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Abstract

In this paper we deal with elliptic boundary value problems with random bound-
ary conditions. Solutions to these problems are inhomogeneous random fields which
can be represented as series expansions involving a complete set of deterministic
functions with corresponding random coefficients. We construct the Karhunen-Loéve
(K-L) series expansion which is based on the eigen-decomposition of the covariance
operator. It can be applied to simulate both homogeneous and inhomogeneous ran-
dom fields. We study the correlation structure of solutions to some classical elliptic
equations in respond to random excitations of functions prescribed on the boundary.
We analyze the stochastic solutions for Dirichlet and Neumann boundary conditions
to Laplace equation, biharmonic equation, and to the Lamé system of elasticity
equations. Explicit formulae for the correlation tensors of the generalized solutions
are obtained when the boundary function is a white noise, or a homogeneous random
field on a circle, a sphere, and a half-space. These exact results may serve as an ex-
cellent benchmark for developing numerical methods, e.g., Monte Carlo simulations,
stochastic volume and boundary element methods.

1 Introduction.

Boundary value problems with random coefficients, parameters, random source terms, stochas-
tically distributed boundary functions, or even with randomly moving boundaries are used as a
powerful instrument in modern science and technology. We mention here applied fields such as
structural mechanics, composite materials |2], porous media and soils [6], [33], [17], [49], biological
tissues [47], geodesy [30], [40], turbulence [48], [3], [19], [31], etc.

In engineering related stochastic boundary value problems, the common computational tech-
niques include Monte Carlo methods, stochastic finite elements, finite difference, and spectral
methods. Among these methods, the finite volume and boundary element techniques are the
methods most adaptable to problems in solid and structural mechanics characterized with highly
irregular and complex structures [2], [9], [43]. We mention also classical potential problems deal-
ing with random boundary conditions and sources [7| where the Monte Carlo methods are very
efficient (e.g., see [31], [37], [35]), [36]). In electrical impedance tomography [13| important
problem is to evaluate a global response to random boundary excitations, and to estimate local
fluctuations of the solution fields. Similar analysis is made in the inverse problems of elastog-
raphy [25], [32], recognition technology [10], acoustic scattering from rough surfaces 46|, fluid
dynamics [1], and reaction-diffusion equations with white noise boundary perturbations [42].

It should be noted that the numerical simulation methods for stationary processes and homoge-
neous Gaussian random fields are well developed, and the most convenient and probably most
often used are methods based on the spectral representations (e.g., see [41], [9], [31], [20], [19]).
The most common simulation method for inhomogeneous random processes and fields is based on
the Karhunen-Loéve (K-L) expansion, also known as a proper orthogonal decomposition (POD),
a series representation consisting of eigen-functions as the orthogonal basis (e.g., see |2], [15], [21],



[3], [12], [26], [27]). The expansion is known to produce the most efficient representation among
all orthogonal bases for the Gaussian case. According to A.M. Yaglom’s personal communication,
the proper orthogonal decomposition was suggested independently by Kosambi [18], Loéve [21],
Karhunen [15], Pougachev |28, and Obukhov |24]. We also mention a comprehensive studies by
Van Trees [44], and A.M. Yaglom himself [48], and one generalization of K-L expansion for the
Wiener process |38, [39].

In this paper, we construct exact proper orthogonal decomposition for some classical boundary
value problems, for a disc, ball, and a half-plane, with a Dirichlet and Neumann boundary
conditions, where the boundary functions are white noise or homogeneous (27-periodic) random
processes. In case the boundary function is a white noise, the solutions are treated as generalized
random fields with the convergence in the proper spaces and relevant generalized treatment of
boundary conditions, e.g., see [29], [30], [40].

The paper is organized as follows. After a short description of the spectral and Karhunen-Loéve
expansions, we consider in Section 2 the 2D Laplace equation, with Dirichlet and Neumann
boundary conditions, for a disc and a half-plane. Generalizations to a three-dimensional case is
given in Section 3. In Section 4 we analyze the biharmonic equation for a disc. The plane elasticity
problem is presented in Section 5. For all these boundary value problems we find explicitly the
correlation functions, and give the Karhunen-Loéve expansion of the relevant random fields.

1.1 Spectral representations.

Let us first consider a real-valued zero mean homogeneous Gaussian [-dimensional vector random
field u(x) = (u1(x),...,uw(x))7, x € R? with a given covariance tensor B(r) with entries

Bij(r) = (ui(x + 1) u;(x)), 4,j=1,...1,
or with the corresponding spectral tensor F"

Fij(k) = /e_i%k'rBij(r) dr, Bj(r)= /ei27rr'kFij(k) dk . (1)
Rd Rd

We call also B;; a correlation tensor which is equivalent since we assume without loss of generality
that the random fields have zero means.

Often it is reasonable to assume [20] that the condition [ Zé’:l |Bjj(r)|dr < oo is satisfied
Rd

which ensures that the spectral functions Fj; are uniformly continuous with respect to k. Note
that a weaker assumption that B is squared integrable guarantees only the existence of the
spectral tensor in the space Lo.

Let Q(k) be an [ x n-matrix defined by Q(k)Q*(k) = F(k), Q(—k) = Q(k) . Here the star
stands for the complex conjugate transpose which is equivalent to taking two operations, the
transpose T, and the complex conjugation of each entry. Then the spectral representation of the
random field is written as follows (e.g., see [48])

a(x) = [ e Qo 2(dk )
R
where the column-vector Z = (Z1,...7Z,)T is a complex-valued homogeneous n-dimensional

white noise on R? with a unite variance and zero mean:

(Z(dK)) =0, (Zi(dky) Z;(dks)) = 6;; 6(ky — ko) dky dky, Z(—dk) = Z(dK) .
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Note that in the literature, different forms of the Fourier transform between the correlation and
spectral tensors are used. Along with (1), we will mainly use

1 . .
sz(k) = W /6_1 k'rBZ'j(I‘) dr, Bij(r) = /elr'kﬂj(k) dk, t,7=1,...1.

R4 R4

The spectral representation (2) is used in different numerical simulation methods, through a
deterministic or randomized evaluation of the stochastic integral in (2), see for instance [31],

[19], [20].

A straightforward evaluation of the stochastic integral (2) is based on the Riemann sums calcu-
lation with fixed cells (see, e.g. [41]). The integral is approximated by a finite sum

n

u(x) ~ Z [008(27rk2- -x)&; + cos(2mk; - x) ;]
i=1

where k; are deterministic nodes in the Fourier space, §; and 1, are Gaussian random vectors
with zero mean and relevant covariance. Efficient calculation of the above sum is usually carried
out by the fast Fourier transform which assumes that the nodes are chosen uniformly. It should
be mentioned that this scheme suffers from an artificially periodicity in the scale of 1/Ak where
Ak is the integration step in the Fourier space. In Randomized models, the nodes are chosen at
random, with an appropriate probability distribution so that the model has the desired correlation
structure (e.g., see [31], [19]).

Partially homogeneous random fields present an important class of random fields where
this approach can be efficiently used.

Let x = (y,2z), y € R", z € R™, and let V(x) = (v1(x),...,v(x))’. Assume that the random
field V(y, z) is homogeneous with respect to the variable y, i.e.,

(V(y1,21) V(y2,22)) = B(y1 — y2,21,22)) -

Random fields with this property are called partially homogeneous random fields [31]|. The partial
spectral tensor is defined by

f(A z1,29) = ! — /B(p,zl,ZQ)exp{—i()\,p)}dp.

(@m)"
e

It is not difficult to verify that for a general complex-valued random field V(x), which is partially
homogeneous,

Vi) = i e y))x(a)

its correlation tensor is equal to B(p,z1,22), if A is distributed according to a probability density
p(A) which can be chosen quite arbitrarily, and £y (A fixed) is a homogeneous [-dimensional
complex-valued random field with the correlation tensor f(X\,z1,22). A rigorous proof of this
statement is given in [31].



1.2 The Karhunen-Loéve expansion.

Let us now consider a real-valued inhomogeneous random field u(z), = € G defined on a
probability space (€2, A, P) and indexed on a bounded domain G. The case of unbounded domains
can also be treated, in particular, if the covariance tensor belongs to a class A defined in [4],
for which the corresponding covariance operator is compact and trace class. This important
generalization is based on the result due to I.M. Novitsky 23] (see also |5]). In section 2.4 we
deal with an unbounded domain when analysing the Dirichlet problem for the half-plane. To
simplify the notations, we will not use here and in what follows the boldface characters to denote
the vectors if not otherwise indicated. They will be essentially used in Section 5 for the vector
solution to the Lamé equation.

Assume (without loss of generality) that the field has a zero mean and a variance Fu?(x) that
is bounded for all z € G. The Karhunen-Loéve expansion has the form [48]

u(@) = 3V Aw & hala)
k=1

where Ay, and hy(z) are the eigen-values and eigen-functions of the covariance function B(z1, x2) =
(u(zq1) u(x2)), and & is a family of random variables.

By definition, B(z1,x2) is bounded, symmetric and positive definite. For such kernels, the
Hilbert-Schmidt theory says that the following spectral representation is valid

B(xyi,z2) = Z Ak b (1) hi (22)
k=1

where the eigen-values and eigen-functions are the solutions of the following eigen-value problem
for the correlation operator:

/B(:El,:ng)hk(:vl)dxl = A hi(a)
G

The eigen-functions form a complete orthogonal set [ h;(z)hj(z)dz = &;; where §;; is the Kro-
G

necker delta-function. The family {£x} is a set of uncorrelated random variables which are
obviously related to Ay by

sf%k!“(w)hk(x)dx, Eg =0, E&&=6;.

We mention also that the assumptions of the Hilbert-Schmidt can be weakened as it is done in
Mercer’s theorem. This will be discussed in section 2.

It is well known that the Karhunen-Loéve expansion presents an optimal (in the mean square
sense) convergence for any distribution of u(x). If u(x) is a zero mean Gaussian random field, then
{&k} is a family of standard Gaussian random variables. Some generalizations to non-gaussian
random fields are reported in [27].

Consider now a case when G is unbounded, e.g., a homogeneous random process u(x) is defined
on the whole real line R. The eigen-value problem reads

/B(xg — a;l) hk(xl)darl = )\k hk(xg) s —00 < X9 < OO . (3)
R



Note that we can take h(z) = e“? then from (3) we get

[e.9]

A= / By — 1) e @27 gy = S(w) .

—00

To make further considerations more rigorous, we assume that G is large but finite, and u is
periodic (e.g., see [22], [44]). Then, we may develop B(z2 — x1) in a Fourier series,

iL‘—$ Z)\kel27rk(x z') ] (4)

The eigen-value problem can then be solved via the unique representation

$—£L‘ Z)\ 6127rk:c —i2rka’ (5)

which imply that ¢!?™*® are the eigen-functions with eigen-values A\, = S(wy). And conversely,
if the eigen-functions are Fourier modes we can write the equality (5) which leads to (4).

Thus the correlation function B depends on the difference x — 2’ if and only if the eigen-functions
of the correlation operator are Fourier modes.

In our considerations this fact will be used in two-dimensional regions, when G is a disc, a
ball or a half-plane. The correlation function of a zero mean random process has the form
B(x,x') = B(z,y;z'y"). Suppose that our random process is homogeneous with respect to one
coordinate, say, B = B(x — 2’;y,y’). Then we can perform the above procedure over the x-
direction, and get a 1D eigen-value problem for every Fourier wavenumber. It means, we then
work with the partial spectral density.

Assume we deal with a homogeneous real-valued process on the whole line. Then it is possible to
cut-off the integration in the eigen-value problem, i.e., we have to solve the eigen-value problem
a

/B(xg - xl) h(xl) dxl = )\k hk(xg),

—a

where a is sufficiently large. Then it is possible to show (e.g., see [44]) that

1 .
Ae & S(wp) = S(mk/a) , hi(w) ~ o el (mhafa)

which yields an approximation

1 7Tl<: mk(xg —x
B(z1,22) = Ba(x1,x2) ZES —) cos (M> ,
k=1

a

and the K-L expansion approaches in this case to the spectral representation

u(z) i { ]1/2{§k cos[mkx/al + ny sin[ﬂkx/a]} .

k=1

The rate of convergence of the K-L expansion is closely related to the smoothness of the cor-

relation kernel and to ratio between the length ¢ and L, the correlation length of the process.

For example, in [22] is reported that for the particular case B(x1,z9) = o e lr2=21l/L an upper

bound for the relative error in variance € of the process represented by its K-L expansion is given
4 1a

by e < %7 where n is the number of retained terms.
™™= n



2 Stochastic boundary value problems for the 2D Laplace
equation.

Let us start with the two-dimensional boundary value problems for the Laplace equation. We
are interested in the statistical structure of the solution when the solution (Dirichlet boundary
conditions), or the normal derivative (Neumann boundary conditions) are homogeneous random
functions (g(y)) on the boundary. The basic idea is first to establish the Karhunen-Loéve ex-
pansion for the case when the boundary function g is a white noise, therefore, the solutions are
considered as generalized random fields. This expansion gives a smooth representation for the
solution and the correlation function inside the open disc, and the case of general homogeneous
boundary functions is immediately obtained from this expansion by a simple substitution of the
spectral expansion of the boundary random function g(z).

Before we start with the details for the Laplace equation, let us outline shortly the general
scheme. Assume we are given a stochastic Dirichlet boundary value problem for a linear elliptic
equation in a domain D with a boundary I" = dD:

Lu(x) = 0, T € D, U(x)‘x—wer = g(y)

where g(y) is a random field with zero mean and covariance function By (y1,v2) = (9(y1) 9(y2))-
We are interested in the covariance of the solution, By (z1,z2) = (u(z1) u(x2)).

Suppose that there exists a continuous normal derivative of the Green function on the boundary,

g—g, so that the solution is represented by the Green formula:

ur) = [ 52 )gl) dS()

r

Using the Green formula representation for the solution in points x; and x2 we obtain

(1, 7) / / 1) <x2,y2>Bg<y1,y2>d5<yl>d5<y2>. (1)

If g is a white noise, By(y1,y2) = 6(y1 — y2), and we obtain formally from (1) that

Bueran) = [ 2w, )% 0, y) ast )

r

This representation shows that the covariance function By(x,z2) solves the boundary value
problem

L,B(z,z9) = 0, z,x9€ D,

0G
B($’$2)|I—>y€1—‘ = 8_n(x2,y)|yel“ 5 (3)

so that the solution of this problem at any point x = x1 € D yields By(x1,x2) for any fixed
x9 € D which defines well the covariance function for any two points x; and xo inside the
domain D. These formal considerations leave open the singularity problem of the correlation
function when both points tend to one point on the boundary, but the weak convergence to the
delta-function can be given in the framework of generalized solutions (e.g., see [29], [30], [40]).



2.1 Dirichlet problem for a 2D disc. White noise excitations.

Let us consider the Dirichlet boundary value problem for the Laplace equation
Au(z) =0, z€ D, uly)=g9gy) yel =0D, (4)

where the domain D is a disc K (x, R) centered at O = ¢, bounded by the circle I' = S(zo, R).
We denote the closed disc by K (xg, R) = K (29, R) U S(x0, R).

The regular solution to the harmonic equation is represented by the Poisson integral formula
[45]:

we) = BT [ A0
~ 27R |z —yl?
S(zo, R)

for any point z € K(xo, R), where r = |z — xo|.

We suppose that the boundary function g(y) is a zero mean Gaussian random field, homogeneous
or not, defined by its correlation function By(y1,y2) = (9(y1)g(y2)). In case g is homogeneous,
it is alternatively defined by its spectral density function f(k) related to the correlation function
By(y), y = y2 — y1, by the Fourier transform

f(k) = %/Bg(y)e—i(yk) dy , Bg(y) — /f(k)el(yk) dk

When dealing with the homogeneous random processes g(¢) on the circle, we assume through-
out the paper that they are 2m-periodic, so the spectra are discrete, and the Fourier integral
transforms become Fourier series.

Let us start with the case when the prescribed boundary function g is a Gaussian white noise,
By(y,y') = 6(y—y'), thus we deal in this paper with generalized random solutions which however
are smooth in the open domain (in a disc, ball, and a half-plane). The generalized treatment
of the convergence to the boundary functions can be explicitly described (e.g., see [29]) in more
general cases.

Let us introduce polar coordinates centered at xg, so that a point z is specified by (r,#), hence,
for two points, z1 = (r1,61), 2 = (12,02), and p1 =71/R, p2 = r2/R.

It is convenient then to rewrite the Poisson formula as follows

27
1-p° () de
0) = 5
u(r,6) 21 / 1 —2pcos(f — ) + p? (5)
0

where p = r/R.

Theorem 1. The solution of the Dirichlet problem (4) in a disc K(xg, R) with the white noise
boundary function g(y) is an inhomogeneous 2D Gaussian random field uniquely defined by its
correlation function

(1, 00) u(r2,02)) = Bu(pr, 01: 2. 03) — — il ©)
u\r ulr = ” , ; , —_
1,01 2,02 P1,Y1; p2,02 2W1_2p1p2008(92_01)+p%p%

which is harmonic, and it depends only on the angular difference 65 — 601 and the product of
radial coordinates pypy = rira/R%. The random field u(r,0) is thus homogeneous with respect



to the angular coordinate 0, and its partial discrete spectral density has the form fy(0) = 1/2m,
fok) = (prp2)*/m, k=1,....

Proof. We start by simple evaluations:

By, = (u(r1,601) u(rz, 62))

2m 2
_ <i / (R? =) glp)dp 1 / (R* —?) g() dg >
R2 —2Rrycos(01 — o) +m2 27 | R%Z—2Rrycos(fy — @)+ 12
0

/ / — 1) (R —13) (g(¢) g(¢")) dyp’ d”

(2m)?2 - 2R r1 008(01 ¢') + 12 [R? — 2R 79 cos(f2 — ") + r2]
_ 1 / 1—p? . 1—p2 do )

(2m)? , 1—2prcos(bh — ) +p12 1 —2pacos(a — @) +p2 7

Here we used the property of the white noise (g(¢') g(¢”)) = d(¢’ — ¢”).

This integral can be evaluated explicitly, and the result is given in (6). However we will obtain
it using Fourier series expansion which not only presents a simple derivation of (6), but yields
the spectrum of our random field, and the Karhunen-Loéve expansion.

Indeed, we start with the well known expansion [45]

K- 9)= =L —Zp coslk(0 ~ )] )

and proceed (7) as follows

2m
1 1N,
B, /{ £330t ok - >]} {% D o —90)]} dp
) —
1 ] 0o 2m
=+ Zp’f/cos[k‘(@l — @)K (p2; 02 — @) dyp
k=1
1 ] o 2T
=5 ;;p’f/[cos k61 cos ke + sin kb sin | K (pa; 02 — @) dop
=1 9
L1 Z E cos[k(81 — 0)] = — L= piry (9)
T o ™ 1p1p2 L 2r 1 —2p1pacos(fa — 01) + p2p3

Here we used the nice property of the integral operator with the kernel K(p;0 — ¢) that it has

the following system of eigen-values {\;} and the corresponding orthonormal eigen-functions
{hi(p)} complete in Ly(0,27):

1

M=1, ho=—, Mog_1=Nog =p",
0 0 NeT 2k—1 2k =P
hop—1 =71 Y2 cos(kb) ; hop =7~ Y?sin(kd), k=1,2,... . (10)



This can be verified by a direct substitution of the series expansion (8) into the eigen-value
problem

2
)
i/ (1 —p7) hi(p) dp = e hl6) (11)

2 ) 1—2pcos(0 — ) +p
0

So it remains to prove that our random field u(p,f) has a discrete partial spectral density,
fo(0) = 1/27, and

2m

1 _i _

fo(k) = %/Bu(ﬂl,el;m,@z)e 0700 40y — 01) = (prpo)¥/m, k=1,.... (12)
0

Actually this can be easily seen from the arguments given in (9). A direct proof follows from

the Fourier transform property for convolutions. Indeed, the representation (9) shows that the

correlation function B, is written in the form of a convolution, i.e.,

B, = K(pi;9) * K(pa;p — (61 — 02))
27

_ 1 / 1-p? ' 1—p3 i
(2m)? / (1 —2p1cos(yh) 4+ p}) (1 —2pzcos(th — (02 — 01)) + p3) '

Now we take the inverse Fourier transform of both parts, and use the Fourier transform property
for convolutions. This yields

fo(0) = 1/2m,  fo(k) = p ph/m
which is the desired result. Here we used the property [11]

1/ %) cos(kz) dv
2 1—2pcosa:+p —7
0

while the sin-transform is zero. Finally, the covariance function By (x1,22) is harmonic with
respect to both of its coordinates which follows from the general representation (3).

The proof is complete. O

Remark 1. The angular behaviour of the correlation function shows thus that the random field
is partially homogeneous. The radial behaviour is also interesting. Let us fix a direction, say the
line y = 0, then, B(z1,x2) = 1 ngixf, where 21 and x5 vary between —R and R. This shows
that if one of the points, z1, :172 is in the center of the disc, the covariance equals to a constant

value, 1/27.

For illustration, in Figure 1 we show the angular (left panel) and radial (right panel) behaviour
of the correlation function B,. The angular and radial functions are both plotted versus the
section number k, the number of sections being 50, so that § = k27w /50 (angular behaviour,
left panel), and x = k2R /50 (radial behaviour, right panel). The angular behaviour in the left
panel is shown for three different choices of the radii p; and po. The radial behaviour is given
for 6 different values of the value z1, the radius of the disc was 5, see the right panel in Figure
1. As expected, a low number of eigen-modes in the K-L expansion is enough to have a good
approximation; in Figure 2 we compare the K-L approximation against the exact result, taking
M =5 and M = 10 terms (left panel), and M = 2 and M =5 terms (right panel).
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Figure 1: Laplace equation, Dirichlet boundary conditions: angular correlations B,, for three
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Theorem 2. The Gaussian random field described in Theorem 1 has the following Karhunen-
Loéve type expansion

u(r,0) = \/5—0_ + T Zp & cos(k 9) + ny, sin(k0)] (13)

where {&}, {nk} are sets of mutually independent standard Gaussian random variables.

Proof. The idea of the proof appeals to Mercer’s theorem which states the following (e.g., see
[14]. Let U be a compact set in R%, and let K (s,t) be a symmetric Ly(U)-kernel with eigen-values
{A\n} and eigen-functions hy(t):

/K(S,t)hk(t)dt:)\khk(x) N k:1,2... .

Mercer’s Theorem. If a nonnull, symmetric Lo(U)-kernel K (s,t) is quasi-definite (i.e., when
all but a finite number of eigen-values are of one sign) and continuous, then the series > o2 oA

1s convergent, and
= Z Anhn(s) }_ln(t) ) (14)
n=0

where hy(t) be the complex conjugate of hy(t), and the series converges absolutely and uniformly

m U xU.

From this theorem, the Karhunen-Loéve expansion can be obtained (e.g., see [48]):

Let v(z) be a real-valued, zero mean, gaussian random field with continuous covariance function

K(x,y) which has Mercer’s expansion K(x,y) = > M\chi(x) hi(y). Then, under some regulary
k

conditions,
2) =Y VA hi(x) &, (15)
k=0

i Lo and a.s., where {gk}kel\/ 15 a sequence of independent and identically standard normally
distributed random variables.

Note that although our correlation function (9) is continuous everywhere inside the disc, it
increases infinitely as both points approach a point on the boundary, i.e., when 6; = 65, and
p1— 1, p2 — 1.

However our kernel, the covariance function (9), belongs to La(Kp), for each disc Ko(xo, po) C
K(x0,1), and we find from the expansion (9) that

/ B,dxdy < oo,
Ko(zo,p0)
and so the weak convergence as pgp — 1 can be proven.

Now we consider the eigen-value problem for the covariance function B,,:

— pins) hk(ﬂ1,91)d01
=AM h 0s) .
/ i / 21— 2p1p2 cos(fy — 01) + p3p3 k(P2 02)

Using the expansion (9) we find the eigen-functions and eigen-values:

11



1 1

=1, hg= —; Mp_1 =g = ———;
0 0 Jon 2k—1 %= o
i cos(k@) i sin((0)
hog—1(p, ) = V2k+1p —ip hak(p, ) = V2k + 1 p Ry
k=1,2,3,...
where the eigen-functions are orthonormal to one another:
1 27
/ / n(920) b (0,0) 8 = S
0 0
Thus the Karhunen-Loéve expansion (13) follows from the representation
o
u(r,0) = G v/ Ak hilp,0)
k=1
where ( is a family of standard independent Gaussian random variables.
The proof of Theorem 2 is complete. O

The explicit representation of our random field (13) is very convenient in practical simulations,
as well as in analytical evaluations of different statistical functionals.

Note that since our random field is homogeneous with respect to the angular variable, we can
also write down the relevant randomized spectral representation when p = p; = pa.

Indeed, we now let the discrete wave numbers k£ be randomly distributed with the distribution

1—p?
bk = 5 2"
p

L k=1,2,... .

Then the random field

&o n P
V2r \/7(1 = p?)
has the desired correlation function (6). Here &y, £ and 7 are standard independent Gaussian

variables. Further, to make the distributions close to Gaussian, in the spectral models one usually
takes independent sums of models (16) (e.g., see [31]).

u(r,0) = € cos(k ) +n sin(k6)] (16)

2.2 General homogeneous boundary excitations.

Assume now that a zero mean real-valued Gaussian random process g is defined on the circle by
its spectrum fj so that the covariance function reads

fo @ 1o
By(¢" =) =5+ =D frcos k(¢ —¢) .
k=1

Substituting this in (7) and using the series expansion of the kernel K (p;6 — ¢), we arrive at the
following series expansion for the covariance function By:

Bu(p1,01;p2,02) = f

0, I
o + ;kaplf Pk cos k(fy — 01) . (17)

k=1

12



Thus the generalization of the random filed representation (15) has the form

:\/%50

u(r, 0) N

+ \/LE 1; i oF & cos(k0) +n sin(k9)] . (18)

The result (17) is an indication that there should be a simple relation between the correla-
tion function B, and the correlation function B, of the homogeneous process g defined on the
boundary. Indeed, we present this relation below in Theorem 3.

The correlation function of the solution in the case when ¢ is a white noise, is given in (6). It
depends on the difference ¥ = 05 — 61, and on the product p1ps. Thus in the notation of Poisson
kernel given in (8) the correlation function (6) reads

1 1-pips
2m 1—-2p1pa cos(Y)+pips

By = K(p1p2; 1) (19)

Now we can give the desired relation between the correlation functions.

Theorem 3. Assume the boundary function g in the Diriclet problem (4) is a homogeneous
random process with a continuous correlation function Bg(v). Then the solution of the problem
(4) is partially homogeneous with respect to the angular coordinate, and its correlation function
By(p1,01; p2,02) depends on the angular difference 1 = 0y — 61 and the product pips, and is
explicitly given by the convolution B, = K x By, i.e., by the Poisson formula

2

Bulppait) = 5 [ K(pupasts = o) By(u) o (20)
0

which implies that the correlation function By(p,6) is harmonic in the unit disc, and it is the
unique solution of the Dirichlet boundary value problem

AB, =0, By|,.1=B,. (21)

Proof. To obtain (20), we turn to the proof of Theorem 1, and use in the double integral in (7)
the change of variable ¢ = ¢ — ¢/, use there the series expansions for the both Poisson kernels,
and perform the integration over ¢”. This yields (20).

Remark 2. From the proof it is clear that the same convolution relation result remains true if
two homogeneous and homogeneously correlated stochastic processes are given on the boundary.
Indeed, let g; and g2 be two homogeneous processes on the circle with zero mean and a cross-
correlation By, g, (02 — 01). Then the corresponding solutions u; and ug are also homogeneously
correlated, and the cross-correlation function By, is related to By, 4, by the same convolution
formula with the kernel K as in Theorem 3:  By,u, = K x By, g, -

Finally we note that from (18) we can derive the expressions for B,, and B,,, the correlation
functions for the derivatives u, and u, which is our case remarkably coincide:

1 & _
By, = Bu, :;kak%’f Leos[(k—1)6] .
k=1

13



2.3 Neumann boundary conditions.

Let us study the case when on the boundary, the normal derivative is prescribed, i.e., we consider
the inner problem for the disc D = K (xo, R):

Mu(@) =0, weD, Siy)=g(y) yeT =D, (22)

where n is the external normal vector.

The Poisson type formula in polar coordinates centered at xg has the form [45]

2
1
u(r,0) = 5 /ln(l —2pcos(f — @) + p*) g(p) dp + const (23)

where p = r/R, and const is an arbitrary constant which we further take equal to zero.

As in the Dirichlet problem, here the eigen-value property of the kernel (see (10) plays the crucial
role. By direct evaluations we can prove that

2w
—5- [ In(l = 2pcos(d — ) +p %) hie(p) dep = Ay, b (6) (24)
0
where
k
Aok_1 = Ao = %; hy = 7 1/? cos(k@) ; hop = /2 sin(k0),
k=1,2,3,... (25)

This can be easily proved by substituting the expansion [11]
In(1 — 2pcos(d — ) + p?) = —22— cos[k(f — )]
n (24).

From this, we can derive the following result which is a counterpart of Theorem 1.

Theorem 4. The solution of the Neumann problem (22) in a disc K(xo, R) with the Gaussian
white noise boundary function g(y) is an inhomogeneous 2D Gaussian random field uniquely
defined by the correlation function

1
Bu(p1, 015 p2,02) = Kneum(p1p2; 02 — 1) = — Z cos k(02 — 61) . (26)

The random field u(r,0) is homogeneous with respect to the angular coordinate 0, and its respective

k k
discrete spectral density has the form fo(k) = 282 k=1,....

k2
Moreover, if g is a homogeneous random process with a correlation function Bg(¢)') then the

correlation function of the solution is related to B, by the convolution

2

Bulprpri ) = 5- / K yeum(prp2i 0 — &) By(0') d' (27)

0

14
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Figure 3: Comparison of angular correlations for Laplace and Neumann boundary conditions,
for two different values of the radii (left panel). Radial correlation function for the Neumann
boundary conditions (right panel).

Proof. The proof of (26) is essentially the same as in the case of Dirichlet problem. The
correlation function B, is written in the form of a convolution, i.e.,

B, = Ki(pi;9) * Ki(p2;¢ — (01 — 62))

where K1 (p;) = In(1 —2pcos(1) + p?). Then we take the Fourier transform of both parts, and
use the Fourier transform property for convolutions. This yields fg(k) = p’f plg/ﬂ'k2 which is the
desired result. The proof of (27) follows basically the same scheme, and repeats the scheme given
in the proof of Theorem 3. [l
From these considerations, we can find the eigen-values and eigen-functions of the correlation
function. These are

1

Aok—1 = Agp, = W; k=

cos(k0
V2k+1 p* 1(/2) ha(p, ) =

1,2,3,... (28)

sin(k6
har—1(p, ) = V2k +1 p* 52)

This leads to the Karhunen-Loéve expansion (26). The random filed is therefore written as

follows

Z (& cos(k0) + ny, sin(k 6)] .

We compare in Figure 3 the angular correlations for the Laplace and Neumann boundary con-
ditions (left panel), and show the radial behaviour of the correlation function for the solution of
the Neumann problem (right panel).

2.4 Upper half-plane.

Let us consider the Dirichlet problem in the half-plane:

Au(r) =0, ze€ D" wu(y)=gy) yel =aD", (29)

15



where the domain D™ is the upper half-plane with the boundary I = {(z,y) : y = 0}.

The Poisson formula reads [45|

Y [ g(&)de
u(z) = - _Zo EErTEerh (30)

Direct evaluation of the covariance function B(z1,y1;22,¥y2) even in the case when the function
g(§) is a white noise meets some technical difference in comparison to the disc,

oo

- _ Ny dg
Blavmizar) = (33 [ (1~ €2+ o> — €2+ 93]

—00

(31)

Therefore, we use the Fourier transform technique. Let us introduce the notation for the kernel

Y
Kp(n, y) = W (32)

so that the covariance is written in the form of convolution
B(xlayl; x27y2) = Kp(n7y1) * Kp(n - (‘T2 - xl)ayQ) ’
and the Fourier transform yields Fp = Fr(. 1) © Fr(.y)- Since [11]
[ cos(ka)d
Y cos(kx) dx _

y2+x2

— 00

we get Fp = e~ Fl1+42) Inverse Fourier transform finally yields [11]

1, _ 1 Y1+ Y2
B(x1,y1; 09, y2) = F (e Fltu)y — Z : 33
( 1, Y1522 yz) ( T (yl +y2)2 + (961 —x2)2 ( )

Now we need to solve the eigen-value problem for the covariance operator:

I r Y1+ y2 hi (w2, y2) dzs
d / — A b (21, 1) - 34
/ v2 T (y1+y2)? + (21 — 22)? (@1, 1) (34)

Here we cannot apply the classical Hilbert-Schmidt theory since the process is defined on the
unbounded domain DT. Therefore, we can apply the cut-off approach described in section 1.2.
Indeed, the correlation function (33) is partially homogeneous, with respect to the horizontal
coordinate .

Through a Fourier analysis we find that the partial spectrum is S(k) = exp(—k(y1 + y2), and
the eigen-functions are the Fourier modes. Thus as discussed in section 1.2,

A & S(wg) = S(wk/a) = exp{—7k(y1 +y2)/a},

and the spectral approximations are

Q

_ ' N T, mh(ry — x1)
By = Ba(21,y15%2,42) = Z ~ cos | ——— | ; (35)
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Figure 4: Comparison of the approximate correlation function with the exact result, for three
different values of the cut-off parameter a, Ax = 0.01.

u R Uy (z,y) = Z L exp{—mky/a} [{ cos[mkz/a)] + ny sin[rkx/a)] (36)
= Ve

where & and 7 are two mutually independent families of standard Gaussian random variables.
Thus introducing the cut-off we can find the orthonormal set of eigen-functions of the eigen-value
problem for the correlation operator (34):

cos(mkx/a) [2mk _xky sin(rkx/a) 2wk _xky

h2k—1($7y) = \/a a e o, h2k(x7y) = \/a a e o,

a
Aop—1 =X =——, k=1,2,..., .
2k—1 2k 27T]€7 ) 4y )

Note that the cut-off parameter a should be chosen large enough.

For illustration, we present in Figure 4 the approximation (35) for 3 different values of a compared
against the exact representation (33). The numerical convergence is clearly seen as the cut-off
parameter increases. Obviously, as mentioned at the end of section 1.2, the larger a, the larger
the number of retained terms n, so that n ~ a/e where ¢ is the approximation error.

Finally we notice that the Theorem 3 proved above for the case of a disc holds also for the
half-plane where the kernel K (p;p2;602 — 61) should be replaced by the kernel (33). Thus if the
random function g defined on the axis z, {(x,y) : y = 0} is a homogeneous random process
with the correlation function By, then the correlation function of the solution By, (z1,y1;22,y2) =
Bu(xo — x1,y2 + y1) depends on & = x5 — x1 and y = yo + y1, s0 By(z,y) is harmonic in DT,
with the boundary conditions By|y,—o = By. We will show now that this is true indeed for a
half-space in any dimension. So let us give the result in more details. Here it is convenient to
use the boldface chracter x for the horithontal coordinates, and y for the vertical one.
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Theorem 5. Let u(x,y), x = (21,...2n—1) be a random field defined in the half-space Dy =

R} as a harmonic function with the boundary condition uly—o = g where g is a zero mean
homogeneous random field on the boundary {y = 0} with the correlation function By(x) which
is bounded in dimension n = 2, or tends to zero as |x| — oo if n > 2. Then B,(x,y) =

By (x2 —x1,y1 +y2), the correlation function of the solution, is a harmonic function in R';, and
is related to By by the Poisson type formula:

D) (1 + 1) B, (x') dS(x)
Buxa ) = = [ o T 67

aD

The proof is obtained by the same Fourier transform technique we used above.

Remark 3. We remark that exactly as in the case of a disc as discussed in Remark 2 to the
Theorem 3, the same convolution relation (37) is true for the cross-correlation functions, we need
only to write it for the kernel K,: B, 4, = Kj, * Bg,4,. Note that in the n-dimensional case, K,
has the form of the kernel given in (37).

In practice, it is often important to know the statistical structure of the gradient of the solution.
Let us denote by By, (x, y),i=1,...,n—1, and By, (x,y) the correlation functions of the partial
derivatives of the solution u. They obviously also depend only on x = xo — x1 and y = y1 + yo
by the assumption that g is homogeneous. Direct evaluation gives

9% B, 9’ B,

Bu =g It B =T

Note that since the correlation function B, is harmonic, this implies the following remarkable

property: By, = By, . So in dimension two, By, = B,,.
=1

3 3D Laplace equation.

For a ball in 3D, all considerations are quite similar, where the eigen-functions involved are the
spherical harmonics. The regular solution to the harmonic equation in a 3D ball D(zg, R) of
radius R centered at a point xg is represented by the Poisson integral formula as an integral over
the sphere S(zg, R) = 0D(xo, R) [45]:

RZ — 2 / g(y)dS,
|z — y[3/2
S(Z‘o,R)

for any point € D(xg, R), where r = |z — x¢].
In spherical coordinates centered at xg the Poisson formula reads

2r

2 / !

P sin(0") g(¢', ") d0’ dp

0 = 38

u(r,6,) 4w//u4mwymw2 (38)
0 0

where p = /R, and v is the angle between the vectors s and s’, which implies,

cos(y) = cos 0 cos @ + sinf sin b’ cos(p — ') . (39)

Let g be a zero mean random field defined on the sphere S(xg, R). It is called isotropic, if its
correlation function By(s, s’) depends only on the angular distance between s and ¢, i.e., only on

18



the angle 1 as defined in (39). We say that a random field defined in a ball D(zg, R) is partially
isotropic in the ball if it is isotropic with respect to the angular coordinates.

The statement of Theorem 1 for the 3D case can be formulated as follows.

Theorem 6. The solution of the Dirichlet problem in the ball D(xo, R) with the white noise
boundary function g(y) is an inhomogeneous 3D Gaussian random field uniquely defined by the
correlation function

1 1 — p}p3
47 [1 — 2p1pa cos(y1 ) + p2p3]3/2

B, = Kj(p1p2;¢12) = (40)
where cos(11,2) = cos 01 cos fa+sin by sin by cos(p1 —p2) . The random field u(r, 8, ) is partially
isotropic in the ball, and its respective discrete spectral density has the form fg(0) = 1/4m,
fo(k) = (p1p2)¥ /2, k=1, .... Generally, if g is an isotropic random field on the sphere, the
correlation function of the solutions By, is related to By by By(p1p2;1) = Ks(p1p2; v —1")xBg({)
which implies that the solution w is partially isotropic in the ball, and the correlation function
B, is harmonic, with the prescribed boundary function B,.

Proof. We use here also a series expansion method. Let us recall some definitions.

The Legendre polynomials we denote by P;(cos@), - recall that these functions are defined on
(—=1,1) as follows:
J

Pi(p) = 21—“(1—#[(# -1, 1=0,1,
The associated Legendre polynomials P (u), { = 0,1,...; m = 0,1,...,[ are defined via the
(m)-derivatives of P;(u) as follows
PP (p) = (1 —p2)™?PM (W), 1=0,1,...; m=0,1,...,1.
Then, the system of spherical harmonics functions {Y;™(0,¢)}, 1 =0,1,...; m=0,+1,£2,..., %l

is defined as follows

= P/"(cosh) cos(mp), m=0,1,2,...,1;

v (e,
(0 P"(cos ) sin(jmep|), m=-1,-2,.... (41)

©)
Y™ (6, ¢)
It is well known that this is a system of orthogonal functions complete in Lo(S), and

T 27w

1+ Som !
||Ylm||2://[ylm(9,<p)]2 sin 0 d dip = 21T 0om L+ [m])
0 0

20A+1 (I—|m|)! "

The following expansion is well known (e.g., see [45], |§]):

_ 2 e
— 3z = 1t Zpk (2k 4 1) Pr(cos(v)) . (42)

K(p,¢) = [1 —2p COS(¢) + p2] k=1

For brevity, let us introduce the notation for the unit vectors, s’, s; and sy defined by its direction
angles (0',¢), (61, 1), and (62, p2), respectively, and let

(s',81) = cos(tp1) = cosf; cosB + sinby sinf cos(p; — ¢')
(s',89) = cos(tha) = cosby cosB + sinfy sin @’ cos(py — ¢') .
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In what follows, we will sometimes use a shorter notation for the integration over a surface
measure ds’ on a unit sphere:

2T
/ds = / /sin(@')d@'dgp’ .
00

We use the expansion (42) in the following explicit evaluations:

Buy(p1, s1; p2, $2)
2T
(1= p})(1 = p3) sin(0) do’ dy/
[1 = 2p1 cos(¢1) + pi]3/2 [L — 2pap2 cos(iha) + p3]3/2

[e=]

0
o / (103 k1) P 1)) 13 k1) (5 2))]
k=1

k=1

[1 + kZ::l p1p2)" (2K + 1) %ﬁ] : (43)

Here we used the following property:

1 Pr((s1,82))

Pi((s,81))Pr((s,82))ds = Ol - (44)

4 2k +1
This can be derived from the following property
1 1
= [Pl Y s = oy o) (45)
which in turn follows from
l
)= Y mm Y(s)Y(s) - (46)
m=-—I
Here the coefficients are given by
2 (I=|m])
Klm = . 47
" (1 + Gom) (U+ m])! (47)
Thus the last line of (43) gives the desired result (40) and the proof is complete. O

Now we use the series representation (43) to solve the eigen-problem for the correlation function
1
/ dpz/Bu(ﬂ1,81302,82)hl(P2,82)d82 = N hi(p1, 1) - (48)
0
The next assertion follows immediately from the properties (44)-(46).

Theorem 7. The eigen-value problem (48) has a complete set of orthonormal eigen-functions

and the relevant eigen-values (1 =0,1,..., m=—I,...,1):
1 Hlm(2l + 1) l
N=——, h =\/——= Y/ V2 +1p". 49
TR 1(p, 8) = l +1p (49)
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The KL-expansions of the correlation function and the random field are given by

B (101781 P2,82

k
- 4 Z (2k+1) 1 p2{ D Hkm Ykm(sl)ykm(32)} ,

k=1 m=—k

k
u<r,s>—ﬁ+—zv%+ DI O}

where &y, {Epm ) are independent standard Gaussian random variables.

m=—k

4 Biharmonic equation.

Let us consider the following problem for a biharmonic equation in a disc D = K(xg, R), gov-
erning a slow viscous motion inside a circular cylinder of radius R [16]:

M) =0, 2D, uly) =) sW)=gly) yeT=0D, (0

where n is the external normal vector.

In polar coordinates centered at xzg with p = /R the Poisson type integral formula reads [31]

21
_a=p? R
u(r,9) = 27 0/ { ~ 2[1 —2pcos(f — @) + p?] }gn((p) dp

(1—p?)? 7 [1— p cos(0 — )]
[1—2pcos(d — ) + p?

P go(e) dp . (51)

Assuming the random white noise excitations gg and g, are independent, we decompose the
random field into two independent components: u = u(!) + 4. Then, the covariance of u is the
sum of covariances of u") and u(®. From (51) we obtain

B = (u(r1,00)u(r2,020) = (1~ 50— ) Ba(o1, 00,0 52
L 7(1 A= preost— ) (L= (1= pacostts — 9))
2m)?2 ) [1+4 pf —2p1cos(61 — ¢)]? [1 4 p3 — 2p2 cos(B2 — ¢)]?

where Ba is the covariance of the solution of the Dirichlet problem for the Laplace equation
given in Theorem 1.

To tackle the second term which represents the covariance of the second component, u(?), we
first remark that

1 [(1=p")?(1—pcos(t — ) ok
o 0/ (14 p% —2pcos(d — )2 cos(ky) dp = [1 + 5 (1 - ,02)] pk cos (k@) (53)

— p?)? — P COS —
(217T) / (1[1 er,og —(12pci)s(9(f 90)9]02)) sin(ke) d = [1+ § (1= p*)] p* sin(k0) . (54)
0
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Figure 5: Angular correlation function for the biharmonic equation, compared against the
correlation function for the Laplace equation with Dirichlet boundary conditions.

This can be shown as follows. First we note that by differentiating with respect to p we obtain
the following useful equality

1 —4p® 4+ 2p% cos 0+ 2p cos 0
Qka cos(kf) —p( ZP cos k@) - [1+ p2 —2p cos 0)? .
k=1

Now, combining with the expansion (8) we find that the kernel in the eigen-value problem (53),
(54) is represented as the following series

1 (1—p°)2?(1—pcos(f—p))

K(p;0 — ) = 2 [+ 02— 2Zpcos@—9)° L ,0 Z k p* cos[k(0 — )]
—i—% + %Z p" cos[k(6 — )]
k=1
= % + 1 3 [% + 1} pF cos[k(6 — ¢)] . (55)

s
k=

Substituting this representation in the eigen-value problem we arrive at (53), (54). The covariance
can be evaluated by substituting the series expansion (55) in (52). This yields

1 1~ -pD)k (1—p3)k k ok
Bu(z)—%+;; [#4-1] [T—i_l] P1 P2 COS[k(@l—eg)] .

Analogously to the case of Laplace equation, we consider the eigen-value problem for the covari-
ance kernel:

1
d91/ dp1 B, (p1,01; p2,02) hi(p1,01) = A hi(p2,02) . (56)
0
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Let us introduce the notation:
[Pk
1—p 2
AkZ/[ 5 —I—l} p?F dp .
0

Using the series expansion of the kernel, it is not difficult to find that the eigen-value problem
has the following system of eigen-functions and eigen-values:

1
=1, hg = —; Aop_1 = Agp = Ay;
0 0 Jon 2k—1 2k k
(1—p?)k pr cos[k(0)]
_ = 1:| . .
h‘2k) 1(p7 (10) |: 2 + \/A_k 7-(-1/2 !
_ 1A =pMk ph o osin[k(0)]
th(pﬂD)_[T_‘_l] \/A_k 7T1/2 ) k_1727
where the eigen-functions are orthonormal to one another:
1 27
/ /hn(p,G) hon (0, 0) dp df = Sy -
0 0
From this we finally arrive at the Karhunen-Loéve expansion
I S1(1-p)k .
@) 9):5—°+—Z[7+1]’“[ k6 k6
u'? (r, P" [&k cos kO + ny, sin k6] . (57)
V2m T pt 2
The first component is obviously represented as u(r,6) = R(lz_p2) u(r,0), where wu(r,0) is

modeled by the KL-expansion given in (13).

In Figure 5 we show the angular behaviour of the correlation function of the solution to the
biharmonic equation compared against the correlation function for the Laplace equation. In
both cases, the correlations are plotted for the fixed values of p taken equal to 0.5, and R = 1.

5 Lamé equation. Plane elasticity problem.

5.1 White noise excitations.

Let us consider the plane elasticity problem in the disc K(zg, R):

pAu(x) + (A + p)graddivu(z) =0, x € K(zg, R),
u(y) =g(y), y € S(zo, R) (58)

where u = (ul,u2)T is the displacement column-vector which is prescribed on the boundary as
a column-vector g = (g1, 92)7.

Let us work in polar coordinates centered at g, so that the point z is 7 €*?, and on the boundary,
y = Re'?, and as everywhere above, p = r/R.

Let us recall that the kernel in the Poisson integral formula (5) for the Laplace equation given
explicitly by (8), has in the polar coordinates the form
1 1—p?

Kip:6 =) = 21 1—2pcos(0 — @) +p2 (59)
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The Poisson type integral formula for the solution to the Lamé equation (58), derived in [34],
can be rewritten as follows:

27
u(re'?) = /K(p; 0 — ) B(p;0,0) g(Re'?)dep (60)
0
where the matrix B has the form
At p Qu Q2 ]
B=1 , 61
+)\~|—3,u[Q21 Q22 (61)

with the entries given explicitly by

cos(2¢) — 2 p cos(0 + @) + p? cos(20)
14+ p? —2p cos(6 — )

Q11 = cos(2p) — p cos(0 + ) + , (62)

sin(2p) — 2 p sin(0 + ) + p? sin(20)
1+ p2—2p cos(6 — )

Q12 =sin(2p) — p sin(f + ¢) + ; (63)

and Q29 = —Q11, Q21 = @12, | being an identity matrix.

This form of the Poisson type integral formula is simple and convenient to use in numerical
simulations (e.g., see [35]). However it is seen that in contrast to all of the above considered
cases, the matrix kernel has loosed the nice property of depending only on the difference of
the angles 6 and . This property is crucial for our analysis. This in turn is related to the
probabilistic property of the solutions considered as random fields, namely, that these solutions
are homogeneous with respect to the angular variable.

From the physical and probabilistic points of view, it is clear that the solution of the Lamé
equation should be homogeneous with respect to the angular variable if the boundary functions
are homogeneous random functions, in particular, when they are white noises. This means,
we can try to find a transformation which leads to a Poisson integral formula with a matrix
kernel depending only on the difference 6 — ¢. It turns out that this can be done by a proper
transformation of the vector u = (uy,u2)” to polar coordinates.

So let us turn to the expansion of our displacement vector u in polar coordinates

u=1ure+ugpeyp,

where e,, ey are unit vectors in directions r and 6, respectively. Then, the vectors (uy, uz)T and

(up,ug)T are related through a rotation,

[ul(r,e)‘ _ [ cos —sine] [UT(T70)] , (64)

ua(r, 0) ) sin §  cos 6

and conversely,

ur(r,H)] _RT [ul(r,ﬁ)]

Up (7’, 0) U2 (T7 0)
where we use the notation for the rotation matrix
cos 0 —sinf
Ro= [ sin & cos 0 ] ’ (65)

and Rg means the transpose to Rg.
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Then, the Poisson integral formula (60) can be obviously rewritten as follows

27
ur(r79) _ i 1 +ﬁQ BQ gr(R eigp)
[ue(ﬁ 9)] =R / K(p:6 =) [ 5@1211 1— ﬁléll] Ry [ge(Rei“D)] dp (66)

0

where 3 = ;\4-%

After some transformations we come to the desired form of the Poisson integral formula
(r.0) i (Re¥)
u (7,0 1 / [Gn 012] [.gr Re'¢¥ ]
= K(p; 0 — ; d 67
[ug(r, 9)] A+ 3u (p:6 =) G Goz) |go(Re?)) % (67)
0

where the entries of the new matrix kernel G = G(0 — ¢) are

cos(f — ) — 2p + p* cos(f — )
14 p2 —2p cos(f — @)

Gi1 = [2(A +2p) cos(0 — ) — (A + p)p] + (A + p)

(1—p?) sin(d - ¢)
1+ p%2—2pcos(f — )’

(1—p?) sin(6 — o)
14+ p2—2pcos(f — )’

Giz =2p sin(0 — ) — (A + )

Go1 = —2(A+2p) sin(0 — ) = (A +p) (68)

cos(0 — ) — 2p + p? cos(6 — )
1+ p%2—2p cos(6 — ) ’

Gaz = [2p1 cos(0 — @) + (A + p)p] — (A + )

We are now in a position to formulate and solve the eigen-value problem for the integral operator
with the matrix-kernel of the Poisson type integral (67)

1
A+ 3

L(p;6 — ) = K(p;0 — ) G(p; 0 — ) . (69)

The eigen-value problem is written as the following system

21

JL@ﬁ—w)&ig]dsz[ggﬂ. (70)

Theorem 7. The eigen-value problem (70) has the following system of eigen-values and eigen-
functions (k=1,2,... ) :

A S W k—1 h1,2k—1 . sin k6 hl’gk | —cos ko
WL =A% TP N hygey) T |eos k0) 0 \hoor) ~ | sinko )
and for the case k = 2, for A3 = Ay = p, there is a third eigen-function

i) = ()

Proof. In the proof, we expand the matrix kernel in the Fourier series. In the expansion, we
will use the following formulae simply obtained via differentiations:
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1—p
1+ p2 —2pcos(9

p sin 6
1+ p2

— 2pcos 0

p(cos @ — 2p + p? cos 6)

(1+ p? —2pcos 0)2

psinf(1—p
(1+ p? —2pcos 0

1+2 Zp cos (k0) ,
k=1

= ipk sin (k0) ,
Zk‘p cos (k)
Zk‘p sin (k)

Substituting these representations in the functions (68), after some evaluations we obtain the

following series expansions for the kernel L:

e}

1

Lu=2+

kO +p)(1 = p%)

2 2w (A + 3p)

k=1

Z[M)Jr ()\ZQM)JF

; | o cosli(0 )] |

O+ (1 — 92)} PF sink(0 — )] |

P
Loy =+
22 271'

C20+2) B+ p)( —pQ)}

Pt sinlk(0 — )],

kA +p)(1 = p%)
p

2#

| o cosli(@ — )] . (71)

Note that each of these series could be written in the form of a power series ap+ azpa + azp® +
, however as we will see below, the form (71) is very convenient when solving the eigen-value

problem for the correlation operator.

Let us introduce the notations

17 2(A+2p) KA +p)(1 - p?)
)\11(p, k) m _2,up—|— + P ] )
i 2
A2(p, k) = m 2%—2#0—1{:()\+M2)(1_p)},
1 20 +2u) k(A +p)(1-p?)
Aai(p k) = m_2()\+2#)ﬂ— p - p },
i 2
Aa2(p k) = m_Q(AJFQM)PJF% k(AJrM;(l 4 )] - (72)

From the expansions (71) we find that
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2

sin ko B i [sin k6
/LH pi0=¢) [COS kp dp. = Aulp.k) p cos k6 |
0
2
cos k - k sin k6
Lz(pi0 =) [smk(p) dp = Jualp.k) p —cos kb ) ’
0
27rL - sin kg ) do = dorlp k) r [ —cos kO
21 pa 90 COS /ﬁtp) Y = 21\P, P sin k6 )
0
2m
cos kg ) _ i [cos k6
Lalp0 ) (So i ] a0 = o) o (4] (73)
0

Now, by substituting these equalities in the eigen-value problem (70) and taking into account
that A11(p, k) + M2(p, k) = p~1, —Xa1(p, k) + Aaa(p, k) = p~!, we find the solution of the eigen-
value problem for k = 1,2.... The existence of the eigen-function (1,1)” for A3 = p follows from
the properties

2 21
/Ln(p;@—so)'ldsﬁzp, /Lm(p;@—sO)'ldsD:p,
0 0
27 27
/Lm(p;ﬁ—w)-ldwza /L21(P§9_90)’1d90:0-
0 0
The proof is complete. O

We turn now to the derivation of the correlation tensor of the solution,

BulprOrspas ) = (1. 00) @ w(rac) = { (0G0 ) s 00) walras6a)) (70

assuming the boundary random vector-function g has a Gaussian distribution specified by the
zero mean and covariance tensor

Bytoren) = [489] o) e )

We use here and in what follows the following notation for v&®u, a tensor product of two vectors:

v®u=vuT.

The Poisson integral formula (67) reads

r .
o) =) () Baba ) (ees) 0 oo

Substituting this representation in (74) and changing the relevant product of integral expressions
by double integrals, we arrive at the following representation
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2w 27

Bu(p1,6h; pa, 02) = //L(pl; 01— ") By(', ") LT (p2;02 — ") dy' d” . (76)
0 0

Let us again first consider the case when the boundary vector-function g is a white noise, namely,
assume that
5(p1 — ¢2)
Byferen = |

")
0 d(p1 — p2)

Note that this property then holds also in rectangular coordinates (see (95) below). Then, from
(76) we obtain

(77)

27
Bu(p1,01; p2,62) = /L(P1;91 — @) LT (p2;09 — @) dyp . (78)
0

Theorem 8. The exact Karhunen-Loéve representations for the covariance tensor and the ran-
dom field (uy,ug)”T which solves the Lamé equation under the boundary white noise excitations
with the covariance tensor (77) are given by

By, (P1,91;,02,92) = (79)

epe 4 1 E Ay pf pf cos [k(62 — 61)] 15 Avapl ph sin[k(62 — 61)]
] ]

%kz Aai pf p§ sin [k(62 — 61)] B+ Z Aas pff pf cos [k (602 — 61)]
=1 k=1

At = Aii(p, k) M2, k) + Aia(p1, k) Az2(p2, k),

Az = Aii(p1, k) Xai(p2, k) — Aia(p1, k) Aoz (p2, k),

Agr = Aaa(p1, k) Ma(p2, k) — Aa1(p1, k) A1 (p2, k),

Ao = Aaa(p1, k) Aaa(p2, k) + A1 (p1, k) Aa1(p2, k) (80)

and
up(r,6) = 5207? + = kzl A1 pF §k cos k6 + g sin k@]
l Z )\12p — 1}, cos kb + &, sin kG (81)
7T
k=1
fo P .
ug(r,0) Z Aot p — ng cos kB + & sin k@]

—I—; Z: Aoz pF &5, cos kO +mp, sin k6] (82)

where {&, i} and {&.,m,}, £ =0,1,2,... are two independent families of standard independent
gaussian random variables. Thus the random field is homogeneous with respect to the angular
variable, and the respective partial spectra are: Spm(k) = %Ammplfpg, Smm/(0) = p1p2/2m, and
for m # m the spectrum is pure imaginary: Sy, (k) = i%Amnp’fpg .
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Proof. To get the expansion of the correlation tensor (79), we substitute the expansions (71) in
(78) and use the eigen-function properties (73).

To construct the explicit simulation formula (81), (82) for our random field, we first split it into
two independent Gaussian random fields:

u(r,0) = Vi(r,0) + Va(r,0) .

We will show now that for each of these random fields we can obtain a Karhunen-Loéve expansion.

We introduce four single mode vector functions

[ A(p, k) cos kb ~ | A(p, k) sin k6
hlk(p79) - [)\21(;)’ k‘) sin k6 5 hlk(pv 0) - | _ >\21(p, k’) cos kb ) (83)

(= X2(p, k) cos kb = [ Ma2(p, k) sin k6
h2k(pv 0) - [ )\22(p7 k) sin k6 ) h2k(pv 0) - )\22(p7 k) cos kO . (84)

Here the modes are indexed by k = 1,2..., while the subindexes ; and o stand for the first and
second series of eigen-functions.

Note that these vectors are pairwise orthogonal:

1 2m _ 1 2m B
/ dp/ df hy -hy =0, / dp/ df hyy - hgp =0,
0 0 0 0
as well as the two following vectors are orthogonal:
_p_ N 0
0 Vor

It is now a matter of technical evaluations to find that the correlation tensor can be represented
in the form:

Bu(p1,01; p2,02) = ho(p1) - h (p2) (85)
+% Z{hlk(m, 01)hiL(p2,02) + hug(p1,01) by (p2,00)} pf ph
k=1
+flo(,01) ‘ flT(P2) (86)
Z hoy(p1,61) 03 (p2, 02) + hak(p1.61) 3y, (02, 62)} o7 5 -
k=1

This follows from the easily verified representation

hyx(p1,61) bl (p2, 02) + g (p1, 61) bl (pa, 62) =

[ )\11(,01, 91) )\11(p2, 92) COS[k’(QQ — 91)] )\11(p1, 91) )\21 (pQ, 92) Sin[k‘(eg — 91)] ]
— A21(p1,01) M1 (p2, 02) sin[k(02 — 01)]  Aa1(p1,01) Axa(pa, O2) cos[k (62 — 61)]

and

hoy(p1,61) h3j,(pa2, 02) + Doy (p1, 01) Bl (po, 0) =

[)\12(,01, 91) )\12(p2, 92) COS[k’(QQ — 91)] — )\12(,01, 91) )\22(,02, 92) Sin[kf(HQ — 91)]]
A22(p1,01) M2(p2,02) sin[k(02 — 61)]  Aaa(p1,61) A22(p2, 02) cos[k(Bz — 61)]
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So we can see from (85) that the first and the second pairs of lines present the covariances of the
first and second vectors in our splitting, respectively:

By = (u(r1,61) -u’(r2,605)) = (V1(r1,61) - V1 (r2,602)) + (Va(r1,61) V3 (r2,62))
thus,
vi = ho(p1) - h (p2)

+ {Buk(p1,01) Wik (p2, 02)hik(p1,01) By (p2,62)} P o
k=1

By, =ho(p1) - hi (p2)

+ {hai(p1,61) Wi (p2, 62) + hor(p1, 61) by, (02, 02)} o 5
i1

where BV1 = <V1(7‘1,91) . Vf(r2,02)> BV2 = <V2(T’1,91)V2T(7‘2,92)> .

Note that each part, i.e., By, and By,, is represented as an orthogonal-mode expansion. There-
fore, we can construct a KL-expansion for our random fields V; and V.

We have not yet normalized the eigen—functlons We can do 1t through dividing the angular
modes by /7, and the radial modes by A fo (A2, + )%, p*F dp, the first family of eigen-

functions (83), and by Aq(k fo (A2, 2k dp , the second family of eigen-functions (84).
We then collect the orthonormal eigen- modes in one family:

1 1) 1 ~
H(l) =————h ,0), 'H( =——————h ,0), k=12,...
2%—1 NOL, 1%(p, 0) 2k A k) 1£(p, 0)
and 1 )
2) (2) r
H =————h ,0), H,,) =————h ,0), k=1,2,...
2%—1 Ag(k‘) = 2k (p ) 2%k Ag(k) — 2k (P )

Then, the orthonormal functions H,(Cl) and Hg) are eigen-functions of the covariance tensors By,

and By, respectivelyl wdth the corresponding eigen-values Aq(k) and Aq(k):
/ / By, - H{™ (p2.82) dpa dfy = A (k) HY™ (p1,601) . m=1,2.
0 0

We can now construct a KL-expansion for the random field V1 (r,0) in the form

chH p,0

where (i are gaussian random variables such that

(GhGj) = Ar(k) G
and the same for Va(r,6).

Putting these expansions together we finally arrive at the desired representation

Sop

1 (o]
up(r,0) = o + = Z Aiq pf [fk cos kO + ny sin kH]

k=1

lz Mg pF [ = 1}, cos kO + &, sin k0] ,
k=1

:1
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0 0

40 50 0 50
angular section k, angular section k,
6=k 250 6=k 250

Figure 6: Correlations By; (left panel) and Bay (right panel) for the Lamé equation, for different
values of the elasticity parameter a; p; = ps = 0.3.

/ 1 o0 .
ug(r,0) = 520—: = Z)\gl ,ok [— Nk cos kO + & sin k‘@]
k=1

1 o0
= A PR [ kO + 1), sin k6
+7r; 22 P [{k cos + 1, sin ]

where {&,n} and {&,,n,.}, k= 0,1,2,... are two independent families of standard independent
gaussian random variables.

Finally note that the spectra given in the theorem are obtained immediately from the represen-
tation (79). This completes the proof of Theorem 8. O

It is interesting to note that we could obtain these expressions by substituting formally a gener-
alized representation of the boundary white noises on the circle

l & _
g1(p) = 25—; + p Z &), cos ko + ny, sin k]
k=1
_& L I /o
92(p) = o + = (&), cos ko + nj, sin k]
™o

into the Poisson formula (67) with the kernels given by the series expansions (71). But the
justification would then need to work with generalized stochastic processes.

In the Figure 6 - 10 presented below we show the longitudinal correlation function Bjj, the
transverse correlation function Bss, and the cross-correlation functions Bis and Bsy, in polar
coordinates, as well as in rectangular coordinates. Figure 6 presents the angular behaviour of By
for 5 different values of the elasticity constant « (left panel), and the same for Byy (right panel).
The relevant cross-correlations are shown in Figure 7. The radial behaviour of By; and B is
shown in Figure 8. As is clearly seen from all these curves, the angular behaviour is periodic.
When plotting these functions in rectangular coordinates, we get a complicated behaviour shown
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Figure 7: Correlations Bis (left panel), for different values of the elasticity parameter . The
same curves are shown in the right panel, superimposed by the relevant correlations Bsj; p1 =
p2 = 0.3.
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Figure 8: Radial correlations Bi; (left panel), and Bss (right panel), for different values of the
starting point p;. Lamé equation, A = 2222, u = 2.
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Figure 9:
panel), for different values of the starting angle 8; p; = ps = 0.3.

Y

Angular correlations in rectangular coordinates, B{¢ (left panel), and B35¢ (right
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By, 04 B, 04

-0.4 L I I I I 04 I . | | |
0

50
angular section k,
6=k 2150
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Figure 10: Angular correlations in rectangular coordinates, B{$¢ (left panel), and B3¢ (right

Y

panel), for different values of the starting angle 8; p; = ps = 0.3.
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in Figures 9 -10, where the correlations depend on the starting angle #; we present the curves
for different values of 6, see Figures 9 and 10.

5.2 General case of homogeneous excitations.

We have so far considered the case when the boundary functions g; and go are two independent
white noise processes. We will see now that the general case when g; and gs are some arbitrary
dependent homogeneous processes, is basically derived from the white noise case.

Thus assume we are given two homogeneous zero mean processes g; and go with the correlation
tensor By(p2 — ¢2), with the entries By ;j, 4,7 =1,2. As shown above, the correlation tensor
of the solution B, is related to By by the double integral representation (76). Changing the
integration variable ¢” to a new integration variable ¢ by ¢” — ¢’ = 1 we obtain from (76) for
u = (up,ug)’:

21 2w

Bu(p1,01; p2,02) = //L(P1;91 — @) By() LT (p2; 00 — b — ') dy dip . (87)
00

The idea is now to evaluate explicitly the inner integral with respect to ¢’ using the series
expansions for the kernel L(p,0) given above in (71). We now rewrite the relation (87) in a

different form. We construct from the correlation tensor B, a column-vector function B, as
follows By, = (By11, Bu,12, Bu21, Bu722)T. Analogously, we use the notation B, for the column-
vector Bg = (Bg711, Bg712, Bg721, Bg722)T.

Using this notation, we can rewrite (87) as follows

21 2w

Bu(pr. 615 oo, 2) = / / L(py:6y — &) ® L(ps; 62— — ) By(w)do' dp . (88)
0 0

Here we denote by ® a tensor product of two matrices which is defined in our case as a 4 x 4
matrix, represented as a 2 x 2-block matrix each block being a 2 x 2 matrix of the form L;;(p1; 601 —

@ VL(p2;02 — b — '), 0,5 =1,2.
We will now evaluate explicitly all the 16 entries a;; of the matrix

2w

A= /L(pl; 01 —¢') ® L(p2; 02 — v — ') dy’ . (89)
0

Substituting the series representation of the matrix L given by (71) in (89) we obtain after a
long but simple calculations

1 o0
a;l = p;_:;z +- ; Mi1(p1, k)1 (p2, k) pf 5 cos k(62 — 61 — 1))]

_ 1l k ko o
a1y = ﬂ_z)‘ll(pbk))‘l?(p?vk)ppo sin [k(02 — 01 — )]

k=1
1 & .
aiz = g Z )\12(,017 k))\ll(p27 k) plfpg sin [k‘(6’2 — b — 1/})]
k=1
1 o
aly = - Z A2(p1, k) A12(p2, k) P]fﬂléc cos [k(f2 — 61 — )] (90)
k=1
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1 :
an = — > Auilpr k)i (pa, k) pi b sin [k(6s — 61 — )]

k=1
agy = p;f + = kzl)\n (p1,k)Aaa(pa, k) P p5 cos [k(Bg — 61 — )]
1 [o¢]
azgs = — > Ma(p1, k)i (pa, k) plph cos k(62 — 61 — )]
g k=1
1 & :
az = == 3 Aialp1, K)Aaa(p. k) pl b sin k(62 — 01 — ) (91)
k=1
1 & :
an = —— Z Ao (p1, k) A (p2, k) pf 5 sin [k(02 — 01 — )]
k=1

1 o0
a2 = = dor(pr k)Mo, k) pih cos k(0 — 01 — )]

=1
asg = p;? + = ;)\22 (p1, k) M1 (pa, k) pf b cos [k(02 — 61 — )]
1 & .
a = > Aaa(pr k) Mz (pa, k) pi b sin [k(0s — 61 — )] (92)
=1

_ 1y k ok _9 —
ay1 = ﬂzAzl(m,k))\m(P%k)Pl% cos [k(f2 — 61 — )]

P
1 & .
aqg2 = —; Z )\21(,017 k))\22 (P27 k) plfpéﬂ s [k(02 - 61 - 1/})]
k=1
1 & .
tg = — Z A22(p1, k) A2t (p2, k) pf p§ sin [k(02 — 61 — )]
P
opp | o k ok
g = 5ot ; A22(p1, k) Aa2(p2, k) p1p3 cos [k(f2 — 01 — )] - (93)

Thus we see from these formulae that the entries of the matrix A depend on the difference
6 = 05 — 61, hence the correlation tensor B, also depends on 8 = 65 — 61, and from (88), (89) we
arrive at the desired convolution representation

2w

B (o1, pa:6) = / Alpr pa: 0 — ) By () di . (94)

0

Note that if the boundary correlation tensor By is given by its spectral expansion, we can express
the correlation tensor of the solution through the spectra. For instance, assuming the spectral
tensor is real-valued, so that

Byij(¢" —¢) = f” wa cos k(" —¢'), i,j=1,2,
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we can derive a general formula for the covariance tensor by substituting this expansion in (87).
After routine evaluations we obtain the general formulae

F1100)p1p2 | 1 . o
By = % + kZ:lP]f 5 (An cos[k(f2 — 01)] + Ajy sin[k(02 — 91)]) ,

1 . C S :
Bio= 2 3ok (AS2 coslk(8: — 01)] + Afy sinlk(62 — 01)]) ,

1 - C S :
By = p ;Plf Pg (A21 cos[k(f2 — 01)] + A3y sinf[k(62 — 91)]) )
f22(0) p1 p2

1 o C S .
By = S22 — ;_jlp’f b (A2 cos[k(Bz — 01)] + A, sin[k(02 — 61)]) ,

where
ATy = fudi AT+ faodinA s Afy = fadiATy — fradi AT
Afy = farMaA3s + 1211032, Ada = fudiA — fa2dinAs
ASy = fardio ATy + fizdp ATy, A3y = faadio ATy — fridai My
A5y = faadboMso + fidsi A, ASy = farAioA3; — f12051 23, -

Here we use the notations A/} = Xij(pm, k), m=1,2.

Remark 3.

Note that using the relation between the vectors in polar and rectangular coordinates,
uy(r, 0 uy(r, 0
1( ) ) =Ry p( ) )
U2 (Tv 0) Ug (7", 0
we can easily relate the desired statistical characteristics in these two coordinate systems. For
example, the covariance tensors are related as follows

Bluy ) (P1, 02301, 02) = R, By ug) (p1, p2; 01, 02) R, (95)

The KL-expansion in the rectangular coordinates is also obtained directly from the KL-expansion
of the random field in the polar coordinates on the basis that the eigen-functions are related by

hrectangular = RG hpolar and hrectangular = RG hpolar-

Let us write down here the relation (95) in details. We denote the entries of the covariance

matrix B by Bjf¢, and the entries of the covariance matrix B by BZ’-’jOl. From (95) we

u1,uz) Ur,ug)

obtain

l . I . I, . . l
15¢=cos 61 cos B3 BY]" —cos 6 sin 03 BYy" —sin 6 cos 0y BY" +sin 6y sin 63 BY'

15¢ = cos 01 sin 6 Bffl +cos 01 cos 0 Bfgl —sin 01 sin 0y Bgfl —sin 0 cos ngl ,
B3¢ =sin 6 cos 0y Bffl —sin #y sin 0y Bfgl +cos 01 cos 0 Bgfl —cos 0 sin O ngl ,

. . U, o I, o ! !
B35¢ =sin 61 sin 0o BY" +sin 61 cos 0y By +sin 65 cos 61 BhY +cos 61 cos 65 By .

This representation clearly shows that the property that the covariance functions ij"l all depend
only on the angle difference f; — 61 does not generally hold for the covariance functions Bi#°. It

is however seen that Bff® will depend only on 2 — 61 if (u;, ug) is homogeneous, and Bffl = Bg;l.
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