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AbstratIn this paper we deal with ellipti boundary value problems with random bound-ary onditions. Solutions to these problems are inhomogeneous random �elds whihan be represented as series expansions involving a omplete set of deterministifuntions with orresponding random oe�ients. We onstrut the Karhunen-Loève(K-L) series expansion whih is based on the eigen-deomposition of the ovarianeoperator. It an be applied to simulate both homogeneous and inhomogeneous ran-dom �elds. We study the orrelation struture of solutions to some lassial elliptiequations in respond to random exitations of funtions presribed on the boundary.We analyze the stohasti solutions for Dirihlet and Neumann boundary onditionsto Laplae equation, biharmoni equation, and to the Lamé system of elastiityequations. Expliit formulae for the orrelation tensors of the generalized solutionsare obtained when the boundary funtion is a white noise, or a homogeneous random�eld on a irle, a sphere, and a half-spae. These exat results may serve as an ex-ellent benhmark for developing numerial methods, e.g., Monte Carlo simulations,stohasti volume and boundary element methods.1 Introdution.Boundary value problems with random oe�ients, parameters, random soure terms, stohas-tially distributed boundary funtions, or even with randomly moving boundaries are used as apowerful instrument in modern siene and tehnology. We mention here applied �elds suh asstrutural mehanis, omposite materials [2℄, porous media and soils [6℄, [33℄, [17℄, [49℄, biologialtissues [47℄, geodesy [30℄, [40℄, turbulene [48℄, [3℄, [19℄, [31℄, et.In engineering related stohasti boundary value problems, the ommon omputational teh-niques inlude Monte Carlo methods, stohasti �nite elements, �nite di�erene, and spetralmethods. Among these methods, the �nite volume and boundary element tehniques are themethods most adaptable to problems in solid and strutural mehanis haraterized with highlyirregular and omplex strutures [2℄, [9℄, [43℄. We mention also lassial potential problems deal-ing with random boundary onditions and soures [7℄ where the Monte Carlo methods are verye�ient (e.g., see [31℄, [37℄, [35℄), [36℄). In eletrial impedane tomography [13℄ importantproblem is to evaluate a global response to random boundary exitations, and to estimate loal�utuations of the solution �elds. Similar analysis is made in the inverse problems of elastog-raphy [25℄, [32℄, reognition tehnology [10℄, aousti sattering from rough surfaes [46℄, �uiddynamis [1℄, and reation-di�usion equations with white noise boundary perturbations [42℄.It should be noted that the numerial simulation methods for stationary proesses and homoge-neous Gaussian random �elds are well developed, and the most onvenient and probably mostoften used are methods based on the spetral representations (e.g., see [41℄, [9℄, [31℄, [20℄, [19℄).The most ommon simulation method for inhomogeneous random proesses and �elds is based onthe Karhunen-Loève (K-L) expansion, also known as a proper orthogonal deomposition (POD),a series representation onsisting of eigen-funtions as the orthogonal basis (e.g., see [2℄, [15℄, [21℄,1



[3℄, [12℄, [26℄, [27℄). The expansion is known to produe the most e�ient representation amongall orthogonal bases for the Gaussian ase. Aording to A.M. Yaglom's personal ommuniation,the proper orthogonal deomposition was suggested independently by Kosambi [18℄, Loève [21℄,Karhunen [15℄, Pougahev [28℄, and Obukhov [24℄. We also mention a omprehensive studies byVan Trees [44℄, and A.M. Yaglom himself [48℄, and one generalization of K-L expansion for theWiener proess [38℄, [39℄.In this paper, we onstrut exat proper orthogonal deomposition for some lassial boundaryvalue problems, for a dis, ball, and a half-plane, with a Dirihlet and Neumann boundaryonditions, where the boundary funtions are white noise or homogeneous (2π-periodi) randomproesses. In ase the boundary funtion is a white noise, the solutions are treated as generalizedrandom �elds with the onvergene in the proper spaes and relevant generalized treatment ofboundary onditions, e.g., see [29℄, [30℄, [40℄.The paper is organized as follows. After a short desription of the spetral and Karhunen-Loèveexpansions, we onsider in Setion 2 the 2D Laplae equation, with Dirihlet and Neumannboundary onditions, for a dis and a half-plane. Generalizations to a three-dimensional ase isgiven in Setion 3. In Setion 4 we analyze the biharmoni equation for a dis. The plane elastiityproblem is presented in Setion 5. For all these boundary value problems we �nd expliitly theorrelation funtions, and give the Karhunen-Loève expansion of the relevant random �elds.1.1 Spetral representations.Let us �rst onsider a real-valued zero mean homogeneous Gaussian l-dimensional vetor random�eld u(x) = (u1(x), . . . , ul(x))T , x ∈ IRd with a given ovariane tensor B(r) with entries
Bij(r) = 〈ui(x + r)uj(x)〉, i, j = 1, . . . l,or with the orresponding spetral tensor F :

Fij(k) =

∫

IRd

e−i 2π k·rBij(r) dr, Bij(r) =

∫

IRd

ei 2π r·kFij(k) dk . (1)We all also Bij a orrelation tensor whih is equivalent sine we assume without loss of generalitythat the random �elds have zero means.Often it is reasonable to assume [20℄ that the ondition ∫

IRd

∑l
j=1 |Bjj(r)| dr < ∞ is satis�edwhih ensures that the spetral funtions Fij are uniformly ontinuous with respet to k. Notethat a weaker assumption that B is squared integrable guarantees only the existene of thespetral tensor in the spae L2.Let Q(k) be an l × n-matrix de�ned by Q(k)Q∗(k) = F (k), Q(−k) = Q̄(k) . Here the starstands for the omplex onjugate transpose whih is equivalent to taking two operations, thetranspose T , and the omplex onjugation of eah entry. Then the spetral representation of therandom �eld is written as follows (e.g., see [48℄)

u(x) =

∫

IRd

ei 2π kxQ(k)Z(dk) (2)where the olumn-vetor Z = (Z1, . . . Zn)T is a omplex-valued homogeneous n-dimensionalwhite noise on IRd with a unite variane and zero mean:
〈Z(dk)〉 = 0, 〈Zi(dk1) Z̄j(dk2)〉 = δij δ(k1 − k2) dk1 dk2, Z(−dk) = Z̄(dk) .2



Note that in the literature, di�erent forms of the Fourier transform between the orrelation andspetral tensors are used. Along with (1), we will mainly use
Fij(k) =

1

(2π)d

∫

IRd

e−i k·rBij(r) dr, Bij(r) =

∫

IRd

ei r·kFij(k) dk, i, j = 1, . . . l .The spetral representation (2) is used in di�erent numerial simulation methods, through adeterministi or randomized evaluation of the stohasti integral in (2), see for instane [31℄,[19℄, [20℄.A straightforward evaluation of the stohasti integral (2) is based on the Riemann sums alu-lation with �xed ells (see, e.g. [41℄). The integral is approximated by a �nite sum
u(x) ≈

n
∑

i=1

[

cos(2πki · x)ξi + cos(2πki · x)ηi

]where ki are deterministi nodes in the Fourier spae, ξi and ηi are Gaussian random vetorswith zero mean and relevant ovariane. E�ient alulation of the above sum is usually arriedout by the fast Fourier transform whih assumes that the nodes are hosen uniformly. It shouldbe mentioned that this sheme su�ers from an arti�ially periodiity in the sale of 1/∆k where
∆k is the integration step in the Fourier spae. In Randomized models, the nodes are hosen atrandom, with an appropriate probability distribution so that the model has the desired orrelationstruture (e.g., see [31℄, [19℄).Partially homogeneous random �elds present an important lass of random �elds wherethis approah an be e�iently used.Let x = (y, z), y ∈ IRn, z ∈ IRm, and let V(x) = (v1(x), . . . , vl(x))T . Assume that the random�eld V(y, z) is homogeneous with respet to the variable y, i.e.,

〈V(y1, z1)V
∗(y2, z2)〉 = B(y1 − y2, z1, z2)〉 .Random �elds with this property are alled partially homogeneous random �elds [31℄. The partialspetral tensor is de�ned by

f(λ, z1, z2) =
1

(2π)n

∫IRn

B(ρ, z1, z2) exp {−i(λ,ρ)} dρ .It is not di�ult to verify that for a general omplex-valued random �eld V(x), whih is partiallyhomogeneous,
V(y, z) =

1

[p(λ)]1/2
exp {i (λ,y)}ξλ(z)its orrelation tensor is equal to B(ρ, z1, z2), if λ is distributed aording to a probability density

p(λ) whih an be hosen quite arbitrarily, and ξλ (λ �xed) is a homogeneous l-dimensionalomplex-valued random �eld with the orrelation tensor f(λ, z1, z2). A rigorous proof of thisstatement is given in [31℄.
3



1.2 The Karhunen-Loève expansion.Let us now onsider a real-valued inhomogeneous random �eld u(x), x ∈ G de�ned on aprobability spae (Ω, A, P ) and indexed on a bounded domain G. The ase of unbounded domainsan also be treated, in partiular, if the ovariane tensor belongs to a lass A de�ned in [4℄,for whih the orresponding ovariane operator is ompat and trae lass. This importantgeneralization is based on the result due to I.M. Novitsky [23℄ (see also [5℄). In setion 2.4 wedeal with an unbounded domain when analysing the Dirihlet problem for the half-plane. Tosimplify the notations, we will not use here and in what follows the boldfae haraters to denotethe vetors if not otherwise indiated. They will be essentially used in Setion 5 for the vetorsolution to the Lamé equation.Assume (without loss of generality) that the �eld has a zero mean and a variane E u2(x) thatis bounded for all x ∈ G. The Karhunen-Loève expansion has the form [48℄
u(x) =

∞
∑

k=1

√

λk ξk hk(x) ,where λk and hk(x) are the eigen-values and eigen-funtions of the ovariane funtion B(x1, x2) =
〈u(x1)u(x2)〉, and ξk is a family of random variables.By de�nition, B(x1, x2) is bounded, symmetri and positive de�nite. For suh kernels, theHilbert-Shmidt theory says that the following spetral representation is valid

B(x1, x2) =

∞
∑

k=1

λk hk(x1)hk(x2)where the eigen-values and eigen-funtions are the solutions of the following eigen-value problemfor the orrelation operator:
∫

G

B(x1, x2)hk(x1) dx1 = λk hk(x2) .The eigen-funtions form a omplete orthogonal set ∫

G

hi(x)hj(x) dx = δij where δij is the Kro-neker delta-funtion. The family {ξk} is a set of unorrelated random variables whih areobviously related to hk by
ξk =

1√
λk

∫

G

u(x)hk(x) dx , E ξk = 0, Eξi ξj = δij .We mention also that the assumptions of the Hilbert-Shmidt an be weakened as it is done inMerer's theorem. This will be disussed in setion 2.It is well known that the Karhunen-Loève expansion presents an optimal (in the mean squaresense) onvergene for any distribution of u(x). If u(x) is a zero mean Gaussian random �eld, then
{ξk} is a family of standard Gaussian random variables. Some generalizations to non-gaussianrandom �elds are reported in [27℄.Consider now a ase when G is unbounded, e.g., a homogeneous random proess u(x) is de�nedon the whole real line IR. The eigen-value problem reads

∫IR B(x2 − x1)hk(x1) dx1 = λk hk(x2) , −∞ < x2 <∞ . (3)4



Note that we an take h(x) = eiωx, then from (3) we get
λ =

∞
∫

−∞

B(x2 − x1) e
−iω(x2−x1) dx1 ≡ S(ω) .To make further onsiderations more rigorous, we assume that G is large but �nite, and u isperiodi (e.g., see [22℄, [44℄). Then, we may develop B(x2 − x1) in a Fourier series,

B(x− x′) =
∑

k

λk e
i 2πk(x−x′) . (4)The eigen-value problem an then be solved via the unique representation

B(x− x′) =
∑

k

λk e
i 2πk xe−i 2πk x′ (5)whih imply that ei 2πk x are the eigen-funtions with eigen-values λk = S(ωk). And onversely,if the eigen-funtions are Fourier modes we an write the equality (5) whih leads to (4).Thus the orrelation funtion B depends on the di�erene x−x′ if and only if the eigen-funtionsof the orrelation operator are Fourier modes.In our onsiderations this fat will be used in two-dimensional regions, when G is a dis, aball or a half-plane. The orrelation funtion of a zero mean random proess has the form

B(x,x′) = B(x, y;x′y′). Suppose that our random proess is homogeneous with respet to oneoordinate, say, B = B(x − x′; y, y′). Then we an perform the above proedure over the x-diretion, and get a 1D eigen-value problem for every Fourier wavenumber. It means, we thenwork with the partial spetral density.Assume we deal with a homogeneous real-valued proess on the whole line. Then it is possible tout-o� the integration in the eigen-value problem, i.e., we have to solve the eigen-value problem
a

∫

−a

B(x2 − x1)h(x1) dx1 = λk hk(x2),where a is su�iently large. Then it is possible to show (e.g., see [44℄) that
λk ≈ S(ωk) = S(π k/a) , hk(x) ≈

1

2π
ei (π k x/a) ,whih yields an approximation

B(x1, x2) ≈ B̃a(x1, x2) =

∞
∑

k=1

1

a
S(
π k

a
) cos

(π k(x2 − x1)

a

)

,and the K-L expansion approahes in this ase to the spetral representation
u(x) ≈ ũa(x) =

∞
∑

k=1

[ 1

2a
S(
π k

a
)
]1/2{

ξk cos[π k x/a] + ηk sin[π k x/a]
}

.The rate of onvergene of the K-L expansion is losely related to the smoothness of the or-relation kernel and to ratio between the length a and L, the orrelation length of the proess.For example, in [22℄ is reported that for the partiular ase B(x1, x2) = σ e−|x2−x1|/L, an upperbound for the relative error in variane ε of the proess represented by its K-L expansion is givenby ε ≤ 4
π2

1
n

a
L where n is the number of retained terms.5



2 Stohasti boundary value problems for the 2D Laplaeequation.Let us start with the two-dimensional boundary value problems for the Laplae equation. Weare interested in the statistial struture of the solution when the solution (Dirihlet boundaryonditions), or the normal derivative (Neumann boundary onditions) are homogeneous randomfuntions (g(y)) on the boundary. The basi idea is �rst to establish the Karhunen-Loève ex-pansion for the ase when the boundary funtion g is a white noise, therefore, the solutions areonsidered as generalized random �elds. This expansion gives a smooth representation for thesolution and the orrelation funtion inside the open dis, and the ase of general homogeneousboundary funtions is immediately obtained from this expansion by a simple substitution of thespetral expansion of the boundary random funtion g(x).Before we start with the details for the Laplae equation, let us outline shortly the generalsheme. Assume we are given a stohasti Dirihlet boundary value problem for a linear elliptiequation in a domain D with a boundary Γ = ∂D:
Lu(x) = 0, x ∈ D, u(x)|x→y∈Γ = g(y)where g(y) is a random �eld with zero mean and ovariane funtion Bg(y1, y2) = 〈g(y1) g(y2)〉.We are interested in the ovariane of the solution, Bu(x1, x2) = 〈u(x1)u(x2)〉.Suppose that there exists a ontinuous normal derivative of the Green funtion on the boundary,

∂G
∂n

, so that the solution is represented by the Green formula:
u(x) =

∫

Γ

∂G

∂n
(x, y)g(y) dS(y) .Using the Green formula representation for the solution in points x1 and x2 we obtain

Bu(x1, x2) =

∫

Γ

∫

Γ

∂G

∂n
(x1, y1)

∂G

∂n
(x2, y2)Bg(y1, y2) dS(y1) dS(y2) . (1)If g is a white noise, Bg(y1, y2) = δ(y1 − y2), and we obtain formally from (1) that

Bu(x1, x2) =

∫

Γ

∂G

∂n
(x1, y)

∂G

∂n
(x2, y) dS(y) . (2)This representation shows that the ovariane funtion Bu(x, x2) solves the boundary valueproblem

LxB(x, x2) = 0, x, x2 ∈ D,

B(x, x2)|x→y∈Γ =
∂G

∂n
(x2, y)|y∈Γ , (3)so that the solution of this problem at any point x = x1 ∈ D yields Bu(x1, x2) for any �xed

x2 ∈ D whih de�nes well the ovariane funtion for any two points x1 and x2 inside thedomain D. These formal onsiderations leave open the singularity problem of the orrelationfuntion when both points tend to one point on the boundary, but the weak onvergene to thedelta-funtion an be given in the framework of generalized solutions (e.g., see [29℄, [30℄, [40℄).6



2.1 Dirihlet problem for a 2D dis. White noise exitations.Let us onsider the Dirihlet boundary value problem for the Laplae equation
∆u(x) = 0, x ∈ D, u(y) = g(y) y ∈ Γ = ∂D, (4)where the domain D is a dis K(x0, R) entered at O = x0, bounded by the irle Γ = S(x0, R).We denote the losed dis by K̄(x0, R) = K(x0, R) ∪ S(x0, R).The regular solution to the harmoni equation is represented by the Poisson integral formula[45℄:

u(x) =
R2 − r2

2πR

∫

S(x0, R)

g(y)dSy

|x− y|2 ,for any point x ∈ K(x0, R), where r = |x− x0|.We suppose that the boundary funtion g(y) is a zero mean Gaussian random �eld, homogeneousor not, de�ned by its orrelation funtion Bg(y1, y2) = 〈g(y1)g(y2)〉. In ase g is homogeneous,it is alternatively de�ned by its spetral density funtion f(k) related to the orrelation funtion
Bg(y), y = y2 − y1, by the Fourier transform

f(k) =
1

2π

∫

Bg(y)e
−i(y k) dy , Bg(y) =

∫

f(k)ei(y k) dk .When dealing with the homogeneous random proesses g(ϕ) on the irle, we assume through-out the paper that they are 2π-periodi, so the spetra are disrete, and the Fourier integraltransforms beome Fourier series.Let us start with the ase when the presribed boundary funtion g is a Gaussian white noise,
Bg(y, y

′) = δ(y−y′), thus we deal in this paper with generalized random solutions whih howeverare smooth in the open domain (in a dis, ball, and a half-plane). The generalized treatmentof the onvergene to the boundary funtions an be expliitly desribed (e.g., see [29℄) in moregeneral ases.Let us introdue polar oordinates entered at x0, so that a point x is spei�ed by (r, θ), hene,for two points, x1 = (r1, θ1), x2 = (r2, θ2), and ρ1 = r1/R, ρ2 = r2/R.It is onvenient then to rewrite the Poisson formula as follows
u(r, θ) =

1 − ρ2

2π

2π
∫

0

g(ϕ) dϕ

1 − 2ρ cos(θ − ϕ) + ρ2
(5)where ρ = r/R.Theorem 1. The solution of the Dirihlet problem (4) in a dis K(x0, R) with the white noiseboundary funtion g(y) is an inhomogeneous 2D Gaussian random �eld uniquely de�ned by itsorrelation funtion

〈u(r1, θ1)u(r2, θ2)〉 = Bu(ρ1, θ1; ρ2, θ2) =
1

2π

1−ρ2
1ρ

2
2

1−2ρ1ρ2 cos(θ2−θ1)+ρ2
1ρ

2
2

(6)whih is harmoni, and it depends only on the angular di�erene θ2 − θ1 and the produt ofradial oordinates ρ1ρ2 = r1r2/R
2. The random �eld u(r, θ) is thus homogeneous with respet7



to the angular oordinate θ, and its partial disrete spetral density has the form fθ(0) = 1/2π,
fθ(k) = (ρ1ρ2)

k/π, k = 1, . . . .Proof. We start by simple evaluations:
Bu = 〈u(r1, θ1)u(r2, θ2)〉

=
〈 1

2π

2π
∫

0

(R2 − r1
2) g(ϕ) dϕ

R2 − 2Rr1 cos(θ1 − ϕ) + r12
· 1

2π

2π
∫

0

(R2 − r2
2) g(ϕ) dϕ

R2 − 2Rr2 cos(θ2 − ϕ) + r22

〉

=
1

(2π)2

2π
∫

0

2π
∫

0

((R2 − r21)(R
2 − r22)

〈

g(ϕ′) g(ϕ′′)
〉

dϕ′ dϕ′′

[R2 − 2R r1 cos(θ1 − ϕ′) + r21] [R
2 − 2Rr2 cos(θ2 − ϕ′′) + r22]

=
1

(2π)2

2π
∫

0

1 − ρ1
2

1 − 2 ρ1 cos(θ1 − ϕ) + ρ1
2
· 1 − ρ2

2

1 − 2 ρ2 cos(θ2 − ϕ) + ρ2
2
dϕ . (7)Here we used the property of the white noise 〈g(ϕ′) g(ϕ′′)〉 = δ(ϕ′ − ϕ′′).This integral an be evaluated expliitly, and the result is given in (6). However we will obtainit using Fourier series expansion whih not only presents a simple derivation of (6), but yieldsthe spetrum of our random �eld, and the Karhunen-Loève expansion.Indeed, we start with the well known expansion [45℄

K(ρ; θ − ϕ) ≡ 1

2π
· 1 − ρ2

1 − 2ρ cos(θ − ϕ) + ρ2
=

1

2π
+

1

π

∞
∑

k=1

ρk cos[k(θ − ϕ)] (8)and proeed (7) as follows
Bu =

2π
∫

0

{

1

2π
+

1

π

∞
∑

k=1

ρk
1 cos[k(θ1 − ϕ)]

} {

1

2π
+

1

π

∞
∑

k=1

ρk
2 cos[k(θ2 − ϕ)]

}

dϕ

=
1

2π
+

1

π

∞
∑

k=1

ρk
1

2π
∫

0

cos[k(θ1 − ϕ)]K(ρ2; θ2 − ϕ) dϕ

=
1

2π
+

1

π

∞
∑

k=1

ρk
1

2π
∫

0

[cos kθ1 cos kϕ+ sin kθ1 sin ϕ]K(ρ2; θ2 − ϕ) dϕ

=
1

2π
+

1

π

∞
∑

k=1

ρk
1ρ

k
2 cos[k(θ1 − θ2)] =

1

2π
· 1 − ρ2

1ρ
2
2

1 − 2ρ1ρ2 cos(θ2 − θ1) + ρ2
1ρ

2
2

. (9)Here we used the nie property of the integral operator with the kernel K(ρ; θ − ϕ) that it hasthe following system of eigen-values {λk} and the orresponding orthonormal eigen-funtions
{hk(ϕ)} omplete in L2(0, 2π):

λ0 = 1, h0 =
1√
2π
, λ2k−1 = λ2k = ρk,

h2k−1 = π−1/2 cos(kθ) ; h2k = π−1/2 sin(kθ), k = 1, 2, . . . . (10)8



This an be veri�ed by a diret substitution of the series expansion (8) into the eigen-valueproblem
1

2π

2π
∫

0

(1 − ρ2) hk(ϕ) dϕ

1 − 2ρ cos(θ − ϕ) + ρ2
= λk hk(θ) . (11)So it remains to prove that our random �eld u(ρ, θ) has a disrete partial spetral density,

fθ(0) = 1/2π, and
fθ(k) =

1

2π

2π
∫

0

Bu(ρ1, θ1; ρ2, θ2) e
−i k (θ2−θ1) d(θ2 − θ1) = (ρ1ρ2)

k/π, k = 1, . . . . (12)Atually this an be easily seen from the arguments given in (9). A diret proof follows fromthe Fourier transform property for onvolutions. Indeed, the representation (9) shows that theorrelation funtion Bu is written in the form of a onvolution, i.e.,
Bu = K(ρ1;ψ) ∗ K(ρ2;ψ − (θ1 − θ2))

=
1

(2π)2

2π
∫

0

1 − ρ2
1

(1 − 2ρ1 cos(ψ) + ρ2
1)

· 1 − ρ2
2

(1 − 2ρ2 cos(ψ − (θ2 − θ1)) + ρ2
2)
dψ .Now we take the inverse Fourier transform of both parts, and use the Fourier transform propertyfor onvolutions. This yields

fθ(0) = 1/2π, fθ(k) = ρk
1 ρ

k
2/πwhih is the desired result. Here we used the property [11℄

1

2π

2π
∫

0

(1 − ρ2) cos(kx) dx

1 − 2ρ cos x+ ρ2
= ρkwhile the sin-transform is zero. Finally, the ovariane funtion Bu(x1, x2) is harmoni withrespet to both of its oordinates whih follows from the general representation (3).The proof is omplete.Remark 1. The angular behaviour of the orrelation funtion shows thus that the random �eldis partially homogeneous. The radial behaviour is also interesting. Let us �x a diretion, say theline y = 0, then, B(x1, x2) = 1

2π · R2+x1x2

R2−x1x2
, where x1 and x2 vary between −R and R. This showsthat if one of the points, x1, x2 is in the enter of the dis, the ovariane equals to a onstantvalue, 1/2π.For illustration, in Figure 1 we show the angular (left panel) and radial (right panel) behaviourof the orrelation funtion Bu. The angular and radial funtions are both plotted versus thesetion number k, the number of setions being 50, so that θ = k 2π/50 (angular behaviour,left panel), and x = k 2R/50 (radial behaviour, right panel). The angular behaviour in the leftpanel is shown for three di�erent hoies of the radii ρ1 and ρ2. The radial behaviour is givenfor 6 di�erent values of the value x1, the radius of the dis was 5, see the right panel in Figure1. As expeted, a low number of eigen-modes in the K-L expansion is enough to have a goodapproximation; in Figure 2 we ompare the K-L approximation against the exat result, taking

M = 5 and M = 10 terms (left panel), and M = 2 and M = 5 terms (right panel).9
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Theorem 2. The Gaussian random �eld desribed in Theorem 1 has the following Karhunen-Loève type expansion
u(r, θ) =

ξ0√
2π

+
1√
π

∞
∑

k=1

ρk
[

ξk cos(k θ) + ηk sin(k θ)
] (13)where {ξk}, {ηk} are sets of mutually independent standard Gaussian random variables.Proof. The idea of the proof appeals to Merer's theorem whih states the following (e.g., see[14℄. Let U be a ompat set in IRd, and letK(s, t) be a symmetri L2(U)-kernel with eigen-values

{λn} and eigen-funtions hk(t):
∫

K(s, t)hk(t) dt = λkhk(x) , k = 1, 2 . . . .Merer's Theorem. If a nonnull, symmetri L2(U)-kernel K(s, t) is quasi-de�nite (i.e., whenall but a �nite number of eigen-values are of one sign) and ontinuous, then the series ∑∞
n=0 λnis onvergent, and

K(s, t) =
∞
∑

n=0

λnhn(s) h̄n(t) , (14)where h̄k(t) be the omplex onjugate of hk(t), and the series onverges absolutely and uniformlyin U × U .From this theorem, the Karhunen-Loève expansion an be obtained (e.g., see [48℄):Let v(x) be a real-valued, zero mean, gaussian random �eld with ontinuous ovariane funtion
K(x, y) whih has Merer's expansion K(x, y) =

∑

k

λkhk(x)hk(y). Then, under some regularyonditions,
v(x) =

∞
∑

k=0

√

λk hk(x) ξk , (15)in L2 and a.s., where {ξk}k∈IN is a sequene of independent and identially standard normallydistributed random variables.Note that although our orrelation funtion (9) is ontinuous everywhere inside the dis, itinreases in�nitely as both points approah a point on the boundary, i.e., when θ1 = θ2, and
ρ1 → 1, ρ2 → 1.However our kernel, the ovariane funtion (9), belongs to L2(K̄0), for eah dis K̄0(x0, ρ0) ⊂
K(x0, 1), and we �nd from the expansion (9) that

∫

K̄0(x0,ρ0)

Bu dx dy <∞ ,and so the weak onvergene as ρ0 → 1 an be proven.Now we onsider the eigen-value problem for the ovariane funtion Bu:
∫ 1

0
dρ1

2π
∫

0

1

2π

(1 − ρ2
1ρ

2
2) hk(ρ1, θ1) dθ1

1 − 2ρ1ρ2 cos(θ2 − θ1) + ρ2
1ρ

2
2

= λk hk(ρ2, θ2) .Using the expansion (9) we �nd the eigen-funtions and eigen-values:11



λ0 = 1, h0 =
1√
2π

; λ2k−1 = λ2k =
1

2k + 1
;

h2k−1(ρ, ϕ) =
√

2k + 1 ρk cos(kθ)

π1/2
; h2k(ρ, ϕ) =

√
2k + 1 ρk sin((θ)

π1/2
,

k = 1, 2, 3, . . .where the eigen-funtions are orthonormal to one another:
1

∫

0

2π
∫

0

hn(ρ, θ)hm(ρ, θ) dρ dθ = δnm .Thus the Karhunen-Loève expansion (13) follows from the representation
u(r, θ) =

∞
∑

k=1

ζk
√

λk hk(ρ, θ)where ζ is a family of standard independent Gaussian random variables.The proof of Theorem 2 is omplete.The expliit representation of our random �eld (13) is very onvenient in pratial simulations,as well as in analytial evaluations of di�erent statistial funtionals.Note that sine our random �eld is homogeneous with respet to the angular variable, we analso write down the relevant randomized spetral representation when ρ = ρ1 = ρ2.Indeed, we now let the disrete wave numbers k be randomly distributed with the distribution
pk =

1 − ρ2

ρ2
ρ2k , k = 1, 2, . . . .Then the random �eld

u(r, θ) =
ξ0√
2π

+
ρ

√

π(1 − ρ2)

[

ξ cos(k θ) + η sin(k θ)
] (16)has the desired orrelation funtion (6). Here ξ0, ξ and η are standard independent Gaussianvariables. Further, to make the distributions lose to Gaussian, in the spetral models one usuallytakes independent sums of models (16) (e.g., see [31℄).2.2 General homogeneous boundary exitations.Assume now that a zero mean real-valued Gaussian random proess g is de�ned on the irle byits spetrum fk so that the ovariane funtion reads

Bg(ϕ
′′ − ϕ′) =

f0

2π
+

1

π

∞
∑

k=1

fk cos k(ϕ′′ − ϕ′) .Substituting this in (7) and using the series expansion of the kernel K(ρ; θ−ϕ), we arrive at thefollowing series expansion for the ovariane funtion Bu:
Bu(ρ1, θ1; ρ2, θ2) =

f0

2π
+

1

π

∞
∑

k=1

fk ρ
k
1 ρ

k
2 cos k(θ2 − θ1) . (17)12



Thus the generalization of the random �led representation (15) has the form
u(r, θ) =

√
f0 ξ0√
2π

+
1√
π

∞
∑

k=1

√

fk ρ
k
[

ξk cos(k θ) + ηk sin(k θ)
]

. (18)The result (17) is an indiation that there should be a simple relation between the orrela-tion funtion Bu and the orrelation funtion Bg of the homogeneous proess g de�ned on theboundary. Indeed, we present this relation below in Theorem 3.The orrelation funtion of the solution in the ase when g is a white noise, is given in (6). Itdepends on the di�erene ψ = θ2 − θ1, and on the produt ρ1ρ2. Thus in the notation of Poissonkernel given in (8) the orrelation funtion (6) reads
Bu = K(ρ1ρ2;ψ) =

1

2π

1−ρ2
1ρ

2
2

1−2ρ1ρ2 cos(ψ)+ρ2
1ρ

2
2

. (19)Now we an give the desired relation between the orrelation funtions.Theorem 3. Assume the boundary funtion g in the Dirilet problem (4) is a homogeneousrandom proess with a ontinuous orrelation funtion Bg(ψ). Then the solution of the problem(4) is partially homogeneous with respet to the angular oordinate, and its orrelation funtion
Bu(ρ1, θ1; ρ2, θ2) depends on the angular di�erene ψ = θ2 − θ1 and the produt ρ1ρ2, and isexpliitly given by the onvolution Bu = K ∗Bg, i.e. , by the Poisson formula

Bu(ρ1ρ2;ψ) =
1

2π

2π
∫

0

K(ρ1ρ2;ψ − ψ′)Bg(ψ
′) dψ′ (20)whih implies that the orrelation funtion Bu(ρ, θ) is harmoni in the unit dis, and it is theunique solution of the Dirihlet boundary value problem

∆Bu = 0, Bu|ρ→1 = Bg . (21)Proof. To obtain (20), we turn to the proof of Theorem 1, and use in the double integral in (7)the hange of variable ψ = ϕ′′ − ϕ′, use there the series expansions for the both Poisson kernels,and perform the integration over ϕ′′. This yields (20).Remark 2. From the proof it is lear that the same onvolution relation result remains true iftwo homogeneous and homogeneously orrelated stohasti proesses are given on the boundary.Indeed, let g1 and g2 be two homogeneous proesses on the irle with zero mean and a ross-orrelation Bg1g2(θ2 − θ1). Then the orresponding solutions u1 and u2 are also homogeneouslyorrelated, and the ross-orrelation funtion Bu1u2 is related to Bg1g2 by the same onvolutionformula with the kernel K as in Theorem 3: Bu1u2 = K ∗Bg1g2 .Finally we note that from (18) we an derive the expressions for Bux and Buy , the orrelationfuntions for the derivatives ux and uy whih is our ase remarkably oinide:
Bux = Buy =

1

π

∞
∑

k=1

fk k
2 ρk−1 cos [(k − 1) θ] .

13



2.3 Neumann boundary onditions.Let us study the ase when on the boundary, the normal derivative is presribed, i.e., we onsiderthe inner problem for the dis D = K(x0, R):
∆u(x) = 0, x ∈ D,

∂u

∂n
(y) = g(y) y ∈ Γ = ∂D, (22)where n is the external normal vetor.The Poisson type formula in polar oordinates entered at x0 has the form [45℄

u(r, θ) = − 1

2π

2π
∫

0

ln(1 − 2ρ cos(θ − ϕ) + ρ2) g(ϕ) dϕ + const (23)where ρ = r/R, and const is an arbitrary onstant whih we further take equal to zero.As in the Dirihlet problem, here the eigen-value property of the kernel (see (10) plays the ruialrole. By diret evaluations we an prove that
− 1

2π

2π
∫

0

ln(1 − 2ρ cos(θ − ϕ) + ρ2)hk(ϕ) dϕ = λk hk(θ) (24)where
λ2k−1 = λ2k =

ρk

k
; hk = π−1/2 cos(kθ) ; h2k = π−1/2 sin(kθ),

k = 1, 2, 3, . . . (25)This an be easily proved by substituting the expansion [11℄
ln(1 − 2ρ cos(θ − ϕ) + ρ2) = −2

∞
∑

k=1

ρk

k
cos[k(θ − ϕ)]in (24).From this, we an derive the following result whih is a ounterpart of Theorem 1.Theorem 4. The solution of the Neumann problem (22) in a dis K(x0, R) with the Gaussianwhite noise boundary funtion g(y) is an inhomogeneous 2D Gaussian random �eld uniquelyde�ned by the orrelation funtion

Bu(ρ1, θ1; ρ2, θ2) = KNeum(ρ1ρ2; θ2 − θ1) =
1

π

∞
∑

k=1

ρk
1ρ

k
2

k2
cos k(θ2 − θ1) . (26)The random �eld u(r, θ) is homogeneous with respet to the angular oordinate θ, and its respetivedisrete spetral density has the form fθ(k) =

ρk
1ρk

2
πk2 k = 1, . . ..Moreover, if g is a homogeneous random proess with a orrelation funtion Bg(ψ

′) then theorrelation funtion of the solution is related to Bg by the onvolution
Bu(ρ1ρ2;ψ) =

1

2π

2π
∫

0

KNeum(ρ1ρ2;ψ − ψ′)Bg(ψ
′) dψ′ . (27)14
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Figure 3: Comparison of angular orrelations for Laplae and Neumann boundary onditions,for two di�erent values of the radii (left panel). Radial orrelation funtion for the Neumannboundary onditions (right panel).Proof. The proof of (26) is essentially the same as in the ase of Dirihlet problem. Theorrelation funtion Bu is written in the form of a onvolution, i.e.,
Bu = K1(ρ1;ψ) ∗ K1(ρ2;ψ − (θ1 − θ2))where K1(ρ;ψ) = ln(1− 2ρ cos(ψ) + ρ2). Then we take the Fourier transform of both parts, anduse the Fourier transform property for onvolutions. This yields fθ(k) = ρk

1 ρ
k
2/πk

2 whih is thedesired result. The proof of (27) follows basially the same sheme, and repeats the sheme givenin the proof of Theorem 3.From these onsiderations, we an �nd the eigen-values and eigen-funtions of the orrelationfuntion. These are
λ2k−1 = λ2k =

1

k2 (2k + 1)
; k = 1, 2, 3, . . . (28)

h2k−1(ρ, ϕ) =
√

2k + 1 ρk cos(kθ)

π1/2
; h2k(ρ, ϕ) =

√
2k + 1 ρk sin(kθ)

π1/2
.This leads to the Karhunen-Loève expansion (26). The random �led is therefore written asfollows

u(r, θ) =
1√
π

∞
∑

k=1

ρk

k

[

ξk cos(k θ) + ηk sin(k θ)
]

.We ompare in Figure 3 the angular orrelations for the Laplae and Neumann boundary on-ditions (left panel), and show the radial behaviour of the orrelation funtion for the solution ofthe Neumann problem (right panel).2.4 Upper half-plane.Let us onsider the Dirihlet problem in the half-plane:
∆u(x) = 0, x ∈ D+, u(y) = g(y) y ∈ Γ = ∂D+, (29)15



where the domain D+ is the upper half-plane with the boundary Γ = {(x, y) : y = 0}.The Poisson formula reads [45℄
u(x) =

y

π

∞
∫

−∞

g(ξ) dξ

(x− ξ)2 + y2
. (30)Diret evaluation of the ovariane funtion B(x1, y1;x2, y2) even in the ase when the funtion

g(ξ) is a white noise meets some tehnial di�erene in omparison to the dis,
B(x1, y1;x2, y2) =

y1 y2

(π)2

∞
∫

−∞

dξ

[(x1 − ξ)2 + y2
1][(x2 − ξ)2 + y2

2]
. (31)Therefore, we use the Fourier transform tehnique. Let us introdue the notation for the kernel

Kp(η, y) =
y

η2 + y2
(32)so that the ovariane is written in the form of onvolution

B(x1, y1;x2, y2) = Kp(η, y1) ∗Kp(η − (x2 − x1), y2) ,and the Fourier transform yields FB = FK(·,y1) · FK(·,y2). Sine [11℄
FK(·,y) =

y

π

∞
∫

−∞

cos(kx) dx

y2 + x2
= e−|k|y ,we get FB = e−|k|(y1+y2). Inverse Fourier transform �nally yields [11℄

B(x1, y1;x2, y2) = F−1(e−|k|(y1+y2)) =
1

π

y1 + y2

(y1 + y2)2 + (x1 − x2)2
. (33)Now we need to solve the eigen-value problem for the ovariane operator:

∞
∫

0

dy2

∞
∫

−∞

y1 + y2

π

hk(x2, y2) dx2

(y1 + y2)2 + (x1 − x2)2
= λk hk(x1, y1) . (34)Here we annot apply the lassial Hilbert-Shmidt theory sine the proess is de�ned on theunbounded domain D+. Therefore, we an apply the ut-o� approah desribed in setion 1.2.Indeed, the orrelation funtion (33) is partially homogeneous, with respet to the horizontaloordinate x.Through a Fourier analysis we �nd that the partial spetrum is S(k) = exp(−k(y1 + y2), andthe eigen-funtions are the Fourier modes. Thus as disussed in setion 1.2,

λk ≈ S(ωk) = S(πk/a) = exp{−πk(y1 + y2)/a},and the spetral approximations are
Bu ≈ B̃a(x1, y1;x2, y2) =

∞
∑

k=1

1

a
e−

πk
a

(y1+y2) cos
[πk(x2 − x1)

a

]

, (35)16
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u ≈ ũa(x, y) =

∞
∑

k=1

1√
a

exp{−π ky/a} [ξk cos[π k x/a)] + ηk sin[π k x/a)] (36)where ξk and ηk are two mutually independent families of standard Gaussian random variables.Thus introduing the ut-o� we an �nd the orthonormal set of eigen-funtions of the eigen-valueproblem for the orrelation operator (34):
h2k−1(x, y) =

cos(πkx/a)√
a

√

2π k

a
e−

πky

a , h2k(x, y) =
sin(πkx/a)√

a

√

2π k

a
e−

πky

a ,

λ2k−1 = λ2k =
a

2π k
, k = 1, 2, . . . , .Note that the ut-o� parameter a should be hosen large enough.For illustration, we present in Figure 4 the approximation (35) for 3 di�erent values of a omparedagainst the exat representation (33). The numerial onvergene is learly seen as the ut-o�parameter inreases. Obviously, as mentioned at the end of setion 1.2, the larger a, the largerthe number of retained terms n, so that n ∼ a/ε where ε is the approximation error.Finally we notie that the Theorem 3 proved above for the ase of a dis holds also for thehalf-plane where the kernel K(ρ1ρ2; θ2 − θ1) should be replaed by the kernel (33). Thus if therandom funtion g de�ned on the axis x, {(x, y) : y = 0} is a homogeneous random proesswith the orrelation funtion Bg, then the orrelation funtion of the solution Bu(x1, y1;x2, y2) =

Bu(x2 − x1, y2 + y1) depends on x = x2 − x1 and y = y2 + y1, so Bu(x, y) is harmoni in D+,with the boundary onditions Bu|y→0 = Bg. We will show now that this is true indeed for ahalf-spae in any dimension. So let us give the result in more details. Here it is onvenient touse the boldfae hrater x for the horithontal oordinates, and y for the vertial one.17



Theorem 5. Let u(x, y), x = (x1, . . . xn−1) be a random �eld de�ned in the half-spae D+ =IRn
+ as a harmoni funtion with the boundary ondition u|y=0 = g where g is a zero meanhomogeneous random �eld on the boundary {y = 0} with the orrelation funtion Bg(x) whihis bounded in dimension n = 2, or tends to zero as |x| → ∞ if n > 2. Then Bu(x, y) =

Bu(x2 −x1, y1 + y2), the orrelation funtion of the solution, is a harmoni funtion in IRn
+, andis related to Bg by the Poisson type formula:

Bu(x2 − x1, y1 + y2) =
Γ(n/2)

πn/2

∫

∂D+

(y1 + y2)Bg(x
′) dS(x′)

[(x′ − (x2 − x1))2 + (y1 + y2)2]n/2
. (37)The proof is obtained by the same Fourier transform tehnique we used above.Remark 3. We remark that exatly as in the ase of a dis as disussed in Remark 2 to theTheorem 3, the same onvolution relation (37) is true for the ross-orrelation funtions, we needonly to write it for the kernel Kp: Bu1u2 = Kp ∗Bg1g2 . Note that in the n-dimensional ase, Kphas the form of the kernel given in (37).In pratie, it is often important to know the statistial struture of the gradient of the solution.Let us denote by Buxi

(x, y), i = 1, . . . , n−1, and Buy(x, y) the orrelation funtions of the partialderivatives of the solution u. They obviously also depend only on x = x2 − x1 and y = y1 + y2by the assumption that g is homogeneous. Diret evaluation gives
Buxi

= −∂
2Bu

∂xi
, i = 1, . . . , n− 1, Buy =

∂2Bu

∂2y
.Note that sine the orrelation funtion Bu is harmoni, this implies the following remarkableproperty: Buy =

n−1
∑

i=1
Buxi

. So in dimension two, Buy = Bux .3 3D Laplae equation.For a ball in 3D, all onsiderations are quite similar, where the eigen-funtions involved are thespherial harmonis. The regular solution to the harmoni equation in a 3D ball D(x0, R) ofradius R entered at a point x0 is represented by the Poisson integral formula as an integral overthe sphere S(x0, R) = ∂D(x0, R) [45℄:
u(x) =

R2 − r2

4πR

∫

S(x0, R)

g(y)dSy

|x− y|3/2for any point x ∈ D(x0, R), where r = |x− x0|.In spherial oordinates entered at x0 the Poisson formula reads
u(r, θ, ϕ) =

1 − ρ2

4π

2π
∫

0

π
∫

0

sin(θ′) g(θ′, ϕ′) dθ′ dϕ′

[1 − 2ρ cos(ψ) + ρ2]3/2
(38)where ρ = r/R, and ψ is the angle between the vetors s and s′, whih implies,

cos(ψ) = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) . (39)Let g be a zero mean random �eld de�ned on the sphere S(x0, R). It is alled isotropi, if itsorrelation funtion Bg(s, s
′) depends only on the angular distane between s and s′, i.e., only on18



the angle ψ as de�ned in (39). We say that a random �eld de�ned in a ball D(x0, R) is partiallyisotropi in the ball if it is isotropi with respet to the angular oordinates.The statement of Theorem 1 for the 3D ase an be formulated as follows.Theorem 6. The solution of the Dirihlet problem in the ball D(x0, R) with the white noiseboundary funtion g(y) is an inhomogeneous 3D Gaussian random �eld uniquely de�ned by theorrelation funtion
Bu = K3(ρ1ρ2;ψ12) ≡

1

4π

1 − ρ2
1ρ

2
2

[1 − 2ρ1ρ2 cos(ψ1,2) + ρ2
1ρ

2
2]

3/2
(40)where cos(ψ1,2) = cos θ1 cos θ2+sin θ1 sin θ2 cos(ϕ1−ϕ2) . The random �eld u(r, θ, ϕ) is partiallyisotropi in the ball, and its respetive disrete spetral density has the form fθ(0) = 1/4π,

fθ(k) = (ρ1ρ2)
k/2π, k = 1, . . .. Generally, if g is an isotropi random �eld on the sphere, theorrelation funtion of the solutions Bu is related to Bg by Bu(ρ1ρ2;ψ) = K3(ρ1ρ2;ψ−ψ′)∗Bg(ψ

′)whih implies that the solution u is partially isotropi in the ball, and the orrelation funtion
Bu is harmoni, with the presribed boundary funtion Bg.Proof. We use here also a series expansion method. Let us reall some de�nitions.The Legendre polynomials we denote by Pl(cos θ), - reall that these funtions are de�ned on
(−1, 1) as follows:

Pl(µ) =
1

2l l!

dl

dµl
(µ2 − 1)l, l = 0, 1, . . . .The assoiated Legendre polynomials Pm

l (µ), l = 0, 1, . . . ; m = 0, 1, . . . , l are de�ned via the
(m)-derivatives of Pl(µ) as follows

Pm
l (µ) = (1 − µ2)m/2P(m)(µ), l = 0, 1, . . . ; m = 0, 1, . . . , l .Then, the system of spherial harmonis funtions {Y m

l (θ, ϕ)}, l = 0, 1, . . . ; m = 0,±1,±2, . . . ,±lis de�ned as follows
Y m

l (θ, ϕ) = Pm
l (cos θ) cos(mϕ), m = 0, 1, 2, . . . , l;

Y m
l (θ, ϕ) = Pm

l (cos θ) sin(|mϕ|), m = −1,−2, . . . . (41)It is well known that this is a system of orthogonal funtions omplete in L2(S), and
||Y m

l ||2 =

π
∫

0

2π
∫

0

[Y m
l (θ, ϕ)]2 sin θ dθ dϕ = 2π

1 + δ0m

2l + 1

(l + |m|)!
(l − |m|)! .The following expansion is well known (e.g., see [45℄, [8℄):

K(ρ, ψ) ≡ 1 − ρ2

[1 − 2ρ cos(ψ) + ρ2]3/2
= 1 +

∞
∑

k=1

ρk (2k + 1)Pk(cos(ψ)) . (42)For brevity, let us introdue the notation for the unit vetors, s′, s1 and s2 de�ned by its diretionangles (θ′, ϕ′), (θ1, ϕ1), and (θ2, ϕ2), respetively, and let
(s′, s1) = cos(ψ1) = cos θ1 cos θ′ + sin θ1 sin θ′ cos(ϕ1 − ϕ′)

(s′, s2) = cos(ψ2) = cos θ2 cos θ′ + sin θ2 sin θ′ cos(ϕ2 − ϕ′) .19



In what follows, we will sometimes use a shorter notation for the integration over a surfaemeasure ds′ on a unit sphere:
∫

ds =

2π
∫

0

π
∫

0

sin(θ′)dθ′ dϕ′ .We use the expansion (42) in the following expliit evaluations:
Bu(ρ1, s1; ρ2, s2)

=
1

(4π)2

2π
∫

0

π
∫

0

(1 − ρ2
1)(1 − ρ2

2) sin(θ′) dθ′ dϕ′

[1 − 2ρ1 cos(ψ1) + ρ2
1]

3/2 [1 − 2ρ2ρ2 cos(ψ2) + ρ2
2]

3/2

=
1

(4π)2

∫

[

1+

∞
∑

k=1

ρk
1 (2k+1)Pk((s′, s1))

][

1+

∞
∑

k=1

ρk
2 (2k+1)Pk((s′, s2))

]

ds′

=
1

4π

[

1 +

∞
∑

k=1

(ρ1ρ2)
k (2k + 1)2

Pk((s1, s2))

2k + 1

]

. (43)Here we used the following property:
1

4π

∫

Pl((s, s1))Pk((s, s2))ds =
Pk((s1, s2))

2k + 1
δkl . (44)This an be derived from the following property

1

4π

∫

Pk((s, s
′))Y m

l (s′) ds′ =
1

2l + 1
Y m

l (s) δlk (45)whih in turn follows from
Pl((s, s

′)) =

l
∑

m=−l

κlm Y m
l (s)Y m

l (s′) . (46)Here the oe�ients are given by
κlm =

2

(1 + δ0m)

(l − |m|)!
(l + |m|)! . (47)Thus the last line of (43) gives the desired result (40) and the proof is omplete.Now we use the series representation (43) to solve the eigen-problem for the orrelation funtion

∫ 1

0
dρ2

∫

Bu(ρ1, s1; ρ2, s2)hl(ρ2, s2) ds2 = λl hl(ρ1, s1) . (48)The next assertion follows immediately from the properties (44)-(46).Theorem 7. The eigen-value problem (48) has a omplete set of orthonormal eigen-funtionsand the relevant eigen-values (l = 0, 1, . . . , m = −l, . . . , l):
λl =

1

2l + 1
, hl(ρ, s) =

√

κlm(2l + 1)

4π
Y m

l ·
√

2l + 1 ρl . (49)20



The KL-expansions of the orrelation funtion and the random �eld are given by
Bu(ρ1, s1; ρ2, s2) =

1

4π
+

1

4π

∞
∑

k=1

(2k + 1) ρk
1 ρ

k
2

{

k
∑

m=−k

κkm Y m
k (s1)Y

m
k (s2)

}

,

u(r, s) =
ξ0√
4π

+
1√
4π

∞
∑

k=1

√
2k + 1 ρk

{

k
∑

m=−k

ξkm
√
κkm Y m

k (s)
}

,where ξ0, {ξkm} are independent standard Gaussian random variables.4 Biharmoni equation.Let us onsider the following problem for a biharmoni equation in a dis D = K(x0, R), gov-erning a slow visous motion inside a irular ylinder of radius R [16℄:
∆u2(x) = 0, x ∈ D, u(y) = g0(y),

∂u

∂n
(y) = gn(y) y ∈ Γ = ∂D, (50)where n is the external normal vetor.In polar oordinates entered at x0 with ρ = r/R the Poisson type integral formula reads [31℄

u(r, θ) =
(1 − ρ2)2

2π

2π
∫

0

{

− R

2[1 − 2ρ cos(θ − ϕ) + ρ2]

}

gn(ϕ) dϕ

+
(1 − ρ2)2

2π

2π
∫

0

[1 − ρ cos(θ − ϕ)]

[1 − 2ρ cos(θ − ϕ) + ρ2]2
g0(ϕ) dϕ . (51)Assuming the random white noise exitations g0 and gn are independent, we deompose therandom �eld into two independent omponents: u = u(1) +u(2). Then, the ovariane of u is thesum of ovarianes of u(1) and u(2). From (51) we obtain

Bu = 〈u(r1, θ1)u(r2, θ2)〉 =
R2

4
(1 − ρ2

1)(1 − ρ2
2)B∆(ρ1, θ1; ρ2, θ2) (52)

+
1

(2π)2

2π
∫

0

(1 − ρ2
1)

2 (1 − ρ1 cos(θ1 − ϕ))

[1 + ρ2
1 − 2ρ1 cos(θ1 − ϕ)]2

· (1 − ρ2
2)

2 (1 − ρ2 cos(θ2 − ϕ))

[1 + ρ2
2 − 2ρ2 cos(θ2 − ϕ)]2

dϕwhere B∆ is the ovariane of the solution of the Dirihlet problem for the Laplae equationgiven in Theorem 1.To takle the seond term whih represents the ovariane of the seond omponent, u(2), we�rst remark that
1

2π

2π
∫

0

(1 − ρ2)2 (1 − ρ cos(θ − ϕ))

[1 + ρ2 − 2ρ cos(θ − ϕ)]2
cos(kϕ) dϕ =

[

1 +
k

2
((1 − ρ2)

]

ρk cos(kθ) (53)
1

(2π)

2π
∫

0

(1 − ρ2)2 (1 − ρ cos(θ − ϕ))

[1 + ρ2 − 2ρ cos(θ − ϕ)]2
sin(kϕ) dϕ =

[

1 +
k

2
((1 − ρ2)

]

ρk sin(kθ) . (54)21
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θ=k 2π/50Figure 5: Angular orrelation funtion for the biharmoni equation, ompared against theorrelation funtion for the Laplae equation with Dirihlet boundary onditions.This an be shown as follows. First we note that by di�erentiating with respet to ρ we obtainthe following useful equality

2
∞

∑

k=1

k ρk cos(kθ) = ρ
(

2
∞

∑

k=1

ρk cos(kθ)
)′

=
−4ρ2 + 2ρ3 cos θ + 2 ρ cos θ

[1 + ρ2 − 2ρ cos θ]2
.Now, ombining with the expansion (8) we �nd that the kernel in the eigen-value problem (53),(54) is represented as the following series

K(ρ; θ − ϕ) =
1

2π

(1 − ρ2)2 (1 − ρ cos(θ − ϕ))

[1 + ρ2 − 2ρ cos(θ − ϕ)]2
=

1 − ρ2

2π

∞
∑

k=1

k ρk cos[k(θ − ϕ)]

+
1

2π
+

1

π

∞
∑

k=1

ρk cos[k(θ − ϕ)]

=
1

2π
+

1

π

∞
∑

k=1

[(1 − ρ2) k

2
+ 1

]

ρk cos[k(θ − ϕ)] . (55)Substituting this representation in the eigen-value problem we arrive at (53), (54). The ovarianean be evaluated by substituting the series expansion (55) in (52). This yields
Bu(2) =

1

2π
+

1

π

∞
∑

k=1

[(1 − ρ2
1) k

2
+ 1

][(1 − ρ2
2) k

2
+ 1

]

ρk
1 ρ

k
2 cos[k(θ1 − θ2)] .Analogously to the ase of Laplae equation, we onsider the eigen-value problem for the ovari-ane kernel:

2π
∫

0

dθ1

1
∫

0

dρ1 Bu(2)(ρ1, θ1; ρ2, θ2)hk(ρ1, θ1) = λk hk(ρ2, θ2) . (56)22



Let us introdue the notation:
∆k =

1
∫

0

[(1 − ρ2) k

2
+ 1

]2
ρ2k dρ .Using the series expansion of the kernel, it is not di�ult to �nd that the eigen-value problemhas the following system of eigen-funtions and eigen-values:

λ0 = 1, h0 =
1√
2π

; λ2k−1 = λ2k = ∆k;

h2k−1(ρ, ϕ) =
[(1 − ρ2)k

2
+ 1

] ρk

√
∆k

· cos[k(θ)]

π1/2
;

h2k(ρ, ϕ) =
[(1 − ρ2)k

2
+ 1

] ρk

√
∆k

· sin[k(θ)]

π1/2
; k = 1, 2, . . .where the eigen-funtions are orthonormal to one another:

1
∫

0

2π
∫

0

hn(ρ, θ)hm(ρ, θ) dρ dθ = δnm .From this we �nally arrive at the Karhunen-Loève expansion
u(2)(r, θ) =

ξ0√
2π

+
1√
π

∞
∑

k=1

[(1 − ρ2) k

2
+ 1

]

ρk
[

ξk cos kθ + ηk sin kθ
]

. (57)The �rst omponent is obviously represented as u(1)(r, θ) = R(1−ρ2)
2 u(r, θ), where u(r, θ) ismodeled by the KL-expansion given in (13).In Figure 5 we show the angular behaviour of the orrelation funtion of the solution to thebiharmoni equation ompared against the orrelation funtion for the Laplae equation. Inboth ases, the orrelations are plotted for the �xed values of ρ taken equal to 0.5, and R = 1.5 Lamé equation. Plane elastiity problem.5.1 White noise exitations.Let us onsider the plane elastiity problem in the dis K(x0, R):

µ∆u(x) + (λ+ µ) grad divu(x) = 0, x ∈ K(x0, R),

u(y) = g(y), y ∈ S(x0, R) (58)where u = (u1, u2)
T is the displaement olumn-vetor whih is presribed on the boundary asa olumn-vetor g = (g1, g2)

T .Let us work in polar oordinates entered at x0, so that the point x is r ei θ, and on the boundary,
y = Rei ϕ, and as everywhere above, ρ = r/R.Let us reall that the kernel in the Poisson integral formula (5) for the Laplae equation givenexpliitly by (8), has in the polar oordinates the form

K(ρ; θ − ϕ) =
1

2π

1 − ρ2

1 − 2ρ cos(θ − ϕ) + ρ2
. (59)23



The Poisson type integral formula for the solution to the Lamé equation (58), derived in [34℄,an be rewritten as follows:
u(r ei θ) =

2π
∫

0

K(ρ; θ − ϕ)B(ρ; θ, ϕ)g(R ei ϕ) dϕ (60)where the matrix B has the form
B = I+

λ+ µ

λ+ 3µ









Q11 Q12

Q21 Q22








, (61)with the entries given expliitly by

Q11 = cos(2ϕ) − ρ cos(θ + ϕ) +
cos(2ϕ) − 2 ρ cos(θ + ϕ) + ρ2 cos(2θ)

1 + ρ2 − 2ρ cos(θ − ϕ)
, (62)

Q12 = sin(2ϕ) − ρ sin(θ + ϕ) +
sin(2ϕ) − 2 ρ sin(θ + ϕ) + ρ2 sin(2θ)

1 + ρ2 − 2ρ cos(θ − ϕ)
, (63)and Q22 = −Q11, Q21 = Q12, I being an identity matrix.This form of the Poisson type integral formula is simple and onvenient to use in numerialsimulations (e.g., see [35℄). However it is seen that in ontrast to all of the above onsideredases, the matrix kernel has loosed the nie property of depending only on the di�erene ofthe angles θ and ϕ. This property is ruial for our analysis. This in turn is related to theprobabilisti property of the solutions onsidered as random �elds, namely, that these solutionsare homogeneous with respet to the angular variable.From the physial and probabilisti points of view, it is lear that the solution of the Laméequation should be homogeneous with respet to the angular variable if the boundary funtionsare homogeneous random funtions, in partiular, when they are white noises. This means,we an try to �nd a transformation whih leads to a Poisson integral formula with a matrixkernel depending only on the di�erene θ − ϕ. It turns out that this an be done by a propertransformation of the vetor u = (u1, u2)

T to polar oordinates.So let us turn to the expansion of our displaement vetor u in polar oordinates
u = ur er + uθ eθ ,where er, eθ are unit vetors in diretions r and θ, respetively. Then, the vetors (u1, u2)

T and
(ur, uθ)

T are related through a rotation,








u1(r, θ)
u2(r, θ)








=









cos θ − sin θ
sin θ cos θ

















ur(r, θ)
uθ(r, θ)








, (64)and onversely,









ur(r, θ)
uθ(r, θ)








= RT

θ









u1(r, θ)
u2(r, θ)







where we use the notation for the rotation matrix
R θ =









cos θ − sin θ
sin θ cos θ








, (65)and RT

θ means the transpose to R θ. 24



Then, the Poisson integral formula (60) an be obviously rewritten as follows








ur(r, θ)
uθ(r, θ)








= RT

θ

2π
∫

0

K(ρ; θ − ϕ)









1 + βQ11 βQ12

β Q12 1 − β Q11








Rϕ









gr(R e
iϕ)

gθ(Re
i ϕ)








dϕ (66)where β = λ+µ

λ+3µ .After some transformations we ome to the desired form of the Poisson integral formula








ur(r, θ)
uθ(r, θ)








=

1

λ+ 3µ

2π
∫

0

K(ρ; θ − ϕ)









G11 G12

G21 G22

















gr(R e
iϕ)

gθ(Re
i ϕ)








dϕ (67)where the entries of the new matrix kernel G = G(θ − ϕ) are

G11 = [2(λ+ 2µ) cos(θ − ϕ) − (λ+ µ)ρ] + (λ+ µ)
cos(θ − ϕ) − 2ρ+ ρ2 cos(θ − ϕ)

1 + ρ2 − 2ρ cos(θ − ϕ)
,

G12 = 2µ sin(θ − ϕ) − (λ+ µ)
(1 − ρ2) sin(θ − ϕ)

1 + ρ2 − 2ρ cos(θ − ϕ)
,

G21 = − 2(λ+ 2µ) sin(θ − ϕ) − (λ+ µ)
(1 − ρ2) sin(θ − ϕ)

1 + ρ2 − 2ρ cos(θ − ϕ)
, (68)

G22 = [2µ cos(θ − ϕ) + (λ+ µ)ρ] − (λ+ µ)
cos(θ − ϕ) − 2ρ+ ρ2 cos(θ − ϕ)

1 + ρ2 − 2ρ cos(θ − ϕ)
.We are now in a position to formulate and solve the eigen-value problem for the integral operatorwith the matrix-kernel of the Poisson type integral (67)

L(ρ; θ − ϕ) =
1

λ+ 3µ
K(ρ; θ − ϕ)G(ρ; θ − ϕ) . (69)The eigen-value problem is written as the following system

2π
∫

0

L(ρ; θ − ϕ)









h1(ϕ)
h2(ϕ)








dϕ = λ









h1(θ)
h2(θ)








. (70)Theorem 7. The eigen-value problem (70) has the following system of eigen-values and eigen-funtions (k = 1, 2, . . . ) :

λ2k−1 = λ2k = ρk−1,









h1,2k−1

h2,2k−1








=









sin kθ
cos kθ








,









h1,2k

h2,2k








=









− cos kθ
sin kθ








,and for the ase k = 2, for λ3 = λ4 = ρ, there is a third eigen-funtion









h′1,3

h′2,3








=









1
1








.Proof. In the proof, we expand the matrix kernel in the Fourier series. In the expansion, wewill use the following formulae simply obtained via di�erentiations:25



1 − ρ2

1 + ρ2 − 2ρ cos θ
= 1 + 2

∞
∑

k=1

ρk cos (kθ) ,

ρ sin θ

1 + ρ2 − 2ρ cos θ
=

∞
∑

k=1

ρk sin (kθ) ,

ρ (cos θ − 2ρ+ ρ2 cos θ)

(1 + ρ2 − 2ρ cos θ)2
=

∞
∑

k=1

k ρk cos (kθ) ,

ρ sin θ (1 − ρ2)

(1 + ρ2 − 2ρ cos θ)2
=

∞
∑

k=1

k ρk sin (kθ) .Substituting these representations in the funtions (68), after some evaluations we obtain thefollowing series expansions for the kernel L:
L11 =

ρ

2π
+

1

2π (λ+ 3µ)

∞
∑

k=1

[

2µρ+
2(λ+ 2µ)

ρ
+
k (λ+ µ)(1 − ρ2)

ρ

]

ρk cos[k(θ − ϕ)] ,

L12 =
1

2π (λ+ 3µ)

∞
∑

k=1

[ 2µ

ρ
− 2µρ− k (λ+ µ)(1 − ρ2)

ρ

]

ρk sin[k(θ − ϕ)] ,

L21 =
1

2π (λ+ 3µ)

∞
∑

k=1

[

2(λ+ 2µ) ρ− 2(λ+ 2µ)

ρ
− k (λ+ µ)(1 − ρ2)

ρ

]

ρk sin[k(θ − ϕ)] ,

L22 =
ρ

2π
+

1

2π (λ+ 3µ)

∞
∑

k=1

[

2(λ+ 2µ) ρ+
2µ

ρ
− k (λ+ µ)(1 − ρ2)

ρ

]

ρk cos[k(θ − ϕ)] . (71)Note that eah of these series ould be written in the form of a power series a1ρ+a2ρ2 +a3ρ
3 +

. . . , however as we will see below, the form (71) is very onvenient when solving the eigen-valueproblem for the orrelation operator.Let us introdue the notations
λ11(ρ, k) =

1

2(λ+ 3µ)

[

2µρ+
2(λ+ 2µ)

ρ
+
k (λ+ µ)(1 − ρ2)

ρ

]

,

λ12(ρ, k) =
1

2(λ+ 3µ)

[ 2µ

ρ
− 2µρ− k (λ+ µ)(1 − ρ2)

ρ

]

,

λ21(ρ, k) =
1

2(λ+ 3µ)

[

2(λ+ 2µ) ρ− 2(λ+ 2µ)

ρ
− k (λ+ µ)(1 − ρ2)

ρ

]

,

λ22(ρ, k) =
1

2(λ+ 3µ)

[

2(λ+ 2µ) ρ+
2µ

ρ
− k (λ+ µ)(1 − ρ2)

ρ

]

. (72)From the expansions (71) we �nd that
26



2π
∫

0

L11(ρ; θ − ϕ)









sin kϕ
cos kϕ








dϕ = λ11(ρ, k) ρ

k









sin kθ
cos kθ








,

2π
∫

0

L12(ρ; θ − ϕ)









cos kϕ
sin kϕ








dϕ = λ12(ρ, k) ρ

k









sin kθ
− cos kθ








,

2π
∫

0

L21(ρ; θ − ϕ)









sin kϕ
cos kϕ








dϕ = λ21(ρ, k) ρ

k









− cos kθ
sin kθ








,

2π
∫

0

L22(ρ; θ − ϕ)









cos kϕ
sin kϕ








dϕ = λ22(ρ, k) ρ

k









cos kθ
sin kθ








. (73)Now, by substituting these equalities in the eigen-value problem (70) and taking into aountthat λ11(ρ, k) + λ12(ρ, k) = ρ−1, −λ21(ρ, k) + λ22(ρ, k) = ρ−1, we �nd the solution of the eigen-value problem for k = 1, 2 . . .. The existene of the eigen-funtion (1, 1)T for λ3 = ρ follows fromthe properties

2π
∫

0

L11(ρ; θ − ϕ) · 1 dϕ = ρ,

2π
∫

0

L22(ρ; θ − ϕ) · 1 dϕ = ρ,

2π
∫

0

L12(ρ; θ − ϕ) · 1 dϕ = 0,

2π
∫

0

L21(ρ; θ − ϕ) · 1 dϕ = 0 .The proof is omplete.We turn now to the derivation of the orrelation tensor of the solution,
Bu(ρ1, θ1; ρ2, θ2) = u(r1, θ1) ⊗ u(r2, θ2) ≡

〈









ur(r1, θ1)
uθ(r1, θ1)








(ur(r2, θ2) , uθ(r2, θ2)

〉 (74)assuming the boundary random vetor-funtion g has a Gaussian distribution spei�ed by thezero mean and ovariane tensor
Bg(ϕ1, ϕ2) =

〈









gr(ϕ1)
gθ(ϕ1)








(gr(ϕ2) , gθ(ϕ2)

〉

.We use here and in what follows the following notation for v⊗u, a tensor produt of two vetors:
v ⊗ u = vuT .The Poisson integral formula (67) reads









ur(r, θ)
uθ(r, θ)








=

2π
∫

0









L11(ρ; θ − ϕ) L12(ρ; θ − ϕ)
L21(ρ; θ − ϕ) L22(ρ; θ − ϕ)

















gr(Re
i ϕ)

gθ(Re
i ϕ)








dϕ . (75)Substituting this representation in (74) and hanging the relevant produt of integral expressionsby double integrals, we arrive at the following representation27



Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

L(ρ1; θ1 − ϕ′)Bg(ϕ
′, ϕ′′)LT (ρ2; θ2 − ϕ′′) dϕ′ dϕ′′ . (76)Let us again �rst onsider the ase when the boundary vetor-funtion g is a white noise, namely,assume that

Bg(ϕ1, ϕ2) =









δ(ϕ1 − ϕ2) 0
0 δ(ϕ1 − ϕ2)








. (77)Note that this property then holds also in retangular oordinates (see (95) below). Then, from(76) we obtain

Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

L(ρ1; θ1 − ϕ) LT (ρ2; θ2 − ϕ) dϕ . (78)Theorem 8. The exat Karhunen-Loève representations for the ovariane tensor and the ran-dom �eld (ur, uθ)
T whih solves the Lamé equation under the boundary white noise exitationswith the ovariane tensor (77) are given by

Bu(ρ1, θ1; ρ2, θ2) = (79)






























ρ1 ρ2

2π + 1
π

∞
∑

k=1

Λ11 ρ
k
1 ρ

k
2 cos [k(θ2 − θ1)]

1
π

∞
∑

k=1

Λ12 ρ
k
1 ρ

k
2 sin [k(θ2 − θ1)]

1
π

∞
∑

k=1

Λ21 ρ
k
1 ρ

k
2 sin [k(θ2 − θ1)]

ρ1 ρ2

2π + 1
π

∞
∑

k=1

Λ22 ρ
k
1 ρ

k
2 cos [k(θ2 − θ1)]































Λ11 = λ11(ρ1, k)λ11(ρ2, k) + λ12(ρ1, k)λ12(ρ2, k),

Λ12 = λ11(ρ1, k)λ21(ρ2, k) − λ12(ρ1, k)λ22(ρ2, k),

Λ21 = λ22(ρ1, k)λ12(ρ2, k) − λ21(ρ1, k)λ11(ρ2, k),

Λ22 = λ22(ρ1, k)λ22(ρ2, k) + λ21(ρ1, k)λ21(ρ2, k) , (80)and
ur(r, θ) =

ξ0 ρ

2π
+

1

π

∞
∑

k=1

λ11 ρ
k
[

ξk cos kθ + ηk sin kθ
]

+
1

π

∞
∑

k=1

λ12 ρ
k
[

− η′k cos kθ + ξ′k sin kθ
]

, (81)
uθ(r, θ) =

ξ′0 ρ
2π

+
1

π

∞
∑

k=1

λ21 ρ
k
[

− ηk cos kθ + ξk sin kθ
]

+
1

π

∞
∑

k=1

λ22 ρ
k
[

ξ′k cos kθ + η′k sin kθ
]

, (82)where {ξk, ηk} and {ξ′k, η′k}, k = 0, 1, 2, . . . are two independent families of standard independentgaussian random variables. Thus the random �eld is homogeneous with respet to the angularvariable, and the respetive partial spetra are: Smm(k) = 1
πΛmmρ

k
1ρ

k
2, Smm(0) = ρ1ρ2/2π, andfor n 6= m the spetrum is pure imaginary: Smn(k) = i 1

πΛmnρ
k
1ρ

k
2 .28



Proof. To get the expansion of the orrelation tensor (79), we substitute the expansions (71) in(78) and use the eigen-funtion properties (73).To onstrut the expliit simulation formula (81), (82) for our random �eld, we �rst split it intotwo independent Gaussian random �elds:
u(r, θ) = V1(r, θ) + V2(r, θ) .We will show now that for eah of these random �elds we an obtain a Karhunen-Loève expansion.We introdue four single mode vetor funtions

h1k(ρ, θ) =









λ11(ρ, k) cos kθ
λ21(ρ, k) sin kθ








, h̃1k(ρ, θ) =









λ11(ρ, k) sin kθ
−λ21(ρ, k) cos kθ








, (83)

h2k(ρ, θ) =









−λ12(ρ, k) cos kθ
λ22(ρ, k) sin kθ








, h̃2k(ρ, θ) =









λ12(ρ, k) sin kθ
λ22(ρ, k) cos kθ








. (84)Here the modes are indexed by k = 1, 2 . . ., while the subindexes 1 and 2 stand for the �rst andseond series of eigen-funtions.Note that these vetors are pairwise orthogonal:

∫ 1

0
dρ

∫ 2π

0
dθ h1k · h̃1k = 0,

∫ 1

0
dρ

∫ 2π

0
dθ h2k · h̃2k = 0,as well as the two following vetors are orthogonal:

h0 =











ρ√
2π

0











. h̃0 =











0
ρ√
2π











.It is now a matter of tehnial evaluations to �nd that the orrelation tensor an be representedin the form:
Bu(ρ1, θ1; ρ2, θ2) = h0(ρ1) · hT

0 (ρ2) (85)
+

1

π2

∞
∑

k=1

{h1k(ρ1, θ1)h
T
1k(ρ2, θ2) + h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2)} ρk

1 ρ
k
2

+h̃0(ρ1) · h̃T
0 (ρ2) (86)
+

1

π2

∞
∑

k=1

{h2k(ρ1, θ1)h
T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2)}ρk

1 ρ
k
2 .This follows from the easily veri�ed representation

h1k(ρ1, θ1)h
T
1k(ρ2, θ2) + h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2) =









λ11(ρ1, θ1)λ11(ρ2, θ2) cos[k(θ2 − θ1)] λ11(ρ1, θ1)λ21(ρ2, θ2) sin[k(θ2 − θ1)]
−λ21(ρ1, θ1)λ11(ρ2, θ2) sin[k(θ2 − θ1)] λ21(ρ1, θ1)λ22(ρ2, θ2) cos[k(θ2 − θ1)]







and
h2k(ρ1, θ1)h

T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2) =









λ12(ρ1, θ1)λ12(ρ2, θ2) cos[k(θ2 − θ1)] −λ12(ρ1, θ1)λ22(ρ2, θ2) sin[k(θ2 − θ1)]
λ22(ρ1, θ1)λ12(ρ2, θ2) sin[k(θ2 − θ1)] λ22(ρ1, θ1)λ22(ρ2, θ2) cos[k(θ2 − θ1)]








.29



So we an see from (85) that the �rst and the seond pairs of lines present the ovarianes of the�rst and seond vetors in our splitting, respetively:
Bu = 〈u(r1, θ1) · uT (r2, θ2)〉 = 〈V1(r1, θ1) ·VT

1 (r2, θ2)〉 + 〈V2(r1, θ1)V
T

2 (r2, θ2)〉 ,thus,
BV1 = h0(ρ1) · hT

0 (ρ2)

+

∞
∑

k=1

{h1k(ρ1, θ1)h
T
1k(ρ2, θ2)h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2)} ρk

1 ρ
k
2 ,

BV2 = h̃0(ρ1) · h̃T
0 (ρ2)

+
∞

∑

k=1

{h2k(ρ1, θ1)h
T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2)}ρk

1 ρ
k
2where BV1 = 〈V1(r1, θ1) ·VT

1
(r2, θ2)〉 BV2 = 〈V2(r1, θ1)V

T
2

(r2, θ2)〉 .Note that eah part, i.e., BV1 and BV2 , is represented as an orthogonal-mode expansion. There-fore, we an onstrut a KL-expansion for our random �elds V1 and V2.We have not yet normalized the eigen-funtions. We an do it through dividing the angularmodes by √
π, and the radial modes by ∆1(k) =

∫ 1
0 (λ2

11 + λ2
21) ρ

2k dρ, the �rst family of eigen-funtions (83), and by ∆2(k) =
∫ 1
0 (λ2

12 + λ2
22) ρ

2k dρ , the seond family of eigen-funtions (84).We then ollet the orthonormal eigen-modes in one family:
H(1)

2k−1 =
1

√

∆1(k)π
h1k(ρ, θ), H(1)

2k =
1

√

∆1(k)π
h̃1k(ρ, θ), k = 1, 2, . . .and

H(2)
2k−1 =

1
√

∆2(k)π
h2k(ρ, θ), H(2)

2k =
1

√

∆2(k)π
h̃2k(ρ, θ), k = 1, 2, . . .Then, the orthonormal funtions H(1)

k and H(2)
k are eigen-funtions of the ovariane tensors BV1and BV2 , respetively, with the orresponding eigen-values ∆1(k) and ∆2(k):1

∫

0

2π
∫

0

BVm · H(m)
k (ρ2, θ2) dρ2 dθ2 = ∆m(k)H(m)

k (ρ1, θ1) , m = 1, 2 .We an now onstrut a KL-expansion for the random �eld V1(r, θ) in the form
V1(r, θ) =

∞
∑

k=1

ζkH(1)
k (ρ, θ)where ζk are gaussian random variables suh that

〈ζkζj〉 = ∆1(k) δjk ,and the same for V2(r, θ).Putting these expansions together we �nally arrive at the desired representation
ur(r, θ) =

ξ0 ρ

2π
+

1

π

∞
∑

k=1

λ11 ρ
k
[

ξk cos kθ + ηk sin kθ
]

+
1

π

∞
∑

k=1

λ12 ρ
k
[

− η′k cos kθ + ξ′k sin kθ
]

,30
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Figure 6: Correlations B11 (left panel) and B22 (right panel) for the Lamé equation, for di�erentvalues of the elastiity parameter α; ρ1 = ρ2 = 0.3.
uθ(r, θ) =

ξ′0 ρ
2π

+
1

π

∞
∑

k=1

λ21 ρ
k
[

− ηk cos kθ + ξk sin kθ
]

+
1

π

∞
∑

k=1

λ22 ρ
k
[

ξ′k cos kθ + η′k sin kθ
]where {ξk, ηk} and {ξ′k, η′k}, k = 0, 1, 2, . . . are two independent families of standard independentgaussian random variables.Finally note that the spetra given in the theorem are obtained immediately from the represen-tation (79). This ompletes the proof of Theorem 8.It is interesting to note that we ould obtain these expressions by substituting formally a gener-alized representation of the boundary white noises on the irle

g1(ϕ) =
ξ0
2π

+
1

π

∞
∑

k=1

[

ξk cos kϕ+ ηk sin kϕ
]

g2(ϕ) =
ξ′0
2π

+
1

π

∞
∑

k=1

[

ξ′k cos kϕ+ η′k sin kϕ
]into the Poisson formula (67) with the kernels given by the series expansions (71). But thejusti�ation would then need to work with generalized stohasti proesses.In the Figure 6 - 10 presented below we show the longitudinal orrelation funtion B11, thetransverse orrelation funtion B22, and the ross-orrelation funtions B12 and B21, in polaroordinates, as well as in retangular oordinates. Figure 6 presents the angular behaviour of B11for 5 di�erent values of the elastiity onstant α (left panel), and the same for B22 (right panel).The relevant ross-orrelations are shown in Figure 7. The radial behaviour of B11 and B22 isshown in Figure 8. As is learly seen from all these urves, the angular behaviour is periodi.When plotting these funtions in retangular oordinates, we get a ompliated behaviour shown31
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Figure 7: Correlations B12 (left panel), for di�erent values of the elastiity parameter α. Thesame urves are shown in the right panel, superimposed by the relevant orrelations B21; ρ1 =

ρ2 = 0.3.
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in Figures 9 -10, where the orrelations depend on the starting angle θ; we present the urvesfor di�erent values of θ, see Figures 9 and 10.5.2 General ase of homogeneous exitations.We have so far onsidered the ase when the boundary funtions g1 and g2 are two independentwhite noise proesses. We will see now that the general ase when g1 and g2 are some arbitrarydependent homogeneous proesses, is basially derived from the white noise ase.Thus assume we are given two homogeneous zero mean proesses g1 and g2 with the orrelationtensor Bg(ϕ2 − ϕ2), with the entries Bg,ij, i, j = 1, 2. As shown above, the orrelation tensorof the solution Bu is related to Bg by the double integral representation (76). Changing theintegration variable ϕ′′ to a new integration variable ψ by ϕ′′ − ϕ′ = ψ we obtain from (76) for
u = (uρ, uθ)

T :
Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

L(ρ1; θ1 − ϕ′)Bg(ψ)LT (ρ2; θ2 − ψ − ϕ′) dϕ′ dψ . (87)The idea is now to evaluate expliitly the inner integral with respet to ϕ′ using the seriesexpansions for the kernel L(ρ, θ) given above in (71). We now rewrite the relation (87) in adi�erent form. We onstrut from the orrelation tensor Bu a olumn-vetor funtion B̂u asfollows B̂u = (Bu,11, Bu,12, Bu,21, Bu,22)
T . Analogously, we use the notation B̂g for the olumn-vetor B̂g = (Bg,11, Bg,12, Bg,21, Bg,22)

T .Using this notation, we an rewrite (87) as follows
B̂u(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

L(ρ1; θ1 − ϕ′) ⊗ L(ρ2; θ2 − ψ − ϕ′) B̂g(ψ) dϕ′ dψ . (88)Here we denote by ⊗ a tensor produt of two matries whih is de�ned in our ase as a 4 × 4matrix, represented as a 2×2-blok matrix eah blok being a 2×2 matrix of the form Lij(ρ1; θ1−
ϕ′)L(ρ2; θ2 − ψ − ϕ′), i, j = 1, 2.We will now evaluate expliitly all the 16 entries aij of the matrix

A =

2π
∫

0

L(ρ1; θ1 − ϕ′) ⊗ L(ρ2; θ2 − ψ − ϕ′) dϕ′ . (89)Substituting the series representation of the matrix L given by (71) in (89) we obtain after along but simple alulations
a11 =

ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ11(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a12 =
1

π

∞
∑

k=1

λ11(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a13 = − 1

π

∞
∑

k=1

λ12(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a14 =
1

π

∞
∑

k=1

λ12(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)] (90)34



a21 =
1

π

∞
∑

k=1

λ11(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a22 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ11(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a23 =
1

π

∞
∑

k=1

λ12(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a24 = − 1

π

∞
∑

k=1

λ12(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)] (91)

a31 = − 1

π

∞
∑

k=1

λ21(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a32 =
1

π

∞
∑

k=1

λ21(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a33 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ22(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a34 =
1

π

∞
∑

k=1

λ22(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)] (92)

a41 =
1

π

∞
∑

k=1

λ21(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a42 = − 1

π

∞
∑

k=1

λ21(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a43 =
1

π

∞
∑

k=1

λ22(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a44 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ22(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)] . (93)Thus we see from these formulae that the entries of the matrix A depend on the di�erene

θ = θ2 − θ1, hene the orrelation tensor Bu also depends on θ = θ2 − θ1, and from (88), (89) wearrive at the desired onvolution representation
B̂u(ρ1, ρ2; θ) =

2π
∫

0

A(ρ1, ρ2; θ − ψ) B̂g(ψ) dψ . (94)Note that if the boundary orrelation tensor Bg is given by its spetral expansion, we an expressthe orrelation tensor of the solution through the spetra. For instane, assuming the spetraltensor is real-valued, so that
Bg,ij(ϕ

′′ − ϕ) =
fij(0)

2π
+

1

π

∞
∑

k=1

fij(k) cos k(ϕ′′ − ϕ′) , i, j = 1, 2 ,35



we an derive a general formula for the ovariane tensor by substituting this expansion in (87).After routine evaluations we obtain the general formulae
B11 =

f11(0) ρ1 ρ2

2π
+

1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
11 cos[k(θ2 − θ1)] + Λs

11 sin[k(θ2 − θ1)]
)

,

B12 =
1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
12 cos[k(θ2 − θ1)] + Λs

12 sin[k(θ2 − θ1)]
)

,

B21 =
1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
21 cos[k(θ2 − θ1)] + Λs

21 sin[k(θ2 − θ1)]
)

,

B22 =
f22(0) ρ1 ρ2

2π
+

1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
22 cos[k(θ2 − θ1)] + Λs

22 sin[k(θ2 − θ1)]
)

,where
Λc
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22 .Here we use the notations λm

ij = λij(ρm, k), m = 1, 2.Remark 3.Note that using the relation between the vetors in polar and retangular oordinates,
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we an easily relate the desired statistial harateristis in these two oordinate systems. Forexample, the ovariane tensors are related as follows
B(u1,u2)(ρ1, ρ2; θ1, θ2) = R θ1 B(ur ,uθ)(ρ1, ρ2; θ1, θ2)RT

θ2
(95)The KL-expansion in the retangular oordinates is also obtained diretly from the KL-expansionof the random �eld in the polar oordinates on the basis that the eigen-funtions are related by

hrectangular = R θ hpolar and h̃rectangular = R θ h̃polar.Let us write down here the relation (95) in details. We denote the entries of the ovarianematrix B(u1,u2) by Brec
ij , and the entries of the ovariane matrix B(ur,uθ) by Bpol

ij . From (95) weobtain
Brec

11 =cos θ1 cos θ2B
pol
11 −cos θ1 sin θ2B

pol
12 −sin θ1 cos θ2B

pol
21 +sin θ1 sin θ2B

pol
22 ,
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11 +cos θ1 cos θ2B
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pol
22 ,
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21 =sin θ1 cos θ2B

pol
11 −sin θ1 sin θ2B

pol
12 +cos θ1 cos θ2B

pol
21 −cos θ1 sin θ2B

pol
22 ,

Brec
22 =sin θ1 sin θ2B

pol
11 +sin θ1 cos θ2B

pol
12 +sin θ2 cos θ1B

pol
21 +cos θ1 cos θ2B

pol
22 .This representation learly shows that the property that the ovariane funtions Bpol

ij all dependonly on the angle di�erene θ2 − θ1 does not generally hold for the ovariane funtions Brec
ij . Itis however seen that Brec

ij will depend only on θ2−θ1 if (ur, uθ) is homogeneous, and Bpol
11 = Bpol

22 .36
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