - which is defined on [O, t] - to the interval [-t, t] by setting «P01(-t) := 
-«P()l(t). 

Denote by S the set of functions f E L00 ([0, x], L1(IR+)) satisfying llf(x, .)lloo ~ 
p00 (x) a.e., and llf(x, .)11£1 ~ p(l)(x) a.e. Further, denote by £C the set of Lipschitz 
continuous functions L from [O, x] to IR with L(O) = 0, and by £C[A] the subset of £C 
of functions with Lipschitz constant bounded by A. £C[A] is closed under the sup-norm. 
For simplicity, we extend functions f ES to [O, x] x IR by defining f(x, t) := 0 fort< 0. 

Given (p, R) E S x £C, define f = Ts(p, R) by 

f(x, t) := ( 48) 

<Po(t + 2R(x))exp(2x) - f p * p(e, t + 2(R(x) - R(e)))exp(2(x - e))ite 

for t 2:: 0, and L = TLc(p, R) by 

2L(x) := ( 49) 
. ( 1 rr: f2(R(x)-R(e)) ) 

tP()1 2(1 - exp(-2x )) +lo exp(-2e) lo p * p(e, r )drde 

Lemma 3.3: 

1. T :~ Ts x TLc maps S x £C into S x .CC. 

2. For x small enough, there exists A> 0 such that T maps S x £C[A] into S x £C[A]. 

Proof: Due to the construction of p(l) and p00
, f = Ts(p, R) is bounded by these 

functions, whenever pis. 
L = TLc(p, R) is Lipschitz continuous on [O, x] since «P01 is Lipschitz continuous on 

[-t, t], and since for x ~ x 
1 Ix 12(R(x)-R(e)) 
2(1 - exp(-2x )) +lo exp(-2e) lo p * p(e, r )drde ~ t (50) 

To find an estimate for the Lipschitz constant, we observe 

1(1 - exp(-2x)) - (1 - exp(-2y))I ~ 2lx - YI (51) 
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and (for x:::; y) 

I 
re f2(R(x)-R(e)) [Y {2(R(y)-R(e)) I 

lo exp(-2e)lo P*P(e,r)drde- lo exp(-201
0 

P*P(e,r)drde 

:::; fY [''°IP* pldedr + r I {2(R(y)-R(e)) p * p(e, r)drl de 
lx lo lo 12(R(x)-R(e)) 

Therefore LE £C[A], if R has Lipschitz constant bounded by A, and if 

(52) 

a condition which is satisfied for x small and A large enough. 0 
Our main aim now is to find some contraction property of T. To this end we define 

distances in S and in S x £C by 

Ds(f,g) :=sup {sup I r f(x, t) - g(x, t)dtl} 
[O,x] I 11 

where sup 1 is the supremum over all intervals I C R, and 

D((f, K), (g, L)) := max{Ds(f,g), llK - Llloo} 

Lemma 3.4: There exists a continuous function K 1 with K 1(0) < 1 
such that D(T(q, R), T(q, S)):::; K1(x)D((q, R), (q, S)) for all q ES, R, SE £C. 

Proof: Define (e, K) := T(q, R) and (g, L) := T(q, S). 
Since lq * q( x, t)I :::; pC1>(x )p00

( x ), we find for arbitrary a, b E R+ and intervals I 

lhq * q(x, t +a) - q * q(x, t + b)]dtl 

:::; J..((J + a)ti(I + b))p(1)(x)p00 (x) 
:::; 2p(1)(x)p00(x)lb- al 

(53) 

(54) 

(55) 

().. is the Lebesgue measure on R and AtiB = A U B - A n B denotes the symmetric 
difference between A and B) and hence 

1 fr f [q * q(e, t+ 2(R(x) - R(e))) - q * q(e, t + 2(s(x) - s(e)))] (56) 

exp(2(x - e))dedtl :::; 4llR - Slloo lax pC 1>(e)p00 (e) exp(2(x - e))de 

from which follows 

(57) 

Since 

llr t/io(t + 2R(x))dt - fr tfio(t + 2S(x))dtl:::; 4llR- Slloollt/iolloo (58) 
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it follows that 

and from the Lipschitz continuity of ~o follows 

(60) 

Lemma 3.5: There exists a continuous function K2 with K2(0) = 0 
such that D(T(p, R), T(q, R)):::; K2(x)D((p, R), (q, R)) for all p, q ES, RE £C. 

Proof: Denote(!, K) := T(p, R) and (g, L) := T(q, R). From 

I.hp* P - q * q)(x, t)dtJ::; lo'"' (IP( r )I+ lq(r )l)Ds(p, q)dr::; 2/1l Ds(p, q) (61) 

follows 

(62) 

Furthermore, 

(63) 

An immediate consequence of the two lemmas is 
Corollary 3.6: For x > 0 small enough, there exists a constant "' < 1 such that for 

all p,q ES, R,S E £C 

D(T(p, R), T(q, S)):::; KD((p, R), (q, S)) (64) 

We need one further result on the smoothness of Ts( q, R). For this, we define the 
modulus of continuity of a function f (.) by 

wt(h) := r lf(t + h) - f(t)ldt 
JR+ 

for h ~ 0, and similarly WJ( x, h) := WJ(x,.) for a function f( ., . ). 
Lemma 3.7: For (q,R) ES x £C and f := Ts(q,R) 

(65) 

Wf(X, h) ::; exp(2x) ( W¢0 (h) + f /1l(l)wp(e, h) exp(-2l)~) (66) 

In particular, if f = Ts(!, R), then WJ(., h) is bounded by the solution Yh of y~ = 
Yh(2 + pC1)), Yh(O) = wq,0 (h ). 
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The proof follows from 

and 

J, l<Po(t + s + h) - c/>o(t + s)ldt ~ wq,0 (h) 
R+ 

r IP * p( e, t + s + h) - p * p( e, t + s) 1 dt 
JR+ 

< 100 

IP(e, r)l 100 

IP(e, t + s + h - r) - p(e, t + s - r)ldtdr 

(67) 

< wp(e, h) 100 

IP(e, t)dt (68) 

3.3 Well-posedness of the inverse problem 
With the terminology of the previous section, the inverse problem reads: Find (!, L) E 
S x £C satisfying (!, L) = T(f, L ). We are now able to state the main result of this 
section, the (local) well-posedness (in the sense of Hadamard) of the inverse problem. 

Theorem 3.8: For x as in the corollary, there exists a unique solution of the inverse 
problem in [O, x]. This solution depends continuously on the initial condition <Po in the 
following sense: There exists a constant c < oo such that for the solutions (j(l), £(1)), 
(!(2), £(2)) of the inverse problems with initial conditions <Po and 'lj;0 

(69) 

Proof: Step 1: Existence. A solution may be obtained by the following iteration. 
Choose an arbitrary element (!<0),£(0)) Es x £C with Wf(o)(.,h) ~ Yh(.). (Yh was 
defined in Lemma 3.7. ) Define by induction 

(70) 

This generates a bounded sequence f(n) in L1([0, x] x IR+) n 1 00 ([0, x] x IR+)· In 
particular, this sequence has a subsequence converging weak* to some f 00 in 1 00 ([0, x] x 
IR+). Take any bounded interval J in [O, x] x IR+. Without restriction, we may assume 
that f(n) is a sequenc~ of nonnegative functions. (If they are not, we replace them with 
f(n) + p00 (x) and obtain a nonnegative sequence which is bounded in L1(J).) Since with 
K, < 1, 

(71) 

we find that 

h J(n)(x, t)dtdx ~ h f 00 (x, t)dxdt (72) 
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The set of bounded intervals is a convergence-determining class (see, e.g. [4]). There-
fore the restriction of J(n) to any bounded interval converges weak* to J00

• 

By inductinn follows that w JC n.) (., h) is for all n bounded by the function Yh defined 
in Lemma 3. 7. Therefore, for each x E [O, x] the set J(n)( x,.) is precompact in 1 1(1 R+) 
and has a suhsequence converging in L1 to some fun.ction J(x, .). In order to show that 
even J(n)(x, .) converges, assume that another subsequence converges to some function 
]( x,. ). From the contraction property follows for arbitrary intervals J 

£ f(x, t)dt = £ f(x, t)dt 

Now define for T > 0 and fort E [2-nkT, 2-n(k + l)T) 

(73) 

(74) 

It is well-known (see, e.g. Thm 0.5.3 in [9]) that 9n converges in 1 1 ([0, T]) to J(x, .) 
and to }(x, .). Therefore J(x, .) = f(x, .) a.e. So J(n)(x, .) is a Cauchy sequence in 
L1(1R+)· Denote rN(x) := supnm>N JIR IJ(n)(x, t)- J(m)(x, t)ldt; then rN(x) converges 

I - + 
. monotonically to 0 for all x, and the theorem on monotone convergence shows that J(n) 
is a Cauchy sequence in 1 1([0, x] x IR+)· From this and the weak* convergence it follows 
that J(n) converges in L1([0, x] x IR+) to J00

• 

We have to show that (!, L) is a solution to the inverse problem. This, however, 
follows immediately from the following observations: 

1. If J(n) is a bound.ed sequence in L1(IR+) n L00 (1R+) converging in L1(IR+) to J, 
then JC,,..}* J(n) converges in L1(1R+) to J * f. 

2. If J(n) -r Jin L1(IR) and rn ~ r then J(n)(. + rn) ~ J(. + r) in L1(IR). 

Step 2: Uniqueness. This is a direct consequence of the contraction property of T. 
Step 3: Continuous dependence. Denote by (!, K) resp. (g, L) the solution of the 
inverse problem corresponding to the initial condition ¢0 resp. 'f/;0 • Further, define 
(h, M) := T(g,L). (As before, Tis defined with initial condition ¢0 .) Then 

D((f, K), (g, L)) < D((f, K), (h, M)) + D((h, M), (g, L)) 
< KD((f, K), (g, L)) + D((h, M), (g, L)) (75) 

and therefore 

1 
D((f, K), (g, L)) ~ l _ K D((h, M), (g, L)) (76) 

From the definition of (g, L) and (h, M) follows 

h(x, t) - g(x, t) = [</>0(t + 2L(x)) - 'lj;0(t + 2L(x))] exp(2x) (77) 
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and 

Wo(2L(x)) = <P0 (2M(x)) (78) 

This yields 

Ds(g, h)::; Ds(¢o>zPo)exp(2x) (79) 

and 

1
2L(x) 12L(x) f,2M(x) 

'z/;o(r)dr - <Po(r)dr = ¢;0(r)dr 
O O 2L(x) 

(80) 

From the latter follows 

I 
{2L(x) I 2IL(x)- M(x)l<Pmin::; Jo (</;o(r)-'z/;o(r))dr ::; Ds(</>o,'z/;o) (81) 

We want to stress that the domain of well-posedness [O, x] can be extended iteratively, 
as long as f(x, .) satisfies the assumptions on </Jo. However, the arguments break down 
in particular when J(x, .) is not bounded away from 0 in a neighborhood oft= 0. 

4 Numerical examples 

4.1 The algorithm 
Our algorithm for the numerical solution of the inverse problem includes the following 
elements. 

1. A numerical scheme for the discretization of dxf - 2ldtf = g; 

2. An integration scheme for the calculation of the convolution; 

3. An estimate for l(.) in the next discretization step; 

For the discretization of the PDE we use a classical upwind difference scheme (see, 
e.g. [8]): 

J((h + l)~x, k~t) .- (1 - CCFL)f(h~x, k~t) + CcFLf(h~x, (k + l)~t) (82) 

( 
CCFL CCFL ) + ~x (1 - -2-)g(h~x, k~t) + -2-g(h~x, (k + l)~t) 

with the constant 

(83) 

which for reasons of stability has to satisfy the Courant-Friedrichs-Lewy condition 

CCFL ::; 1 (84) 
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The convolution h(t) := f * f(t) is discretized by 

k-1 
h(kt:it) == L: J(zt:it)f((k - z)t:it)t:it (85) 

l=O 

Denote l0 := l(hl:lx) and l1 := l((h + l)l:lx). An estimate for l:ll := l1 - l0 comes 
from the requirement 

f((h + 1).l:lx, 0) = I_ = I_ (i - l:ll) 
2l1 2lo lo 

(86) 

together with the estimate for f((h + l)l:lx, 0) 

f((h + l)l:lx,O) - f(hl:lx,2letfl:lx)exp(2l:lx) (87) 

- (1( h.6.x, 0) + 21.n.6.x I( h.6.x, .6.t~~ I( h.6.x, O)) (1 + 2.6.x) 

- I ( h.6.x, 0) + 2.6.x (1 ( h.6.x, 0) + l.n I ( h.6.x, .6.t~~ I( h.6.x, O)) 
with Zeff := l0 + l:ll/2. (Note that the convolution can be neglected for t small.) It 
follows the estimate fil for l:ll 

El= -41~.6.x (l(h.6.x, 0) + 10 l(h.6.x, .6.t~~ l(h.6.x, O)) (88) 

Fig.1: Identification of Const~t Profile 
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4.2 Numerical experiments 
In our implementation of the above scheme for the inverse problem we have used as 
space discretization ..6.x = 0.005 (with one mean free path as the reference length) and 
..6.t = 0.040. As the profiles l(.) to be identified we have chosen the constant profile 
l(.) = 2, the continuous profile l( x) = 2 + 0.5 cos(27rx) and a discontinuous, piecewise 
constant profile oscillating around the value 2. 

Fig.2: Identification of Cosine Profil~··: 
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In order to test the algorithm for the inverse problem, we have to generate appro-
priate input data, i.e. an approximation of the function ft0 • Of course, we could use a 
scheme similar to that described above for the direct problem. However, an independent 
scheme for the direct problem seems us to be more appropriate. One way is to construct 
samples of an associated Markov process ([2]). Varying the number of samples and thus 
using more or less randomly perturbed input data gives us then an intuition on the 
robustness of the inverse algorithm. 

Fig.3: Identification of Piecewise Constant Profile 
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The identified profiles are shown in Figs. 1 to 3. There the solid lines represent the 
profiles to be identified; the dotted lines show the identified data based on 100000 (Figs. 
1,2) resp. 500000 samples (Fig. 3) of the Markov process; the dashed lines result from 
less perturbed input data generated with 500000 resp. 1000000 samples. All obtained 
results show a good agreement with the lines to be reconstructed up to a depth of two 
mean free paths. For larger values of 

4.3 Modelling aspects 
One possible extension of the results presented above would be to try to apply theory 
and numerics as developed here to more complicated kinetic model equations. This 
would certainly be possible to some extent in a straightforward manner. Let us con-
sider as an example a semi-discrete kinetic model describing a two-dimensional particle 
system with the set {(cos 8, sin 8), 8 E [O, 27r]} as the range of admissible velocities. The 
corresponding one-dimensional stationary equation for a homogeneous medium reads 

a i r27r 
cos() Bx f ( x, B) = 27r Jo f ( x, B')dB' - f ( x, 8) (89) 

and has a singularity at cos 8 = 0. Of course we again find an associated Riccati equation 
and a corresponding time-dependent version for the inverse problem (see [3]). However, 
the singularity causes a couple of technical problems with immediate consequences on the 

4'o 

Fig.4: Input data for two different models 
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quality of numerical solutions of the inverse problem. Therefore an alternative might be 
to find out whether this model can be reasonably well approximated by a s.impler ersatz 
model without singularity. Therefore we finish our investigation with a comparison of 
the input data profiles ¢0 for the inverse problem produced by the semi-discrete model 
and a two-velocity model as defined in section 2. We have one free parameter for this 
simpler model, which is the modulus T/ of the velocity, and which has to be adjusted. 
As a good approximation we find 1/ = 0. 7. Fig. 4 shows the input profiles ef>o for the 
semi-discrete model (solid line) and for the ersatz model (dashed line) which exhibit 
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an excellent agreement. This gives rise to the hope that inverse problems for models 
with continuum range of velocities may be well approximated by models with finite 
(and small) number of velocities. If none of the x-components of the finite number 
of velocities vanishes then the resulting kinetic equation has no singularity, and the 
inverse problem may be expected to be well-posed, since all of the arguments described 
above seem to apply in this case. It is interesting to note that even in the case of 
zero velocity components, the Riccati equation is well-defined. (This is an immediate 
consequence of the Markov theory approach developed in [3].) In the corresponding 
time-domain equation, zero components introduce an extra convolution which make a 
numerical scheme a little bit more complicated, but still well tractable. 
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