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AbstratWe onsider one-dimensional direted trap models and suppose that the trap-ping times are heavy-tailed. We obtain the inverse of a stable subordinator assaling limit and prove an aging phenomenon expressed in terms of the gener-alized arsine law. These results on�rm the status of universality desribed byBen Arous and �erný for a large lass of graphs.1 IntrodutionWhat is usually alled aging is a dynamial out-of-equilibrium physial phenomenonobserved in disordered systems like spin-glasses at low temperature, de�ned by theexistene of a limit of a given two-time (usually denoted by tω and tω + t) orrelationfuntion of the system as both times diverge keeping a �xed ratio between them; thelimit should be a non-trivial funtion of the ratio. It has been extensively studied inthe physis literature, see [11℄ and therein referenes.The trap model is a model of random walk that was �rst proposed by Bouhaud andDean [10, 12℄ as a toy model for studying this aging phenomenon. In the mathematislitterature, muh attention has reently been given to the trap model, and many agingresult were derived from it, on Z in [16℄ and [4℄, on Z
2 in [8℄, on Z

d (d ≥ 3) in [6℄, oron the hyperube in [2, 3℄. A omprehensive approah to obtaining aging results forthe trap model in various settings was later developed in [7℄. The striking fat is thatthese aging results are idential for Z
d, d ≥ 2 and the large omplete graph, or theREM. In other terms, the mean-�eld results are valid from in�nite dimension downto dimension 2.The one-dimensional trap model has some spei� features that distinguish it fromall other ases. The most useful feature is that we an identify its saling limit asan interesting one-dimensional singular di�usion in random environment, see [16℄,while the saling limit for d ≥ 2 is the frational kinetis proess, that is the timehange of a d-dimensional Brownian motion by the inverse of an independent α-stablesubordinator, see [6℄. In fat, the universality of the aging phenomenon is a questionabout the transient part of relaxation to equilibrium and not neessarily related toequilibrium questions.Here, we give an answer to a question of Ben Arous and �erný [5℄ by studying thein�uene of a drift in the one-dimensional trap model. We identify the saling limitof the so-alled direted trap model with the inverse of an α-stable subordinator andprove an aging result expressed in terms of the generalized arsine law, so that iton�rms the status of universality desribed by Ben Arous and �erný [7℄. Moreover,this extends some results of Monthus [17℄, who studies the in�uene of a bias in thehigh disorder limit (i.e. when α tends to zero with our notations, see (2.2)) using1



renormalization arguments. Note that the ideas of the proof developed in this paperare dedued from a strong omparison with one-dimensional random walks in randomenvironment in the sub-ballisti regime. Indeed, analogous results are obtained forthis asymptotially equivalent model in [13℄ and [14℄.The rest of the paper is organized as follows. The main results are stated in Setion2. In Setion 3, we present some elementary result about the environment, the em-bedded random walk as well as preliminary estimates, whih will be frequently usedthroughout the paper. Setion 4 and Setion 5 are respetively devoted to the proofof the saling limit and to the proof of the aging result.2 Notations and main resultsLet us �rst �x 0 < ε ≤ 1/2. Then, the direted trap model is the nearest-neighbourontinuous-time Markov proess X = (Xt)t≥0 given by X0 = 0 and with jump rates
c(x, y) :=

{ (

1
2

+ ε
)

τ−1
x if y = x+ 1,

(

1
2
− ε

)

τ−1
x if y = x− 1,

(2.1)and zero otherwise, where τ = (τx)x∈Z is a family of positive i.i.d. heavy-tailed randomvariables. More preisely, we suppose that there exists α ∈ (0, 1) suh that
lim

u→∞
uα

P(τx ≥ u) = 1. (2.2)In partiular, this implies E [τx] = +∞. Sometimes τ is alled random environmentof traps. The Markov proess Xt spends at site x an exponentially distributed timeof mean τx, and then jumps to the right with probability p = pε := (1
2
+ ε) and to theleft with probability q = qε := (1

2
− ε). Therefore, X is a time hange of a disrete-time biased random walk on Z. More preisely, we de�ne the lok proess and theembedded random walk assoiated with X as follows.De�nition 2.1. Let S(0) := 0 and let S(k) be the time of the k-th jump of X, for

k ∈ N
∗. For s ∈ R+, we de�ne S(s) := S(⌊s⌋) and all S the lok proess. De�ne theembedded disrete-time random walk (Yn)n≥0 by Yn := Xt for S(n) ≤ t < S(n + 1).Then obviously, (Yn)n≥0 is a biased random walk on Z.Observe that (Yn)n≥0 satis�es P (Yn+1 = Yn + 1) = 1

2
+ ε = 1− P (Yn+1 = Yn − 1), forall n ≥ 0. Therefore, (Yn)n≥0 is transient to +∞ and the law of large numbers impliesthat, P-almost surely,

Yn

n
−→ vε := 2ε > 0, n→ ∞. (2.3)Furthermore, it follows from the de�nition of X that the lok proess an be written
S(k) =

k−1
∑

i=0

τYi
ei, k ≥ 1, (2.4)
2



where (ei)i≥0 is a family of i.i.d. mean-one exponentially distributed random variables.We always suppose that the ei's are de�ned in this way. Then, the proess (Xt)t≥0satis�es
Xt = YS−1(t), ∀ t ∈ R+, (2.5)where the right-ontinuous inverse of an inreasing funtion φ is de�ned by φ−1(t) :=

inf{u ≥ 0 : φ(u) > t}.Now, let us �x T > 0 and denote by D([0, T ]) the spae of àdlàg funtions from [0, T ]to R. Moreover, let X(N)
t be the sequene of elements of D([0, T ]) de�ned by

X
(N)
t :=

XtN

Nα
, 0 ≤ t ≤ T. (2.6)Then, the saling limit result an be stated as follows.Theorem 2.2. The distribution of the proess (X

(N)
t ; 0 ≤ t ≤ T ) onverges weaklyto the distribution of (v#

ε V
−1
α (t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with the uni-form topology, where (Vα(t); t ≥ 0) is a standard α-stable subordinator and v#

ε :=
sin(απ)

απ
vα

ε = sin(απ)
απ

(2ε)α.Although this result an be ompared with the limit in [6℄, we do not obtain thefrational kinetis proess. This di�erene an be explained by realling that thefrational kinetis proess is the time hange of a Brownian motion by the inverse ofan independent α-stable subordinator while our embedded random walk satis�es thelaw of large numbers with positive speed, see (2.3). Furthermore, observe that thease ε = 1/2 is trivial; indeed Y is deterministi, vε = 1 and the lok proess, whihan be written S(k) =
∑k−1

i=0 τiei, is just a sum of i.i.d. heavy-tailed random variables.Now let us state the seond main result, onerning the aging phenomenon.Theorem 2.3. For all h > 1, we have
lim
t→∞

P(Xth = Xt) =
sin(απ)

π

∫ 1/h

0

yα−1(1 − y)−α dy. (2.7)Remark. As in [8℄, we think that it is possible to prove a sub-aging result for theorrelation funtion given by P(Xs = Xtω ; ∀ tω ≤ s ≤ tω + t). Note that, in [9℄, Bertinand Bouhaud study the average position of the random walk at time tω + t given thata small bias h is applied at time tω. They found several saling regime depending onthe relative value of t, tω and h.In the following, C denotes a onstant large enough, whose value an hange fromline to line.3 Preliminary estimatesIn this setion, we list some properties of the environment τ and of the embeddedwalk Y as well as preliminary results. 3



3.1 The environmentLet us de�ne the ritial depth for the �rst n traps of the environment by
g(n) :=

n1/α

(logn)
2

1−α

. (3.1)Then, we an introdue the notion of deep traps as follows:
δ1 = δ1(n) := inf{x ≥ 0 : τx ≥ g(n)}, (3.2)
δj = δj(n) := inf{x > δj−1 : τx ≥ g(n)}, j ≥ 2. (3.3)The number of suh deep traps before site n will be denoted by θn and de�ned by

θn := sup{j ≥ 0 : δj ≤ n}, (3.4)where δ0 := 0. Now, let us de�ne ϕ(n) := P(τ1 ≥ g(n)). We introdue the followingseries of events, whih will our with high probability, when n goes to in�nity:
E1(n) :=

{

nϕ(n)
(

1 −
1

logn

)

≤ θn ≤ nϕ(n)
(

1 +
1

logn

)

}

, (3.5)
E2(n) :=

{

δ1 ∧ min
1≤j≤θn−1

(δj+1 − δj) ≥ ρ(n)

}

, (3.6)
E3(n) :=

{

max
−ν(n)≤x≤0

τx < g(n)

}

, (3.7)where ρ(n) := nκ with 0 < κ < 1/3 and ν(n) := ⌊(logn)1+γ⌋ with 0 < γ < 1.In words, E1(n) requires that the number of deep traps is not too large, E2(n) requiresthat the distane between two deep traps is large enough and E3(n) will ensure thatthe time spent by X on Z− is negligible.Lemma 3.1. Let E(n) := E1(n) ∩ E2(n) ∩ E3(n), then we have
lim

n→∞
P(E(n)) = 1. (3.8)Proof. Note that the number of traps higher than g(n) in the �rst n traps is a binomialwith parameter (n, ϕ(n)). Then, realling (2.2), the proof of Lemma 3.1 is easy andleft to the reader.Sine we want to onsider intervals of size 2ν(n) around the δj 's that are disjoint, weintrodue now a subsequene of the deep traps de�ned above. These ∗-deep traps arede�ned as follows:

δ∗1 = δ∗1(n) := inf{x ≥ ν(n) : τx ≥ g(n)}, (3.9)
δ∗j = δ∗j (n) := inf{x > δ∗j−1 + 2ν(n) : τx ≥ g(n)}, j ≥ 2. (3.10)The number of suh ∗-deep traps before site n will be denoted by θ∗n and de�ned by

θ∗n := sup{j ≥ 0 : δ∗j ≤ n}. (3.11)4



For any ν ∈ N
∗ and any x ∈ Z, let us denote by Bν(x) the interval [x− ν, x+ ν]. Ob-serve that the intervals (Bν(n)(δ

∗
j ))1≤j≤θ∗n will be made of independent and identiallydistributed portions of environment τ (up to some translation).The following lemma tells us that the ∗-deep traps oinide with the sequene of deeptraps with an overwhelming probability when n goes to in�nity.Lemma 3.2. If E∗(n) := {θn = θ∗n}, then we have

lim
n→∞

P(E∗(n)) = 1. (3.12)Proof. Reall �rst that the ∗-deep traps onstitute a subsequene of the deep traps.Furthermore, we have E2(n) ⊂ E∗(n). Therefore, Lemma 3.1 implies Lemma 3.2.3.2 The embedded random walkLet us �rst introdue ζn := inf{k ≥ 0 : Yk = n}, the hitting time of site n ∈ N for theembedded random walk Y. Observe that sine Y is transient, we have ζn <∞, for all
n almost surely. To ontrol the behavior of Y , we onsider the following fat, whihis a lassial result for biased random walks.Fat 1. Let A(n) := {min1≤i<j≤ζn(Yj − Yi) > −ν(n)}, then we have

lim
n→∞

P(A(n)) = 1. (3.13)Observe that, onA(n), eah timeX (or Y ) hits a site x, it will neessarily exit Bν(n)(x)on the right.3.3 Between deep trapsHere, we prove that the time spent between deep trap is negligible.Lemma 3.3. Let us de�ne I(n) :=
{

∑ζn

i=0 τYi
ei1{τYi

<g(n)} <
n1/α

log n

}

. Then, we have
P (I(n)) → 1, n→ ∞. (3.14)Proof. Observe �rst that, on A(n), we have inf i≤ζn Yi ≥ −ν(n) and that Fat 3.2implies P (I(n)c) = P (I(n)c ∩ A(n)) + o(1). Therefore, using Markov inequality, weonly have to prove that

E

[ ζn
∑

i=0

τYi
ei1{Yi≥−ν(n)}1{τYi

<g(n)}

]

= o
( n1/α

logn

)

, n→ ∞. (3.15)After reahing x ∈ [−ν(n), n] (if x is reahed), the proess Y visits x a geometriallydistributed number of times before hitting n. The parameter of this geometrial vari-able is equal to q + p ψ(x, n), where ψ(x, n) denotes the probability that Y startingat x+ 1 hits x before n. An easy omputation yields that
ψ(x, n) = r

1 − rn−x−1

1 − rn−x
, (3.16)5



where r = rε := qε/pε < 1. We will denote by G(x, n) the mean of this geometrialrandom variable. Moreover, let us use respetively Pτ (·) and Eτ [·] to denote theonditional probability and the onditional expetation with respet to τ. Reallingthat eah visit takes an exponential time of mean τx, we obtain
Eτ

[ ζn
∑

i=0

τYi
ei1{Yi≥−ν(n)}1{τYi

<g(n)}

]

≤
n

∑

x=−ν(n)

τx(1 +G(x, n))1{τx<g(n)}. (3.17)Sine x 7→ G(x, n) is dereasing and G(−ν(n), n) → (1 − vε)/vε, when n → ∞, weget that the expetation in (3.17) is, for all large n, less than CnE [τ0 ; τ0 < g(n)] =
CnE [τ0 ; 1 < τ0 < g(n)]+O(n). Now, let us �x 0 < ρ < 1 and introdue ω = ω(n) :=
inf{j ≥ 0 : ρ ≤ ρjg(n) < 1}. Then, we get

E [τ0 ; 1 < τ0 < g(n)] ≤ g(n)

ω−1
∑

j=0

ρj
P(τ0 > ρj+1g(n)) (3.18)

≤ Cg(n)1−α

ω−1
∑

j=0

ρ−αj ≤ Cg(n)1−α,where we used the fat that (2.2) yields that there exists 0 < C < ∞ suh that
P(τx ≥ u) ≤ Cu−α, for all u > 0. Therefore, realling (3.17), the fat that ng(n)1−α isa o(n1/α/ logn) onludes the proof of Lemma 3.3.3.4 Oupation time of a deep trapSine ζy <∞ for all y ∈ N, we an properly de�ne for x ∈ N,

Tx = Tx(n) :=

ζx+ν(n)
∑

0

τYi
ei1{Yi=x}, (3.19)

T x = T x(n) :=

ζx+ν(n)
∑

0

τYi
ei1{Yi∈Bν(n)(x)}. (3.20)Moreover, let us introdue P

x and E
x the probability and the expetation assoiatedwith the proess starting at site x. For onveniene of notations, we write λn := λ/n1/αfor any λ > 0. Then we have the following estimate for the Laplae transforms of Txand T x.Lemma 3.4. For all x ∈ N and all λ > 0, we have

E
x
[

1 − e−λnTx|τx ≥ g(n)
]

∼
P(τx ≥ g(n))−1

n

απ

sin(απ)
v−α

ε λα, n→ ∞, (3.21)and the same result holds with Tx replaed by T x.Proof. Let us �rst write
E

x
[

(1 − e−λnTx)1{τx≥g(n)}

]

= E

[

E
x
τ [1 − e−λnTx ]1{τx≥g(n)}

]

. (3.22)6



Starting at site x, the proess Y visits x a geometrially distributed number of timesbefore reahing x+ν(n). An easy omputation yields that the mean of this geometrialvariable, denoted by G(x, x+ ν(n)) satis�es 1 +G(x, x+ ν(n)) → v−1
ε , when n→ ∞.Therefore, realling that eah visit takes an exponential time of mean τx, we obtain

E
x
τ [e

−λnTx ] =
1

1 + λnv−1
ε τx

+ o(n−1/α), n→ ∞. (3.23)Now, using an integration by part, we get that E
x
[

(1 − e−λnTx)1{τx≥g(n)}

] is equal to
[

−
λnv

−1
ε z

1 + λnv−1
ε z

P(τx ≥ z)
]∞

g(n)
+

∫ ∞

g(n)

λnv
−1
ε

(1 + λnv−1
ε z)2

P(τx ≥ z) dz + o(n−1/α). (3.24)The �rst term is lower than Cλng(n)1−α = Cλα
n(λng(n))1−α = o(n−1), sine α < 1.For the seond term, using (2.2), we an estimate P(τx ≥ z) by (1 − η)z−α ≤ P(τx ≥

z) ≤ (1 + η)z−α, for any η, when n is su�iently large (reall that g(n) → ∞, when
n→ ∞). Hene, we are lead to ompute the integral

∫ ∞

g(n)

λnv
−1
ε

(1 + λnv−1
ε z)2

z−α dz = (λnv
−1
ε )α

∫ 1

λnv−1
ε g(n)

1+λnv−1
ε g(n)

y−α(1 − y)α dy, (3.25)(making the hange of variables y = λnv
−1
ε z/(1 + λnv

−1
ε z)). For α < 1 this integralonverges, when n → ∞, to Γ(α + 1)Γ(−α + 1) = πα

sin(πα)
, whih onludes the proofof (3.21).To prove that the result is true with T x in plae of Tx, observe �rst that P(τx ≥

g(n); maxy∈Bν(n)(x)\{x} τy ≥ g(n)) = o(n−1), when n→ ∞, whih implies
E

x
[

(1 − e−λnT x)1{τx≥g(n)}

]

= E
x
[

(1 − e−λnT x)1E4(n)

]

+ o(n−1), (3.26)where E4(n) := {τx ≥ g(n)} ∩ {maxy∈Bν(n)(x)\{x} τy < g(n)}. Then, let us introdue
T̃x :=

∑ζx+ν(n)

0 τYi
ei1{Yi∈Bν(n)(x)\{x}} = T x − Tx and write

E
x
[

(e−λnTx − e−λnT x)1E4(n)

]

≤ λnE
x
[

T̃x1E4(n)

]

, (3.27)where we used the fat that 1− e−x ≤ x, for any x ≥ 0. Using the same arguments asin the proof of Lemma 3.3, we an prove that
E

x
τ

[

T̃x1E4(n)

]

≤ 1{τx≥g(n)}

∑

y∈Bν(n)(x)\{x}

τy(1 +G(y, x+ ν(n))1{τy<g(n)}. (3.28)Using the fat that the previous sum depends only on site y in Bν(n)(x) whih are dif-ferent from x, together with the same arguments as in the proof of Lemma 3.3, we get
E

x
[

T̃x1E4(n)

]

≤ Cν(n)g(n)1−α
P(τx ≥ g(n)) ≤ Cν(n)g(n)1−2α. Therefore, we obtainthat the left-hand term in (3.27) is a o(n−1), whih together with (3.26) onludes theproof of Lemma 3.4.
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Remark. For any t > 0, let us �rst introdue nt := tκ log log t and ν(nt) := C ′ log log nt.We onsider
T ∗(x) = T ∗(x, nt) :=

ζx+ν(nt)
∑

0

τYi
ei1{Yi∈[x−ν(nt), x+ν(nt)]}, x ∈ Z. (3.29)Then, observe that the same arguments as in the proof of Lemma 3.4 yield that, forall λ > 0, we have

E
x
[

1 − e−λ T∗(x)
t |τx ≥ g(nt)

]

∼
P(τx ≥ g(nt))

−1

tα
απ

sin(απ)
v−α

ε λα, t→ ∞. (3.30)4 Proof of Theorem 2.2Let us �rst de�ne Hx := inf{t ≥ 0 : Xt = x}, for any x ∈ N. Now, �x T > 0, and let
H

(N)
t be the sequene of elements of D([0, T ]) de�ned by

H
(N)
t :=

H⌊tN⌋

N1/α
, 0 ≤ t ≤ T. (4.1)Proposition 4.1. The distribution of the proess (H

(N)
t ; 0 ≤ t ≤ T ) onverges weaklyto the distribution of (v#

ε )−1/α Vα(t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with the M1-Skorokhod topology, where (Vα(t); t ≥ 0) is a standard α-stable subordinator.Proof. Let 0 = u0 < u1 < · · · < uK ≤ T and βi > 0 for i ∈ {1, . . . , K}. We willhek the onvergene of the �nite-dimensional distributions of H by proving theonvergene of E[exp{−
∑K

i=1 βi(H
(N)
ui −H

(N)
ui−1)}].Observe �rst that sine for any x ∈ Z, we have P(maxy∈Bν(TN)(x) τy > g(TN)) = o(1),when N → ∞, Lemma 3.3 yields

P

(

ζ⌊uKN⌋
∑

i=0

τYi
ei1{Yi∈Bν(TN)(⌊uK−1N⌋)} < CN1/α(logN)−1

)

→ 1, N → ∞. (4.2)This implies that the time spent by X in Bν(TN)(⌊uK−1N⌋) is negligible. Reallingthat on A(TN), the proess never baktraks more than ν(TN), this allows us todeompose its trajetory in two main parts that are disjoint: the �rst between 0and H⌊uK−1N⌋−ν(TN), the seond between H⌊uK−1N⌋ and H⌊uKN⌋ (the time spent be-tween H⌊uK−1N⌋−ν(TN) and H⌊uK−1N⌋ being negligible). More preisely, on A(TN) theproess between H⌊uK−1N⌋ and H⌊uKN⌋ as the same law as the same proess start-ing at site ⌊uK−1N⌋, re�eted at ⌊uK−1N⌋ − ν(TN) and independent of (Xt; ≤ t ≤

H⌊uK−1N⌋−ν(TN)). Therefore, realling Fat 3.2, the expetation E[exp{−
∑K

i=1 βi(H
(N)
ui −

H
(N)
ui−1)}] an be written

E

[

exp
{

−
K−1
∑

i=1

βi(H
(N)
ui

−H(N)
ui−1

)
}

]

E
⌊uK−1N⌋

[

exp
{

−βKN
−1/αH⌊uKN⌋

}

]

+o(1). (4.3)
8



Using the strong markov property at H⌊uK−1N⌋ and the shift invariane of the envi-ronment, we just have to prove that
E

[

e−βKN−1/αHN′

]

−→ exp
{

−
απ

sin(απ)
v−α

ε βα
K(uK − uK−1)

}

, N → ∞, (4.4)where N ′ := ⌊uKN⌋−⌊uK−1N⌋ ∼ (uK−uK−1)N, when N → ∞. Indeed, iterating thisproedure K−2 times will give the onvergene of the �nite-dimensional distributions.Realling Lemma 3.1, Fat 3.2 and Lemma 3.3, we obtain
E

[

e−βKN−1/αHN′

]

= E

[

1E(N ′)∩A(N ′)∩I(N ′)e
−βKN−1/αHN′

]

+ o(1)

= E

[

e−βKN−1/α
Pθ

N′
i=1 Tδi(N

′)

]

+ o(1)

= E

[

1E∗(N ′)e
−βKN−1/α

P

θ∗
N′

i=1 Tδ∗
i
(N′)

]

+ o(1). (4.5)Furthermore, sine on E∗(N ′)∩A(N ′) the proess never baktraks before δ∗i − ν(N ′)after hitting δ∗i for 1 ≤ i ≤ θ∗N ′ , we get, by applying the strong markov property atthe stopping times Hδθ∗
N′
, . . . , Hδ∗1

,

E

[

e−βKN−1/αHN′

]

= E

[

1E∗(N ′)∩A(N ′)

θ∗
N′

∏

j=1

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

]

]

+ o(1)

≤ E

[ θN′
∏

j=1

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

]

]

+ o(1), (4.6)where θN ′ := N ′ϕ(N ′)
(

1 − 1
log N ′

) and with E
x
τ,|y denoting the law of the proess inthe environment τ, starting at x and re�eted at site y. Then, applying the Markovproperty (for the environment) suessively at times δθN′−1 + ν(N ′), . . . , δ1 + ν(N ′),and observing that the (

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

] )

1≤j≤θN′

are i.i.d. random variablesby de�nition, we obtain that
E

[

e−βKN−1/αHN′

]

≤ E

[

E
δ∗1
τ,|δ∗1−ν

[

e
−βKN−1/αTδ∗

1

]]θN′

+ o(1). (4.7)Sine an easy omputations yields that P(δ∗1 6= δ1) = P(max0≤y≤ν(N ′) τy ≥ g(N ′)) =
o((N ′ϕ(N ′))−1) and P(H−ν(N ′) < Hν(N ′)) = o((N ′ϕ(N ′))−1) when N ′ → ∞ (or equiv-alently when N → ∞), we get

E

[

e−βKN−1/αHN′

]

≤ E
x
[

e−βKN−1/αTx|τx ≥ g(N ′)
]θN′

+ o(1). (4.8)Now, using Lemma 3.4, this yields
lim sup

N→∞
E

[

e−βKN−1/αHN′

]

≤ exp
{

−
απ

sin(απ)
v−α

ε βα
K(uK − uK−1)

}

. (4.9)Moreover, we an similarly obtain the same lower bound, whih implies (4.4) andonludes the proof of the onvergene of the �nite-dimensional distributions.For the tightness, the arguments are exatly the same as in [1℄. We refer to setion 5of [1℄ for a detailed disussion. 9



Proof of Theorem 2.2. If we de�ne X(N)

t := sup0≤s≤tX
(N)
s for any t ≥ 0, then Propo-sition 4.1 implies that the distribution of the proess (X

(N)

t ; 0 ≤ t ≤ T ) onvergesweakly to the distribution of (v#
ε V

−1
α (t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with theuniform topology. Then, Theorem 2.2 will be a onsequene of the fat that

P

(

sup
{

|X
(N)
t −X

(N)

t |; 0 ≤ t ≤ T
}

> γ
)

−→ 0, N → ∞, (4.10)for any γ > 0. To prove (4.10), reall �rst that Proposition 4.1 implies that P(HNα log N >
TN) → 1, when N → ∞, suh that we an onsider sup{|Xt − X t|; 0 ≤ t ≤
H⌊Nα log N⌋}, whih by de�nition is bounded by max{|Yk − Y k|; 0 ≤ k ≤ ζ⌊Nα log N⌋}.Moreover, observe that on A(⌊Nα logN⌋), whose probability tends to 1 when N goesto in�nity, this quantity is less than ν(⌊Nα logN⌋) = o(Nα), when N → ∞. Thisyields (4.10) and onludes the proof of Theorem 2.2.5 Proof of Theorem 2.3To bound the number of traps the random walk an ross before time t let us onsider
nt := tκ log log t and observe that Theorem 2.2 implies that P(X t ≥ nt) → 0, t→ ∞.Moreover, sine we need more onentration properties for the random walk in theneighborhood of the δj 's, we introdue ν = ν(nt) := C ′ log log nt, for some C ′ largeenough whih will be hosen later. For onveniene of notations we will use ν, ν and
δj in plae of ν(nt), ν(nt) and δj(nt) throughout this setion.Then, we de�ne the sequene of random times (T ∗

j )j≥1 as follows: onditioning on τ,
(T ∗

j )j≥1 is de�ned as an independent sequene of random variables with the law of
Hδ∗j +ν in the environment τ starting at site δ∗j and re�eted at δ∗j − ν. Hene, underthe annealed law P, the T ∗

j 's are are i.i.d. sine the Bν(δ
∗
j )'s are i.i.d. by de�nition.Then, we give an analogous result to the extension of Dynkin's theorem proved in [14℄(see Proposition 1 in [14℄).Proposition 5.1. For any t > 0, let ℓ∗t := sup{j ≥ 0 : T ∗

1 + · · ·+ T ∗
j ≤ t}. Then, forall 0 ≤ x1 < x2 ≤ 1, we have

lim
t→∞

P(t(1 − x2) ≤ T ∗
1 + · · · + T ∗

ℓ∗t
≤ t(1 − x1)) =

sin(απ)

π

∫ x2

x1

x−α

(1 − x)α−1
dx. (5.1)For all 0 ≤ x1 < x2, we have

lim
t→∞

P(t(1 + x1) ≤ T ∗
1 + · · · + T ∗

ℓ∗t +1 ≤ t(1 + x2)) =
sin(απ)

π

∫ x2

x1

dx

xα(1 + x)
. (5.2)Proof. Observe �rst that an easy omputation yields that P

x(Hx−ν < ∞) = O(rν
ε ),when t → ∞ (where rε := qε/pε < 1). Moreover, we have rν(nt)

ε = o((tαϕ(nt))
−1).Therefore, Remark 3.4 yields

E

[

1 − e−λ
T∗
1
t

]

∼
P(τx ≥ g(nt))

−1

tα
απ

sin(απ)
v−α

ε λα, t→ ∞. (5.3)
10



Then, the arguments are exatly the same as in the proof of Proposition 1 in [14℄.Observe that this result would exatly be Dynkin's theorem (see Feller, vol. II, [15℄, p.472) if the sequene (T ∗
j )j≥1 was an independent sequene of random variables in thedomain of attration of a stable law of index α. Here, this sequene depends impliitlyon the time t, sine the ∗-deep traps are de�ned from the ritial depth g(nt).Realling Lemma 3.3, we will now prove that the results of Proposition 5.1 are stilltrue if we onsider, in addition, the inter-arrival times between deep traps. Before,let us de�ne the notion of inter-arrival times for any 0 ≤ x < y:
H(x, y) := inf{t ≥ 0 : XHx+t = y}. (5.4)Proposition 5.2. For any t > 0, let ℓt := sup{j ≥ 0 : Hδj

≤ t}. Then, we have
lim
t→∞

P(Hδℓt
≤ t < Hδℓt

+ν) = 1. (5.5)For all 0 ≤ x1 < x2 ≤ 1, we have
lim
t→∞

P(t(1 − x2) ≤ Hδℓt
≤ t(1 − x1)) =

sin(απ)

π

∫ x2

x1

x−α

(1 − x)α−1
dx. (5.6)For all 0 ≤ x1 < x2, we have

lim
t→∞

P(t(1 + x1) ≤ Hδℓt+1
≤ t(1 + x2)) =

sin(απ)

π

∫ x2

x1

dx

xα(1 + x)
. (5.7)Proof. We �rst need to prove that after hitting δj +ν, the partile does not baktrakmore than ν. We detail this result with the following lemma.Lemma 5.3. Let us de�ne B(nt) := A(nt)∩

⋂θnt
j=1{H(δj + ν, δj + ν) < H(δj + ν, δj)}.Then, we have

lim
t→∞

P (B(nt)) = 1. (5.8)Proof. Observe �rst that Fat 3.2 says that P (A(nt)) tends to one. Realling thaton E(nt) ∩ E∗(nt), whose probability tends to 1 when t tends to in�nity (by Lemma3.1 and Lemma 3.2), the intervals Bν(δj)'s are i.i.d. and that the number of traps isbounded by C(log nt)
2α

1−α , it is su�ient to prove that
P(ζ−ν <∞) = o((log nt)

− 2α
1−α ), t→ ∞. (5.9)Sine we have P(ζ−ν <∞) ≤ Crν

ε , we obtain (5.9) and onlude the proof of Lemma5.3 by hoosing C ′ larger than −2α/(1 − α) log rε.Let us introdue C(nt) := {X t ≤ nt}, whose probability tends to one (reall Theorem2.2). Now, to prove Proposition 5.2, observe that on E∗(nt) ∩ A(nt), the randomtimes (H(δj, δj +ν))1≤j≤θ∗nt
have the same law as the random times (T ∗

j )1≤j≤θ∗nt
de�nedpreviously. If we de�ne ℓ̃t := sup{j ≥ 0 : H(δ1, δ1 +ν)+ · · ·+H(δj , δj +ν) ≤ t}, then,using Proposition 5.1, Lemma 3.2 and Fat 3.2, we get that the result of Proposition

11



5.1 is true with (H(δj, δj + ν))1≤j≤θ∗nt
and ℓ̃t in plae of (T ∗

j )1≤j≤θ∗nt
and ℓ∗t . Now,realling Lemma 3.3 and sine n1/α

t / lognt = o(t), when t→ ∞, we obtain that
lim inf

t→∞
P(ℓ̃t = ℓt − 1 ; Hδℓt

≤ t < Hδℓt
+ν)

≥ lim inf
t→∞

P(I(nt) ; B(nt) ; C(nt) ; |t− (H(δ1, δ1 + ν) + · · ·+H(δℓ̃t
, δℓ̃t

+ ν))| ≥ ξt),for all ξ > 0. Thus, using Lemma 3.3, Lemma 5.3, Proposition 5.1 (for ℓ̃t and
(H(δj, δj + ν))1≤j≤θ∗nt

) and letting ξ tends to 0, we get that
lim
t→∞

P(ℓ̃t = ℓt − 1 ; Hδℓt
≤ t < Hδℓt

+ν) = 1. (5.10)We onlude the proof by the same type of arguments.To omplete the proof of Theorem 2.3, we will prove the following loalization result,whih means that the partile is, with an overwhelming probability, in the last visiteddeep trap.Proposition 5.4. We have
lim
t→∞

P(Xt = δℓt) = 1. (5.11)Proof. Now, for any deep trap δj, let us denote by µj the invariant measure assoiatedwith the random walk on [δj − ν, δj + ν] re�eted at sites δj − ν and δj + ν andnormalized suh that µj(δj) = 1. Clearly, µj is the reversible measure given, for any
δj − ν < x < δj + ν, by

µj(x) = rδ−x
ε

τx
τδj

. (5.12)Sine the random walk is re�eted at sites δj − ν and δj + ν, we have µj(δj − ν) ≤
τδj−ν/τδj

and µj(δj − ν) ≤ rν
ε τδj+ν/τδj

. Moreover, sine µj is an invariant measure andsine µj(δj) = 1, we have, for any x ∈ [δj − ν, δj + ν] and all s ≥ 0,

P
δj

τ,|δj−ν,δj+ν|(Xs = x) ≤ µj(x). (5.13)Furthermore, let us introdue the event
D(nt) :=

θnt
⋂

j=1

{

max
x∈Bν(δj)\{δj}

τx < (log nt)
β
} (5.14)with β > 1

α
( 2α

1−α
+ 1 + γ). Observe that the probability of D(nt) tends to one, when

t tends to in�nity. Indeed, sine the number of traps is less than C(lognt)
2α

1−α , andrealling that the number of sites ontained in the Bν(δj)'s is less than 2ν (with
ν = ν(nt) = (log nt)

1+γ), this fat is just a onsequene of (2.2). Realling (5.12),observe that on D(nt), we have
µj |[δj−ν,δj+ν]\{δj}

≤ Crν
ε (log nt)

β+ 2
1−α n

− 1
α

t ≤ Cn
− 1

2α
t , (5.15)12



for any 1 ≤ j ≤ θnt . Hene, ombining (5.13) and (5.15), we obtain on D(nt)

P
δj

τ,|δj−ν,δj+ν|(Xs 6= δj) ≤ Cn
− 1

2α
t , ∀ s ≥ 0. (5.16)Now, we �x 0 < ξ < 1. Then, let us write that lim inft→∞ P(Xt = δℓt) is larger than

lim inf
t→∞

P(Xt = δℓt ; ℓt = ℓ(1+ξ)t) (5.17)
≥ lim inf

t→∞
P(ℓt = ℓ(1+ξ)t) − lim sup

t→∞
P(Xt 6= δℓt ; ℓt = ℓ(1+ξ)t).Considering the �rst term, we get using Proposition 5.2 that it is equal to

lim inf
t→∞

P(Hδℓt+1
> (1 + ξ)t) =

sin(απ)

π

∫ ∞

ξ

dx

xα(1 + x)
. (5.18)In order to estimate the seond term, let us introdue the event

F(nt) := B(nt) ∩ C(nt) ∩ D(nt) ∩ E(nt) ∩ E∗(nt) ∩ I(nt) ∩
{

Hδℓt
≤ t < Hδℓt

+ν

}

.Observe that the preliminary results obtained in Setion 3 together with Theorem2.2, Proposition 5.2 and Lemma 5.3 imply that P(F(nt)) → 1, when t → ∞. Then,we have that lim supt→∞ P(Xt 6= δℓt ; ℓt = ℓt(1+ξ)) is less than
lim sup

t→∞
P(F(nt) ; Xt 6= δℓt ; ℓt = ℓt(1+ξ)) (5.19)

≤ lim sup
t→∞

E

[

1F(nt)

θnt
∑

j=1

1{Xt 6=δℓt
; ℓt=ℓt(1+ξ)=j}

]

.But on the event F(nt) ∩ {ℓt = ℓt(1+ξ) = j} we know that for all s ∈ [Hδj
, t] the walk

Xs is in the interval [δj − ν, δj + ν] . Indeed, on the event B(nt)∩C(nt)∩I(nt) we knowthat one the position δj + ν is reahed then within a time n1/α
t / lognt = o(t), when

t → ∞, the position δj+1 is reahed whih would ontradit the fat that ℓt(1+ξ) = j.Hene, we obtain, for all j ∈ N,

P
(

F(nt) ; j ≤ θnt ; Xt 6= δℓt ; ℓt = ℓt(1+ξ) = j
) (5.20)

≤ E

[

1{j≤θnt}
1D(nt)∩E(nt) sup

s∈[0,t]

P
δj

τ,|δj−ν,δj+ν|(Xs 6= δj)
]

≤ Cn
− 1

2α
t ,where we used (5.16) on the event D(nt). Considering now that, on the event E(nt),the number θnt of deep traps is smaller than C(lognt)

2α
1−α we get that

lim sup
t→∞

P(Xt 6= δℓt ; ℓt = ℓt(1+ξ)) = 0. (5.21)Then, assembling (5.17), (5.18), (5.21) and letting ξ tends to 0 in (5.18) onludesthe proof of Proposition 5.4.Proof of Theorem 2.3. let us �x h > 1 and introdue the event
G(t, h) := {Xt = δℓt} ∩ {Xth = δℓth

}, (5.22)13



whose probability tends to 1, when t tends to in�nity (it is a onsequene of Proposi-tion 5.4). Then, we easily have {Xth = Xt}∩G(t, h) = {ℓth = ℓt}∩G(t, h). Therefore,sine Proposition 5.2 implies that limt→∞ P(ℓth = ℓt) exists, we obtain
lim
t→∞

P(Xth = Xt) = lim
t→∞

P(ℓth = ℓt) = lim
t→∞

P(Tℓt+1 ≥ th) (5.23)
=

sin(απ)

π

∫ 1/h

0
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