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AbstratThe model reently developed in [BMR07℄ allows for omplete damage,suh that the deformation is not well-de�ned. The evolution an be desribedin terms of energy densities and stresses. We introdue the notion of weakenergeti solution and show how the existene theory an be generalized toonvex, but non-quadrati elasti energies. We also disuss Γ-onvergenefrom partial to omplete damage.1 IntrodutionThere is a rih literature on rate-independent mehanial models for damage inbrittle materials, f. [Ort85, FrM93, DPO94, FrN96, DMT01, MaA01, HaS03℄, andreently several mathematial approahes [FrM98, FKS99, FrG06℄ were developed, inpartiular the abstrat theory of rate-independent proesses [MiT99, MiT04, Mie05℄proved very helpful as it allows one to employ the mahinery of inremental mini-mization.Here we want to ontribute to the models disussed in [MiR06, BMR07, MRZ07℄.Let u : Ω → Rd be the displaement and z : Ω → [0, 1] the damage variable, then therate-independent system is given by the triple (F×Z, E ,D), where u ∈ F , z ∈ Z.The energy-storage funtional has the form
Eδ(t, u, z) =

∫

Ω

W (x, e(uD(t)+u)(x), z(x)) + δ|e(uD(t)+u)|p dx + G(z),and the dissipation is D(z, ẑ) =
∫
Ω

D(x, z(x), z̃(x)) dx. For δ > 0 existene ofenergeti solutions (uδ, zδ) is known for general W , see [MiR06℄. The limit passagefor δ → 0 in the sense of Γ-limits works under the assumption that e 7→ W (x, e, z) isquadrati, see [BMR07, MRZ07℄. The di�ulty is that W is not oerive, hene inthe limit δ → 0 we are not able to ontrol uδ, and onvergene should only be validfor zδ. The task is to de�ne a limit equation in terms of z. In partiular one needs areplaement of the power of the external fores giving the limit of ∂tEδ(uδ(t), zδ(t)).Here we disuss the hanges needed to generalize from a quadrati W (x, ·, z) toarbitrary stritly onvex potentials with p growth from above. The main idea is touse a redued funtional Iδ(t, z) avoiding the usage of u; however, to keep ontrolover stresses one introdues an auxiliary funtional Vδ : Lp(Ω; Rd×dsym)×Z → R suhthat
Iδ(t, z) = min{ Eδ(t, ũ, z) | u ∈ F } = Vδ(e(uD(t)), z) + G(z),1



and DeVδ(e(uD(t)), z(t)) ∈ Lp/(p−1)(Ω; Rd×dsym) gives the equilibrium stress.In (Z, Iδ,D) it is possible to pass to the Γ-limit for δ → 0 with respet to the weakonvergene in Z ⊂ W1,r(Ω). However, the Γ-limit I(t, ·) loses in general di�erentia-bility in t, sine we are not able to show that the Γ-limit V(e, ·) of Vδ(e, ·) remainsdi�erentiable in e. Nevertheless, the onvexity of V(·, z) allows us to haraterizethe Clarke di�erential using the left and right partial derivative in t:
∂Clt I(t, z) =

[
∂−

t I(t, z), ∂+
t I(t, z)

]
,where ∂±

t I(t, z) = ± sup{ 〈±σ, e(u̇D(t))〉 | σ ∈ ∂sube V(e(uD(t)), z) }.We generalize the notion of energeti solutions [Mie05℄ to weak energeti solutionsby keeping stability (S) and replaing the energy balane by
I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ,where p has to satisfy p(τ) ∈ ∂Clτ I(τ, z(τ)) a.e. in [0, T ], see De�nition 4.3. Theorem4.4 establishes existene of suh weak energeti solutions to (Z; I,D). Moreover,assuming that a ertain onjeture holds, we show that a subsequene (zδj
)j∈N on-verges to weak energeti solution for (Z, I,D).2 Setup of the modelThe body Ω ⊂ Rd is desribed by a bounded Lipshitz domain. The state of thesystem is desribed by the displaement ũ : Ω → Rd and the salar damage variable

z : Ω → [0, 1], where z = 1 denotes no damage and z = 0 means that the maximaldamage has been reahed (all mirosopi breakable strutures are broken). Thedisplaement ũ will satisfy time-dependent Dirihlet boundary onditions on ΓD ⊂
∂Ω via uD ∈ C1([0, T ], W1,p(Ω)) in the form

ũ(t) = uD(t) + u(t) with u(t) ∈ F = { v ∈ W1,p(Ω) | v|ΓD ≡ 0 }.We also use the in�nitesimal strain tensor e(u) = 1
2

(
∇u + (∇u)T

) and set
eD(t) = e(uD(t)) and ėD(t) = e(u̇D(t)) where ˙ = ∂t.The stored energy of the system is given via the funtional
E(t, u, z) =

∫
Ω

W (x, eD(t, x)+e(u)(x), z(x))dx + G(z)with G(z) =
∫
Ω

b(z(x)) + κ(x)|∇z(x)|r dx,where κ ∈ L∞(Ω) and κ(x) ≥ c0 a.e. Thus, the suitable spae for the deformationstates is Z = { z ∈ W1,r(Ω) |0 ≤ z ≤ 1 }. The additional term b is intended to modelohesive e�ets and should satisfy b′(z) ≤ 0, i.e., if the stresses in the material arereleased then the damage may heal (ż > 0) by using up some energy.2



The stored energy density W : Ω×Ed×[0, 1] → R, where Ed = R
d×dsym, is a Carathéor-dory funtion satisfying

∀ (x, z) ∈ Ω : W (x, ·, z) ∈ C1(Ed), (1a)
∃C > 0 ∀ (x, e, z) : W (x, e, z) ≤ C|e|p + C, (1b)
∀ (x, z) : e 7→ W (x, e, z) is stritly onvex, (1)
∀ (x, e) : z 7→ W (x, e, z) is nondereasing, (1d)
∃ c1, c2 ∀ (x, e, z) : |∂eW (x, e, z)| ≤ c1(W (x, e, z)+c2)

1−1/p. (1e)Condition (1d) means that the material beomes weaker if damage inreases, and(1e) is alled �stress ontrol�, sine it allows us to ontrol the size of the stresses interms of the energy alone, uniformly in (x, z). A typial funtion W has the form
W (x, e, z) = W0(x, e) + a(z)W1(x, e),where W0 and W1 are smooth and onvex, W0 may be non-oerive while W1 isoerive, a(z) ≥ czα and a′(z) ≥ 0.Finally we desribe the dissipation funtional D : Z × Z → [0,∞] via
D(z0, z1) =

∫

Ω

D(x, z0(x), z1(x))dx,where, for eah x, D satis�es the triangle inequality and the oerivity D(x, z, z̃) ≥
C|z−z̃|. The typial hoie is D(x, z, z̃) = δ+(z−z̃) for z̃ ≤ z and δ−(z̃−z) for z ≤ z̃,where δ+ ∈ (0,∞) and δ− ∈ (0,∞]. Here δ− = ∞ forbids healing, whih an onlytake plae if δ− + b′(z) < 0 for some z.With these funtionals we de�ne notion of energeti solution (see [MiT99, MiT04℄and the surveys [Mie05, MiR08℄) for the rate-independent energeti system (Q, E ,D),where Q = F ×Z. A mapping q = (u, z) : [0, T ] → Q is alled energeti solutionif for all t ∈ [0, T ] we have stability (S) and energy balane (E):(S) ∀ q̃ = (ũ, z̃) ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(z(t), z̃);(E) E(t, q(t)) + DissD(z, [0, t]) = E(0, q(0)) +

∫ t

0
∂τE(τ, q(τ))dτ.

(2)Here DissD(z, [r, s]) is de�ned to be the supremum of ∑N
1 D(z(tj−1, z(tj)) over all�nite partitions r ≤ t0 < t1 · · · tN ≤ s. Here we use that for eah q the power ofthe external fores ∂tE(t, q) is well de�ned by using (1e), and (E) impliitly assumesthat t 7→ ∂tE(t, q(t)) is measurable.For non-oerive problems, where u is no longer well-de�ned, we will see that itis the main problem how to de�ne this partial derivative ∂tE(t, q). Thus, it is anopen problem whether under the above assumption a general existene result holds.However, the oerive ase was solved under more general assumptions inludingunilateral onstraints and volume fores, f. [MiR06℄. To make this theory appliablewe strengthen the lower bound in (1b) to make it oerive in e for all z ∈ [0, 1].3



Theorem 2.1 If the above assumption hold with p > 1 and r > d and if W addi-tionally satis�es
∃C, c > 0 ∀ (x, e, z) : c|e|p − C ≤ W (x, e, z),then for all stable initial states q0 ∈ Q (i.e., (S) holds at t = 0 with q(0) replaedby q0) there exists an energeti solution q : [0, T ] → Q with q(0) = q0 and q ∈

L∞([0, T ], W1,p(Ω)×W1,r(Ω) and z ∈ B([0, T ], W1,r(Ω)).3 Reformulation based on stress and energyThe approah for solving non-oerive problems was indiated already in [MiR06℄and �nally solved in [BMR07℄ under the additional assumption that W is quadrati:
W (x, e, z) = z

2
e:C:e; however more general quadrati forms 1

2
e:C(z):e+g(z):e+γ(z)would work equally well. The main idea is to approximate the non-oerive asewith a oerive one by setting

Wδ(x, e, z) = W (x, e, z) + δ(1+|e|2)p/2. (3)Then for eah δ > 0 there is a solution qδ = (uδ, zδ) of the rate-independent energetisystem (Q, Eδ,D). Moreover, using the stress ontrol (1e) it is not di�ult to showthat there exists C > 0 suh that for all δ ∈ (0, 1) and all t ∈ [0, T ] we have
Eδ(t, qδ(t)) + DissD(zδ, [0, t]) ≤ C.Now, using the theory of Γ-onvergene of rate-independent energeti systems [MRS07℄it is then possible to pass to the limit in the redued system, where the displaement
u is minimized out. The latter step is essential, sine it is not to be expeted that
uδ or e(uδ) onverges in any reasonably sense. In regions where z = 0 holds we mayhave W (x, e, 0) = 0 for a large and possibly unbounded set of strains e ∈ Ed due tothe missing oerivity.To de�ne the redued problem we use the strit onvexity (1) to �nd that Eδ(t, ·, z)has a unique minimizer u = Uδ(t, z) ∈ F . With this we have

Iδ(t, z) =

∫

Ω

Wδ(x, eD(t)+e(Uδ(t, z)), z)dx + G(z).A lassial argument [KnM07, KMZ07℄ shows that ∂tIδ(t, z) = ∂tEδ(t, Uδ(t, z), z).While the limit of the energy Iδ(t, zδ) along energeti solutions qδ an be understoodin the sense of Γ-limits, it is nontrivial to ontrol the power
∂tIδ(t, zδ) =

∫
Ω

σδ(t):ėD(t)dx with
σδ(t, x) = ∂eW (x, eD(t, x)+e(uδ(t))(x), zδ(t, x)).The main observation is that the stress-ontrol assumption (1e) and the usual energya priori estimates provide bounds for σδ in Lp/(p−1)(Ω,Ed) that are independent of

δ > 0. 4



The essential idea to make the limit tratable is to introdue an auxiliary funtionalin whih it is possible to keep ontrol over the Γ-limit. Denote by E = Lp(Ω;Ed)the strain spae, and for (e, z) ∈ E ×Z let
Hδ(e, z) = Vδ(e, z) + G(z) with
Vδ(e, z) = min{

∫
Ω

Wδ(x, e+e(u), z)dx | u ∈ F }. (4)In fat, the funtional Vδ should not be onsidered as a funtional on E but ratheron B = { u|∂Ω | u ∈ F }, sine all the other information is minimized out. Moreover,for �xed z ∈ Z, the mapping e 7→ Vδ(e, z) is onvex and di�erentiable with
DeVδ(e, z) = ∂eW (x, e+e(V (e, z)), z) ∈ E

∗ = Lp/(p−1)(Ω;Ed),where V (e, z) ∈ F is the unique minimizer in (4). This shows that σ = DeVδ(e, z)is in fat an equilibrium stress, and thus satis�es div σ = 0 in Ω and σ ν = 0 on
∂Ω\ΓD.The importane of the funtional Vδ is that on the one hand it is possible to do the
Γ-limit for δ → 0 and keep some of the main features and that on the other hand,by onstrution the redued funtional Iδ and its partial derivative with respet to
t an be easily expressed:

Iδ(t, z) = Vδ(eD(t), z)+G(z) and ∂tIδ(t, z) = 〈DeVδ(eD(t), z), ėD(t)〉.Thus, we have found a way to express the energies in terms of the damage alone andwe still have ontrol over the equilibrium stresses DeVδ(eD(t), z) that are needed toontrol the power generated by the boundary data uD(t).4 Existene for the omplete-damage problemA funtional I(t, ·) : Z → R is alled the Γ-limit of (Iδ(t, ·))δ if
(Γ1) zδ ⇀ z in Z =⇒ I(t, z) ≤ lim infδ→0 Iδ(t, zδ),
(Γ2) ∀ z ∈ Z ∃ (zδ)δ : zδ ⇀ z in Z and Iδ(t, zδ) → I(t, z).We note that Γ-onvergene is quite di�erent from pointwise onvergene, see Exam-ple 4.2. Moreover, while eah Iδ was strongly ontinuous, this is not true for I(t, ·);only the important weak lower semiontinuity is maintained (as for all Γ-limits).The main di�ulty is to ontrol the temporal smoothness of I, or more preisely toshow that the following impliation holds

zδ ⇀ z in Z
Iδ(t, zδ) → I(t, z)

}
=⇒ ∂tIδ(t, zδ) → ∂tI(t, z),f. ondition (2.9) in [MRS07℄. To provide this result we use the funtional Vδ, sineits Γ-limit an be studied more easily. The following result is a diret generalizationof [BMR07, Prop. 2.10℄. 5



Proposition 4.1 Let (1) hold with p > 1 and r > d. On E × Z de�ne
V(e, z) = lim

ε→0+

(
lim

δ→0+
Vδ

(
e, max{z−ε, 0}

))
.Then, V satis�es

∃C > 0 ∀ (e, z) ∈ E × Z : −C ≤ V(e, t) ≤ C + C‖e‖p
E
, (5a)

∀ z ∈ Z : V(·, z) is onvex on E, (5b)if W (x, ·, z) is quadrati, then V(·, z) is quadrati. (5)Moreover, we have I(t, z) = V(eD(t), z) + G(z).The proof relies on the ompat embedding of W1,r(Ω) into C0(Ω) and uses essen-tially the monotoniity properties of the mapping (ε, δ) 7→ Vδ

(
e, max{z−ε, 0}

): itis non-inreasing in ε beause of (1d) and it is nondereasing in δ beause of thede�nition of Wδ in (3). Thus, the limit V(e, z) always exists as a pointwise limitin δ and then in ε. Moreover, for eah �xed z the onvexity in e is preserved bypointwise onvergene. The following example, whih is inspired by [BoV88, Ex. 3℄and further disussed in [BMR07℄, shows that in general V is stritly smaller than
V0(e, z) = limδ→0+ Vδ(e, z).Example 4.2 Consider Ω = ]−1, 1[ and the energy

Iδ(t, z) =

∫

Ω

δ + z

2
(eD(t)+u′)2 dx + G(z).Then, Vδ(e, z) =

( ∫
Ω

e dx
)2

/
∫
Ω

2
δ+z

dx. Clearly, the pointwise limit V0 is obtainedby letting δ = 0. However, the Γ-limit V(e, ·) in W1,r(Ω) satis�es
V(e, z) = V0(e, z) for min z > 0 and V(e, z) = 0 for min z = 0.For α ∈ ](r−1)/r, 1[ we let zα(x) = |x|α, then zα ∈ Z and 0 = V(e, z) < V0(e, z) =

(1−α)
( ∫

Ω
edx

)2
/4.The formula for I allows us to study the question whether the power exists. Forthis, we use that onvex funtions have one-sided Gateaux derivatives in all points:

δeV(e, z; ê) = lim
h→0+

1

h

(
V(e+hê, z) − V(e, z)

)

= sup{ 〈σ, ê〉 | σ ∈ ∂sube V(e, z) },
(6)where ∂sube V(e, z) ⊂ E∗ denotes the subdi�erential of the onvex funtion V(·, z).Using eD ∈ C1([0, T ]; E) we �nd that the left and right partial derivatives ∂±

t I(t, z) =
limh→0+

±1
h

(
I(t±h, z) − I(t, z)

) with respet to t of I exists. We have the relations
∂−

t I(t, z) = −δeV(t, eD(t);−ėD(t)) ≤ δeV(t, eD(t); ėD(t)) = ∂+
t I(t, z).6



De�nition 4.3 Let z : [0, T ] → Z satisfy (S) in (2) for all t ∈ [0, T ]. Then, z isalled a weak energeti solution of the rate-independent energeti system (Z, I,D),if there exists p : [0, T ] → R suh that p(τ) ∈ ∂Cl
τ I(τ, z(τ)) a.e. in [0, T ] and for all

t ∈ [0, T ] we have
I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ. (7)Now a slight generalization of the abstrat existene theory for rate-independentsystems gives the following. Note that we onstrut weak energeti solutions for
(Z, I,D) diretly diretly, without referene to the solutions zδ for (Z, Iδ,D).Theorem 4.4 For all stable z0 ∈ Z there exists a weak energeti solution for
(Z, I,D).Proof: The existene theory follows the usual steps in the abstrat theory for rate-independent proesses (f. [Mie05, FrM06℄) via inremental minimization, uniforma priori estimates and Helly's seletion priniple. This part and the proof of thestability of the limit proess work as in [BMR07℄.For the upper energy estimate we obtain, by setting A(t) = I(t, z(t)+DissD(z, [0, t]),

A(s) − A(r) ≤
∫ s

r

pmax(t)dt with pmax(t) = max ∂Clt I(t, z(t)).With a slight generalization of [Mie05, Prop. 5.7℄ we see that stability of the limitproess z implies the lower bound A(s) − A(r) ≥
∫ s

r
pmin(t) dt with pmin(t) =

min ∂Clt I(t, z(t)).Thus, we onlude that A is absolutely ontinuous and satis�es pmin(t) ≤ A′(t) ≤
pmax(t). Hene, setting p(t) = A′(t) the proof is omplete.In the following example we show that the notion of weak energeti solution, whihinvolves the weakened energy balane (7) with the Clarke di�erential, is really ne-essary in ases where the one-sided partial derivatives satisfy ∂−

t I(t, z) < ∂+
t I(t, z)at some points. In partiular, it is not possible to make an a priori hoie like

p(t) = max{∂Clt I(t, z(t))}, whih worked in [KMZ08, MiR08℄, sine there ∂−

t I(t, z) ≥
∂+

t I(t, z) holds.Example 4.5 This example has a smooth energy Iδ suh that ∂tIδ exists, while inthe limit I is only Lipshitz in t. We let Z = R and D(z, z̃) = |z̃−z|. The energyfuntional reads
Iδ(t, z) = Hδ

(
z−α(t)

) and I(t, z) = 2|z−α(t)|,where α ∈ C1([0, T ]) is given and Hδ(u) = 2u2/
√

δ2+u2. For the partial derivativeswith respet to time we have
∂tIδ(t, z) = −H ′

δ(z−α(t))α̇(t) and ∂Cl
t I(t, z) = −2 Sign(z−α(t))|α̇(t)|.7



Sine Iδ(t, ·) is smooth and stritly onvex, the energeti solutions for (R, Iδ,D) areexatly the solutions of the doubly nonlinear equation (f. [MiT04℄)
0 ∈ Sign(ż(t)) + H ′

δ(z(t)−α(t)).For δ > 0 the system is smooth, while for δ = 0 we have H0(u) = 2|u| and set
I(t, z) = H0(z−α(t)).Consider the speial ase α(t) = t and zδ(0) = 0. If βδ is the unique solution of
H ′

δ(βδ) = 1, then the unique energeti solution is zδ(t) = max{0, t−βδ}. Using
0 < βδ → 0 we �nd the limit solution z(t) = t = limδ→0 zδ(t). It is a weak energetisolution in the sense of De�nition 4.3 by using p(t) = 1 ∈ [−2, 2] = ∂Cl

t I(t, t).5 Γ-onvergene for δ → 0Here we disuss the Γ-limit for the solutions zδ of the rate-independent energetisystem (Z, Iδ,D). First note that the a priori estimates give the boundedness of thefamily (zδ)δ in BV([0, T ], L1(Ω)) ∩ L∞([0, T ], W1,r(Ω)), and hene Helly's seletionpriniple allows us to extrat a subsequene (zδk
)k∈N whih onverges pointwise on

[0, T ] to a limit z : [0, T ] → Z satisfying the same bound, i.e., zδ(t) ⇀ z(t) in Z.To onlude that z is a weak energeti solution for (Z, I,D) it is su�ient tohek two ompatibility onditions, namely onditioned ontinuous onvergene ofthe power, f. [MRS07, (2.9)℄, and onditioned upper semiontinuity of stable sets,f. [MRS07, (2.11)℄. The latter ondition is purely stati and it is not di�ult togeneralize it to the present ase. As in [BMR07℄ we obtain the energy onvergene
Iδ(t, zδ(t)) → I(t, z(t)), whih in turn implies strong onvergene ‖zδ(t)−z(t)‖W1,r →
0.The onditional ontinuous onvergene of the power would be satis�ed if the fol-lowing onjeture would be true.Conjeture 5.1 Assume that zδj

is stable for (Z, Iδj
,D) at time t, zδj

⇀ z, Iδj
(t, zδj

) →
I(t, z), and σδj

= DeVδj
(eD(t), zδj

) ⇀ σ∗ in E∗, then σ∗ ∈ ∂sub
e V(eD(t), z).The onjeture holds under the assumption that W (x, e, z) is quadrati in e, see[BMR07℄. The relevant onsequene is obtained via (6):

∂−

t I(t, z) ≤ lim inf
δ→0

∂tIδ(t, zδ) ≤ lim sup
δ→0

∂tIδ(t, zδ) ≤ ∂+
t I(t, z). (8)Combining this estimate with the abstrat Γ-onvergene for rate-independent sys-tems from [MRS07℄ and the existene theory for omplete damage from [BMR07℄ itis possible to obtain the following onvergene result.8



Theorem 5.2 Assume that the (yet unproved) estimate (8) holds. If (zδ)δ∈(0,1) is afamily of solutions to (Z, Iδ,D) satisfying
zδ(0) ⇀ z0 in W1,r(Ω) and Iδ(0, zδ(0)) → I(0, z0),then there exist a subsequene (zδj

)j∈N and a weak energeti solution z : [0, T ] → Zfor (Z, I,D) with z(0) = z0 suh that for all t ∈ [0, T ]

zδj
(t) → z(t) in W1,r(Ω), Iδ(t, zδ(t)) → I(t, z(t)),

DissD(zδ, [0, t]) → DissD(z, [0, t]).
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