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Abstra
tThe model re
ently developed in [BMR07℄ allows for 
omplete damage,su
h that the deformation is not well-de�ned. The evolution 
an be des
ribedin terms of energy densities and stresses. We introdu
e the notion of weakenergeti
 solution and show how the existen
e theory 
an be generalized to
onvex, but non-quadrati
 elasti
 energies. We also dis
uss Γ-
onvergen
efrom partial to 
omplete damage.1 Introdu
tionThere is a ri
h literature on rate-independent me
hani
al models for damage inbrittle materials, 
f. [Ort85, FrM93, DPO94, FrN96, DMT01, MaA01, HaS03℄, andre
ently several mathemati
al approa
hes [FrM98, FKS99, FrG06℄ were developed, inparti
ular the abstra
t theory of rate-independent pro
esses [MiT99, MiT04, Mie05℄proved very helpful as it allows one to employ the ma
hinery of in
remental mini-mization.Here we want to 
ontribute to the models dis
ussed in [MiR06, BMR07, MRZ07℄.Let u : Ω → Rd be the displa
ement and z : Ω → [0, 1] the damage variable, then therate-independent system is given by the triple (F×Z, E ,D), where u ∈ F , z ∈ Z.The energy-storage fun
tional has the form
Eδ(t, u, z) =

∫

Ω

W (x, e(uD(t)+u)(x), z(x)) + δ|e(uD(t)+u)|p dx + G(z),and the dissipation is D(z, ẑ) =
∫
Ω

D(x, z(x), z̃(x)) dx. For δ > 0 existen
e ofenergeti
 solutions (uδ, zδ) is known for general W , see [MiR06℄. The limit passagefor δ → 0 in the sense of Γ-limits works under the assumption that e 7→ W (x, e, z) isquadrati
, see [BMR07, MRZ07℄. The di�
ulty is that W is not 
oer
ive, hen
e inthe limit δ → 0 we are not able to 
ontrol uδ, and 
onvergen
e should only be validfor zδ. The task is to de�ne a limit equation in terms of z. In parti
ular one needs arepla
ement of the power of the external for
es giving the limit of ∂tEδ(uδ(t), zδ(t)).Here we dis
uss the 
hanges needed to generalize from a quadrati
 W (x, ·, z) toarbitrary stri
tly 
onvex potentials with p growth from above. The main idea is touse a redu
ed fun
tional Iδ(t, z) avoiding the usage of u; however, to keep 
ontrolover stresses one introdu
es an auxiliary fun
tional Vδ : Lp(Ω; Rd×dsym)×Z → R su
hthat
Iδ(t, z) = min{ Eδ(t, ũ, z) | u ∈ F } = Vδ(e(uD(t)), z) + G(z),1



and DeVδ(e(uD(t)), z(t)) ∈ Lp/(p−1)(Ω; Rd×dsym) gives the equilibrium stress.In (Z, Iδ,D) it is possible to pass to the Γ-limit for δ → 0 with respe
t to the weak
onvergen
e in Z ⊂ W1,r(Ω). However, the Γ-limit I(t, ·) loses in general di�erentia-bility in t, sin
e we are not able to show that the Γ-limit V(e, ·) of Vδ(e, ·) remainsdi�erentiable in e. Nevertheless, the 
onvexity of V(·, z) allows us to 
hara
terizethe Clarke di�erential using the left and right partial derivative in t:
∂Clt I(t, z) =

[
∂−

t I(t, z), ∂+
t I(t, z)

]
,where ∂±

t I(t, z) = ± sup{ 〈±σ, e(u̇D(t))〉 | σ ∈ ∂sube V(e(uD(t)), z) }.We generalize the notion of energeti
 solutions [Mie05℄ to weak energeti
 solutionsby keeping stability (S) and repla
ing the energy balan
e by
I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ,where p has to satisfy p(τ) ∈ ∂Clτ I(τ, z(τ)) a.e. in [0, T ], see De�nition 4.3. Theorem4.4 establishes existen
e of su
h weak energeti
 solutions to (Z; I,D). Moreover,assuming that a 
ertain 
onje
ture holds, we show that a subsequen
e (zδj
)j∈N 
on-verges to weak energeti
 solution for (Z, I,D).2 Setup of the modelThe body Ω ⊂ Rd is des
ribed by a bounded Lips
hitz domain. The state of thesystem is des
ribed by the displa
ement ũ : Ω → Rd and the s
alar damage variable

z : Ω → [0, 1], where z = 1 denotes no damage and z = 0 means that the maximaldamage has been rea
hed (all mi
ros
opi
 breakable stru
tures are broken). Thedispla
ement ũ will satisfy time-dependent Diri
hlet boundary 
onditions on ΓD ⊂
∂Ω via uD ∈ C1([0, T ], W1,p(Ω)) in the form

ũ(t) = uD(t) + u(t) with u(t) ∈ F = { v ∈ W1,p(Ω) | v|ΓD ≡ 0 }.We also use the in�nitesimal strain tensor e(u) = 1
2

(
∇u + (∇u)T

) and set
eD(t) = e(uD(t)) and ėD(t) = e(u̇D(t)) where ˙ = ∂t.The stored energy of the system is given via the fun
tional
E(t, u, z) =

∫
Ω

W (x, eD(t, x)+e(u)(x), z(x))dx + G(z)with G(z) =
∫
Ω

b(z(x)) + κ(x)|∇z(x)|r dx,where κ ∈ L∞(Ω) and κ(x) ≥ c0 a.e. Thus, the suitable spa
e for the deformationstates is Z = { z ∈ W1,r(Ω) |0 ≤ z ≤ 1 }. The additional term b is intended to model
ohesive e�e
ts and should satisfy b′(z) ≤ 0, i.e., if the stresses in the material arereleased then the damage may heal (ż > 0) by using up some energy.2



The stored energy density W : Ω×Ed×[0, 1] → R, where Ed = R
d×dsym, is a Carathéor-dory fun
tion satisfying

∀ (x, z) ∈ Ω : W (x, ·, z) ∈ C1(Ed), (1a)
∃C > 0 ∀ (x, e, z) : W (x, e, z) ≤ C|e|p + C, (1b)
∀ (x, z) : e 7→ W (x, e, z) is stri
tly 
onvex, (1
)
∀ (x, e) : z 7→ W (x, e, z) is nonde
reasing, (1d)
∃ c1, c2 ∀ (x, e, z) : |∂eW (x, e, z)| ≤ c1(W (x, e, z)+c2)

1−1/p. (1e)Condition (1d) means that the material be
omes weaker if damage in
reases, and(1e) is 
alled �stress 
ontrol�, sin
e it allows us to 
ontrol the size of the stresses interms of the energy alone, uniformly in (x, z). A typi
al fun
tion W has the form
W (x, e, z) = W0(x, e) + a(z)W1(x, e),where W0 and W1 are smooth and 
onvex, W0 may be non-
oer
ive while W1 is
oer
ive, a(z) ≥ czα and a′(z) ≥ 0.Finally we des
ribe the dissipation fun
tional D : Z × Z → [0,∞] via
D(z0, z1) =

∫

Ω

D(x, z0(x), z1(x))dx,where, for ea
h x, D satis�es the triangle inequality and the 
oer
ivity D(x, z, z̃) ≥
C|z−z̃|. The typi
al 
hoi
e is D(x, z, z̃) = δ+(z−z̃) for z̃ ≤ z and δ−(z̃−z) for z ≤ z̃,where δ+ ∈ (0,∞) and δ− ∈ (0,∞]. Here δ− = ∞ forbids healing, whi
h 
an onlytake pla
e if δ− + b′(z) < 0 for some z.With these fun
tionals we de�ne notion of energeti
 solution (see [MiT99, MiT04℄and the surveys [Mie05, MiR08℄) for the rate-independent energeti
 system (Q, E ,D),where Q = F ×Z. A mapping q = (u, z) : [0, T ] → Q is 
alled energeti
 solutionif for all t ∈ [0, T ] we have stability (S) and energy balan
e (E):(S) ∀ q̃ = (ũ, z̃) ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(z(t), z̃);(E) E(t, q(t)) + DissD(z, [0, t]) = E(0, q(0)) +

∫ t

0
∂τE(τ, q(τ))dτ.

(2)Here DissD(z, [r, s]) is de�ned to be the supremum of ∑N
1 D(z(tj−1, z(tj)) over all�nite partitions r ≤ t0 < t1 · · · tN ≤ s. Here we use that for ea
h q the power ofthe external for
es ∂tE(t, q) is well de�ned by using (1e), and (E) impli
itly assumesthat t 7→ ∂tE(t, q(t)) is measurable.For non-
oer
ive problems, where u is no longer well-de�ned, we will see that itis the main problem how to de�ne this partial derivative ∂tE(t, q). Thus, it is anopen problem whether under the above assumption a general existen
e result holds.However, the 
oer
ive 
ase was solved under more general assumptions in
ludingunilateral 
onstraints and volume for
es, 
f. [MiR06℄. To make this theory appli
ablewe strengthen the lower bound in (1b) to make it 
oer
ive in e for all z ∈ [0, 1].3



Theorem 2.1 If the above assumption hold with p > 1 and r > d and if W addi-tionally satis�es
∃C, c > 0 ∀ (x, e, z) : c|e|p − C ≤ W (x, e, z),then for all stable initial states q0 ∈ Q (i.e., (S) holds at t = 0 with q(0) repla
edby q0) there exists an energeti
 solution q : [0, T ] → Q with q(0) = q0 and q ∈

L∞([0, T ], W1,p(Ω)×W1,r(Ω) and z ∈ B([0, T ], W1,r(Ω)).3 Reformulation based on stress and energyThe approa
h for solving non-
oer
ive problems was indi
ated already in [MiR06℄and �nally solved in [BMR07℄ under the additional assumption that W is quadrati
:
W (x, e, z) = z

2
e:C:e; however more general quadrati
 forms 1

2
e:C(z):e+g(z):e+γ(z)would work equally well. The main idea is to approximate the non-
oer
ive 
asewith a 
oer
ive one by setting

Wδ(x, e, z) = W (x, e, z) + δ(1+|e|2)p/2. (3)Then for ea
h δ > 0 there is a solution qδ = (uδ, zδ) of the rate-independent energeti
system (Q, Eδ,D). Moreover, using the stress 
ontrol (1e) it is not di�
ult to showthat there exists C > 0 su
h that for all δ ∈ (0, 1) and all t ∈ [0, T ] we have
Eδ(t, qδ(t)) + DissD(zδ, [0, t]) ≤ C.Now, using the theory of Γ-
onvergen
e of rate-independent energeti
 systems [MRS07℄it is then possible to pass to the limit in the redu
ed system, where the displa
ement
u is minimized out. The latter step is essential, sin
e it is not to be expe
ted that
uδ or e(uδ) 
onverges in any reasonably sense. In regions where z = 0 holds we mayhave W (x, e, 0) = 0 for a large and possibly unbounded set of strains e ∈ Ed due tothe missing 
oer
ivity.To de�ne the redu
ed problem we use the stri
t 
onvexity (1
) to �nd that Eδ(t, ·, z)has a unique minimizer u = Uδ(t, z) ∈ F . With this we have

Iδ(t, z) =

∫

Ω

Wδ(x, eD(t)+e(Uδ(t, z)), z)dx + G(z).A 
lassi
al argument [KnM07, KMZ07℄ shows that ∂tIδ(t, z) = ∂tEδ(t, Uδ(t, z), z).While the limit of the energy Iδ(t, zδ) along energeti
 solutions qδ 
an be understoodin the sense of Γ-limits, it is nontrivial to 
ontrol the power
∂tIδ(t, zδ) =

∫
Ω

σδ(t):ėD(t)dx with
σδ(t, x) = ∂eW (x, eD(t, x)+e(uδ(t))(x), zδ(t, x)).The main observation is that the stress-
ontrol assumption (1e) and the usual energya priori estimates provide bounds for σδ in Lp/(p−1)(Ω,Ed) that are independent of

δ > 0. 4



The essential idea to make the limit tra
table is to introdu
e an auxiliary fun
tionalin whi
h it is possible to keep 
ontrol over the Γ-limit. Denote by E = Lp(Ω;Ed)the strain spa
e, and for (e, z) ∈ E ×Z let
Hδ(e, z) = Vδ(e, z) + G(z) with
Vδ(e, z) = min{

∫
Ω

Wδ(x, e+e(u), z)dx | u ∈ F }. (4)In fa
t, the fun
tional Vδ should not be 
onsidered as a fun
tional on E but ratheron B = { u|∂Ω | u ∈ F }, sin
e all the other information is minimized out. Moreover,for �xed z ∈ Z, the mapping e 7→ Vδ(e, z) is 
onvex and di�erentiable with
DeVδ(e, z) = ∂eW (x, e+e(V (e, z)), z) ∈ E

∗ = Lp/(p−1)(Ω;Ed),where V (e, z) ∈ F is the unique minimizer in (4). This shows that σ = DeVδ(e, z)is in fa
t an equilibrium stress, and thus satis�es div σ = 0 in Ω and σ ν = 0 on
∂Ω\ΓD.The importan
e of the fun
tional Vδ is that on the one hand it is possible to do the
Γ-limit for δ → 0 and keep some of the main features and that on the other hand,by 
onstru
tion the redu
ed fun
tional Iδ and its partial derivative with respe
t to
t 
an be easily expressed:

Iδ(t, z) = Vδ(eD(t), z)+G(z) and ∂tIδ(t, z) = 〈DeVδ(eD(t), z), ėD(t)〉.Thus, we have found a way to express the energies in terms of the damage alone andwe still have 
ontrol over the equilibrium stresses DeVδ(eD(t), z) that are needed to
ontrol the power generated by the boundary data uD(t).4 Existen
e for the 
omplete-damage problemA fun
tional I(t, ·) : Z → R is 
alled the Γ-limit of (Iδ(t, ·))δ if
(Γ1) zδ ⇀ z in Z =⇒ I(t, z) ≤ lim infδ→0 Iδ(t, zδ),
(Γ2) ∀ z ∈ Z ∃ (zδ)δ : zδ ⇀ z in Z and Iδ(t, zδ) → I(t, z).We note that Γ-
onvergen
e is quite di�erent from pointwise 
onvergen
e, see Exam-ple 4.2. Moreover, while ea
h Iδ was strongly 
ontinuous, this is not true for I(t, ·);only the important weak lower semi
ontinuity is maintained (as for all Γ-limits).The main di�
ulty is to 
ontrol the temporal smoothness of I, or more pre
isely toshow that the following impli
ation holds

zδ ⇀ z in Z
Iδ(t, zδ) → I(t, z)

}
=⇒ ∂tIδ(t, zδ) → ∂tI(t, z),
f. 
ondition (2.9) in [MRS07℄. To provide this result we use the fun
tional Vδ, sin
eits Γ-limit 
an be studied more easily. The following result is a dire
t generalizationof [BMR07, Prop. 2.10℄. 5



Proposition 4.1 Let (1) hold with p > 1 and r > d. On E × Z de�ne
V(e, z) = lim

ε→0+

(
lim

δ→0+
Vδ

(
e, max{z−ε, 0}

))
.Then, V satis�es

∃C > 0 ∀ (e, z) ∈ E × Z : −C ≤ V(e, t) ≤ C + C‖e‖p
E
, (5a)

∀ z ∈ Z : V(·, z) is 
onvex on E, (5b)if W (x, ·, z) is quadrati
, then V(·, z) is quadrati
. (5
)Moreover, we have I(t, z) = V(eD(t), z) + G(z).The proof relies on the 
ompa
t embedding of W1,r(Ω) into C0(Ω) and uses essen-tially the monotoni
ity properties of the mapping (ε, δ) 7→ Vδ

(
e, max{z−ε, 0}

): itis non-in
reasing in ε be
ause of (1d) and it is nonde
reasing in δ be
ause of thede�nition of Wδ in (3). Thus, the limit V(e, z) always exists as a pointwise limitin δ and then in ε. Moreover, for ea
h �xed z the 
onvexity in e is preserved bypointwise 
onvergen
e. The following example, whi
h is inspired by [BoV88, Ex. 3℄and further dis
ussed in [BMR07℄, shows that in general V is stri
tly smaller than
V0(e, z) = limδ→0+ Vδ(e, z).Example 4.2 Consider Ω = ]−1, 1[ and the energy

Iδ(t, z) =

∫

Ω

δ + z

2
(eD(t)+u′)2 dx + G(z).Then, Vδ(e, z) =

( ∫
Ω

e dx
)2

/
∫
Ω

2
δ+z

dx. Clearly, the pointwise limit V0 is obtainedby letting δ = 0. However, the Γ-limit V(e, ·) in W1,r(Ω) satis�es
V(e, z) = V0(e, z) for min z > 0 and V(e, z) = 0 for min z = 0.For α ∈ ](r−1)/r, 1[ we let zα(x) = |x|α, then zα ∈ Z and 0 = V(e, z) < V0(e, z) =

(1−α)
( ∫

Ω
edx

)2
/4.The formula for I allows us to study the question whether the power exists. Forthis, we use that 
onvex fun
tions have one-sided Gateaux derivatives in all points:

δeV(e, z; ê) = lim
h→0+

1

h

(
V(e+hê, z) − V(e, z)

)

= sup{ 〈σ, ê〉 | σ ∈ ∂sube V(e, z) },
(6)where ∂sube V(e, z) ⊂ E∗ denotes the subdi�erential of the 
onvex fun
tion V(·, z).Using eD ∈ C1([0, T ]; E) we �nd that the left and right partial derivatives ∂±

t I(t, z) =
limh→0+

±1
h

(
I(t±h, z) − I(t, z)

) with respe
t to t of I exists. We have the relations
∂−

t I(t, z) = −δeV(t, eD(t);−ėD(t)) ≤ δeV(t, eD(t); ėD(t)) = ∂+
t I(t, z).6



De�nition 4.3 Let z : [0, T ] → Z satisfy (S) in (2) for all t ∈ [0, T ]. Then, z is
alled a weak energeti
 solution of the rate-independent energeti
 system (Z, I,D),if there exists p : [0, T ] → R su
h that p(τ) ∈ ∂Cl
τ I(τ, z(τ)) a.e. in [0, T ] and for all

t ∈ [0, T ] we have
I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ. (7)Now a slight generalization of the abstra
t existen
e theory for rate-independentsystems gives the following. Note that we 
onstru
t weak energeti
 solutions for
(Z, I,D) dire
tly dire
tly, without referen
e to the solutions zδ for (Z, Iδ,D).Theorem 4.4 For all stable z0 ∈ Z there exists a weak energeti
 solution for
(Z, I,D).Proof: The existen
e theory follows the usual steps in the abstra
t theory for rate-independent pro
esses (
f. [Mie05, FrM06℄) via in
remental minimization, uniforma priori estimates and Helly's sele
tion prin
iple. This part and the proof of thestability of the limit pro
ess work as in [BMR07℄.For the upper energy estimate we obtain, by setting A(t) = I(t, z(t)+DissD(z, [0, t]),

A(s) − A(r) ≤
∫ s

r

pmax(t)dt with pmax(t) = max ∂Clt I(t, z(t)).With a slight generalization of [Mie05, Prop. 5.7℄ we see that stability of the limitpro
ess z implies the lower bound A(s) − A(r) ≥
∫ s

r
pmin(t) dt with pmin(t) =

min ∂Clt I(t, z(t)).Thus, we 
on
lude that A is absolutely 
ontinuous and satis�es pmin(t) ≤ A′(t) ≤
pmax(t). Hen
e, setting p(t) = A′(t) the proof is 
omplete.In the following example we show that the notion of weak energeti
 solution, whi
hinvolves the weakened energy balan
e (7) with the Clarke di�erential, is really ne
-essary in 
ases where the one-sided partial derivatives satisfy ∂−

t I(t, z) < ∂+
t I(t, z)at some points. In parti
ular, it is not possible to make an a priori 
hoi
e like

p(t) = max{∂Clt I(t, z(t))}, whi
h worked in [KMZ08, MiR08℄, sin
e there ∂−

t I(t, z) ≥
∂+

t I(t, z) holds.Example 4.5 This example has a smooth energy Iδ su
h that ∂tIδ exists, while inthe limit I is only Lips
hitz in t. We let Z = R and D(z, z̃) = |z̃−z|. The energyfun
tional reads
Iδ(t, z) = Hδ

(
z−α(t)

) and I(t, z) = 2|z−α(t)|,where α ∈ C1([0, T ]) is given and Hδ(u) = 2u2/
√

δ2+u2. For the partial derivativeswith respe
t to time we have
∂tIδ(t, z) = −H ′

δ(z−α(t))α̇(t) and ∂Cl
t I(t, z) = −2 Sign(z−α(t))|α̇(t)|.7



Sin
e Iδ(t, ·) is smooth and stri
tly 
onvex, the energeti
 solutions for (R, Iδ,D) areexa
tly the solutions of the doubly nonlinear equation (
f. [MiT04℄)
0 ∈ Sign(ż(t)) + H ′

δ(z(t)−α(t)).For δ > 0 the system is smooth, while for δ = 0 we have H0(u) = 2|u| and set
I(t, z) = H0(z−α(t)).Consider the spe
ial 
ase α(t) = t and zδ(0) = 0. If βδ is the unique solution of
H ′

δ(βδ) = 1, then the unique energeti
 solution is zδ(t) = max{0, t−βδ}. Using
0 < βδ → 0 we �nd the limit solution z(t) = t = limδ→0 zδ(t). It is a weak energeti
solution in the sense of De�nition 4.3 by using p(t) = 1 ∈ [−2, 2] = ∂Cl

t I(t, t).5 Γ-
onvergen
e for δ → 0Here we dis
uss the Γ-limit for the solutions zδ of the rate-independent energeti
system (Z, Iδ,D). First note that the a priori estimates give the boundedness of thefamily (zδ)δ in BV([0, T ], L1(Ω)) ∩ L∞([0, T ], W1,r(Ω)), and hen
e Helly's sele
tionprin
iple allows us to extra
t a subsequen
e (zδk
)k∈N whi
h 
onverges pointwise on

[0, T ] to a limit z : [0, T ] → Z satisfying the same bound, i.e., zδ(t) ⇀ z(t) in Z.To 
on
lude that z is a weak energeti
 solution for (Z, I,D) it is su�
ient to
he
k two 
ompatibility 
onditions, namely 
onditioned 
ontinuous 
onvergen
e ofthe power, 
f. [MRS07, (2.9)℄, and 
onditioned upper semi
ontinuity of stable sets,
f. [MRS07, (2.11)℄. The latter 
ondition is purely stati
 and it is not di�
ult togeneralize it to the present 
ase. As in [BMR07℄ we obtain the energy 
onvergen
e
Iδ(t, zδ(t)) → I(t, z(t)), whi
h in turn implies strong 
onvergen
e ‖zδ(t)−z(t)‖W1,r →
0.The 
onditional 
ontinuous 
onvergen
e of the power would be satis�ed if the fol-lowing 
onje
ture would be true.Conje
ture 5.1 Assume that zδj

is stable for (Z, Iδj
,D) at time t, zδj

⇀ z, Iδj
(t, zδj

) →
I(t, z), and σδj

= DeVδj
(eD(t), zδj

) ⇀ σ∗ in E∗, then σ∗ ∈ ∂sub
e V(eD(t), z).The 
onje
ture holds under the assumption that W (x, e, z) is quadrati
 in e, see[BMR07℄. The relevant 
onsequen
e is obtained via (6):

∂−

t I(t, z) ≤ lim inf
δ→0

∂tIδ(t, zδ) ≤ lim sup
δ→0

∂tIδ(t, zδ) ≤ ∂+
t I(t, z). (8)Combining this estimate with the abstra
t Γ-
onvergen
e for rate-independent sys-tems from [MRS07℄ and the existen
e theory for 
omplete damage from [BMR07℄ itis possible to obtain the following 
onvergen
e result.8



Theorem 5.2 Assume that the (yet unproved) estimate (8) holds. If (zδ)δ∈(0,1) is afamily of solutions to (Z, Iδ,D) satisfying
zδ(0) ⇀ z0 in W1,r(Ω) and Iδ(0, zδ(0)) → I(0, z0),then there exist a subsequen
e (zδj

)j∈N and a weak energeti
 solution z : [0, T ] → Zfor (Z, I,D) with z(0) = z0 su
h that for all t ∈ [0, T ]

zδj
(t) → z(t) in W1,r(Ω), Iδ(t, zδ(t)) → I(t, z(t)),

DissD(zδ, [0, t]) → DissD(z, [0, t]).
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