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Abstract

We study a continuous time Glauber dynamics reversible with respect to

the Ising model on hyperbolic graphs and analyze the effect of boundary con-

ditions on the mixing time. Specifically, we consider the dynamics on an n-

vertex ball of the hyperbolic graph H(v, s), where v is the number of neigh-

bors of each vertex and s is the number of sides of each face, conditioned on

having (+)-boundary. If v > 4, s > 3 and for all low enough temperatures

(phase coexistence region) we prove that the spectral gap of this dynamics is

bounded below by a constant independent of n. This implies that the mixing

time grows at most linearly in n, in contrast to the free boundary case where it

is polynomial with exponent growing with the inverse temperature β. Such a

result extends to hyperbolic graphs the work done by Martinelli, Sinclair and

Weitz for the analogous system on regular tree graphs, and provides a further

example of influence of the boundary condition on the mixing time.

1 Introduction

The goal of this paper is to analyze the Glauber dynamics for the Ising model

defined on hyperbolic graphs. In particular we will focus on the problem of deter-

mining the influence of boundary condition on the mixing time of the dynamics.

Before discussing the motivation and the formulation of the results we shall give

some necessary definitions.

Given a finite graph G = (V, E), we consider spin configurations σ = {σx}x∈V

which consist of an assignment of ±1-values to each vertex of V . In the Ising

model the probability of finding the system in a configuration σ ∈ {±1}V ≡ ΩG is

given by the Gibbs measure

µG(σ) = (ZG)−1 exp


β

∑

(xy)∈E

σxσy + βh
∑

x∈V

σx


 , (1.1)

where ZG is a normalizing constant and β and h are parameters of the model

corresponding respectively to the inverse temperature and to the external field.

Boundary conditions can also be taken in account by fixing the spin values at some

specified boundary vertices of G; the term free boundary is used to indicate that

no boundary is specified.

The Glauber dynamics for the Ising model on G is a (discrete or continuous time)

Markov chain on the set of spin configurations ΩG, reversible respect to the Gibbs

measure µG. The correspondent generator is given by

(Lf)(σ) =
∑

x∈V

cx(σ)[f(σx) − f(σ)] , (1.2)
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where σx is the configuration obtained from σ by spin flip at the vertex x and cx(σ)
is the jump rate from σ to σx.

Beyond of being the basis of Markov chain Monte Carlo algorithms, the Glauber

dynamics provides a plausible model for the evolution of the underlying physical

system toward the equilibrium. In both contexts, a central question is to determine

the mixing time, i.e. the number of steps until the dynamics is close to its stationary

measure.

In the past decades a lot of efforts have been devoted to the study of the dynamics

for the classical Ising model, namely when G = Gn is a cube of size n in the finite-

dimensional lattice Z
d, and a remarkable connection between the equilibrium and

the dynamical phenomena has been pointed out. As an example, on finite n-vertex

cubes with free boundary in Z
d, when h = 0 and β is smaller then the critical value

βc (one-phase region), the mixing time is of order log n, while for β > βc (phase

coexistence region) it is exp(n(d−1)/d) ([28, 21, 22, 20]).

More recently an increasing attention has been devoted to the study of spin systems

on graphs other than the regular lattices. Among the various motivations which are

beyond this new surge of interest, we stress that many new phenomena only appear

when one considers graphs different from the Euclidean lattices, thus revealing the

presence of an interplay between the geometry of the graph and the behavior of

statistical system.

Here we are interested in the problem of the influence of boundary conditions on

the mixing time. It has been conjectured that in the presence of (+)-boundary

condition on regular boxes of the lattice Z
d, the mixing time should remain at

most polynomial in n for all temperatures rather then exp(n(d−1)/d) [9]. But even if

some results supporting this conjecture have been achieved [5], a formal proof for

the dynamics on the lattice is still missing.

However a different scenario can appear if one replaces the classical lattice struc-

ture with different graphs. The first rigorous result along this direction, has been

obtained recently by Martinelli, Sinclair and Weitz [23] when studying the Glauber

dynamics for the Ising model on regular tree graphs. With this graph setting and

in presence of (+)-boundary condition, they proved in fact that the mixing time re-

mains of order log n also at low temperature (phase coexistence region), in contrast

to the free boundary case where it grows polynomially in n [4].

In this paper we extend the above result to the Glauber dynamics on hyperbolic

graphs which, roughly speaking, are a discretization of the hyperbolic plane H
2 in

the same sense as Z
d is a discretization of R

d. In particular, we prove that spectral

gap of the dynamics on an n-vertex ball of the hyperbolic graph with (+)-boundary

condition is Ω(1) (i.e. bounded away from zero uniformly in n) for all low enough

temperatures and zero external field. This provides, by classical argument (see,

e.g., [25]), an upper bound of order n on the mixing time. Notice that, with a free

boundary and zero external field, the only known bound on the mixing time is of

order nα(β), with exponent α(β) arbitrarily increasing with β [4].

We remark that the possibility of this extension to hyperbolic graphs is suggested

by the fact that these graphs, as well as trees, have exponential growth, a property

which we believe to be determinant for the result obtained in [23]. On the other

hand the presence of cycles, which are absent on trees, makes their structure more
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similar to the lattices. Let us finally stress that the Ising model on hyperbolic graphs

has a more complex phase diagram with respect to the classical Euclidian case and

exhibits extra phenomena like "double phase transition" and "existence of infinite

extremal Gibbs states" [27, 29, 30].

The work is organized as follows. In section 2 we give some basic definitions and

state the main result. Then in section 3 we analyze the system at the equilibrium

and prove a mixing property of the plus phase. Finally in section 4 we relate this

property to the spectral gap of the dynamics and we conclude the proof of our

main result.

2 The model: definitions and main result

2.1 Graph setting

Before describe the hyperbolic graphs, let us fix some notation and recall a few

definitions concerning the graph structure.

Let G = (V, E) be a general infinite graph , where V denotes the vertex set and E
the edge set. The graph distance between two vertices x, y ∈ V is defined as the

length of the shortest path from x to y and it is denoted by d (x, y). If x and y are

at distance one, i.e. if they are neighbors, we write x ∼ y.

For a given subset S ⊂ V , we denote by E(S) the set of all edges in E which have

both their end vertices in S and we call G(S) = (S, E(S)) the induced subgraph on

S. When it will create no confusion, we will identify G(S) with its vertex set S.

For S ⊂ V let us introduce the vertex boundary of S

∂V S = {x ∈ V \ S : ∃y ∈ S s.t. x ∼ y}

and the edge boundary of S

∂ES = {e = (x, y) ∈ E s.t. x ∈ S , y ∈ V \ S} .

If G = (V, E) is an infinite, locally finite, connected graph, we can define the edge

isoperimetric constant of G (also called Cheeger constant) by

ie(G) := inf

{
|∂E(S)|

|S|
; S ⊂ V finite

}
. (2.1)

Definition 2.1. A graph G = (V, E) is amenable if its edge isoperimetric constant is

zero, i.e. if for every ǫ > 0 there is a finite set of vertices S such that |∂ES| < ǫ|S|.
Otherwise G is non-amenable.

A typical example of amenable graph is the lattice Z
d, while one can easily show

that the regular trees with branching number bigger then two are non-amenable.

In this work we consider the hyperbolic graphs, which are a family of infinite planar

graphs characterized by a cycle periodic structure. They can be briefly described

as follows (for their detailed construction see, e.g., [19], or Section 2 of ref. [24]).

Consider a graph in which each vertex has the same number of neighbors (or
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vertex-degree) denoted by v, and each face (or tile) is equilateral with constant

number of sides denoted by s. If the parameters v and s satisfy the relation (v −
2)(s − 2) > 4, then the graph can be embedded in the hyperbolic plane H

2 and

it is called hyperbolic graph (or hyperbolic tiling) with parameters v and s. It will

be denoted by H(v, s). The typical representation of hyperbolic tilings make use of

the Poincaré disc D2 that is in bi-univocal correspondence with H
2 (see Fig. 2.1).

Figure 2.1: The hyperbolic graph H(4, 5) in the Poincaré disc representation.

Between the properties characterizing the hyperbolic graphs, we first mention

the non-amenability which roughly speaking, as one deduces from Definition 2.1,

means that the boundary of every subset of the graph is of comparable size to its

volume. The edge isoperimetric constant of H(v, s) has been explicitly computed

in [11] as a function of v and s.

The main similarity between hyperbolic graphs and the Euclidean lattices is related

to the fact of having many cycles, which are instead missing in the trees. To be

more precise, let us give the following definition.

Definition 2.2. The number of ends E(G) of a graph G = (V, E) is defined as

E(G) = sup
K⊂V

Kfinite

{ number of infinite connected components of G \ K } ,

where G\K denotes the graph obtained from G by removing the vertices which belong

to K and the edges incident to these vertices.

It is known that hyperbolic graphs, as well as all the lattices Z
d with d ≥ 2, are one-

ended graphs. The fact of having many cycles is indeed encoded in the impossibility

of split the graph in more then one infinite component by simply removing a finite

number of vertices. At the contrary, regular trees are infinite-ended graphs.

Non-amenability and the property of being one-ended seem to be strongly related

to the qualitative behavior of models in statistical mechanics (see, e.g., [13, 16, 17,

26, 23] for results concerning the Ising and the Potts models, and [6, 7, 8, 10, 11,

12] for percolation and random cluster models). Non-amenability will appear in
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the proof of our main result as an essential element. Beside, due to the property of

being one-ended, we will need a careful analysis of the correlations between spins.

This is actually the main distinction between our proof and the similar work on

trees [23].

2.2 Ising model on hyperbolic graphs

The study of the Ising model on the hyperbolic graph H(v, s) led to the characteri-

zation of two different phase transitions appearing at inverse temperatures βc ≤ β ′
c

and zero magnetic field [27, 29, 30]. The first one, βc, corresponds to the oc-

currence of a uniqueness/non-uniqueness phase transition. In particular, as for

the model on Z
d with d ≥ 2, when β > βc there are at least two extremal Gibbs

measures which are usually denoted by µ+ and µ− and are obtained by imposing,

respectively, (+)- and (−)-boundary condition. The second critical temperature

refers to a change in the properties of the free boundary condition measure µf ;

specifically it is defined as

β ′
c = inf{β ≥ βc : µf = (µ+ + µ−)/2} .

It turns out that for βc < β ≤ β ′
c the measure µf is not a convex combination of µ+

and µ−, while for β > β ′
c the property µf = (µ+ + µ−)/2 is recovered.

The interesting scenario appears when the strict inequality βc < β ′
c (see [30] for

details). In this case, for all inverse temperatures β in the nonempty interval (βc, β
′
c]

it holds that µf 6= (µ++µ−)/2, which implies the existence of a translation invariant

Gibbs state different from µ+ and µ−. Notice that this behavior is in contrast to

what happens for the Ising model on Z
d, where the only translation invariant Gibbs

states are µ+ and µ− [2].

Another interesting result concerning the properties of the extremal measures has

been obtained by Sinai and Series in [27]. They proved that for low enough tem-

peratures and h = 0, there exist uncountably many mutually singular Gibbs states

which they conjectured to be extremal. Again, this result is in contrast to the prop-

erties of the model on Z
d, where is known that the extremal measures are at most

a countable number.

For that concerns the model when a magnetic field h 6= 0 is added to the sys-

tem, we recall the result obtained by Jonasson and Steif [13] for transitive non-

amenable graphs with finite vertex degree. For this class of graphs they proved

the existence of a critical value β0 and of a critical curve hc(β) such that, for all

β > β0, the Gibbs measure is not-unique when |h| < hc(β), and it is unique when

|h| > hc(β). This result applies to the hyperbolic graphs and shows the existence

of a uniqueness/non-uniqueness phase transition for h 6= 0.

In this paper we are interested in the region of the phase diagram where the dy-

namics is highly sensitive to the boundary condition, namely when the temperature

is low and the magnetic field is zero (phase coexistence region). In particular, for

a given sequence of subgraphs {Br}r∈N converging to H(v, s) as r → ∞, we will

focus on the Ising model on Br conditioned on having (+)-spins on the boundary

∂V Br. Let us explain in details the model and give the necessary definitions and

notation.
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Consider the hyperbolic graph H(v, s), with vertex set V and edge set E. Let o ∈ V
be a distinguished vertex (root) and for any r ∈ N, denote by Br = (Vr, Er) ⊂
H(v, s) the ball centered in o and with radius r, namely the finite subgraph induced

on Vr = {x ∈ V : d (o, x) ≤ r}. When it does not create confusion, we identify the

subgraphs of H(v, s) with their vertex sets.

Given a finite ball B ≡ Bm and an Ising spin configuration τ on the hyperbolic

graph H(v, s), let Ωτ
B ⊂ {±1}B∪∂V B be the set of configurations that agree with

τ on ∂V B. Analogously, for any subset A ⊆ Vm and any η ∈ Ωτ
B, we denote

by Ωη
A ⊂ {±1}A∪∂V A the set of configurations that agree with η on ∂V A. The

Ising model on A with η-boundary condition (b.c.) and zero external field is thus

specified by the Gibbs probability measure µη
A, with support on Ωη

A, defined as

µη
A(σ) =

1

Z(β)
exp( β

∑

(x,y)∈E(A)

σxσy ) , (2.2)

where Z(β) is a normalizing constant and the sum runs over every couples of

nearest neighbors in the induced subgraph of A = A ∪ ∂V A.

Similarly, the Ising model on A with free boundary condition is specified by the

Gibbs measure µA supported on the set of configurations ΩA := {±1}A and defined

as in (2.2) by replacing the sum over E(A) in a sum over E(A), namely cutting

away the influence from the boundary ∂V A. Notice that when A = Vm, µη
Vm

is

simply the Gibbs measure on B with boundary condition τ (η agrees with τ on

∂V Vm ≡ ∂V B) and µA is the Gibbs measure on B with free boundary condition.

We denote by FA the σ-algebra generated by the set of projections {πx}x∈A from

{±1}A to {±1}, where πx : σ 7→ σx, and write f ∈ FA to indicate that f is FA-

measurable. Finally, we recall that if f : Ωτ
B → R is a measurable function, the

expectation of f w.r.t. µη
A is given by µη

A(f) =
∑

σ∈Ω µη
A(σ)f(σ) and the variance

of f w.r.t. µη
A is given by VarηA = µη

A(f 2) − µη
A(f)2. We usually think of them as

functions of η, that is µA(f)(η) = µη
A(f) and VarA(f)(η) = VarηA(f); in particular

µA(f) , VarA(f) ∈ FAc.

In the following discussion we will be concerned with the Ising model on B with

(+)-b.c. and we will use the abbreviations Ω+, F and µ instead of Ω+
B, FB∪∂V B and

µ+
B, and thus µ(f) and Var(f) instead of µ+

B(f) and Var+B(f).

2.3 Glauber dynamics and mixing time

The Glauber dynamics on B with (+)-boundary condition is a continuous time

Markov chain (σ(t))t≥0 on Ω+ with Markov generator L given by

(Lf)(σ) =
∑

x∈B

cx(σ) [f(σx) − f(σ)] , (2.3)

where σx denotes the configuration obtained from σ by flipping the spin at the

site x and cx(σ) is the jump rate from σ to σx. We sometimes prefer the short

notation ∇xf(σ) = [f(σx) − f(σ)]. The jump rates are required to be of finite-

range, uniformly positive, bounded and they should satisfy the detailed balance

condition w.r.t. the Gibbs measure µ. Although all our results apply to any choice
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of jump rates satisfying these hypothesis, for simplicity we will work with a specific

choice called heat-bath dynamics:

cx(σ) = µσ
x(σx) =

1

1 + ωx(σ)
where ωx(σ) = exp(2βσx

∑

y∼x

σy ). (2.4)

It is easy to check that the Glauber dynamics is ergodic and reversible w.r.t. the

Gibbs measure µ, and so converges to µ by the Perron-Frobenius Theorem. The

key point is now to determine the rate of convergence of the dynamics.

A useful tool to approach this problem is the spectral gap of the generator L, that

can be defined as the inverse of the first nonzero eigenvalue of L.

Remark 2.3. Notice that the generator L is a non-positive self-adjoint operator on

ℓ2(Ω+, µ). Its spectrum thus consists of discrete eigenvalues of finite multiplicity that

can be arranged as 0 = λ0 ≥ −λ1 ≥ −λ2 ≥ . . . ,≥ −λN−1, if |Ω+| = N , with λi ≥ 0.

An equivalent definition of spectral gap is given through the so called Poincaré

inequality for the measure µ. For a function f : Ω+ 7→ R, define the Dirichlet form

of f associated to L by

D(f) :=
1

2

∑

x∈B

µ
(
cx[∇xf ]2

)
=
∑

x∈B

µ(Varx(f)) , (2.5)

where the second equality holds under our specific choice of jump rates. The

spectral gap cgap(µ) is then defined as the inverse of the best constant c in the

Poincaré inequality Var(f) ≤ cD(f) , ∀f ∈ ℓ2(Ω+, µ), (2.6)

or equivalently

cgap(µ) := inf

{
D(f)Var(f)

;Var(f) 6= 0

}
. (2.7)

Denoting by Pt the Markov semigroup associated to L, with transition kernel

Pt(σ, η) = etL(σ, η), it easy to show thatVar(Ptf) ≤ e−2cgap(µ)t Var(f) . (2.8)

The last inequality shows that the spectral gap gives a measure of the exponential

decay of the variance, and justifies the name relaxation time for the inverse of the

spectral gap.

Moreover, let hσ
t denote the density of the distribution at time t of the process

starting at σ w.r.t. µ, i.e. hσ
t (η) = Pt(σ, η)

µ(η)
. For 1 ≤ p ≤ ∞ and a function f ∈

ℓp(Ω+, µ), let ‖f‖p denote the ℓp norm of f and define the time of convergence

τp = min

{
t > 0 : sup

σ
‖hσ

t − 1‖p ≤ e−1

}
, (2.9)

that for p = 1 is called mixing time. A well known and useful result relating τp to

the spectral gap (see, e.g., [25]), when specializing to the Glauber dynamics yield

the following:
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Theorem 2.4. On an n-vertex ball B ⊂ H(v, s) with (τ)-boundary condition, it holds

cgap(µ)−1 ≤ τ1 ≤ cgap(µ)−1 × cn , (2.10)

where µ = µτ
B and c = c(β, v, s) is a constant independent of n. �

We stress that a different choice of jump rates (here we considered the heat-bath

dynamics) only affects the spectral gap by at most a constant factor. The bound

stated in Theorem 2.4 is thus equivalent, apart for a multiplicative constant, for

any choice of the Glauber dynamics.

Before presenting our main result, we recall the Glauber dynamics for the Ising

model on hyperbolic graphs has been recently investigated by Peres et al. in [4].

They consider the dynamics on a finite ball B ∈ H(v, s) with free boundary condi-

tion and zero external field, and prove that at all temperatures the inverse of the

spectral gap (relaxation time) scales at most polynomially in the size of B, with

exponent α(β) ↑ ∞ as β → ∞. Again, let us stress that under the same conditions,

the dynamics on a cube of size n in the d-dimensional lattice can relax in a time

exponentially large in the surface area n(d−1)/d.

2.4 Main result

We are finally in position to state our main result.

Theorem 2.5. Let H(v, s) such that v>4 and s>3. Then, for all β ≫ 1, the Glauber

dynamics on an n-vertex ball B with (+)-boundary condition and zero external field

has spectral gap Ω(1).

As a corollary we obtain that, under the same hypothesis of the theorem above, the

mixing time of the dynamics is bounded linearly in n (see Theorem 2.4).

This result provides a convincing example of the influence of the boundary con-

dition on the mixing time. Indeed, as just recalled, for free boundary conditions

the only known estimate on the spectral gap for balls in the hyperbolic graph is a

lower bound of order n−α(β), with α(β) ↑ ∞ as β → ∞ [4]. The presence of the

(+)-boundary condition thus gives rise to an abrupt jump of the spectral gap from

n−α(β) to a constant, and consequently it speeds up the dynamics.

Remarks.

(i) We recall that on Z
d not much is known about the spectral gap when β > βc,

h = 0 and the boundary condition is (+), though it has been conjectured that

in high enough dimensions (d ≥ 3) the spectral gap should remain away from

zero uniformly in n (see [9] and [5]).

(ii) A result similar to Theorem 2.5 has been obtained for the spectral gap, and

thus for the mixing time, of the dynamics on a regular b-ary tree (see [23]).

In particular it has been proved that while under free-boundary condition the

mixing time on a tree of size n jumps from log n to nΘ(β) when passing a certain

critical temperature, it remains of order log n at all temperatures and at all

values of the magnetic field under (+)-boundary condition. However we stress
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that while trees do not have any cycle and belong to the class of infinite-ended

graphs, hyperbolic graphs, as well as the Euclidean lattices, have many cycles

and belong to the class of one-ended graphs (see section 2.1). The theorem

above can thus be looked upon as an extension of this result to a class of graphs

which in many respects are similar to Euclidean lattices.

We now proceed to sketch briefly the ideas and techniques used along the paper.

The proof of our main result is based on the variational definition of the spectral

gap and it is aimed to show that the Gibbs measure relative to the system satisfies a

Poincaré inequality with constant c independent of the size of B. We will first ana-

lyze the equilibrium properties of the system conditioned on having (+)-boundary,

and under this condition we will deduce a peculiar notion of correlation decay

between spins. The proof of this kind of spatial mixing property rests on a dis-

agreement argument which is then concluded by a Peierls type argument together

with some isoperimetric estimates.

The second main step of the proof is deriving a suitable Poincaré inequality for

the Gibbs measure describing the system, from the deduced notion of spatial mix-

ing. This will be achieved by first deducing, via coupling techniques, a Poincaré

inequality for the marginal Gibbs measure with support on suitable subsets, and

then iterating the argument to recover the required estimate on the variance.

3 Mixing properties of the plus phase

In this section we analyze the effect of the (+)-boundary condition on the equi-

librium properties of the system. In particular, we prove that the Gibbs measure

µ ≡ µ+
B satisfies a kind of spatial mixing property, i.e. a form of weak dependence

between spins placed at distant sites.

Before presenting the main result of this section, we need some more notation and

definitions. Recall that for every integer i, we denoted by Bi = (Vi, Ei) the ball of

radius i centered in o. Let us define the following objects:

(i) the i-th level Li = {x ∈ V : d(x, o) = i} ≡ ∂V Bi−1;

(ii) the vertex-set Fi ⊆ B given by Fi := {v ∈ Bc
i−1 ∩ B} ;

(iii) the σ-algebra Fi generated by the functions πx for x ∈ F c
i = Bi−1.

We will be mainly concerned with the Gibbs distribution on Fi with boundary con-

dition η ∈ Ω+, which we will shortly denote by µη
i = µη

Fi
= µ(· |η ∈ Fi); anal-

ogously we will denote by Varηi the variance w.r.t. µη
i . Notice that {Fi}

m+1
i=0 is a

decreasing sequence of subsets such that Vm = F0 ⊃ F1 ⊃ . . . ⊃ Fm+1 = ∅, and in

particular it holds that µi(µi+1(f)) = µi(f), for all finite i, and µm+1(f) = f .

We then introduce a linear order on the levels Li as follows: let TB be a shortest

path spanning tree of B, namely such that for every x ∈ Vm the path from o to

x in TB is a shortest path in B. Clearly the i-th level of TB is equal to the level

Li of B. We thus choose, for every i ∈ {0, . . . , m}, a vertex xi
0 ∈ Li and order in

counterclockwise sense all the vertices in Li along TB. This order depends on the
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choice of xi
0, but it does not affect the next computations.

We set xi
|Li|

= xi
0 for all i ∈ {0, . . . , m}, and notice that for all k ∈ {0, . . . , |Li|} the

vertices xi
k and xi

k+1 belong to the same tile of B. We will call a pair of vertices in

the same level and with this property level-neighboring vertices.

We can now define the following distance on Li:

Definition 3.1 (Li-distance). Given n, m ∈ {0, 1, · · · , |Li|} such that n ≥ m, the

Li-distance between xi
n and xi

m in Li is given by

di(x
i
n, xi

m) = min{n − m , m + (|Li| − n)} .

Remark 3.2. Let us remark that di(x
i
n, x

i
m) is just the minimal number of jumps

between Li-neighboring vertices from xi
n to xi

m. Notice also that the definition of Li-

distance doesn’t depend on the choice of the ordering on Li. In general, for x, y ∈ Li,

we have di(x, y) 6= d(x, y), where d(·, ·) is the usual graph distance.

Finally, for a given i ∈ {0, . . . , m} and a given vertex x ∈ Li, we consider the Gibbs

measure on the set Kx = Fi+1 ∪ {x} conditioned on the configuration outside Kx

being σ ∈ Ω+, which as usually will be denoted by µσ
Kx

. We are now able to state

the following:

Proposition 3.3. Let B ⊂ H(v, s) such that v > 4 and s > 3. Then there exist two

positive constants c1 and c2 dependent on the parameters of the hyperbolic graph such

that, for every β > β0 = c2
c1

, every σ ∈ Ω+ and every couples of vertices x, y ∈ Li,

i ∈ {0, . . . , m}, it holds

|µσ
Kx

(σx = +) − µσy

Kx
(σx = +)| ≤ ce−β′di(x,y) , (3.1)

with β ′ := c1β − c2 > 0.

Let us briefly justify the above result. Due to the non-amenability of hyperbolic

graphs, namely to the fact that the boundary of any set is proportional to its vol-

ume, the (+)-b.c. on B turns out to be strong enough to influence sites at arbitrary

distance. In particular, as we will prove, the effect of the boundary on a given site x
weakens the influence on x coming from other sites (arbitrary near to x) and gives

rise to the decay correlation stated in Proposition 3.3. Notice that the correlation

decay increases with β.

The proof of Proposition 3.3, which will be presented in the rest of this section, is

divided in two parts. First, we define a suitable event and show that the correlation

between two spins is controlled by the probability of this event. Then, in the

second part, we estimate this probability first using a Peierls type argument and

then deducing some isoperimetric inequalities which yield the exponential factor

in formula 3.1.

3.1 Proof of Proposition 3.3

Let us consider two vertices x, y ∈ Li such that di(x, y) = ℓ, and a configuration

σ ∈ Ω+. When ℓ = 0 (x and y coincident) inequality (3.1) is trivial, thus we assume

ℓ ≥ 1. Let σy,+ be the configuration that agrees with σ in all sites but y and has a
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(+)-spin on y; define analogously σy,− and denote by µy,+
Kx

and µy,−
Kx

the measures

conditioned on having respectively σy,+- and σy,−-b.c.. With this notation and from

the obvious fact that the event {σ : σx = +} is increasing, we get that

|µσ
Kx

(σx = +) − µσy

Kx
(σx = +)| = µy,+

Kx
(σx = +) − µy,−

Kx
(σx = +) . (3.2)

In the rest of the proof we will focus on the correlation in the r.h.s. of (3.2).

In order to introduce and have a better understanding of the ideas and techniques

that we will use along the proof, we first consider the case ℓ = 1, which is simpler

but with a similar structure respect to the general case ℓ > 1.

3.1.1 Correlation decay: the case ℓ = 1

Suppose that ℓ = 1, which means that possibly x and y are neighboring sites.

Denoting by µ−
Kx

the measure with (−)-b.c. on Kc
x = Bi \ {x}, we get

µy,+
Kx

(σx = +) − µy,−
Kx

(σx = +) = µy,−
Kx

(σx = −) − µy,+
Kx

(σx = −)

≤ µy,−
Kx

(σx = −)

≤ µ−
Kx

(σx = −) , (3.3)

where the last inequality follows by monotonicity. The problem is thus reduced to

estimate the probability of the event {σ : σx = −} w.r.t. µ−
Kx

.

Let K be the set of connected subsets in Kx containing x and write

K =
⊔

m≥1

Km with Km = {C ∈ K s.t. |C| = m} .

For any configuration σ ∈ Ω+, we denote by K(σ) the maximal negative component

in K admitted by σ, i.e.

K(σ) ∈ K s.t.

{
σz = − ∀ z ∈ K(σ)

σz = + ∀ z ∈ ∂V K(σ) ∩ Kx
(3.4)

With this notation the event {σ : σx = −} can be expressed by means of disjoint

events as

{σ : σx = −} =
⊔

m≥1

⊔

C∈Km

{σ : K(σ) = C} . (3.5)

and then we get

µ−
Kx

(σx = −) =
∑

m≥1

∑

C∈Km

µ−
Kx

(K(σ) = C) . (3.6)

Let us introduce the symbol σ ∼ C for a configuration σ such that σC = − and

σ∂V C∩Kx
= +. The main step in the proof is to show the following claim:

Claim 3.4. Let B a ball in the hyperbolic graph H(v, s) and assume that v > 4 and

s > 3. For any subset C ⊂ Kx then it holds

µ−
Kx

(σ ∼ C) ≤ e−c1 β|C| , (3.7)

with c1 = c1(v, s) positive finite constant.
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The proof of Claim 3.4 is postponed to section 3.2. Let us assume for the moment

its validity and complete the proof of the case ℓ = 1. By Claim 3.4 and from the

definition of K(σ), we get

µ−
Kx

(K(σ) = C) ≤ e−c1 β|C| . (3.8)

We now recall the following Lemma due to Kesten (see [14]).

Lemma 3.5. Let G an infinite graph with maximum degree ∆ and let Cm be the set of

connected sets with m vertices containing a fixed vertex v. Then |Cm| ≤ (e(∆ + 1))m.

Applying Lemma 3.5 to the set Km, we obtain the bound |Km| ≤ ec2m, with c2 =
1 + log(v + 1). Continuing from (3.6), we finally get that for all β ′ = c1β − c2 > 0,

i.e. for all β > c2
c1

,

µ−
Kx

(σx = −) ≤
∑

m≥1

∑

C∈Cx
m

e−c1 βm

≤
∑

m≥1

e−c1βmec2m

≤ ce−β′

(3.9)

which concludes the proof of (3.3) in the case ℓ = 1.

Notice that the argument above only involves the spin at x and thus applies for all

couples of x, y ∈ Li, independently for their di-distance. Anyway, when di(x, y) > 1
this method does not provide the decay with the distance stated in Proposition 3.3,

and thus a different approach is required.

3.1.2 Correlation decay: the case ℓ > 1

Let us now consider two vertices x, y ∈ Li such that di(x, y) = ℓ > 1. Before

defining new objects, we want to clarify the main idea beyond the proof. Since the

measure µσ
Kx

fixes the configuration on all the sites in Kc
x ≡ Bi \ {x}, the vertex y

can communicate with x only through paths going from x to y and crossing vertices

in Kx. However, the effect of this communication can be very small respect to the

information arriving to x from the (+)-boundary. In particular if every path starting

from y crosses a (+)-spin before arriving to x, then the communication between

them is interrupted. Let us formalize this assertion.

We denote by C the set of connected subsets C ∈ Kx ∪ {y} such that y ∈ C, and

call an element C ∈ C a component of y. For every vertex z ∈ Li, we then denote

by Nz the set of nearest neighbors of z belonging to the level Li+1, and introduce

the set C∅ := {C ∈ C s.t. C ∩ Nx = ∅}. Again, for every configuration σ ∈ Ω+, we

define C(σ) as the maximal component of y which is negative on C(σ) ∩ Kx, i.e

C(σ) ∈ C s.t.

{
σz = − ∀ z ∈ C(σ) ∩ Kx

σz = + ∀ z ∈ ∂V C(σ) ∩ Kx
(3.10)

and we observe that the spin on y is not fixed under the event {σ : C(σ) = C}.
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Finally we define the event

A := {σ : C(σ) ∈ C∅} =
⊔

C∈C∅

{σ : C(σ) = C} , (3.11)

and perform the following computation

µy,−
Kx

(σx = + |A) =
∑

C∈C∅

µy,−
Kx

(σx = +, C(σ) = C |A)

=

∑
C∈C∅ µy,−

Kx
(σx = +, C(σ) = C )

∑
C∈C∅ µy,−

Kx
( C(σ) = C )

=

∑
C∈C∅ µy,−

Kx
(σx = + |C(σ) = C )µy,−

Kx
( C(σ) = C )

∑
C∈C∅ µy,−

Kx
( C(σ) = C )

≥ min
C∈C∅

µy,−
Kx

(σx = + |C(σ) = C) . (3.12)

Notice that when the measure µy,−
Kx

is conditioned on the event {σ : C(σ) = C}, the

spin configuration on ∂V C is completely determined by the boundary condition:

on ∂V C ∪Kx it is given by all (+)-spins and on ∂V C ∪Kc
x it corresponds to σy,−. It

follows that the spins on Kx \ (C ∪ ∂V C) become independent from the spins on C
and then we have

µy,−
Kx

( · |C(σ) = C) = µy,−
Kx

( · |σz = + , z ∈ ∂V C)

= µy,+
Kx

( · |σz = + , z ∈ C ∪ ∂V C)

≥ µy,+
Kx

( · ) (3.13)

where the last inequality follows by stochastic domination. Being {σ : σx = +} an

increasing event, from (3.12) and (3.13) we get

µy,−
Kx

(σx = + |A) ≥ µy,+
Kx

(σx = +) ,

which with the obvious fact that µy,−
Kx

(σx = +) ≥ µy,−
Kx

(σx = + |A) µy,−
Kx

(A) , implies

µy,+
Kx

(σx = +) − µy,−
Kx

(σx = +) ≤ µy,−
Kx

(Ac) . (3.14)

Because Ac is a decreasing event, it holds by monotonicity that µy,−
Kx

(Ac) ≤ µ−
Kx

(Ac) ,

where we recall that µ−
Kx

denotes the measure on Kx conditioned on having all

(−)-spins on Kc
x. We now focus on µ−

Kx
(Ac).

Let C 6=∅ denote the set of components of y with nonempty intersection with Nx,

and for every m ∈ N, let Cm be the set of components in C 6=∅ with m vertices, i.e

Cm := {C ∈ C 6=∅ s.t. |C| = m} C 6=∅ :=
⊔

m>0

Cm.

Notice that a component of y containing a vertex in Nx has at least cardinality ℓ+1,

since di(x, y) = ℓ. Thus Ac can be expressed by means of disjoint events as

Ac =
⊔

m≥ℓ+1

⊔

C∈Cm

{σ : C(σ) = C} , (3.15)
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and we get

µ−
Kx

(Ac) =
∑

m≥ℓ+1

∑

C∈Cm

µ−
Kx

(C(σ) = C) . (3.16)

Now we observe that the event {σ : C(σ) = C} ≡ {σ : σC\{y} = − , σ∂V C∩Kx
= +}

is a subset of {σ : σC\{y} = − , σ∂V (C\{y})∩Kx
= +} ≡ {σ : σ ∼ C \ {y}}. Applying

again the result stated in Claim 3.4 to the set C \ {y}, we obtain the bound

µ−
Kx

(C(σ) = C) ≤ e−c1 β(|C|−1) , (3.17)

which holds under the same hypothesis of the claim. Continuing from (3.16) we

get that for all β ′ = c1β − c2 > 0, i.e. for all β > c2/c1,

µ−
Kx

(Ac) ≤
∑

m≥ℓ+1

∑

C∈Cm

e−c1 β(m−1)

≤ ec2
∑

m≥ℓ

e−c1βmec2m

≤ ce−β′ℓ (3.18)

where in the second line we used the bound |Cm| ≤ ec2m due to Lemma 3.5. This

conclude the proof of Proposition 3.3. In the next section we will go back and

prove Claim 3.4.

3.2 Proof of Claim 3.4

To estimate the probability µ−
Kx

(σ ∼ C), we now appeal to a kind of Peierls ar-

gument that runs as follows (see also [13]). For a given subset C ⊂ Kx, we first

consider the edge boundary ∂EC and define

∂+C := {e = (z, w) ∈ ∂EC : z, w ∈ Kx}
∂−C := {e = (z, w) ∈ ∂EC : z or w ∈ Kc

x}
(3.19)

with ∂EC = ∂+C ∪ ∂−C. The meaning of this notation can be better understood if

we consider a configuration σ ∈ Ω−
Kx

such that C(σ) = C (see (3.10)). In this case

σ has (−)-spins on both the end-vertices of every edge in ∂−C and a (+)-spin in

one end-vertex of every edge in ∂+C. Similarly if we consider σ such that K(σ) = C
(see (3.4)).

For every σ ∈ Ω−
Kx

such that σ ∼ C, let σ∗ ∈ Ω−
Kx

denote the configuration obtained

by a global spin flip of σ on the subset C, and observe that the map σ → σ∗ is

injective. This flipping changes the Hamiltonian contribute of the interactions just

along the edges in ∂EC; in particular σ∗ loses the positive contribute of the edges

in ∂+C and gains the contribute of the edges in ∂−C and then we get

H−
Kx

(σ∗) = H−
Kx

(σ) − 2(|∂+C| − |∂−C|) . (3.20)
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Finally, we perform the following computation

µ−
Kx

(σ ∼ C) =
∑

{σ:σ∼C}

e−βH−
Kx

(σ)

Z−
Kx

≤

∑
{σ:σ∼C} e−βH−

Kx
(σ)

∑
{σ:σ∼C} e−βH−

Kx
(σ∗)

= e−2β(|∂+C|−|∂−C|) , (3.21)

where in the first inequality we reduced the partition function to a summation over

{σ : σ ∼ C} and then we applied (3.20).

To complete the proof of Claim 3.4, we have to verify the bound

|∂+C| − |∂−C| ≤
c1

2
|C| . (3.22)

To establish inequality (3.22), we make use of the following lemmas. The first

one concerns the growth properties of the nearest neighborhood of a vertex in

B ⊂ H(v, s), while the second one is intrinsic related to our formulation of the

problem.

Lemma 3.6 ( link-property). Consider the hyperbolic graph H(v, s) and assume that

s > 3. Then for any vertex x ∈ Li, respect to some reference point o ∈ V , the number

of neighbors of x in Li+1 is at least v − 2.

Proof. Being v the vertex degree of the graph, Lemma 3.6 can be equivalently

stated by saying that each vertex x ∈ Li, with respect to a given root o, is linked

to the vertices in Li ∪ Li−1 (same or previous level) by at most 2 edges. Indeed,

as can be directly verified from figure (see 2.1), only three situations can appear

regarding these edges (see fig. 3.2):

1. x is linked with two ancestors and none vertex on the same level;

2. x is linked with one ancestor and one vertex on the same level;

3. x is linked with one ancestor.

The exclusion of the other possibilities comes from the planarity of the graph

together with the requirement s > 3, which restrict the result to non-triangular

tilings.

Lemma 3.7. Consider the hyperbolic graph H(v, s) and assume that v > 4 and s > 3.

For every subset C ⊂ Kx, we then have

|∂+C| ≥ (1 + δ)|∂−C| , (3.23)

where δ = v−4
2

> 0.
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Figure 3.2: The three possible connections between a site on a level and the neighbors

Proof. If ∂−C = ∅, Lemma 3.7 follows trivially. Thus let us suppose that ∂−C 6= ∅
and consider the subset S := C∩∂V Kc

x, corresponding to the set of the end-vertices

in C of the edges in ∂−C. For every vertex z, let us also introduce the notation Pz

for the set of nearest neighbors of z belonging to the same or previous level of z,

so that Pz + Nz = v. Notice that by Lemma 3.6 Pz ≤ 2 and Nz ≥ v − 2. We now

assert that every edge in ∂−C can be written as e = (z, w), with z ∈ S and w ∈ Pz.

Indeed, the end-vertices of ∂−C which do not belong to S, belong by definition to

Kc
x = Bi, while due to the shape of Kx, the set S is a subset of Li ∪ Li+1.

From this observation and using the link property, we get

|∂−C| =
∑

z∈S

|{w ∈ Pz , w 6∈ C}|

=
∑

z∈S

|{w ∈ Pz}| −
∑

z∈S

|{w ∈ Pz , w ∈ C}|

≤ 2|S| −
∑

z∈S

|{w ∈ Pz , w ∈ S}| , (3.24)

which corresponds to the inequality

|S| ≥
1

2

(
|∂−C| +

∑

z∈S

|{w ∈ Pz , w ∈ S}|

)
. (3.25)

Now we want to find a suitable relation between |∂+C| and |S|. To this aim, let us

consider the increasing sequence of subsets of C defined as follows

C0 = S and Cj = Cj−1 ∪ {z ∈ C ∩ Li+j} ∀j ≥ 1 , (3.26)

and notice that for some finite integer k, depending on C, Ck ≡ C. We then

introduce the notation ∂+Cj := {e = (z, w) ∈ ∂E(Cj) : z, w ∈ Kx} and state that

(i) |∂+C0| ≥
∑

z∈S |{w ∈ Nz , w 6∈ S}| ;

(ii) |∂+Cj| ≥ |∂+Cj−1| + (v − 4) |{z ∈ C ∩ Li+j}| , ∀j ≥ 1 .

Inequality (i) is due to the trivial fact that {w ∼ z , w 6∈ S ∪ Kc
x} ⊃ {w ∈ Nz , w 6∈

S}. To understand inequality (ii), first notice that by construction Cj ⊆ Bi+j and
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C0 ⊂ Bi+1. Thus, for every z ∈ C ∩ Li+j and j ≥ 1, there are at most |Pz| edges

between z and Cj−1, i.e. edges in ∂+Cj−1 \ ∂+Cj , and at least |Nz| edges between

z and Kx \ Cj , i.e. edges in ∂+Cj \ ∂+Cj−1. Inequality (ii) then follows from the

link-property.

From these last inequalities and being v > 4 by hypothesis, we get

|∂+C| ≥ |∂+C0| ≥
∑

z∈S

|{w ∈ Nz , w 6∈ S}| . (3.27)

Remark 3.8. Since S ⊂ {x} ∪ Li+1, x is the only vertex in Kx which can satisfies

both the conditions x ∈ S and Nx ∩ S 6= ∅, and then |{w ∈ Nz , w ∈ S}| = 0 for all

z ∈ S different from x. However, we prefer to use this more general notation in order

to facilitate the extension of this computation to similar object. For example, it easy

to verify that all the above construction continues to holds if we consider, instead of

Kx, a set U = Fi+1 ∪ V with V ⊂ Li. This can be useful, for example, to compute

the correlation µy,+
U (σx = +) − µy,−

U (σx = +) between two sites x ∈ U and y ∈ U c,

or simply the probability µ−
U(σx = −). As a special case we can take V = ∅, so that

U ≡ Fi+1 and µU ≡ µi+1.

From (3.25) and(3.27), and again by the link-property, it holds

|∂+C| ≥
∑

z∈S

|{w ∈ Nz , w 6∈ S}|

=
∑

z∈S

(v − |{w ∈ Pz }|) −
∑

z∈S

|{w ∈ Nz , w ∈ S}|

≥ (v − 2)|S| −
∑

z∈S

|{w ∈ Nz , w ∈ S}|

= (v − 2)|S| −
∑

z∈S

|{w ∈ Pz , w ∈ S}|

≥
(v − 2)

2
|∂−C| +

(v − 4)

2

∑

z∈S

|{w ∈ Pz , w ∈ S}|

≥ (1 +
(v − 4)

2
)|∂−C| , (3.28)

which concludes the proof of Lemma 3.7.

The proof of Claim 3.4 now follows straightforwardly. From(3.23) and with some

trivial computations, we obtain
{

|∂+C| − |∂−C| ≥ δ
1+δ

|∂+C|
|∂+C| + |∂−C| ≤ 2+δ

1+δ
|∂+C|

=⇒ |∂+C| − |∂−C| ≥
δ

2 + δ
|∂EC| .

To bound |∂EC|, we use the isoperimetric inequality |∂EC| ≥ ie |C| , where ie ≡
ie(H(v, s)) is the isoperimetric constant of H(v, s) explicitly computed in [11] as a

function of v and s (see Section 2.1). We thus obtain

|∂+C| − |∂−C| ≥
δ

2 + δ
ie |C| , (3.29)

which together (3.21) yields the inequality (3.7) with constant c1 = δie
2(2+δ)

. This

conclude the proof of Claim 3.4, and thus of Proposition 3.3.
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4 Fast mixing inside the plus phase

In this section we will prove that the spectral gap of the Glauber dynamics, in the

situation described by Theorem 2.5, is bounded from zero uniformly in the size of

the system. From the Definition 2.7 of spectral gap, this is equivalent to show that

for all inverse temperature β ≫ 1, it holds the Poincaré inequalityVar(f) ≤ cD(f) , ∀f ∈ L2(Ω+,F , µ)

with constant c = c(β, B) independent of the size of B.

First, we give a brief sketch of the proof. The rest of the section is divided into two

parts. In the first part, from the mixing property deduced in section 3 and by means

of coupling techniques, we derive a Poincaré inequality for some suitable marginal

Gibbs measures. Then, in the second part, we will run a recursive argument that

together with some estimates, also derived from Proposition 3.3, will yield the

Poincaré inequality for the global Gibbs measure µ.

4.1 Plan of the Proof

Let us first recall the following decomposition property of the variance which holds

for all subsets D ⊆ C ⊆ BVarηC(f) = µη
C [VarD(f)] + VarηC [µD(f)] . (4.1)

Applying recursively (4.1) to the subsets B ≡ F0 ⊃ F1 ⊃ . . . ⊃ Fm+1 = ∅ and

recalling the relations µi(µi+1(f)) = µi(f) and µm+1(f) = f , we obtainVar(f) = µ[Varm(f)] + Var[µm(f)]

= µ[Varm(µm+1(f))] + µ[Varm−1(µm(f))] + Var[µm−1(µm(f))]

=
...

=

m∑

i=0

µ[Vari(µi+1(f))] .

To simplify notation we define gi := µi(f) for all i = 0, . . . , m + 1; notice that

gi ∈ Fi. Inserting gi in (4.2) we then haveVar(f) =

m∑

i=0

µ[Vari(gi+1)] . (4.2)

The proof of the Poincaré inequality for µ, with constant independent of the size

of the system, is given in the following two steps:

1. proving that ∀ τ ∈ Ω+ and i ∈ {0, . . . , m}, it holds the Poincaré inequalityVarτi (gi+1) ≤ c
∑

x∈Li

µτ
i (Varx(gi+1)) (4.3)

with constant c uniformly bounded in the size of Li;
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2. relating the local variance of gi = µi(f) to the local variance of f in order to

get an inequality of the kind

m∑

i=0

∑

x∈Li

µ(Varx(gi+1)) ≤ D(f) + ε

m∑

i=0

∑

x∈Li

µ(Varx(gi+1)) (4.4)

with ε a small quantity for β ≫ 1.

Notice that from (4.4) it follows the inequality

m∑

i=0

∑

x∈Li

µ(Varx(gi+1)) ≤ (1 − ε)−1D(f) ,

with (1 − ε)−1 = Ω(1) for all β ≫ 1. Together with Eqs. (4.2) and (4.3), this

will establish the required Poincaré inequality for µ and therefore thus conclude of

Theorem 2.5.

4.2 Step 1: From correlation decay to Poincaré inequality

In this section we prove that under the same hypothesis of Proposition 3.3, the

marginal of the Gibbs measure on suitable defined subsets satisfies a Poincaré in-

equality with constant independent of the size of the subsets.

In order to state the result in its main generality, let us give a few definitions.

Definition 4.1 (Interval). A subset S ⊆ Li is called an interval if its vertices can be

ordered as xi1 , xi2 , · · · , xik , with di(xij , xij+1
) = 1 for all j = 1, · · · , k − 1.

Let us fix an interval S ⊂ Li. For every configuration τ ∈ Ω+, we define the

measure

ντ
S(σ) =

∑

η:ηS=σS

µ(η | τ ∈ FBi\S) , (4.5)

which is the marginal of the Gibbs measure µτ
Fi+1∪S on S. We denote by Varντ

S
the

variance w.r.t. ντ
S and then state the following:

Theorem 4.2. For all β ≫ 1 and for every interval S ⊆ Li, τ ∈ Ω+ and f ∈
L2(Ω,FS, ντ

S), the measure ντ
S satisfies the Poincaré inequalityVar ντ

S
(f) ≤ c

∑

x∈S

ντ
S(Varx(f)) . (4.6)

with c = c(β) = 1 + O(e−cβ).

Remark 4.3. Before proceeding with the proof of Theorem 4.2, we point out that this

result includes, as a particular case, inequality (4.3), and thus conclude the first part

of the proof of Theorem 2.5. Indeed, taking S = Li and f = gi+1 and observing that

µ( · |FBi\S) ≡ µi and µτ
i (gi+1) ≡ ντ

Li
(gi+1), we can apply the result of Theorem 4.2 to

obtain the Poincaré inequalityVarτi (gi+1) ≤ c
∑

x∈Li

µτ
i (Varx(gi+1)) .
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4.2.1 Proof of Theorem 4.2

The proof of Theorem 4.2 rests on the so called coupling technique. This is useful

method to bound from above the mixing time of Markov processes, introduced for

the first time in this setting by Aldous [1] and subsequently refined to the path

coupling [3, 18]. See also [15] for a wider discussion on the coupling method.

A coupling of two measure µ1 and µ2 on Ω is any joint distribution ρ on Ω × Ω
whose marginal are µ1 and µ2 respectively. Here, we want to construct a coupling

of two Glauber dynamics on ΩS with same reversible measure ντ
S but different

initial configurations. We denote by LS the generator of this dynamics. We also

recall that for all σ ∈ Ωτ
S, x ∈ S and a ∈ {±1}, the jump rates of the heat bath

version of the dynamics (see Def. 2.4 ) are given by

cx(σ, a) = ντ
S(σx = a | σ ∈ FS\x)

= µ(σx = a | σ ∈ FS\x, τ ∈ FBi\S)

= µσ
Kx

(σx = a) , (4.7)

where in the second line we applied the Definition 4.5 of ντ
S and exploited the

fact that {σx = a} ∈ FS, and in the third line we introduced the notation Kx =
{x} ∪ Fi+1 as in section 3.

We now consider the coupled process (σ(t), η(t))t≥0 on ΩS ×ΩS defined as follows.

Given the initial configurations (σ, η), we let the two dynamics evolve at the same

time and update the configurations at the same vertex. We then chose the coupling

jump rates c̃x((σ, a), (η, b)) to go from (σ, η) to (σx,a, ηx,b), with a, b ∈ {±1}, as the

optimal coupling (see [15]) between the jump rates µσ
Kx

(σx = a) and µη
Kx

(σx = b).
More explicitly, for a ∈ {±1}, they are given by
{

c̃x((σ, a), (η, a)) = min{µσ
Kx

(σx = a) ; µη
Kx

(σx = a)}
c̃x((σ, a), (η,−a)) = max{0 ; µσ

Kx
(σx = a) − µη

Kx
(σx = a)}

(4.8)

We denote by L̃ the generator of the coupled process, and by P̃t the correspondent

Markov semigroup. Notice that from the choice of coupling jump rates as in (4.8),

we get that the probability of disagreement in x after one update in x of (σ, η), is

given by

P
x

dis(σ, η) := |µσ
Kx

(σx = +) − µη
Kx

(σx = +)| . (4.9)

Let us now consider the subset H ⊂ ΩS ×ΩS given by all couples of configurations

which differ by a single spin flip in some vertex of S. One can easily verify that

the graph (ΩS × ΩS, H) is connected and that the induced graph distance D(σ, τ)
between configurations (σ, τ) ∈ ΩS × ΩS just corresponds to their Hamming dis-

tance. Let us also denote by Eσ,η[D(σ(t), η(t))] ≡ E[D(σ(t), η(t))|(σ, η)] the average

distance at time t between two coupled configurations of the process starting at

(σ, η). We claim the following:

Claim 4.4. For all β ≫ 1 there exists a positive constant α ≡ α(β) such that, for

every initial configurations (σ, η) ∈ H, the coupling process (σ(t), η(t))t≥0 verifies the

inequality
d

dt
Eσ,η[D(σ(t), η(t))] |t=0 ≤ −α . (4.10)
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Proof of Claim 4.4. Let us first explicit the derivative in t of the average distance as

d

dt
Eσ,η[D(σ(t), η(t))] |t=0 =

d

dt

(
P̃tD

)
(σ, η) |t=0 = (L̃D)(σ, η)

=
∑

x∈S

∑

a,b∈{±1}

c̃x((σ, a)(η, b))[D(σx,a, ηx,b) − D(σ, η)] . (4.11)

Since (σ, η) ∈ H, there exists a vertex y ∈ S such that η = σy. If x = y, then

P
x

dis(σ, σx) = 0 and the distance between the updated configurations decreases of

one. While if x 6= y, with probability P
x

dis(σ, σy) the updated configurations have

different spin at x and their distance increases of one. Continuing from (4.11), we

get

d

dt
Eσ,η[D(σ(t), η(t))] |t=0 = −1 +

∑

x∈S
x 6=y

P
x

dis(σ, σy)

≤ −1 + c
∑

ℓ≥1

e−β′ℓ

≤ −(1 − ce−β′

) , (4.12)

where in the second line we used the bound

P
x

dis(σ, σy) = |µσ
Kx

(σx = +) − µσy

Kx
(σx = +)| ≤ ce−β′di(x,y) , (4.13)

which holds for all β ′ = c1β− c2 > 0 as stated in Proposition 3.3. Claim 4.4 follows

taking α = (1 − ce−β′
) and β sufficiently large.

Using the path coupling technique (see [3]), we can extend the result of Claim 4.4

to arbitrary initial configurations (σ, η) ∈ ΩS × ΩS, to obtain

d

dt
Eσ,η[D(σ(t), η(t))] |t=0 ≤ −αD(σ, η) . (4.14)

From (4.14) it now follows straightforwardly that Eσ,η[D(σ(t), η(t))] ≤ e−α tD(σ, η),
and then we get

P(σ(t) 6= η(t)) ≤ Eσ,η(D(σ(t), η(t))) ≤ e−α tD(σ, η) . (4.15)

To bound the spectral gap cgap(ν
τ
S) of the dynamics on S, we then consider an

eigenfunction f of LS with eigenvalue −cgap(ν
τ
S), so that

Eσf(σ(t)) = etLSf(σ) = e−cgap(ντ
S
) tf(σ) .

Since the identity function has eigenvalue zero, and therefore is orthogonal to f , it

holds that ντ
S(f) = 0 and ντ

S(Eηf(η(t))) = 0, where ντ
S is the invariant measure for

LS. From these considerations and inequality (4.15), we obtain

etLSf(σ) = Eσf(σ(t)) − ντ
S(Eηf(η(t)))

=
∑

η

ντ
S(η)[ Eσf(σ(t)) − Eηf(η(t)) ]

≤ 2‖f‖∞ sup
σ,η

P(σ(t) 6= η(t))

≤ 2‖f‖∞|S|e−α t . (4.16)
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From the last computation, which holds for all σ ∈ Ωτ
S and for all t, we finally

obtain that cgap(ν
τ
S) ≥ α independently of the size of S, which implies the Poincaré

inequality (4.6) with constant c = α−1 = 1 + O(e−cβ). This concludes the proof of

Theorem 4.2. �

4.3 Step 2: Poincaré inequality for the global Gibbs measure

With the previous analysis we obtained a Poincaré inequality for the marginal of

the measure µi on the level Li, which inserted in formula (4.2) provides the boundVar(f) ≤ c

m∑

i=0

∑

x∈Li

µ [µi(Varx(gi+1))] . (4.17)

Using the same notation as in [23], let us denote the sum in the r.h.s. of (4.17) by

Pvar(f). The aim of the following analysis is to analyze Pvar(f) in order to find an

inequality of the kind Pvar(f) ≤ D(f) + εPvar(f), with ε = ε(β) < 1 independent

of the size of the system. This would imply thatVar(f) ≤ c · Pvar(f) ≤
c

1 − ε
D(f)

and then, from the remark made at the end of section 4.1, the proof of Theorem

2.5 would follow.

In the next sections, we will first relate the local variance of gi = µi(f) with the

local variance of f . This will produce a covariance term that will be then analyzed

using a recursive argument.

4.3.1 Reduction to covariance

In order to reconstruct from (4.17) the Dirichlet form of f , we want to extract the

local variance of f from the local variance of gi+1. For x ∈ Li and τ ∈ Ω+, let

p(τ) = µτ
x(σx = +) and q(τ) = µτ

x(σx = −), and then consider the quantity

µi (Varx(gi+1)) =
∑

τ

µi(τ)p(τ)q(τ) (∇x gi+1(τ))2 . (4.18)

Using the martingale property gi+1 = µi+1(gi+2), the local variance Varx(gi+1) can

be split in two terms stressing the dependence on x of gi+2 and of the conditioned

measure µi+1. Let us formalize this idea.

For a given configuration τ ∈ Ω+ we introduce the symbols

τ+ :=

{
τ+
y = τy if y 6= x

τ+
y = + if y = x

τ− :=

{
τ−
y = τy if y 6= x

τ−
y = − if y = x

and then define the density

hx(σ) :=
µτ+

i+1(σ)

µτ−

i+1(σ)
, with µτ−

i+1(hx) = 1 . (4.19)
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Whit this notation and continuing from (4.18), it holds

µi(Varx(gi+1)) =
∑

τ

µi(τ)p(τ)q(τ) [∇x µi+1(gi+2)(τ)]2

=
∑

τ

µi(τ)p(τ)q(τ)
[
µτ−

i+1(gi+2) − µτ+

i+1(gi+2)
]2

=
∑

τ

µi(τ)p(τ)q(τ)
[
µτ+

i+1(∇xgi+2) − µτ−

i+1(hx, gi+2)
]2

≤ 2
∑

τ

µi(τ)p(τ)q(τ)

[(
µτ+

i+1(∇xgi+2)
)2

+
(
µτ−

i+1(hx, gi+2)
)2
]
(4.20)

Now it is simple to verify that µτ+

i+1(∇xgi+2) = µτ+

i+1(∇xf). To understand this fact it

is enough to observe that the dependence on x of gi+2 = µi+2(f) comes only from

f , since the b.c. on Bi+1 are fixed equal to τ+. Substituting µτ+

i+1(∇xf) and applying

the Jensen inequality, the first term of (4.20) can be bounded as

∑

τ

µi(τ)p(τ)q(τ)
(
µτ+

i+1(∇xgi+2)
)2

≤ µi

(
q(τ)(∇xf )2

)
≤ µi (Varx(f)) . (4.21)

Summing both sides of (4.20) over x ∈ Li and i ∈ {0, . . . , m}, and taking in account

inequality (4.21), we obtain

Pvar(f) ≤ 2D(f) + 2

m−1∑

i=0

∑

x∈Li

µ

[
∑

τ

µi(τ)p(τ)q(τ)
(
µτ−

i+1(hx, gi+2)
)2
]

, (4.22)

where we excluded the value m in the summation over i because gm+2 ≡ f is

constant w.r.t. µm+1 and thus µτ−

m+1(hx, gm+2) ≡ 0.

The more involved analysis of the covariance µτ−

i+1(hx, gi+2) will be discuss in the

next section.

4.3.2 Recursive argument

Before going on with the proof, we need some more definitions and notation. Re-

call that for every x ∈ Li, we denoted by Nx the set of nearest neighbors of x in

the level Li+1. Given x ∈ Li and ℓ ∈ N, let us define the following objects:

(i) Nx,ℓ := {y ∈ Li+1 : di+1(y, Nz) ≤ ℓ} is the ℓ-neighborhood of Nx in Li+1;

(ii) Fx,ℓ := σ (σy : y ∈ Bi+1 \ Nx,ℓ) is the σ-algebra generated by the spins on

Bi+1 \ Nx,ℓ;

(iii) µx,ℓ( · ) := µ (· |Fx,ℓ) is the Gibbs measure conditioned on the σ-algebra Fx,ℓ.

We remark that Nx,0 = Nx and that there exists some ℓ0 ≤ |Li+1| such that, for all

integers ℓ ≥ ℓ0, it holds that Nx,ℓ = Li+1 and µx,ℓ = µi+1.

We also remark that the family of σ-algebras {Fx,ℓ}ℓ=0,1,...,ℓ0 is a filtration. In par-

ticular, for any function f ∈ L1(Ω,Fi+1, µ), the set of variables {µx,ℓ(f)}ℓ∈N is a

Martingale.
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Let us now come back to our proof and recall the following property of the covari-

ance (the analogous of property (4.1) for the variance)

µη
C(f, g) = µη

C(µD(f, g)) + µη
C(µD(f), µD(f)) , for D ⊆ C ⊆ B . (4.23)

Since the support of µi+1 strictly contains the support of µx,0, we can apply the

property (4.23) to the square covariance (µτ−

i+1(hx, gi+2))
2 appearing in (4.22) in

order to get

(µτ−

i+1(hx, gi+2))
2 ≤ 2(µτ−

i+1(µx,0(hx, gi+2)))
2 + 2(µτ−

i+1(µx,0(hx), µx,0(gi+2)))
2 . (4.24)

The first term in the r.h.s. of (4.24) can be bounded by the Schwartz inequality as

(µτ−

i+1(µx,0(hx, gi+2)))
2 ≤ µτ−

i+1(Varx,0(hx)) · µ
τ−

i+1(Varx,0(gi+2)) . (4.25)

The second term can be rearranged and bounded as follows:

[µτ−

i+1(µx,0(hx), µx,0(gi+2))]
2 =

[
µτ−

i+1 (µx,0(hx) − µi+1(hx), gi+2 )
]2

=

[
µτ−

i+1

(
ℓ0∑

ℓ=1

(µx,ℓ−1(hx) − µx,ℓ(hx)) , gi+2

)]2

≤
ℓ0∑

ℓ=1

ℓ2
[
µτ−

i+1(µx,ℓ−1(hx) − µx,ℓ(hx), gi+2)
]2

=

ℓ0∑

ℓ=1

ℓ2
[
µτ−

i+1 (µx,ℓ(µx,ℓ−1(hx), gi+2))
]2

, (4.26)

where in the second line, due to the fact that µx,ℓ0 = µi+1 for some ℓ0, we substi-

tuted µx,0(hx)−µi+1(hx) by the telescopic sum
∑ℓ0

ℓ=1(µx,ℓ−1(hx)−µx,ℓ(hx)) . Applying

again the Cauchy-Schwartz inequality to the last term in (4.26), we get

[µτ−

i+1(µx,0(hx), µx,0(gi+2))]
2 ≤

≤
ℓ0∑

ℓ=1

ℓ2 µτ−

i+1 (Varx,ℓ(µx,ℓ−1(hx))) · µ
τ−

i+1 (Varx,ℓ(gi+2)) (4.27)

To conclude the estimate on the covariance, it thus remain to analyze the three

quantities appearing in (4.25) and (4.27):

(i) µτ−

i+1 (Varx,ℓ(gi+2)), for all ℓ = 0, 1, . . . , ℓ0;

(ii) µτ−

i+1(Varx,0(hx));

(iii) µτ−

i+1 (Varx,ℓ(µx,ℓ−1(hx))), for all ℓ = 1, . . . , ℓ0 ,

We proceed in estimating separately these three terms; at the end we will come

back to Eqs. (4.22), (4.25) and (4.27).
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First term: Poincaré inequality for the marginal measure on Nx,ℓ.

Let us consider the variance Varx,ℓ(gi+2) appearing in (i). From definition the func-

tion gi+2 depends on the spin configuration on Bi+1, but under the measure µη
x,ℓ it

only depends on Nx,ℓ and then it holds

µη
x,ℓ(gi+2) = µη

x,ℓ|Nx,ℓ

(gi+2) .

For every configuration η ∈ Ω+ we can apply the Poincaré inequality stated in

Theorem (4.2) to Varηx,ℓ(gi+2) and then obtain

µτ−

i+1 (Varx,ℓ(gi+2)) ≤ c
∑

y∈Nx,ℓ

µτ−

i+1(Vary(gi+2)), (4.28)

with c = 1 + O(e−cβ) independent of the size of system.

Second term: computation of the variance of hx.

We first notice that from definition (4.19) of hx, it is easy to show that hx is a

variable with mean one w.r.t. µτ−

i+1 and only dependent on the vertices y ∈ Nx. In

particular it can be expressed as

hx(σ) =
exp(2β

∑
y∈Nx

σy)

µτ−

i+1( exp(2β
∑

y∈Nx
σy) )

=
exp(2β

∑
y∈Nx

(σy − 1))

µτ−

i+1( exp(2β
∑

y∈Nx
(σy − 1)) )

, (4.29)

where in the second equality we introduced a constant in the exponent in order to

get the next computations easier.

Let us consider the (mean) variance µτ−

i+1(Varx,ℓ(hx)) with ℓ ≥ 0. By the DLR equa-

tions and the Jensen inequality, we get

µτ−

i+1(Varx,ℓ(hx)) ≤ µτ−

i+1(h
2
x) − (µτ−

i+1(hx))
2 = µτ−

i+1(h
2
x) − 1 . (4.30)

Using the expression (4.29) for hx, we then obtain the following bound

µτ−

i+1(h
2
x) =

µτ−

i+1(exp(4β
∑

y∈Nx
(σy − 1)))

[µτ−

i+1(exp(2β
∑

y∈Nx
(σy − 1)))]2

≤ 1/ exp(4β
∑

y∈Nx

µτ−

i+1(σy − 1))

≤ 1/ exp(−8β
∑

y∈Nx

µτ−

i+1(σy = −))

≤ exp

(
8β v max

y∈Nx

{µτ−

i+1(σy = −)}

)
, (4.31)

where in the second line we used that σy − 1 ≤ 0 and the Jensen inequality to

bound numerator and denominator respectively, in the third line we used that

µτ−

i+1(σy − 1) ≤ −2µτ−

i+1(σy = −), and in the last line we bounded the cardinality of

Nx by v, the vertex degree of B.
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The problem is thus reduced to the computation of the probability µτ−

i+1(σy = −),
for y ∈ Nx. Denoting by µ−

i+1 the measure conditioned on having all minus spins in

Bi and plus spins in ∂V B, by monotonicity it holds

µτ−

i+1(σy = −) ≤ µ−
i+1(σy = −) .

Notice that the event {σ ∈ Ω−
Fi+1

: σy = −} corresponds to the set of configura-

tions σ ∈ Ω−
Fi+1

such that, for some subset C ∈ Fi+1 containing y, σC = − and

σ∂V C∩Fi+1
= + . Then, by the same argument developed in section 3.1 (see also

Remark 3.8), it holds

µ−
i+1(σy = −) ≤ ce−β′

, (4.32)

with β ′ = c1β − c2 as in Proposition 3.3.

Combining (4.30), (4.31) and (4.32), we get that for β ≫ 1 and ℓ ≥ 0

µτ−

i+1(Varx,ℓ(hx)) ≤ exp(c β e−β′

) − 1 ∼ c βe−β′

=: cβ . (4.33)

We keep in mind this result and proceed analyzing the last term.

Third term: the variance of µx,ℓ−1(hx).
We now consider the variance Varηx,ℓ(µx,ℓ−1(hx)) with η ∈ Ω+ and ℓ ≥ 1. Applying

the Poincaré inequality stated in Theorem 4.2, we obtainVarηx,ℓ(µx,ℓ−1(hx)) ≤
∑

z∈Nx,ℓ

µη
x,ℓ(Varz(µx,ℓ−1(hx)))

=
∑

z∈Nx,ℓ\Nx,ℓ−1

µη
x,ℓ(Varz(µx,ℓ−1(hx))) , (4.34)

where the last inequality is due to the fact that the function µx,ℓ−1(hx) does not

depend on the spin configuration on Nx,ℓ−1.

Let z ∈ Nx,ℓ\Nx,ℓ−1, and for any configuration ζ ∈ Ωη
Nx,ℓ

, let us denote by ζ+ and ζ−

the configurations that agree with ζ in all sites but z, and have respectively a (+)-
spin and a (−)-spin on z. The summand in (4.34) can then be trivially bounded

as

µη
x,ℓ(Varz(µx,ℓ−1(hx))) ≤

1

2
sup
ζ∈Ωη

x,ℓ

((µζ+

x,ℓ−1(hx) − µζ−

x,ℓ−1(hx))
2 . (4.35)

Notice that from the stochastic domination µζ+

x,ℓ−1 ≥ µζ−

x,ℓ−1 and the fact that hx is

an increasing function, it holds µζ+

x,ℓ−1(hx) ≥ µζ−

x,ℓ−1(hx) . Now, let ν(σ, σ′) denote a

monotone coupling with marginal measure µζ+

x,ℓ−1 and µζ−

x,ℓ−1. We then have

µζ+

x,ℓ−1(hx) − µζ−

x,ℓ−1(hx) =
∑

σ,σ′

ν(σ, σ′) (hx(σ) − hx(σ
′))

≤ 2‖hx‖∞ ν(σy 6= σ′
y , y ∈ Nx)

≤ 2 v‖hx‖∞ max
y∈Nx

(
ν(σy = +) − ν(σ′

y = +)
)

= 2 v‖hx‖∞ max
y∈Nx

(µζ+

x,ℓ−1(σy = +) − µζ−

x,ℓ−1(σy = +)), (4.36)
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where we used the fact that the function hx only depends on the spins on Nx.

The quantity ‖hx‖∞ can be easily bounded using the same procedure as in (4.33).

For all σ ∈ Ω+, it holds

hx(σ) =
exp(2β

∑
y∈Nx

(σy − 1))

µτ−

i+1(exp(2β
∑

y∈Nx
(σy − 1)))

≤ 1/ exp(2β
∑

y∈Nx

µτ−

i+1(σy − 1))

≤ exp(4β v µτ−

i+1(σy = −))

≤ exp(cβe−β′

) =: kβ , (4.37)

which implies that ‖hx‖∞ ≤ kβ.

To bound the probability of disagreement appearing in (4.36), we refer again to

Proposition 3.3 and to its proof. Proceeding as in section 3.1.2, we denote by E
the event that there exists a negative component of z with nonempty intersection

with Ny (analogous to the event Ac defined in (3.15)) in order to obtain the bound

µζ+

x,ℓ−1(σy = +) − µζ−

x,ℓ−1(σy = +) ≤ µζ−

x,ℓ−1(E) . (4.38)

Since di(z, y) ≥ di(z, Nx) = ℓ, a component of z intersecting Ny has at least cardi-

nality ℓ + 1. From (4.38) and performing the same computation as in Section 3.1,

see in particular (3.16)-(3.17) and Remark 3.8, we get

µζ+

x,ℓ−1(σy = +) − µζ−

x,ℓ−1(σy = +) ≤ c e−β′ℓ . (4.39)

Putting together formulas (4.34)-(4.39), we finally obtainVarx,ℓ(µx,ℓ−1(hx)) ≤ k′
βe

−2β′ ℓ (4.40)

with k′
β = c k2

β = c(1 + O(e−cβ)) .

Conclusion.

Let us go back to inequalities (4.25) and (4.27). Applying the bounds (4.28),(4.33)

and (4.40), we get respectively

• (µτ−

i+1(µx,0(hx, gi+2)))
2 ≤ cβ

∑

y∈Nx

µτ−

i+1(Vary(gi+2));

• [µτ−

i+1(µx,0(hx), µx,0(gi+2))]
2 ≤ k′

β

ℓ0∑

ℓ=1

ℓ2e−2β′ ℓ
∑

y∈Nx,ℓ

µτ−

i+1(Vary(gi+2)),

where we included in cβ and k′
β all constants non depending on β.

For all β ≫ 1, there exists a constant ε ≡ ε(β) = O(e−cβ) such that cβ ≤ ε and

k′
βℓ

2e−β′ℓ ≤ k′
βe−β′

≤ ε. Substituting ε in the inequalities above and summing the

two terms as in (4.24), we thus obtain

(
µτ−

i+1(hx, gi+2)
)2

≤ ε

ℓ0∑

ℓ=0

e−β′ℓ
∑

y∈Nx,ℓ

µτ−

i+1(Vary(gi+2)) .

27



Inserting this result in the second term of formula (4.22) and rearranging the sum-

mation, we get

m−1∑

i=0

∑

x∈Li

µ

[
∑

τ

µi(τ)p(τ)q(τ)
(
µτ−

i+1(hx, gi+2)
)2
]

≤

≤ ε
m−1∑

i=0

∑

x∈Li

ℓ0∑

ℓ=0

∑

y∈Nx,ℓ

e−β′ℓµ(Vary(gi+2))

≤ ε

m−1∑

i=0

∑

y∈Li+1

µ(Vary(gi+2))

ℓ0∑

ℓ=0

e−β′ℓn(ℓ) , (4.41)

where in the last line we denoted by n(ℓ) the factor which bounds the number of

vertices x such that a fixed vertex y belongs to Nx. Since n(ℓ) growth linearly with

ℓ, the product e−βℓn(ℓ) decays exponentially with ℓ for all β ≫ 1. Thus the sum

over ℓ ∈ {0, . . . , ℓ0} can be bounded by a finite constant c which will be included in

the factor ε in front of the summations. Continuing from (4.41), we get

m−1∑

i=0

∑

x∈Li

µ

[
∑

τ

µi(τ)p(τ)q(τ)
(
µτ−

i+1(hx, gi+2)
)2
]

≤ ε
m∑

i=1

∑

y∈Li

µ(Vary(gi+1))

≤ ε Pvar(f) . (4.42)

Inserting this result in (4.22) and noticing that ε = O(e−cβ) < 1 for β large enough,

we obtain

Pvar(f) ≤ 2D(f) + εPvar(f) =⇒ Pvar(f) ≤
2

1 − ε
D(f) ,

and from inequality (4.17) we finally getVar(f) ≤ cPvar(f) ≤ c′D(f) ,

that is the desired Poincaré inequality with c′ = 2c /(1− ε) = Ω(1), independent of

the size of the system. This conclude the proof of Theorem (2.5). �
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