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Abstract

Our focus are electro-reaction-diffusion systems consisting of continuity equations
for a finite number of species coupled with a Poisson equation. We take into account
heterostructures, anisotropic materials and rather general statistical relations.

We introduce a discretization scheme (in space and fully implicit in time) using a
fixed grid but for each species different Voronoi boxes which are defined with respect
to the anisotropy matrix occurring in the flux term of this species. This scheme has
the special property that it preserves the main features of the continuous systems,
namely positivity, dissipativity and flux conservation.

For the discretized electro-reaction-diffusion system we investigate thermodynamic
equilibria and prove for solutions to the evolution system the monotone and exponen-
tial decay of the free energy to its equilibrium value. The essential idea is an estimate
of the free energy by the dissipation rate which is proved indirectly.

1 Model equations, notation, and assumptions

Let Q C R? be a bounded domain, I' := 92. We consider m electrically charged species
X; with charge numbers ¢; and initial densities U;. These species underly drift-diffusion
processes and take part in chemical reactions. We assume that the free energy of the
system is a sum of a chemical and an (electrostatic) interaction part, where the chemical
part is a sum of 1-species free energies. This leads to state equations giving the relation
between the densities u; of the species X; and the corresponding chemical potentials v; of
the type

w; =g (vy), 1=1,...,m, (1.1)

where the reference densities u; may depend on the spatial position and expresses the
possible heterogeneity of the system under consideration. The functions g; reflect the
underlying statistics. (In the case of Boltzmann statistics each g; is the exponential func-
tion.) Our assumptions with respect to g; (see (A2)) are such that all cases of practical
interest are included, in particular the Fermi—Dirac statistics. Moreover, in the case where
the chemical part of the free energy is a sum of 1-species free energies the inverse Hessian
matrix is diagonal with its i-th component w;g}(v;).

Let vy denote the electrostatic potential. To describe the fluxes j; of the species X; we
need the electrochemical potentials (; := v; + q;vg. According to [1, 8, 16], we assume
that the driving force for the flux is the antigradient of the electrochemical potential and
that the flux is proportional the inverse Hessian. In the simplest case, with Boltzmann
statistics and no anisotropies of the material, j; is proportional to —u;V{;. In this paper
we suppose that

Ji = —Uzg,’(vl)SZ()VQ, 1=1,...,m, (1.2)

where the mobility S; is a pointwise given symmetric positive definite matrix function
which prescribes the anisotropy of the material.
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To describe chemical reactions we assume that R C Z' x Z'! is a finite subset. A pair
(o, B) € R represents the vectors of stoichiometric coefficients of reversible reactions,
usually written in the following form:

a1 X1+ amXp; = 51Xy + -+ B X

We assume that the net rate of this pair of reactions is of the form k,g(a® — a?), where
kap is a reaction coefficient, a; := exp((;) is the electrochemical activity of X;, and a® :=
[T% af". In this model we replaced the concentrations by activities. This is necessary
for the model to be in accordance with the Second Law of Thermodynamics (cf. Othmer
[15]). The net production rate of species X; corresponding to the reaction rates for all

reactions taking place is
Ri= Y kagla® —d)(Bi — ). (1.3)
(a,)ER

The continuity equation for the concentrations taking into account reaction, diffusion, and
drift processes can be written as follows:

8ui
ot

+V.-ji=R;inRy xQ wv-j5;=0o0nR; xT, (1.4)

’LLZ'(O):UZ' iHQ, izl,...,m.

The Poisson equation satisfied by the electrostatic potential has the form
m
-V - (SoVuw) = f + quz’ in Ry xQ, v-(Sovg) + Tv9 = Y on Ry xI'y  (1.5)
i=1
with a symmetric positive definite dielectric permittivity matrix function Sg.

Now we collect assumptions which we suppose to be fulfilled in the paper.

Al Q is a bounded Lipschitzian domain in R2, T' = 99;
( p : ;

(A2) g€ C'(R), lim Sgi(y) = +00, 0 < dmin{l,g:(y)} < 6i(y) < 6" :(y),
dmin{1,exp(y)} < gi(y) < "exp(y), yER, i=1,....m,

;€ LE(Q), wy >0, i=1,...,m;

(A3) S; € L(Q,R?*?) symmetric and positive definite (uniformly w.r.t. z)
1=1,...,m;

(A4) R CZT xZ7 finite subset, ko € LY(Q), [ kapdx > 0 for all (o, §) € R;
(A5) UZ’ELf(Q), GEZL, i=1,...,m;

(A6) Sp € LL(Q,R?*?) symmetric and positive definite (uniformly w.r.t. z),
7€ LPT), [p7dl >0, f € L>(Q), f& e L>().
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Existence results for special realizations of the electro-reaction-diffusion system (1.4), (1.5)
(no anisotropies, fluxes not necessarily related to the inverse Hessian of the free energy,
special statistics, restrictions concerning the reaction terms) in the sense of weak solutions
can be found in [6, 7, 13]. In this paper we are interested in energy estimates for a (time
and space) discrete version of (1.4), (1.5). For the continuous problem in special situations
we have already obtained such results (see [11] and [9, 12] (Boltzmann statistics only)).
The monotone and exponential decay of the free energy of weak solutions to (1.4), (1.5) in
the setting prescribed in Section 1 is proved in [10]. There is also obtained a first result for
a (time and space) discretized version of (1.4), (1.5). There is introduced a discretization
scheme and its dissipativity is shown. The present paper continues the investigations in
[10]. Section 2 gives a short overview on the notation, operators, energy functionals and
results for the continuous problem such that analogies for the discrete version of (1.4),
(1.5) can be found. Section 3 is the heart of the paper and contains the energy estimates
for the discretized problem. Finally, in Section 4 we collect some remarks concerning the
numerical treatment of heterostructures.

2 Continuous electro-reaction-diffusion systems

2.1 Weak formulation
To give a weak formulation of the equations (1.4), (1.5) we introduce the following spaces:
Vi=HY(Q;R™), Wi={veV:exp)cL®N),i=1,...,m},
and the stoichiometric subspaces
S :=span{a —3: (a, ) € R}, St := orthogonal complement of S in R™.
In addition to (A1) — (A6) we assume that we are given U € V* such that
(A7) U= (iqU Un,..., Um), Em:MUi, 1) > 0if A= (A1,..., Am) € SE\{0}.
=1 =1
V* denotes the space dual to V', and 1 means the constant function on €2 taking the value

1. Note that (A7) with respect to U is satisfied if U; > 0, U; # 0,7 = 1,...,m. The
element U represents an initial value for the vector function u := (ug, ..., Uy, ), where

ug = Z q;u; (2.1)
i=1
is the variable charge density. We define operators A: W — V*, and £ : V — V* by

(40.0) = [ 3 mgl(w) $iG - VEida
Q

i=1

+/ Z k‘ag(aa—aﬁ)(oz—ﬁ)-Zd:E, veEW, vevV,
 (a,B)erR



4 A. Glitzky

where a := (exp(C1)7 .. ,exp((m)), CZ =Y + q;v0, ZZ = 1/)\2 + %’7707 1= 17 cee, M,
Ev := (Eovo, U1g1(v1), - -, Umgm(vm)), vEV, (2.2)

<E0’U0,i)\0> = / (SOV'UO - Vg — fi)\(])dl‘ + / (TU() — fF)i)\(] dI’, wg, 79 € Hl(Q)
Q T

A weak formulation of the transient problem (1.4), (1.5) with (1.1), (1.2),(1.3) is given by

u'(t) + Av(t) = 0, u(t) = Ev(t) fa.a. t € Ry, u(0) =U, ®)
u€ HL (Ry;V*), ve LE (Ry; V) NLYE (Rys W).

The dissipation rate corresponding to Problem (P), D(v) := (Av,v), v € W, is nonnegative
and has the form

/Zuzgz WS VG Vade+ [ sl —)a— ) G

76 ER

To define the free energy of a state of the system under consideration we first introduce a
functional G : V' — R as follows:

G(’U) = / ( SoVug - Vg — fv()) dx + / (2 — fFUO) dr’

/Z/ u;9i(y) dy d.

The functional G is continuous, strictly convex and Géateaux differentiable, hence subdif-
ferentiable and 0G = E. The conjugate of the functional G is denoted by F,

F(u) := 22\8 {{u,v) = G(v)}. (2.4)

(2.3)

F is proper, lower semicontinuous and convex. Additionally, it holds v = Fv = 0G(v) if
and only if v € OF (u). For u € V* the value F(u) is to be interpreted as the free energy
of the state u. For u € H'(Q)* x L2 ()™ we have

u; /U4
/Zul/ dwdx+/ =SV Vvodx+/2v(2]df,

where ug = FEgvg. The first summand represents the chemical part of the free energy which
is the sum of 1-species free energies. The last two terms give the electrostatic interaction
part. Moreover, we define the subspace

U:= {u eV iy = Z%Uz’, ((u1,1), ..., (um, 1)) € S}. (2.5)
=1

If (u,v) is a solution to (P) then u(t) —U € U for every t > 0. Therefore, if u* := tlim u(t)

exists, then we have necessarily u* € U +U. The set U+ :={v € V : (u,v) =0 Yu U}
can be characterized as follows:

Ut ={vev: Ve=0,G=vi+qu, (= (G .Gn) €S},
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2.2 Summary of some earlier results

Here we collect results concerning steady states and energy estimates which we have ob-
tained in [10, Theorem 2.1, Theorem 3.2].

Theorem 2.1 We assume (A1) — (AT7). Then there exists a unique solution (u*,v*) to

Av* =0, u*:=FEv*, uweU+U, v'eW (S)
It holds VC* =0 and ¢* € S*.

We define the set
M = {(a,v9) € RT x H'(Q) : a® = a” for all (o, B) € R, (Eovo,ut, ..., um) €U+,
where u; = w;9;(Ina; — qvg) if a; > 0, u; =0else, i =1,...,m}
and assume

(A8) M (ORT x H'(Q)) = 0.

Remark 2.1 We assume (Al) — (A6). On the one hand, if (u,v) is a solution to (S)
then (a,v9) € M, where a = (e',...,e"). On the other hand, if (a,v9) € M and
a; >0,i=1,...,m, then (u,v) defined by v; := Ina; — gvg, u; := wig;i(v;), i = 1,...,m,
ug := Eyvg is a steady state of (P), that is a solution to (S). If in addition (A7) and (AS)
are fulfilled then M = {(a*, v§)}.

Theorem 2.2 Let (A1) — (A8) be fulfilled, let (u,v) be a solution to Problem (P), and let
(u*,v*) be the thermodynamic equilibrium (cf. Theorem 2.1). Then the free energy along
the solution (u,v) decays monotonously and there exists a X > 0 such that

F(u(t)) — F(u*) < e *(F(U) — F(u*)) Yt>0.

The proof of Theorem 2.2 is mainly based on a Poincaré type inequality which gives an
estimate of the free energy by the dissipation rate as formulated in Lemma 2.1 (see [10,
Theorem 3.1}, too).

Lemma 2.1 Let (Al) — (A8) be fulfilled. Moreover, let (u*,v*) be the thermodynamic
equilibrium according to Theorem 2.1. Then for every p > 0 there exists a constant c, > 0
such that

F(u) — F(u") < ¢,D(v) (2.6)

forallve N,={veW: F(Ev)— Fu*)<p, u=FEveU+U}.

Remark 2.2 The proof of the exponential decay of the free energy to its equilibrium value
in [10] relys essentially on Lemma 2.1 which is validated by an indirect proof. Therefore
no explicit rate of convergence is obtained. But heterostructures, anisotropies, a wide class
of statistics and any final set of reversible reactions are taken into account.

There are other papers which prove for special situations an explicit rate of convergence.
Gajewski and Gértner [4] did this for the van Roosbroeck system with magnetic field.
Desvillettes and Fellner [2] gave an explicit rate of convergence for a reaction-diffusion
system of two species and the reaction 2X; = Xy and one invariant as well as for a
system of three species, the reaction X1 + Xo = X3 and two invariants.
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3 Discretized electro-reaction-diffusion systems

3.1 Space discretization

For all our considerations in Section 3 we make the following simplifying assumptions
(A9) @; =const, i =1,...,m, kog = const, (o, ) € R, T = const,
S; constant, symmetric, positive definite 2 x 2 matrices, i = 0,...,m.

Let a Delaunay grid with M grid points {z* : zF € Q, k = 1,..., M} be given. We use
the following sets of indeces

V:z{kz::ﬂkeﬁ}, T::{k‘:azkeﬁ\ﬁ}.

Due to (A9) the anisotropy matrices S; are invertible 2 x 2 matrices. For x, y € Q we
introduce new distances defined via the anisotropy matrices S;,

di(z,y) == \/(x —y)TS; Yz —y), i=0,...,m.

By means of these we define anisotropic Voronoi cells for each species (see Labelle and
Shewchuk [14], cf. Figure 1, too)

Vf:{xeﬁ: di(z,2%) < di(x, 2 WEV} ,i=0,....,m, ke V.

For directly neighbored points #* and 2! we denote the (outer) normal vector on V¥ at
aVik N OVZ-I by Vfl, i = 0,...,m. Depending on the position of the grid points and the
anisotropy matrices S; there is a constant ¢ > 0 such that

1
_Sl‘/;k‘ga ’a‘/zkma‘/zlléca kalevaizoa"'am
C

For k € V we denote by uf and ulg the mass of the i-th species in Vlk and the charge in
Vok, respectively. Taking into account that the Voronoi cells can differ for the different
species, the relation (2.1) has to be substituted for the discrete situation by

VEN VY
-Say Mo A (3.1)
i=1 ey

Associated to the grid points we have electrostatic potentials vg and chemical potentials

vf, i =1,...,m. The discrete version of the state equations (1.1) then is

uf =gV, keV,i=1,...,m. (3:2)

Electrochemical potentials Cf are determined by

vak
—v+ Z|O vé, keV,i=1,...,m. (3.3)
ley Z
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Figure 1: Different shape of anisotropic Voronoi boxes for different anisotropy matrices S;
for a uniform equilateral triangle mesh.

3.2 A discretization scheme for electro-reaction-diffusion systems

(A10) Let Z = {to,t1,...,tn,...} be a partition of Ry with to =0, ¢, € Ry,
tn—1 < tn,n €N, t, — 400 as n — 00, h := sup,ey(tn — th—1) < 00.

We introduce the discrete initial values

Uﬁ::/ Udz, keV,i=1,...,m,
Vik

and UL is calculated via (3.1), where the u! have to be substituted by U}.

The space discrete version of the Poisson equation (1.5) and of the continuity equations
(1.4) is obtained by testing the corresponding equations with the characteristic function
of Vok and VZk , respectively, and using Gauss theorem for the divergence terms. We obtain
the following discrete electro-reaction-diffusion system (PD) where the time discretization
is done fully implicitly

'U
-5 2 =) v v+ oV T - = e
ey

k
Mt n— ;
uf (tn) —uf (tn-1) + > TE)OVEN OV = RE(t,), i=1,...,m, n>1,
tn _t" 1 ley

= fdx+/ frdr,
Vi ovfnr

ol =]

() = B0E () + (i)

Jkl(tn) = —U; szl(tn) 9

|Sivf!
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The source terms Rf have to be calculated by

REt) =D Bi—a) Y D0 > 3T Raglel ¢ R Cist L e (1)

a,BER ki€y ki—1€V kij1€V km€V
k1 ki—1 k kit1 Em
X’Vl ﬁ'”ﬂVi_l nv; ﬁVZ-_H ﬂ---ﬂvm‘
with

m

Raﬁ[ fl, e f‘f@m] (tn) = k:ag(exp { f: aini(tn)} — exp { Zﬁlgkl(tn)}) (3.4)

i=1 =1

and the expression for ¢¥ given in (3.3).

We use the notation

— — — — —

w0 = (Upy...,Upy), U= (Toy.-,Tm), ui:(uf)kev, vi:(vf)kev,

U=o,....Un), Ui=(Uf)e,, i=0,....m

By ||| we denote the 2-norm in RM as well as in RM(™+1) (. .} means the scalar product.
The discrete Poisson equation in (PD) forms a system of linear equations

Pty — f: iy, where f: (fk)k_1 Ny

The M x M matrix P is regular for arbitrarily given g, f € RM there exists a unique
solution 7y € RM to Pty — f = iy (see [10, Lemma 4.1]). The M x M matrix P is
symmetric and weakly diagonally dominant. For all §f € RM™ we have

l
(PT.I= ) ﬂy,iﬁlso Hovy novgl+ > r(WF)?lovEnT| = 0. (3.5)
kleV, i<k key

Lemma 3.1 We assume (Al), (A6) and (A9). Then there exist constants vi, y2 > 0
such that

|l gl1? < (PF.9) < wlyl* v§eRY. (3.6)

Proof. 1. Suppose the first inequality to be violated. Then there would exist sequences of
o €RM ¢, € Ry, ¢, — 0such that c,||7,]|?> = (Pyn,yn> Setting z, := yn/||yn\| we have
(Pzy, zn> = ¢, — 0. According to (3.5) we obtain zF — 0 for all k € 7. For all keV we

find a finite path of neighboring Voronoi cells starting at Vo and ending at a VI | k* € T,
which can be used in opposite direction to show cell by cell that the corresponding z¥ — 0

and finally z¢ — 0, too. In summary, Z, — 0 in R™. This gives the contradiction since
1Znll = 1.

2. The upper estimate follows by (3.5), (A6) and (A9). O

The discrete dissipation rate D : RM(m+1) _, R corresponding to the Problem (PD) is
given by

Z 3 uZZkl P oV n ov|
1=1 k,leV, i<k |

F Y Y S Raslch ]S (e VA A e

(a,)ER k1EV km€V i=1

(3.7)
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Due to (A2), (3.4) and the monotonicity of the exponential function this discrete dissipa-

tion rate is nonnegative, D( ) > 0 for all ¥ € RM(m+1)

3.3 Discrete energy functionals
)) the operator E: RM(m+1) RM(m+1)

The equation @ = E# then contains the discretized Poisson equation as well as the discrete
state equations. Corresponding to E, we obtain the discrete potential G: RM(m+1) _ R,

<Pv0,v0 f o —i—ZZu,\Vk\/ 9i(y (3.8)

G(v) =
=1 keVy

First, we define as a discrete version of E (cf. (
(PUO - f ((uzgz( )‘Vik’)kev)izl

), (2.4) we introduce the discrete free energy F as the conjugate functional

F@)= sup {(@7) —G@).
JGRM(mel)

Asin (2.3

Then F : RM(m+1) R is convex and lower semicontinuous. F' is differentiable in argu-
m. If @ = EvU, then @ = G'(¥) and ¥ = F'(@). In

ments 4, where ﬁf >0, keV,i=1
particular we obtain for @ = E¥, ¥ € RM(m+1 the inequality

F(@) — F(@) > (@ — @, F'(@)) V& € RMm+D), (3.9)
which is used to show that our (Euler backward in time) discretization scheme (PD)

dissipative. Moreover, for # = E¥ we calculate

Ev,7) — G(7)

(P, Uo) +ZZuZ]Vk (gl Yol /
0

=1 key

F(i) =
M@@)

{
1
2

3.4 Steady states for the discretized electro-reaction-diffusion system

In analogy to the continuous situation we define
~ Vi ﬁV
1= {ae M) ;=30 3 MOV : L ke, (Yubi . Y k) e s)
=1 eV ’ key key

and U+ = {7 € RM(mHD) . (7,5 = 0 Vil € U} which can be characterized by
~ Vi OV

Ut = {UERM(m+1 k=l +yqg Z| ka | = (j,

e IV

kevvizlw"?m? (Clv"'va)e‘SJ_}‘
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Lemma 3.2 We assume (Al) — (A6), (A9) and (A10). Then
i(ty) —Uell VneN

for any solution (i@, V) to the discretized Problem (PD).

Proof. Let © € UL be arbitrarily given and C¥ = 0 + ¢ Yy, [VE N VEF|[VFI1 0L = G,
keV,i=1,...,m. Then

(@(tn) — U, 0) =Y (idlty) —ti(ty—1).0) = Y > > (uh(ty) —uf(t_1))G
r=1 r=1i=1 kcV
n m l R
DD PP IAGE TB ‘s f iSwHI Gt — t)

r=1 i= 1keVleV
DD NI SIS DI SRS
r=1 (a,B)€R i=1 k1€V ki 1€VEEVEi 1€V kmeV

RaglGi, - Gl Vi 0 OV (b — 1)
= 0. O

According to Lemma 3.2 we look for steady states (i, ¥/) of the discretized Problem (PD)
fulfilling the property ¥ — U € U, and consider the problem

SievIFNoVENOVE —RF =0, keV, i=1,...,m,
(SD)

Q>

i=FEv, 0-Uc

Ql

We introduce the functional @0 : RM(mt+1) R,

~

Go(@) = G(0) + I, (5) — (U, &), &eRMmHD),

where I, is the characteristic function of L. The functional @0 is proper, lower semi-
continuous, and strictly convex. Moreover, by the Moreau-Rockafellar theorem (see [3])

9Go(0) = BT + 0l (7) — U, 7 RMmTD,

Lemma 3.3 We assume (A1) — (A7) and (A9). If (4,7) is a solution to (SD) then ¥ is
the unique minimizer of Go. On the other hand, if U is a minimizer of Gy then (EU,v) is
a solution to (SD).

/\

Proof. Let (,7) be a solution to (SD). Then D(#) = 0 and consequently v L{ .
Therefore Go(7) < oo and Ol (v ) U. Additionally we have @ = E7, @ — U = u € U.
Thus we find that 0 = @—u—U € 0G (%) which ensures that Go (%) = min GERM (m+1) Go ().
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On the other hand, if ¥ is a minimizer of Go then 7 € U+, 0 € 8G0( v), and there exists
ue 0l (V) = U such that Ev — U = u € U. By ¥ € U+ we conclude that

S JMOvENoV - Rf =0, keV,i=1,...,m
ley
Thus (E7, ) is a solution to Problem (SD). [

Theorem 3.1 We assume (A1) — (A7), (AQ) Then there is a unique solution (G*,0™)
to Problem (SD). This solution satisfies * € U+

Proof. In the proofs in this paper the letter ¢ denotes (possibly different) constants.
According to Lemma 3.3 it suffices to show that Go(¥) — oo if ||0]] — oco. We suppose
this growth condition to be violated. Then there exists K > 0, 9, € UL such that
||U, || — oo and

Go(@n) = G(@,) — (U, 7,) < K.
By the definition of G and Lemma 3.1 this ensures

C{H’Unon—l—ZZ’(UfLi)ﬂz} (0,7, <K +ec (3.10)

1=1 keV

For @, = ¥, /||7,|| we find (for a subsequence) @, — @ in R+ and

a K U
{ll? + 33 b P < J + o

i=1 keV
This leads to @y — 0 = wg in RM, (wk)* — 0 for n — co. And wF, = (wk)* —
(wk.)~ — wF ensures —w* > 0, k € V, i = 1,...,m. Since @, € U*, ¥, — w =
(0, ((ﬁf)key)izl,...7m), and U is closed we find that w € U, too. Therefore @Zk =w;, k €
V,i=1,...,m,and (01,...,Wy,) € S*T. Because of ||i,| = 1 there holds (wWy, ..., W) #

0. We exploit again (3.10) and obtain

K = I - _
0= lim ﬁ> lim (7, dh,) = —(T, @) = - S 3 Ukah

i=1 keV
m
_ —ZZ/ Uide @ =~ [ Y- Uit do
i=1 key @ i=1
which gives a contradiction to our assumption (A7). O

3.5 Energy estimates for the discretized electro-reaction-diffusion sys-
tem

In [10, Theorem 4.2] we proved the dissipativity of the (fully implicit in time) discretization
scheme (PD) for equidistant time steps and for a changed discretization Z* of the inverse
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Hessian in the flux terms

An inspection of that proof shows that the used properties for Zfl are that Zfl = ka > 0,
k,l € V, i =1,...,m. In other words that result remains true for Zl-kl as defined in
Subsection 3.2. Our aims now are to obtain this energy estimate for arbitrary time steps
(see (A10)) and especially to prove the exponential decay of the free energy as formulated
for the continuous problem in Theorem 2.2 for the discretized Problem (PD), too. We
start with three preparatory lemmas.

Lemma 3.4 We assume (A1) — (A7) and (A9). Let @ = Ev € U +U and let (@*,7%)
be the discrete thermodynamic equilibrium according to Theorem 3.1. Then there exists a
¢ > 0 such that

P (i) = of iy~ 5512+ 30 3 ok — yurt )

i=1 key
Proof. Using the assumptions of the lemma, (@ — @*,7*) = 0 and (3.8) we evaluate
F(i) = F(a") = (i,1) = G(1) - (a",0") + G(@") = (.5~ 5") = G(1) + G(i")
k

m (A
PG~ 59). 50— )+ 3 S wvE [ (aeh) — gt .
Estimating

/ " ) — ) dy > 5 / (208 1))y

9i(y)

(o
= 5{atebyn ZEL )+ a(07")

> 3]\ /i(h) — (o),

(since tng —z+y> (VT — /y)? for z, y > 0) we derive by (3.2) and (3.6) the desired
assertion. [

Lemma 3.5 We assume (A1) — (A7) and (A9). Let @ = E¥ € U +U and let (@*,7*) be
the thermodynamic equilibrium according to Theorem 8.1. Then there is a constant ¢ > 0
such that

m
F(@) - @) < e {lloo — 712+ 30 D Juk — w2},

1=1 key
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Proof. According to (3.11) and Lemma 3.1 it only remains to show that
K k) 2 .
/*k (gz(vf) — g,-(y)) dy < c(g,-(vf) — gi(vik)) , keV, i=1,....m

Omitting the indeces k and 7 and having in mind that 6 min(1, g(y)) < ¢'(y) (see (A2)),

b
[ (90) = 90))g ) dy = ) () ~ 9(@) - 59()* + 9(a)*

b
9(v) / 9(b)
=~ —1)¢(y)dy = g(v) In == — g(b) + g(a),
| (G =1)d @y = g0) 0 G2~ a00) + g(a)
rlnZ y Tty <y ( ) for z, y > 0, and discussing the different cases for the relations

between the pomts v, v* and v := arg {g(y) = 1} we find that

/v (9(v) = 9(y)) dy < c(g(v) — g(v*))%. O

*

In analogy to the set M for the continuous problem, we define now the set

—

M = {(a %) € RT x RM : a® = ¢ for all (o, ) € R, (Py — foily, ... dGm) EU+T,

AVE
Whereu —uk(al,vo)—ulw |gl(lnal—qlz% l) if a; > 0,
e IV
uf:uf(ai,ﬁo):Oelse, ke, izl,...,m}.

Remark 3.1 On the one hand, if (@, ?) is a solution to (SD) then (a, ) € M, where
a=(es,..., ebm),

Vinvk ,
G=¢=v+a) ‘O|Vk| ‘vf), keVv,i=1,...,m
ey

On the other hand, if (a,7)) € M and a; > 0, i = 1,...,m, then (u,v) defined by

Vinvk _ .
vF =1na; — @Y ey | |Vk ‘vf), u’-C = ulgl(vf)|VZk|, i=1,...,m, k eV, iy:= Py — f, is

(2

a solution to (SD). If Mn (OR™ x RM) = () then M = {(a*,75)}.

Lemma 3.6 Let (Al) — (A7) and (A9) be satisfied. Then

MO (ORT x HY(Q) =0 <= Mn(ORT x RM) =1.

Proof. We prove here the direction M N (ORT x H'(Q)) =0 = MnN (OR™ x RM) = ()
in great detail. At the end of the proof we give the essential hints how to show the
opposite direction. The ideas then are similar to the case we discuss here. Now we show:
If M N (ORT x RM) £ @ then M N (ORT x H'()) # 0, too. Let now be (a, %) €
M (ORT x RM),
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1. Case a = 0: Then

(/QUldx, /U w)= (Y vty uk)es

key key

Let 99 € H 1(Q) be the solution to Fyty = 0 which is uniquely defined since Ejy is strongly
monotone and Lipschitz continuous. Having in mind that Uy = >, ¢;U; we find thus
that (Eo¥,0,...,0) — U € U and (a,¥) := (0,7) € M N (ORT x H'()).

2. Case a; # 0 for some i € {1,...,m}: Without loss of generality we assume that a; # 0,
i=1,...,p,a; =0,i=p+1,...,m, with 1 < p < m. From a® = d? for all (o,8) € R
we conclude that for all (a, 3) € R with a; > 0 for at least one i € {p + 1,...,m} there

must be at least one §; >0, j € {p+1,...,m} and vice versa. Especially we have for all
(o, ) €R
m m
Y >0 ) Bi>0 (3.12)
i=p+1 i=p+1
We define

75»:: {(a,g):(alw"aap)ﬁlv"'ﬁp): (avﬁ) 6R7 ai:ﬁizoy Z:p+177m}7

S = Span{&—ﬁz (&,E) € ﬁ}

Now we consider a dimension reduced electro-reaction-diffusion problem for the first p
species with the reactions from R and new initial values U which are related to the
element (a, vy) of Mn (ORT x RM) as follows

~ = ~ ~ ul(a;, Tp)

U= (Up,Uy,...,Up), U(z) = VA ifreVl, i=1...p U=) al

We denote this problem by (ﬁ) and apply results concerning steady states from Section 2
to that problem (P). Note that for (P) the assumptions (A1) — (A7) are valid. Especially,
due to the choice of U we have [7, > 0,7 =1,...,p, and the Slater condition (A7) for
that dimension reduced electro-reaction-diffusion problem is fulfilled trivially. According
to Theorem 2.1 there exists a unique steady state (u, v) to (P). Remark 2.1 supplies that

there exists a unique (a,vy) € M,

M= {(a,%) ERY x HY(Q): @ =3 V(@& B) € R, (Eobo,th,....0p) — U €U,

u; = mg,(ln'dl — qﬁo) ifa; >0, u;=0e€lse, i =1,... ,p}

with @; > 0,7=1,...,p. (Here U is defined analogously to U in (2.5) substituting m by
p and S by S.) Especially we have Egvg = > %_; q;u; and

</Q(Ulgl(ln51 o) — Th) da, /Q(upgp(lnap —g0) - Op)dz) €8, (3.13)
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Setting (&, %) = (a,0,...,0,7) € RT x HY(Q) we find a® = aP for all (a, ) € R (see
(3.12)) and Eyvg = Z:il qiu; where u; = u; = wigi(Ilna; — ¢;vg), i = 1,...,p, u; = 0,
i=p+1,...,m. Because of

/ ﬁz de = Zuf(aivﬁ(]% / Uidz = Z )
Q

key key

(3.13) and (a,vp) € Mn (OR7 x RM) we can verify that

(é@—mﬂ@ﬂwm:«A@inm BN )
(=) Ly o (O0-UM), ) €S

key key

since both summands belong to S. In summary we obtain that (a,vy) belongs to M N
(ORT x H(Q2)).

For the opposite direction one has to prove (a,v9) € M N (ORT x H(Q)) # 0 =
Mn (ORT x RM) #£ (). The case a = 0 is trivial. If the first p components of a are posmve

we have to discuss a dimension reduced discretized problem (SD) with reactions from R
and initial values

—

[7:((70,[71,...,[71)), ﬁf::/ u;g9i(lna; — gvo)de, i=1,...,p,
Vk

i

S~k VN VY|~
m,_Z:E: i U, keV.
=1 ey

We use results concerning steady states for the dimension reduced discretized problem
from Section 3. Note that (Al) — (A6) and (A9) are fulfilled for the reduced problem.
Due to

/ Tigi(lna; — quo)de >0, i=1,...,p,
Q

(AT) is valid, too. According to Theorem 3.1 and Remark 3.1 we find a solution (ﬁ, 5) to
(élv)) and (a, 50) € M. Then (&, %) := (a,0,. .. ,0,1:)0) belongs to M N (ORT x RM). O

In analogy to Lemma 2.1 we prove a Poincaré type inequality which gives for the discretized
situation an estimate of the free energy by the dissipation rate.

Theorem 3.2 Let (A1) — (A9) be fulfilled. Moreover, let (@*,0*) be the thermodynamic
equilibrium according to Theorem 3.1. Then for every p > 0 there exists a constant c, > 0
such that

F(@) — F(@*) < ¢,D(?) (3.14)
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Proof. 1. Let p > 0 be arbitrarily given. For 7 € RM(m+1) g — (@1y... ), G; = (af)kev,
and a¥ = exp(¢F), where Cf is defined via (3.3) we can estimate

252 > Z’“ )|8Vkﬂavl|

i=1 k,leV, i<k |

PP M<exp{z< 3o { S 2]t v
(a,8)ER k1€V km€V i=1
:ZDl(’U).

Here we used (A2), (A3), (A4) and the inequality (z —y)In$ > |\/z — VYI? for z,y > 0.
Therefore it suffices to prove the inequality

F(@) — F(@*) < CDy(?) VieN,. (3.15)
2. If (3.15) would be false, then we find 9, € ./\Afp, n € N, such that

i, = EU,, F(i,) — F(@*) = C,D1(3,) > 0, (3.16)

and lim,_.,, C, = 4o00. Let fn denote the vector of the corresponding electrochemical
potentials and a¥, = eSni the electrochemical activities. From F (i) — F (@*) < p we
obtain by Lemma 3.4 that ||| < ¢, ||tholl < ¢, and by (3.2) and (A2) it results v¥, <
c, 0L af”- <c, keV,i=1,...,m. Insummary we find subsequences such that af”- — af,
keV,i=1,...,m, ’l_);n()—>?_]:().

3. We write

Cri — eChin2 2 ok, (b
(ak- 12)2 — (eC z ) ( ) T ( ) gz(vm) —;gz(’unz) (Cflfz B Cin)2

Because of |vF,| < ¢ and (A2) we can estimate

k 1
(eCm- _ eCm)2 2 < o2 max{¢F, ¢} 2
Chi— ¢l i

vRi) + i (vh) gi(max{vy;, v},;})

2
0 min{1, gl(max{vm, m})}
< c+2max{vm, 5”} 5_26_ max{vnwvni} lf gi (max{vm, 5” ) < 1
- 2 if g;(max{v® ol 1) >1

ni’ m —

< ec+2 max{vk, ol .}

<c

since v¥, are bounded from above. Taking into account that % < @, [SivH < ¢ we

therefore conclude that

IVENovi
Z (af“- — aéi)2% < ¢eDq(0,) — 0.
klev, i<k ! — 2*|

Thus, a¥;, — al, — 0 for all k,I with |0V N oV} > 0. Using a path argument we end up
with
k@, =af VYkeV, i=1,...,m.
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For (o, 3) € R we have

ﬁ(aﬁg)aiﬁ H a*i) 62/2_)HA%/2 HA@/Q

i=1 =1
Because of
m m 2
0 < kas (T (k)2 = TT(k)®/2) [V 0o 1 Vb < Di(@) = 0
i=1 i=1
for all k; € V,i=1,...,m we have for a := (ay,...,a,,) necessarily that
a*=a Y(o,p)eR. (3.17)
4. For k€ V,1=1,...,m, we introduce
. VinvE| N
u; —uZ|V |gl(ln a;) Z’ 0’ “/ | l) if a; # 0, uk 0ifa; =0. (3.18)
ley 7'

Due to 0 < gi(f) < 67 1g;(9) < 62’ the generalized mean value theorem ensures

) o !
M S sup —92(0) S C, (319)
e — e¥| oelzy] ©

and we can estimate for @ # 0 that

k
~k Ve NV Vs mV|Az
‘u - U ‘ <c gz 111 Z O‘Vk nO) hl az - QZZ O‘Vk Yo ‘
ley ley
Ve NV Vs N VL
= ‘eXp —a ) ka‘ Uno) — exp (In(@;) = g; ) O‘Viﬂvo)‘
ley ley
Ve NV, !
<C<|anz_al|+(anz+1 ZOTh)nO UO) — 0.
e W
Such an estimate for |uf, — | is true also if u¥ = 0.
5. According to (3.1), we set U := Y11 ¢ > ey |V7vl‘|/ ‘Aﬁ- and U = (T, 1, . . ., Um)-

Because of i, — U € U we obtain @ — U € U. Let 1§ denote the solution to Pty — f: ﬁo.
Slnce uﬁo — uo we find P Yo —0) = Uno 170 — 0. Together with 7,0 — vy this yields
vo = 7§ and on —f= uo Thus, (a, vo) € M and according to (A8) and Lemma 3.6

this is possible only if @; > 0, i = 1,...,m. Defining

- R Vinvk .,
¢i = In(a;), Z| O‘Vk | o, i=1,...,m,
ey
- = Mm+1) 2 _ B2
we get v := (Vo,V1,...,0m) € R , U= vEU—i—U and

S_aovEnovi|—RE=0. kev.i=1...m
ley
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Thus, (i, 5) is a solution to (SD). By Theorem 3.1 we conclude that D=7*and 1 = ai*.

6. Due to the convergence of the sequences (¥,9) and (i, ) and Lemma 3.5 we have

~

Ao =/ F(@,) — F(@*) — 0 as n — oc. (3.20)

Additionally (according to (3.16)) we find

1 1
= )\—le(Un) — 0 asn — oo. (3.21)
n n
We introduce the quantities
. 1(4 5. 7 1(q A, b 1( af, > ke, "
Wno := — (Upo — ¥ = — (U, — U = — g 2 =
n0 )\n n0 0/, Yn )\n n ) ni )\n az
The relation
ani G\ 2 1ok 1l ik A2
(of:; — ot ,)2 — a; ai 2 9i (Vi) + 95 (i) (Cni = i)
"o Chi = G gi(vk:) + gi(vh,) 2 A2

and the estimate

k. Lo\ 2 k _7 I 7\ 2
A /“a_niz 4 /“a_niz 9  [exp Cm2 G exp sz Gi 9
gi( )

Cﬁi — ¢ givh) +gi(vh,) Chi = Chi ACAESACY
1

exp{max{ﬁm, an}} [

gz(max{vrn? nz )

52 exp{ max{vnz? nz}} lf gl(ma‘x{vnw nz ) <1

if g;(max{vF, vl 1) >1

ni’ m —_

< ceXp{C + maX{vm, nz}}{
5

together with v ; < ¢, k €V guarantee that

k l =
> k- th) S < P

k _ .l — 2
klev, i<k \x z ’ )\"

Thus, bk, — bl — 0 for all k,I with |0VFNdV}| > 0. By a path argument we end up with

bbb VeeV, i=1,...,m.

Lemma 3.4 ensures that ||@g|| < ¢. Since

) = M =T g ey ﬁ'\r Ve

and |uF |, |@¥| < c (see step 2 and 4) we ﬁnd by Lemma 3.4 that il <c,i=1,...,m.
Thus there are subsequences and elements wo and ¥ y such that

Wpo — Wo, yni_>?4172207~--am-
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7. In view of i, — U € U we have Un € u. Passing to the limit we find that 176 Z:{\, thus

(ZﬁZ%) €s. (3.22)

key key

By the definition of b, and @ we obtain for all (a, 8) € R,
m m 2 m m
i (Hm’;’;)ai” - Hwﬁwﬁi”) = (TTOwd + 0 = TTwtls + %)’
i=1 i=1 i=1 =1 (3.23)
= ()\n > bR (o - @-))2 + Qu(k1, ... k)

where

|Qn(k17 s kn)| < CA?’(Hb H + 1)p0 Vki,... kn €V,

0<p0<2 max maX{Zal,Zﬁl}

Taking into account that A, — 0 as n — oo, we find
1
)\—2]Qn(k:1,...,kn)\ < eAp(||bp]] F1)P° - 0asn — o0 Vki,... .k, € V.

This together with (3.21) and (3.23) gives
im Y kaﬁ(Zb ) VE A AvER =0 V(o B) € R.
TSV kmev

Therefore, for b= (31, ... ,Zm) where g@ =lim, oo b* , k € V, we arrive at

ni’

be St (3.24)

8. Letting n — oo in

ko | VE Ve NV o Vo v |Al
Yni = Z k Uno) (In(@:) — o Z k o
An < ey ’V fev ‘V )
we find
) R VN Vi %o Vil
ey Z’ ley Z
i (3.25)
= IVl (08) (2 — e S 0.
ley v

Lemma 3.1 and the equations satisfied by ;9 and 50, respectively, imply

L= R U VENV; .
Cuvno—UoH2 < (P (tho—70), Uno—0) = Z%ZZ IOTZ‘Z’(Ulm—Uﬁ)(UfLO Uo) (3.26)

=1 keVlieVy ‘ ¢
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Dividing by A2 and passing to the limit as n — oo, we obtain

ol <3 g 3 MOV ‘VO N V 5! it da.

i=1 keVIeVy ’

According to (3.22), (3.24) we have >, 3,0, U/ b; = 0, and additionally using (3.25) we
derive from the previous inequality

¢l @o|? giZﬁ ( > v nV|Ak—2b)

i=1 ley key Z
Vi ﬁV . 2
:_ZZuZ|Vl|gZ (4 Z‘ : | g —2b:) <0,
i=1 leV key ’

Thus it follows 50 =0, b= 0, and ﬁz 0.
9. By the definition of A, (see (3.20)) and Lemma 3.5 we find

1 = N =% - - T
1= 55 (F@n) - F@) < (Il + 3 171°).
n i=1

Because of w,g — 0, ¥, — 0 the right hand side converges to 0 as n — oo. This
contradiction shows that the assumption made in the beginning of step 2 of the proof was
wrong, i.e., (3.15) holds, and the proof is complete. O

Now we are able to prove the main result of the paper which concerns the (monotone and)
exponential decay of the free energy on solutions to the discretized Problem (PD).

Theorem 3.3 We assume (Al) — (A10). Then the (fully implicit in time) discretization
scheme (PD) is dissipative, i.e. solutions (i, V) to (PD) fulfil

~

F(ii(tny)) < F(ii(tn,)) < F(U)  for all ty, < tp,.
Moreover, there exists a X > 0 such that

F(i(t,)) — F(a*) < e (F(U) — F(a*)) VYn>1.

Proof. 1. According to Lemma 3.2, a solution (i, ¥) to the discrete Problem (PD) fulfills
the invariance property

ity)—UclU, n>1.

2. F is differentiable in arguments u, where uf >0, keV,i=1,...,m. Ifui= EU, then
@ = G'(V) and ¥ = F'(@) and we obtain the inequality

F(@) — F(@) > (7,5 — @) Vi € RMm+D), (3.27)
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3. Let ng > ny > 0 and A > 0. Using @(t,) = Ed(t,), (3.27), the discrete continuity
equations in (PD), and the definition of the discrete dissipation rate (3.7) we estimate

s (F(i(tn,)) = (@) = e (Fi(ta,)) - F(i"))

(3.28)

4. Since ﬁ(ﬁ) > 0 for ¥ € RM(m+1) we obtain by setting A = 0 in (3.28) that

~ ~ ~

F(il(ty,)) < F(ii(ty,)) < F(U) Yng >nq > 0.

5. Setting p := F(U) — F(@*) we find F(d(t,)) - F(@*) < p, @(t,) = E¥(t,) € U+U. This
means U(t,) € /\/ for r > 1. Theorem 3.2 supplies a ¢, > 0 such that (3.14) is fulfilled.
Choosing now A > 0 such that Ae* hcp < 1 (see (A10), too) and ny = 0, the estimate (3.28)
proves the second part of the theorem. [

Remark 3.2 Gajewski and Gértner [5] use a Crank-Nicholson like time discretization to
show the dissipativeness for a discrete scheme for a nonlocal phase segregation model.
This there is necessary due to the fact that the free energy functional in that model is not
convex. In our convex situation we can apply an Euler backward scheme because we can
exploit inequality (3.27) to proceed in the proof of Theorem 3.3.

4 Remarks on the numerical treatment of heterostructures

We consider a 2D heterostructure, where in subregions the material parameters are con-
stants and intend to apply the techniques from Section 3 to this situation in a suitable
way. Let Q € R? be composed by a finite number of connected, bounded, nonempty poly-
hedral open subsets Qf, I € 7, with common edges T48 = QANQB, 0 = UrerQ. On QF

we assume constant material parameters ! k:aﬁ, SI, I €T (see (A9), too). The mobility
and dielectric permittivity matrices SZ-I have the form

T ..
=Q; diag (', 17" Qi

where 0 < ,uZ ,,ul < ¢ are constants and QZ-I are orthogonal 2 x 2 matrices, 1 = 0,...,m,
I € 7. We define

(20

min(pu; ", @

@b == max arccos M, g = max o (4.1)
€

i=0,...,m max(ul!, p2h)
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Figure 2: Discretization near a heterostructure interface T'A5. Left: Compensation of
fluxes through the heterostructure interface by two opposite laying Voronoi boxes is guar-
anteed. Right: Compensation of fluxes by two opposite laying Voronoi boxes only can not
be achieved.

We consider a grid {xk cak e Ok = 1,...,M } which respects all interfaces 4B,
A, B € T, with |T4B| > 0. Especially, the end points of T45 are grid points. To apply
the methods from Section 3 we want to evaluate fluxes through inner heterostructure
interfaces by compensation arguments for the fluxes at the boundary of Voronoi boxes
laying opposite to each other with respect to the interface. Figure 2, left shows the
desired situation, the compensation can be achieved by the two opposite laying Voronoi
boxes only. Figure 2, right depicts an undesired situation which must be excluded. In
[10, Lemma 4.2, Remark 4.3] we proved the following criterion for the grid such that
compensation by the two opposite laying Voronoi boxes only is possible for all Voronoi
boxes defined by the different SZ-I, 1=0,....m, 1 €T

For A, B € T with |T45| > 0 we denote by x4? the quotient of the maximal Euclidian
distance of two directly neighboring grid points on the heterostructure interface I'48 and

of the minimal Euclidian distance of inner grid points to the heterostructure interface
I'4B. Then the condition

K= max AP < /2 = 2sin @ (4.2)

A, BET, [TAB|>0

where ¢ is defined in (4.1) allows to handle general heterostructures and boundary con-
ditions. The severe restriction (4.2) on the placement of vertices on and close to interfaces
and boundaries guarantees that the integration procedure described in Section 3 can be
applied independently on each Q! and the fluxes and potentials fulfill the continuity con-
ditions.

For Qf = Q! and for straight line interfaces the restriction can be seriously relaxed. But
still the largest eigenvalue ratio for each Q! defines a forbidden region for interior vertices
around the interfaces or boundaries.
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