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ABSTRACT. In this paper we study boundary integral formulations of the interior 
and exterior Dirichlet problem for the bi-Laplacian in a plane domain with a piece-
wise smooth boundary having corner points. The mapping properties of single and 
double layer biharmonic potentials, of the Calderon projections and the Poincare-
Steklov operators for such domains are analysed. We derive direct boundary integral 
equations equivalent to the variational formulation of the problem. 

1. INTRODUCTION 

The paper is devoted to boundary integral methods for solving the Dirichlet problem of the 
biharmonic equation 

b?u = 0 in n c 1R 2 
' 

ulr = vlr, Bnulr = Bnvlr, 
(1.1) 

where n is an interior or exterior domain bounded by a closed piecewise smooth curve r 
having corners and the Dirichlet data are the trace ( vlr, Bnvlr) of a function v belonging on 
a neighbourhood ofT to the Sobolev space H 2 • For the exterior problem one has to impose 
additionally a special behaviour of the solution at infinity. 
The aim of the present paper is the study of direct boundary integral formulations which are 
equivalent to the variational solution of (1.1). As the main result we derive different systems 
of integral equations on r and describe their solvability conditions. To do so we introduce 
certain boundary integral operators for the bi-Laplacian and study mapping properties in 
the corresponding trace spaces of H 2-functions. As byproduct we are able to analyse the 
Steklov-Poincare operators which map the Dirichlet data of biharmonic functions u to their 
Neumann data (.Llulr, Bn.Llulr ). 
Among the different methods which exist for solving (1.1), integral equation methods play an 
important role, especially in connection with the boundary element method. For the interior 
problem and for sufficiently smooth boundary r such methods were investigated by several 
authors. Let us mention some results related to the contents of our paper. In [4] and [12] a 
system of direct boundary integral equations was studied which is closely connected with the 
system (6.10) of our approach. In [12] Fuglede derived necessary and sufficient conditions for 
the equivalence of these equations to (1.1) if the Dirichlet data are sufficiently smooth. A 
general approach of direct first kind integral equations for (1.1) can be performed using the 
results of Costabel and Wendland (see [6] and [11]). Based on the theory of pseudodifferential 
operators a complete description of the mapping properties of boundary integral operators, 
Calderon projections and Steklov-Poincare operators can be obtained. This is mentioned in 
the paper of Costabel, Lusikka and Saranen [8], where approximation methods for solving the 
interior Dirichlet problem are studied, which are based on three different boundary integral 
formulations. Besides the equations coinciding with our systems (6.12) and (6.10) the authors 
consider also an indirect method which goes back to Hsiao and MacCamy [14] and is based 
on a single layer representation. This approach was extended by Costabel, Stephan and 
Wendland studying in [10], to our knowledge for the first time, boundary integral equations 
for the bi-Laplacian on a nonsmooth curve. The authors consider the related boundary 
value problem gradulr = f and obtain a system of two integral equations of the first kind 
with logarithmic principal part. Using Mellin techniques the continuity in Sobolev spaces 
and a Garding inequality of the corresponding boundary integral operator are shown and the 
regularity of solutions is studied. Finally we mention the paper [2] of Bourlard which proposes 
a direct Galerkin BEM for solving the interior Dirichlet problem on a polygonal domain and 
obtains optimal convergence rates for special graded meshes. Many of the stability results 
for the Galerkin method appear also in our approach and we will comment these results at 
the corresponding places. 
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The paper is organized as follows. In Sect. 2 we consider the space of Dirichlet data of 
H 2-functions and the space of Neumann data of H 2-functions u with ~2u E L2 • In Sect. 3 
we introduce the biharmonic potentials and their traces, the boundary integral operators. 
We investigate mapping properties with respect to the trace spaces, the jump relations of 
the potentials and prove the Garding inequality for the single layer potential operator. In 
Sect. 4 the behaviour at infinity for solutions of the exterior Dirichlet problem is specified 
and we prove representation formulas for the variational solutions of (1.1). This allows to 
represent the Calderon projections via boundary integral operators. The special structure of 
these projections is used in Sect. 5 to analyse the Steklov-Poincare operators for biharmonic 
functions. We remark that in [16] a fast method for solving the interior Dirichlet problem 
(1.1) on convex polygonal domains is developed based on boundary reduction and mapping 
properties of Steklov-Poincare operators. In the last Section we derive systems of integral 
equations for solving ( 1.1), partially new even for smooth r, and study the solvability of these 
equations. 
To conclude the introduction we briefly comment some topics not treated in this paper. We do 
not consider the approximate solution of the integral equations. The convergence of Galerkin 
and certain collocation methods for the strongly elliptic system (6.6) is rather clear, whereas 
the stability of approximation methods for solving the other systems seems to be open. To 
get error estimates one has to know the regularity of the corresponding solutions. This topic 
and also the continuity of boundary integral operators in other than the energy norms we 
do not study because of the lack of space. Since we are dealing with direct methods some 
regularity results can be derived from the known singularities of the solutions of the Dirichlet 
problem (see [1]). On the other hand, the calculus of Mellin operators provides a useful tool 
in this direction. A more interesting problem not treated is the analysis of direct integral 
methods for the biharmonic equation with other boundary conditions. The application of 
our methods to this problem will be considered in a forthcoming paper (see Remark 5.3). 

2. TRACES OF H 2-FUNCTIONS ON PIECEWISE SMOOTH BOUNDARIES 

For the following let r be a simple closed curve in the plane (x 17 x2 ) of the form 

where ri are of the class C3 and adjacent arcs ri form corners with angles different from 
0 and 27r. The interior of r we denote by fl17 the exterior IR.2 \fl1 by n2 , and let the unit 
normal n on r be directed into n2 • The differentiation with respect to n is denoted by 8n. 
The starting point of our analysis is 

Lemma 2.1. (Jakovlev [15]). Let u E H 2(fl1). Then 

ulri E H 312(ri), 8nulri E H 1
'

2(ri), 

ulr E Hl(r)' au I ' au I E Hl/2(r) 
ax1 r ax2 r 

and there exists a constant c > 0, not depending on u, such that 

If the projections of the normal n onto the xi- and x2-axis are denoted by n 1 and n2 , 

respectively, then 
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where a/Su denotes the differentiation with respect to the arc length s. In the sequel we 
identify functions on r with periodic functions depending ons and write a,u = u'. It is well 
known that for ltl ~ 1 the Sobolev spaces Ht(r) can be identified with the corresponding 
periodic Sobolev spaces. 
Note that n1 (s) and n 2 (s) as well as 8ncplr and 8acplr for smooth cp E CQ'°(IR2

) are piecewise 
functions of the class C2 and C3 , respectively, with jumps at the corner points. Let us 
introduce the trace space 

V(r) = { (::) : u1 E H1(r), niu2 - n.u~ E H1i 2(r), n•u2 + n1u~ E H1i 2(r)} 

equipped with the canonical norm and define the generalized trace 

-yu := (an~I:) · 
Lemma 2.2. (Jakovlev (15]). The linear mapping 

1: Hz:c(IR2
) ~ V(I') 

is continuous and has a continuous right inverse 

,- : V(r) ~ Hz~c(lR.2 ) • 

In particular, 1 maps C<f (IR2
) onto a dense subspace of V(I'). 

Let us describe the dual space of V(I'). We introduce the duality form 

[ ( :J ( ::) ] := -(v11 u1)r + (v2, u2)r, 

where (·, ·)r denotes the extension of the usual L 2-scalar product on r. 

(2.1) 

Lemma 2.3. The vector (~~) belongs to (V(I'))' iff there exist zi, z2 E H- 1l 2(r) such that 
the equations 

are satisfied. 

The trace 1u E V(I') will be called the Dirichlet datum of u E Hz~c(IR2 ).on r. Now we define 
the Neumann datum. We introduce the space 

H 2(!1i, ~2) = { u E H 2(!11): ~2u E L2(!11)} 

with the graph norm. 

Lemma 2.4. C00 (!11 ) is dense in H 2 (!117 ~
2). 

The proof is based on.the same arguments as the proof for the case H 1(!1i, ~)given in the 
book of Grisvard [13]. 

Lemma 2.5. Let u E H 2(!117 ~
2). Then the mapping 

Su: 'l/; ~[Su, 'l/;] := j (~u · ~(T-'l/;) -1-'l/; · ~2u)dx (2.2) 
01 

is a continuous linear functional on V(I') that coincides for sufficiently smooth u with the 
functional 
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M orepver, the mapping 

is continuous. 
Proof . The first Green formula 

J (L~.u. ~v - v. ~2u)dx = J (~u. 8nv - v. an~u) ds 
01 r 

is valid for all u E H 4 (!11 ), v E H 2 (!11 ). Hence for sufficiently smooth u 

I [ ou, 7/1] I < ll~ullP(Oi) II~( ,-,,p )llP(01) + II~ 2ullL:i(oi) ll1--rPllv1(01) 
< llullH:i(o1,~:i)ll1--rPllH:i(o1) · 

From Lemmas 2.2 and 2.4 the assertion follows by continuity. Ill 

Corollary 2.1. For u, v E H 2 (!1i, ~2 ) the second Green formula 

j(v: ~2u - u · ~2v)dx = [ov,1u]- [ou,1v] 
01 

holds. If u E H 2(!11 ) solves the biharmonic equation ~2u = 0 then 

[ou, 1u] ~ O • 

(2.3) 

The construction of the Neumann data ou is standard, for second order equations we refer to 
[13] and [7], for the biharmonic equation a similar construction is given in [2]. We note that 
the definition of Ou is based on the bilinear form 

a(u,v) := j ~u · ~vdx, 
01 

corresponding to the variational solution of the Dirichlet problem 

1u = 7/1' (2.4) 

with f E L2 (!11), ,,P E V(r). Since a( u, u) 1l 2 is an equivalent norm on H5(!11 ) (see [5]) we 
derive by using Lemma 2.2 the unique solvability of (2.4) in variational sense. 

Lemma 2.6. The Dirichlet problem (2.4) has for any f E L2 (!11 ), ,,P E V(r) a unique 
solution u E H 2(!1i, ~2 ). The solution operator 

is continuous. 

Now we can prove 

Lemma 2.7. 8 maps Cg>(IR.2 ) onto a dense subspace of (V(r))'. 

Proof. Assume that for some ,,PE V(r) it holds 

[ocp, ,,p] = o 

4 

(2.5) 

(2.6) 



for all cp E Cg'(IR.2
). Due to Lemma 2.6 the boundary value 'ljJ and an arbitrary f E L2(n1 ) 

lead to solutions T(O, ,,P), T(f, 0) E H 2(0.i, .6.2 ) of the corresponding Dirichlet problems. 
Applying Corollary 2.1 we obtain 

[oT(f,O),,,P] [0T(f,0),7T(O,,,P)]- [0T(O,,,P),7T(f,O)] 

= j (T(f, o) ·c.. 2T(o,,p) - T(Oo•P). c.. 2T(f, o)) do: 
01 

- j f · T ( 0, 'ljJ) dx . 
01 

From Lemma 2.4 we conclude that (2.6) holds even for cp = T(f, 0) E H 2(n1 , .6.2 ), such that 

I f . T ( 0' 'ljJ) dx = 0 for all f E L 2 ( n 1) . 
01 

Thus T(O,,,P) = 0 and the relation 'ljJ = 7T(O,,,P) = 0 shows that o(Cg'(lR.2 )) is dense in 
(V(r))'. 11 

In the sequel we consider also the Dirichlet problem in the exterior domain n2 • Besides the 
Dirichlet datum we have therefore to define the Neumann datum of functions given outside 
of n1 • Let 0 be a domain containing 0.1 and let u E H 2(0\0.17 .6.2 ). For v E H 2(0\0.i) we 
define 

[ o u, 1' v] = j ( cpv · .6. 2 u - .6. ( cpv) · .6. u) dx , 
0\01 

where cp E Cg'(O) with cp = 1 on a neighbourhood of 0.1 . It is clear that the definition of o 
does not depend on cp. Moreover, it ensures that for cp E Cg'(lR.2

) there holds 

o(cplo:i) = o(cplo1). 
In the following the pair of Dirichlet and Neumann data ( 1u, ou) will be called Cauchy data 
of u. 

3. BOUNDARY INTEGRAL OPERATORS FOR THE BI-LAPLACIAN 

Here we follow a method described in Costabel [7] for the study of boundary integral operators 
for second order equations on Lipschitz domains. The boundary integral operators for the 
bi-Laplacian .6.2 are based on the fundamental solution 

G( x' y) : = 8~ Ix - YI 2 ln Ix - YI ' x' y E IR 2 
' 

satisfying 

.6.~ G ( x, y) = .6.; G ( x, y) = o ( x - y) . 
It is well known that the operator 

Gu(x) := (G(x, ·),u)R2 
is the two-sided inverse of .6.2 on the space of compactly supported distributions on lR.2 and 
represents a pseudodifferential operator of order -4, i.e. 

G: H;omp(IR.2 )--+ H;'0~4(IR2 ), s E lR., (3.1) 

is continuous. Furthermore 
1 1 .6.yG(x, y) = .6.:G(x, y) = -· ln Ix - YI+ - . 

27r 27r 
(3.2) 
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We have the following representation formula. 

Lemma 3.1. Let u E L2(lR2
) be a function with compact support such that the restrictions 

ul 01 E H 2(f21), uln:i E n;omp(f22) and f = Ll2ulR2\r E L2(lR2). Then for x E 1R2\r it holds 

u(x) = Gf(x) - [{c5u},'YG(x, ·)] + [c5G(x, ·),{Tu}], 
where 

{Tu}:= 'Y(uln2 ) - 'Y(ulnJ, {c5u} := c5(uln2 )- c5(ulnJ, 
denote the jumps across r. 
The proof follows immediately from the second Green formula (Corollary 2.1) and the known 
representation formula for sufficiently smooth functions applied in a small ball enclosing the 
point x. 
Next we define the biharmonic layer potentials for x E IR.2\r as 

Kox(x) := [x, rG(x, ·)], 
K 1 'if;(x) := [c5G(x, ·),'if;], 

X E (V(r))', 
'if; E V(r), 

and the boundary integral operators 

Ax:= 2rKox , Bx:= 2 c5(Koxln1), 
C'lj; := 21(K1'1/JlnJ , 1J'lj; := -2 c5(K1-zfaln1) · 

Lemma 3.2. The mappings 

Ko : (V(r))' -7 H~c(IR.2 ), Ki : V(r) -7 H 2(f21), 
A: (V(r))' -7 V(r)' B: (V(r))' -7 (V(r))'' c : V(r) -7 V(r) 

are continuous and 

1J'lj; = 0 , 'if; E V(r). 
Proof. Because of 

Kox(x) = (G(x, ·),'Y'X)m.2 
we can write 

Kox = Gr'x. 

(3.3) 

(3.4) 

(3.5) 

The adjoint of the trace map r' : (V(r))' -7 H;i!p(lR2
) is continuous, therefore the assertion 

for Ko follows from ( 3 .1). 
Due to Lemma 3.1 the solution u = T(O, -zP) of the Dirichlet problem (2.4) can be represented 
in the form 

such that from Lemmas 2.5 and 2.6 we derive 

llK1 'l/JllH2 (ni) :5 cll-zPllvcr> · 
Now the mapping properties of A and C are a simple consequence of Lemma 2.1. The 
boundedness of B follows from Lemma 2.5 since Ll2Kox = O in n1. 
For 1/J = (~~) E V(r) we get from (2.1) and (3.2) the representation 

K,,P(x) = - 2~ j v,(y) Bn, Inlx - ylds, + 2~ j v,(y) (!nix - YI + l)ds,. (3.6) 
r r 

Hence, K11/J E H 2(f2i, Ll2 ) is a harmonic function and for any cp E V(r) 

[1J,,P, cp] = 2 j (r-cp · Ll 2 K11/J - Ll( ,-cp) · LlK11/J) dx = 0. II 

01 
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The layer potentials provide the following jump relations: 

Lemma 3.3. 

{1'Kox} = O, 
{1'K1'l/;} = 'l/;, 

{6Kax} = -x 
{6K1'l/;} = O 

for all x E (V(r) )', 
for all 'ljJ E V(r). 

Proof. Since u = Kox E Hl~c(IR.2 ) we have 1(uln1) = 1(ul0 J. 
Further, from (3.5) we obtain l:::,. 2u = 1'x in distributional sense, i.e. 

j u D. 2cpdx = (T'x, cp)R2 = [x, 1cp] 
JR.2 

for any cp E C0 (IR 2 ). On the other hand 

j ul:::,. 2cpdx = j D.u D.cpdx - [ocp, 1u] = [6( uln1), 1cp] - [ocp, 1u], 
01 01 

j ul:::,. 2cpdx -[o(uln::r),1cp] + [6cp,1u]. 
O:;r 

Thus 

Let now u = K1 'l/;, 'ljJ = (~~) E V(r). From (3.6) and the jump relations of the harmonic 
potentials (proved for example in [9] for the more general case ( vi, v2 ) E H 1f 2(r) x n-1/ 2(r)) 
we obtain 

Now we consider the adjoints of the boundary integral operators with respect to the duality 
form (2.1). Here and in the following Id denotes the identity mapping in the spaces V(r), 
(V(r))' and V(r) x (V(r))'. 

Corollary 3.1. It holds A= A' and B' = C + 2 Id. 

Proof . The assertion follows immediately from the symmetry of the kernel function G and 
the jump relations, for example: 

[Bx,'l/J] [o(Koxlo.) + O(Koxlo,) + x,w] 

( G1'xln1 + G1'xln::r, o''l/; )JR.2 + [x, 'l/;], 

where o''lj; denotes the compactly supported distribution on IR.2 defined by 

(cp, 6''l/Jha2 = [ocp, 'l/;] for all cp E C~(IR.2 ). 

Since the jump relation yields for u = K1 'ljJ 

ju l:::,. 2cpdx = [ocp, 'l/;] for all cp E C~(IR.2 ) 
JR.2 

we have !:::,. 2u = o''lj; in distributional sense and 

7 



Hence 

[Bx, 7/7] = (Gr'x, 8'7/i)JR.2 + [x, 7/7] 

Let us introduce the operator 

Then 

= (r'x, G8'7/iln1 + G8'7/iln:2)JR.2 + [x, 7/7] 
= [x, r(K17/iln1) + r(K17/iln:2)] + [x, 7/7] 

[x, 2,(K17/ilni) + 7/7] + [x, 7/7] 
= [x, C7/i] + 2[x, 7/7]. • 

W := Id+C. 

B=Id+W' 

and from Lemma 3.3 we derive for j = 1, 2 

(3.7) 

(3.8) 

1 . 1 . 
r(K17/iln;) = 2(W + (-1)3 Id)7/1 , c(Koxln;) = 2(W' - (-1)3 Id)x. (3.9) 

Therefore we call W the double layer potential operator of the bi-Laplacian on r. The 
corresponding single layer potential operator on r satisfies a Garding inequality. 

Lemma 3.4. The operator A is strongly elliptic, i.e. there exist a compact operator 
T: (V(r) )' ---+ V(r) and a positive constant c such that 

I [x, (A+ T)x] I ~ c llxll(v(r))' , Vx E (V(r) )'. 

Proof. For x E (V(r))' and u = -K0 x we have the relations 
1 . 

ruln1 = ruln:2 = -2Ax, {ou} = x · 

We choose cp E CQ°(IR.2) with cp = 1 on a neighbourhood of n1 and set u1 = ul01 , u2 = cpuln:2· 
Then 

Thus 

~[x,Ax] = [Oul>'Yud - [c5u.,1'u2] = j l6u112d:i: + j l6u212d:i: - j u,62u2d:i:. 
n1 n:2 n:2 

llxll(v(r))' = ll8u1 - 8u2ll(v(r))' ~ c(llu1ll~:2(ni) + llu2ll~:2(n:2) + ll~2 u2lli:2(n:2)) 

~ ~[x, Ax]+ c(llu1lli:2cn1) + llu2lli:2(n:2) + ll~2u2lli:2(n:2) + j u2~2u2dx) · 
n:2 

Since ~2u2 has a compact support in n2 and is C00 (n2), the term in the brackets is generated 
by a compact bilinear form of X· • 

Corollary 3.2. The operator 

A : (V(r) )' ---t V(r) 

is Fredholm with index zero. If Ax E V(r) then x E (V(r))'. 
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4. CALDERON PROJECTIONS 

Now we are in the position to define the Calderon projections which map onto the Cauchy 
data of functions biharmonic in 01 or n2 • Here we follow a method developed in [9] for second 
order equations. 
We define the linear spaces 

L; := {u(x) = lCox(x) - 1C1'1f;(x): ('lf;,x) E V(r) x (V(r))', x E n1}, 

in which solutions of the biharmonic equation are sought. From the Lemmas 3.1 and 3.2 we 
conclude that L1 is the set of functions u E H 2(01) satisfying ..6.2u = 0. Moreover, for u E L1 
the representation formula 

{ 
u(x) 

JC08u(x)-JC1!u(x) = 
0 

( 4.1) 

holds. 
The space L2 consists of u E H1~c(02 ) providing .D.2u = 0 and a special behaviour at infinity, 
which we refer as radiation condition. The asymptotics of functions belonging to L2 can be 
described as follows: 
Using the functions 

g1(x, y) = 1, 

g3(x, Y) = IYl 2
, 

(here x·y denotes the inner product of vectors x,y E 1R2 and jyj 2 = y·y), we introduce 

I1x(x) = [x,,g1(x, ·)] , x E (V(r))', j = 1(1)4, 

Is'lf; = [8g3(x, ·), ,,P] , ,,PE V(r) . 
Note that 11 , 13 and 15 are constants while 12 and 14 depend on the direction of x. 

Lemma 4.1. For given (,,P,x) E V(r) x (V(r))' the function 

u(x) = 1C1'1f;(x) - lCox(x) 

behaves for large Ix I = R as 

u(x) = - 8~ (11x R2 ln R - I2x(x)(2Rln R + R) + (J3x - Is,,P) ln R + l4x(x) - Is-iP) 

(4.2) 

+O(R- 1
). (4.3) 

This expansion was proved in [4] for the case of 'If; and x having continuous components, such 
that from Lemmas 2.2 and 2.7 the assertion follows immediately. 
A representation formula similar to ( 4.1) holds also for functions u E L2 • 

Lemma 4.2. For u E L 2 with Cauchy data (;u, ou) there holds 

{ 
u( x) , x E 02 , 

JC1,u(x)-JC08u(x) = 
0 , x E 0 1 . 

( 4.4) 

Proof. We enclose n1 by a ball BR with radius R > lxl. Then the representation formula 
( 4.1) is valid for the bounded domain n1 n BR yielding 

u(x) = lC1!u(x)- JC08u(x) 

+ j ( u On.,.D.G(x, z) - .D.G(x, z) OnU + .D.u On.,G(x, z) - G(x, z) On..6.u) dsr. . 
SR 
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Using the asymptotics ( 4.3) of u(z) as R = lzl-+ oo and the asymptotics of the fundamental 
solution given in [4] 

G(x, z) = 8~ ( R2 ln R - 2(x·n,)(R1n R + R) + lxl 2 1n R + l"'d
2 

+ (x·n,)2
) + O(R-1

), 

one obtains with the help of a computer algebra system that the integrand permits the 
expansion 

64~2 ( ((x ·nz) I18u - I28u(z)) (3(ln R - 1) - 2(ln R)2) 

- ~ ((2(x·nz)2 - lxl 2) I18u + 2J38u - 2148u(z))) + O(R-2). 

Obviously 

j (x·nz) dsz = j I28u(z) dsz = 0, 
SR SR 

such that the integral of the first term in the brackets vanishes. Further, denote by Oz the 
angle between x and the integration point z. Then 

2(x·nz)2 - lxl 2 = lxl 2(2 cos2 Oz - 1) = lxl2 cos 20z , 

implying 

j (2( x ·nz)2 - lxl2) I18u dsz = 0 . 
SR 

Finally, we have 

I48u(z) - I35u = [5u, 1h(z, ·)] 
with the function 

h(z y) = (z·y)2 - IYl2 = IYl2 cos 20 
' lzl2 2 2 z ' 

where now Oz is the angle between y and z. Denoting by a: the angle between y and ny we 
get 

8n.,,h(z,y) = 2(y·nz)(ny·nz) - (y·ny) 
= IYl(2 cos Oz cos( Oz - a:) - cos a:)= IYI cos(20z - a:) . 

Hence 

j (I38u - ]40u(z)) dsz = 0, 
SR 

such that 

j(u anlt.D.G(x, z) - D.G(x, z) 8nu + D.u 8nlt.G(x, z) - G(x, z) 8nD.u)dsz = O(R- 1
). II 

SR 

Now we introduce the linear operator 

( ) 
V(r) 

m := -: ;, : (V~) )' ___, 
V(r) 

x 
(V(r))' 

where 0 denotes the zero mapping, and define 
1 . 

~j := 2(Jd- (-l)'Ql) 'j = 1,2. ( 4.5) 
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Theorem 4.1. The operators~; are bounded projections in V(r) x (V(r))' mapping onto 
the set of Cauchy data ( 1u, ou) of functions u E L;. 

Proof. The boundedness of~; follows from Lemma 3.2. Further, for any ('lf;,x) E V(r) x 
(V(r) )' we have 

and by Lemma 3.2 and (3.9) 

('u) = (-l); ('(X:1'l/Jln;) -1(X:oxln;)) = (-l); (HW + (-1); Id)'lf; - ~Ax) 
OU o(X:1'l/Jln;)- o(X:oxln;) -HW' - (-l)iid)x 

= ~ ( Id+ ( -1 )i W - ( -1 )~A ) ('l/;) = ~(Id _ ( _ 1 )i Qt) ('l/;) = ~. ('l/;) 
2 0 Id - ( -1 )' w I x 2 x 3 x . 

Let now u E L;. Then the representation formulas ( 4.1) and ( 4.4) yield 

u(x) = (-l);(X:11u(x)- K:0ou(x)), x E O;, 

after applying the jump relations of Lemma 3.3 and (3.9) we obtain 

('u) = ~- ('u) , ou 3 Su 

showing that the mappings ~i are projections and that the Cauchy data of all functions from 
L; belong to the image of ~i· • 
Since the Calderon projections corresponding to the interior and the exterior problem are 
conjugate 

the space V(r) x (V(r))' can be decomposed as the direct sum of closed subspaces 

V(r) x (V(r))' = {(1u, ou): u E L 1} + {(1u, ou): u E L 2}. 

Further, since ~J = ~; we get 

Corollary 4.1. 

~(Id±W)2 =~(Id±W) , WA=AW' 

5. STEKLOV-POINCARE OPERATORS 

(4.6) 

In this section we derive equations with the strongly elliptic single layer potential operator 
A for the solution of the interior and of the exterior Dirichlet problem 

!:l. 2u = 0 in O; , 1u = 'ljJ E V(r) , 
if j = 2 then u satisfies the radiation condition ( 4.3) , 

and study the corresponding solution operators. 
From Theorem 4.1 we know that a solution u EL; satisfies the relation 

(Id-$;)(;:) = 0' 
the first line of this system yields in particular the equality 

(Id- (-l);W)Tu + (-1); Aou = o. 

11 
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Hence, if we consider the Dirichlet problem (5.1) then for given ;u = 7/J the unknown X = ou 
has to solve the equation 

Ax = (W - ( -1 )i Id) 7/J . (5.3) 

In order to study the solvability of these equations we make the assumption 

Al: The exterior homogeneous Dirichlet problem (5.1), i.e. 7/J = 0, has only the trivial 
solution. 

Theorem 5.1. Suppose AI. The equations (5.3) are uniquely solvable for any 7/J E V(r) 
and the weak solution u E L; of the corresponding Dirichlet problem (5.1) is given by 

u(x) = (-l)i(K17/J(x) - Kox(x)), x E f2;. 
Proof. The unique solvability of the interior Dirichlet problem (Lemma 2.6) and the jump 
relations for the operator K 0 (Lemma 3.3) imply that the equation 

Ax=O 

has a nontrivial solution if and only if our assumption does not hold. Since by Corollary 3.2 
A is Fredholm with index zero we derive that A : (V(r) )' --> V(r) is bijective. 1111 

Remark 5.1. For a smooth boundary r and the interior Dirichlet problem this result 
follows from the general theory of boundary integral operators developed in [6] and [11]. It 
was formulated in [8]. 
Now we analyse the solution operators of the equations (5.3) 

T; := A- 1(w - (-l)j Id) : V(r) --> (V(r))' (5.4) 

which exist under assumption Al and map the Dirichlet data ;u of a biharmonic function 
u E L; to its Neumann data ou. The mappings T; are the Steklov-Poincare operators of the 
biharmonic equation. 
Let us define the operators 

1 . 
P; := 2.(Id- (-l)'W): V(r)--> V(r) ' (5.5) 

which are bounded projections by Corollary 4.1. In the following Lemma we prove that these 
operators coincide with the well known Calderon projections for the Laplace equation, but 
corresponding to the fundamental solution 

1 1 g(x,y) := -.6.~G(x,y) = --(ln Ix - YI+ 1) = --ln(elx -yl). 
2~ 2~ 

Lemma 5 .1. It holds 

V(r) =Vi+ Vi 
with the closed subspaces 

Vi:= im P1 = {;u : u E Hz:c(f22), .6.u = 0, 
u( x) = a(ln Ix I + 1) + 0 (Ix 1-1

) for some a E IR. as Ix I --> oo } , 

Vi:= im P2 = {;u : u E H 2(f21), .6.u = 0}. 
Proof . We define the boundary integral operators. for x E r 

Scp(x) := 2 j g(x,y)cp(y)dsy, Dcp(x) := 2 j 8n
11

g(x,y)cp(y)dsy, 
r r 

D'cp(x) := 28n,,,j g(x,y)cp(y)dsy, Hcp(x) := -28n,,,j 8n
11

g(x,y)cp(y)dsy. 
(5.6) 

r r 
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It is clear that D' is the adjoint of the operator D with respect to the L2-inner product on 
r. Using formula (3.6) and the jump relations of harmonic potentials it is easy to see that 
for 'l/; = (:~) E V(r) it holds 

W7f; =(Id+ C)7f; = ( _: = ;,) ( :~) . (5.7) 

From the results in [9] it is evident that the mappings 

~(Id+ (-l)A:W) 

are bounded in H 1l 2(r) x n-1l 2(r) and project onto the boundary values of weak solutions 
of the Laplace equation in nA:, behaving for k = 2 at infinity as 

u( x) = a ln ( e Ix I) + 0 (Ix 1-1
) = a(ln Ix I + 1) + 0 (Ix 1-1

) . (5.8) 
By Lemma 3.2 the restrictions of these projections are bounded in V(r). a 
Note that due to the definition (5.5) the mappings P; appearing on the right-hand side of 
the boundary integral equation (5.3) for the interior (j = 1) and exterior (j = 2) Dirichlet 
problem project onto the traces of functions harmonic in the opposite domain. 
The dual space (V(r) )' is the direct sum of the corresponding polar sets 

(V(r))' = v/ + v/ , 
which in view of 

_L (" )_L k I • ( I) Vj = 1m P; = er P; = 1m Id - P; (5.9) 
coincide with the image of the adjoint of the conjugate projection. The commutative relation 
( 4.6) implies that 

yielding the equality 

Using (5.9) and Theorem 5.1 we derive 

Lemma 5.2. The operator A is the direct sum of the mappings 

A:V/-~Vi and A:V/~Vi, 
which are bijective if the assumption Al is satisfied. 

Now we show that A is a positive definite operator on a subspace of (V(r) )'. Let us denote 
by IP1 the space of linear functions on IR.2 and set l (r) := 1(1P1 ). 

Lemma 5.3. For any x E l (r).L it holds 

[x, Ax] 2:: cllxll(vcrn' · 
Proof. We set u = -K0x, u1 = uln1 and u2 = uln:oi· For any ball BR enclosing nl the first 
(;reen formula yields 

1 2[x, Ax] = [8ui, 1u1] - [8u2, 1u2] 

= j l.D.u1l 2dx + j l.D.u2l2dx - j (.D.u2 OnU2 - U2 On .D.u2) ds . 
01 O:oi SR 

Because of x E l (r).L and the definition ( 4.2) it is clear that J1x = I2x( x) = 0 leading to 
1 u2(x) = --(l3xlnR + l4x(x)) + O(R-1

) for lxl = R. 
87r 
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Hence, .6.u2 E L2(!12 ) and the integral over SR converges to zero as R ~ oo such that 

[x, Ax] = 2 ( j I .6. u1I2 dx + j I .6. u2 I 2 dx) > 0 
01 02 

for x f. 0. Since A is symmetric and strongly elliptic the last inequality implies that A is 
even positive definite on l (r)J.. II 

Remark 5.2. Since l (r)J. can be identified with the dual of the factor space V(r)/l (r) it 
is evident that 

[x, Ax] ~ cllxll(v(r)/c(r))' V X E (V(r)/l (r))' . 
This was used by Bourlard in [2] to prove the existence of the solution u E L1 of (5.1) in the 
form 

u(x) = lKoxJ(x) + P1(x) , x E !11, 

where x E (V(r)/l (r))' solves 

[cp, Ax] = 2 [cp, 7/J] , v cp E (V(r)/l (r))', 
l KoxJ is an element of the corresponding factor class in Li/IP 1 and p 1 E IP 1 is the linear 
function satisfying 

Now we come to some consequences of the previous results. 

Corollary 5.1. The restriction of A on Vl C (V(r))' is a symmetric and positive definite 
operator between the dual spaces 

A : V/ = im P~ ~ Vi = im P1 . 
If the assumption Al is violated then ker AC V/ and ker An l (r)J. = 0. 
Corollary 5.2. x E (V(r))' coincides with the Neumann data ou of a function u E L; if 
and only if [x,-yv] = 0 for any harmonic function v E Hc~c(!1;) satisfying additionally the 
radiation condition (5.8) in the case j = 2. 

Corollary 5.3. If x E VjJ. then the function Kox E Hc~c(n;) is harmonic in !1; and satisfies, 
in the case j = 2, the radiation condition (5.8). 
Proof. Corollary 5.2 states that for any x E VjJ. there exist u E Lk, k = 3 - j, such that 
X = ou. The representation formulas ( 4.1) and ( 4.4) imply that 

{ 
Knu(x)- (-l)ku(x) , x E nk, 

Kox(x) = 
Knu(x) , x En; . II 

Now we are in the position to formulate some properties of the Steklov-Poincare operators. 
By (5.4) and (5.5) we get 

7j = 2 · (-l)i+i A- 1 P; = 2 · (-l)i+ip; A- 1 P; 

such that the following assertions hold. 

Theorem 5.2. The Steklov-Poincare operator 7i which maps the Dirichlet data /U of a 
function u E H 2(n1 ) biharmonic on the bounded domain 0 1 with piecewise smooth boundary 
r to its Neumann data ou is continuous from V(r) into (V(r))', symmetric with respect to 
the duality (2.1) and 

[7i7/J, 7/J] ~ cllP17/Jllvcr) , V 7/J E V(r) . 
Moreover, the image im 7i C (V(r))' is the closed subspace of elements which are orthogonal 
to the traces /V of all harmonic functions v E H 2(n1). 
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Theorem 5.3. Suppose Al. Then the Steklov-Poincare operator 7; which maps the Dirichlet 
data 1u of a function u E L2 to its Neumann data ou is continuous from V(r) into (V(r))', 
symmetric with respect to the duality (2.1) and 

-[12~,~] ~ c!IP2~llv(r) , V~ E A(l(F).L). 
The image im 72 C (V(F))' is the closed subspace of elements which are orthogonal to the 
traces 1v of all harmonic functions v E Hc~c(n2 ) satisfying the radiation condition (5.8). 

Remark 5.3. The previous results confirm the well-known fact that the Neumann problem 

ou = X E (V(r))' 
is not elliptic. A variational approach to boundary conditions different from the Dirichlet 
one is based on the bilinear form 

J ( ( 82u 82v 82u 82v 82u 82v)) 
.6. u .6. v + ( 1 - u) 2 8 8 8 8 - 8 2 8 2 - -8 2 -8 2 dx ' 0 < O" < 1 ' ( 5 .10) 

X1 X2 X1 X2 X1 X2 X2 X1 
01 

which is closely connected with the plate equation. A detailed analysis of certain indirect 
integral equation methods on smooth boundaries for these problems is contained in the book 
[3] of Chen and Zhou. The case of a nonsmooth curve r has not been analysed in the 
literature, up to now. It is possible to modify our methods accordingly to the form (5.10) 
such that direct boundary integral equations for plate problems on domains with corners can 
be derived and analysed. 

6. BOUNDARY INTEGRAL EQUATIONS FOR DIRICHLET PROBLEMS 

In this section we derive systems of integral equations for the interior and exterior Dirichlet 
problem. We consider the existence and uniqueness of solutions and discuss the assumption 
Al. 
First we consider the concrete form of the mappings A and P; which are 2 x 2 matrices of 
integral operators. In view of (2.1) and (3.4) the action of the operator A can be written as 

A = (A -B) (vi) x B' c V2 
X = (:~) E (V(r))' (6.1) 

with the integral operators 

Acp(x) := -2 j G(x,y)cp(y)dsy, Bcp(x) := -2 j 8n
11

G(x,y)cp(y)dsy, 
r r 

B' cp(x) := -2 Bn'ZJ j G(x, y) cp(y)dsy, Ccp(x) := 2 Bn'ZJ j 8n11 G(x, y) cp(y)dsy. 
r r 

By the duality (2.1) and (5.7) we have 

W' = ( D' S) 
H -D ' 

hence the commutative relation ( 4.6) yields the equalities 

AD' - B S = D A - SB' , AH+ B D = -DB - SC , 
B' D' +CS = -HA - D' B' , B' H - CD = H B - D' C . 

(6.2) 

Accordingly to (5.5) the projections P; have the form 

. _ ~(I - (-l)i D (-l)i S ) ~ = ! (J -(-l)i D' - (-l)i H ) 
P, - 2 ( -1 )i H I + ( -1 )i D' ' P, 2 -( -1 )i S I + ( -1 )i D . 
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For the following we mention briefly some results concerning the boundary integral operators 
(5.6) for the Laplace equation. 
It is well known that there exists a unique p, the Robin potential, which belongs to n-1/ 2(r) 
and (p, 1 )r = 1 such that the logarithmic potential 

j p(y) ln Ix - YI dsy 
r 

is constant (say = v) on r. The positive number 

cap r = e11 

is called the logarithmic capacity of r. We introduce the assumption 

A2: The curve r is such that cap r f. e- 1 • 

Hence, if A2 holds then the operator S has a trivial kernel. Moreover, S maps n- 1l 2(r) 
isomorphically onto H 112(r) and the subspaces Vj C V(r) can be characterized by the relation 

'ifJ = (:~) E V; {==} V2 = 5-i (D + (-i); I) Vi. (6.3) 

Turning to the duals we obtain the characterization of V/ C (V(r))' 

x = ( :~) EV'/ {==} v1 = s-1 (D + (-1); I) v., (6.4) 

which means of course (vi,<plr)r = (v2 ,S-1 (D + (-l)iJ)cplr)r for all <p E C8°(IR.2). 
Concerning the double layer potential D we note that the kernel of the operator I - D is 
trivial, whereas the operators I+ D and I+ D' have onedimensional kernels spanned by 
the constant function on r and by the Robin potential p, respectively. We will utilize also 
the relations 

D2 + S H = D'2 + H S = I , 
D S = S D , H D = D' H . 

(6.5) 

Remark that A2 does not hold if and only if the exterior Dirichlet problem for the Laplace 
equation 

~v = 0 in n2' vlr = 0 ' v satisfies (5.8) ' 

has a nontrivial solution v E Hz~c(!l2 ). 

The mentioned properties can be easily deduced from known results about harmonic poten-
tials corresponding to the fundamental solution - 2~ ln Ix - yj , from Corollary 4.1 and the 
fact that the projections P; are bounded in V(r)~ 
In Sect. 5 we studied already the equations for solving the interior (j = 1) and exterior (j = 2) 
Dirichlet problem 

Ax = 2 · ( -1 )i +i P; 'I/; , 
which can be written as the system 

Av1 - Bv2 = (D - (-1); J)/1 - S/2 
B'v1 + Cv2 = -H / 1 - (D' + (-l)i J)/2 , 

(6.6) 

where (~~) = 'I/; E V(r) are th~ given Dirichlet data and (:~) = ou = x E (V(r) )' are the 
unknowns. From the results of Sect. 5 follows that under the assumption Al the unique 
solution x belongs to the closed subspace 

X E im P; = ker (I - P;) . 
16 



Consequently, if Al is satisfied then for j = 1, 2 the solution (: 1
) E (V(r))' of (6.6) solves 

the corresponding systems of boundary integral equations 
2 

and 

Av1-Bv2 = (D-(-l)iI)Ji-Sf2 
Sv1 - ( D - ( -1 )i I)v2 = 0 . 

B'v1 + Cv2 = -H Ji - (D' + (-l)i I)f2 
S v1 - ( D - ( -1 )i I)v2 = 0 . 

To consider the opposite direction we assume A2 and use the equality 

B' s-1 (D - (-l)i I)+ C 
= s-1 (D + (-l)i I)(A s-1 (D - (-l)i I) - B) ' 

which follows immediately from (6.2) and (6.5). Indeed, 

B' s-1 (D - (-l)i I)+ c = (B' (D' - (-l)i I)+ c S) s-1 

= (-HA - D' B - (-l)i B') s-1 = s-1 ((D2 - I) A- (D + (-l)i I) s B') s-1 

= s-1 (D + (-l)i I)(-(-l)i A+ AD' - B S) s-1 

= s-1 (D + (-l)i I)(A s-1 (D - (-l)i I) - B) . 

Furthermore, (6.3) shows that 

-H f 1 - (D' + (-l)i I)f2 = s-1 (D + (-l)i I)((D - (-1); I)f1 - S f 2 ). 

(6.7) 

(6.8) 

(6.9) 

Comparing with (6.9) we see that the second equation of (6.6) is a consequence of the first 
equation of this system and (6.4), i.e. the second equation of (6.7). Using the fact that 1-D 
is invertible we obtain for the case of the interior problem (j = 1) that the first equation of 
(6.6) holds if the second equation of this system and (6.4) are satisfied. 
Consequently, the assumption A2 implies that any solution of the system (6.7) solve (6.6), 
too. Moreover, in the case j = 1, i.e. the interior problem, any solution of the system (6.8) 
solves (6.6). Thus we derive 

Theorem 6.1. Suppose that r satisfies the assumption A2. For any 7/J = (~~) E V(r) the 
systems of boundary integral equations 

and 

Av1 - Bv2 = (D + I)f1 - Sf2 
Sv1 - (D + I)v2 = 0 

B'v1 + Cv2 = -H f1 - (D' - I)f2 
Sv1 - ( D + I)v2 = 0 

(6.10) 

( 6.11) 

are uniquely solvable. The solution x = (:~) E (V(r))' coincides with the Neumann data 8u 
of u E H 2 (!11 ) solving the interior Dirichlet problem 

!J.. 2u = 0 in !11 , /U = 7/J . 
Proof. We have seen that under A2 any solution x = (:~) of (6.10) or (6.11) solves the 

. system 

Av1 - Bv2 = (D + I)f1 - Sf2 
B'·v1 + Cv2 = -H !1 - (D' - I)f2. 

(6.12) 

Now Corolla.'ry 3.2 and (6.3) imply that x E y;.t, hence due to Corollary 5.1 the solution is 
uniquely determined. II 
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Theorem 6.2. Suppose that r satisfies the assumption Al. ,Then for any 7/; = (~~) E V(r) 
the systems of boundary integral equations 

and 

Av1 - Bv2 (D - I)f1 - Sf2 
B'v1 + Cv2 = -H !1 - (D' + I)f2. 

Av1 - Bv2 = (D - I)f1 - Sf2 
Sv1 - (D - I)v2 = 0 

(6.13) 

(6.14) 

are uniquely solvable. The solution x = (~~) E (V(r))' coincides with the Neumann data 8u 
of the function u E L 2 solving the exterior Dirichlet problem (5.1) with /U = 7/J. If Al is 
violated, then the systems (6.13) and (6.14) with vanishing right-hand side possess nontrivial 
solutions. 
Proof. We have seen that under Al the solution of (6.13) solves (6.14), too. Hence in view 
of Theorem 5.1 it suffices to prove that (6.14) is uniquely solvable. To this end we show that 
the second equation of this system determines V/ even if the assumption A2 is violated. 
Indeed, in this case the Robin potential p spans the kernel of the operator S and we have 
(~) = ;w with a nontrivial solution w of the homogeneous Dirichlet problem for Laplace's 
equation in !12 satisfying the radiation condition (5.8). Note that in general ;w r/. V(r), this 
requires a smoother curve, say r E C11a. But the vector (6) E (V(r) )', in view of Corollary 
5.2 we obtain that (6) E V1J_ and consequently 

x= (:~) EV/ {==} S111-(D-J)112 =0. (6.15) 

Thus the solution x = (~~) of the homogeneous system (6.14) belongs to Vl, from Corollary 
5.3 we conclude that Kox E H 2(!11 ) is harmonic. But the first equation of this system requires 
Koxlr = 0 such that Kox = 0 in !11 and Ax= 0. Hence, the homogeneous system (6.14) has 
a nontrivial solution only if the assumption Al is violated. II 

The previous result gives a necessary and sufficient condition on r to derive equivalent bo-
undary integral equations for the exterior Dirichlet problem, whereas Thm. 6.1 contains only 
a sufficient condition for the interior Dirichlet problem. We can prove that the assumption 
A2 is also necessary for the unique solvability of the systems of integral equations if r is 
sufficiently smooth. 

Theorem 6.3. Let r E C 11a, 0 < a < 1, cap r = e·-1 and f 1 = f 2 = 0. Then the systems 
(6.10) and (6.11) possess nontrivial solutions. 
Proof . We construct the nontrivial solution of (6.10) following a method in Fuglede [12]. 
Since cap r = e- 1 there exists a function w harmonic in !12 , satisfying the radiation condition 
(5.8) such that wlr == 0 and ;w # 0. The condition r E C 11 a ensures ;w E V(r) such that 
the solution u of the Dirichlet problem 

D. 2u = 0 in !11 , /U = /W , 

provides 0 # 8u E Vl and A8u = 2P11w == 2/W. Hence 8u E (V(r))' solves the homoge-
neous system (6.10). 
To get the nontrivial solution of (6.11) we start with K,0 (6) E H 2(!11 ) (see the proof of Thm. 
6.2) and denote A(6) = 2;Ko(6) = 2(:~). Then we solve the Neumann problem for the 
Laplace equation 

D.v = 0 in !12, Onvlr = -w2 , v satisfies (5.8). 

It is well known that r E C11" implies/VE V(r), hence the solution of the Dirichlet problem 

D. 2u = 0 in !11 , /U = /V , 
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gives 6u E Vl with A6u = 2P1'Y'V = 27v. So we derive 

Now we use that A2 is violated. Then S p = 0 and for x = (::) E (V(r) )' we obviously obtain 
the relation 

Sv1 - ( D + I) v, = 0 ~ X E V,-L+ span { ( ~) } . (6.16) 

Thus ou + (6) is a nontrivial solution of the homogeneous system (6.11). • 
Remark 6.1. The system (6.10) with the operator S replaced by the usual weakly singular 
operator 

1 . 
S1<p(x) := -; j ln Ix - YI cp(y) dsy 

r 

was introduced in [4] and analysed in [12] for the case that the data satisfy the conditions 
r E C11a, f1 E C1(r), f 2 E C(r). It was proved that the corresponding integral equations are 
uniquely solvable and provide the solution of the interior Dirichlet problem i:ff cap r rt {e- 1 , l}. 
It can be easily seen that under this assumption the assertions of Theorems 6.1 and 6.3 remain 
true for the systems (6.10) and (6.11) with the operator S1 instead of S. 
Finally we mention the problem to describe the assumptions Al in terms of the boundary r. 
IT r is a circle of radius r then a straightforward calculation shows that the homogeneous 
system Ax= 0 has a nontrivial solution if and only if r = e-1 • Therefore it was conjectured 
in [8] that in general Al is valid i:ff cap r f:. e- 1 , i.e. coincides with our assumption A2. We 
tried to verify the conjecture by using the fact that Al and A2 are the solvability conditions 
of integral equations for the same Dirichlet problem, but unsuccessfully. 
By Corollary 5.1 the kernel of the operator A has an empty intersection with l (r).t C (V(r))'. 
We conjecture that x E ker A implies I 1x = 0, such that there exist at most two linear 
independent solutions of the exterior Dirichlet problem with zero trace and satisfying the 
radiation condition ( 4.3) . 

. In the special case of the circle with radius r = e- 1 we have the following situation. The kernel 
of A is spanned by of the two vectors ( e xk, -xk) E V/, k = 1, 2, and the corresponding 
solutions of the homogeneous Dirichlet problem for the exterior of this circle are the functions 
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