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Abstra
tIn this paper we deal with ellipti
 boundary value problems with random bound-ary 
onditions. Solutions to these problems are inhomogeneous random �elds whi
h
an be represented as series expansions involving a 
omplete set of deterministi
fun
tions with 
orresponding random 
oe�
ients. We 
onstru
t the Karhunen-Loève(K-L) series expansion whi
h is based on the eigen-de
omposition of the 
ovarian
eoperator. It 
an be applied to simulate both homogeneous and inhomogeneous ran-dom �elds. We study the 
orrelation stru
ture of solutions to some 
lassi
al ellipti
equations in respond to random ex
itations of fun
tions pres
ribed on the boundary.We analyze the sto
hasti
 solutions for Diri
hlet and Neumann boundary 
onditionsto Lapla
e equation, biharmoni
 equation, and to the Lamé system of elasti
ityequations. Expli
it formulae for the 
orrelation tensors of the generalized solutionsare obtained when the boundary fun
tion is a white noise, or a homogeneous random�eld on a 
ir
le, a sphere, and a half-spa
e. These exa
t results may serve as an ex-
ellent ben
hmark for developing numeri
al methods, e.g., Monte Carlo simulations,sto
hasti
 volume and boundary element methods.1 Introdu
tion.Boundary value problems with random 
oe�
ients, parameters, random sour
e terms, sto
has-ti
ally distributed boundary fun
tions, or even with randomly moving boundaries are used as apowerful instrument in modern s
ien
e and te
hnology. We mention here applied �elds su
h asstru
tural me
hani
s, 
omposite materials [2℄, porous media and soils [6℄, [33℄, [17℄, [49℄, biologi
altissues [47℄, geodesy [30℄, [40℄, turbulen
e [48℄, [3℄, [19℄, [31℄, et
.In engineering related sto
hasti
 boundary value problems, the 
ommon 
omputational te
h-niques in
lude Monte Carlo methods, sto
hasti
 �nite elements, �nite di�eren
e, and spe
tralmethods. Among these methods, the �nite volume and boundary element te
hniques are themethods most adaptable to problems in solid and stru
tural me
hani
s 
hara
terized with highlyirregular and 
omplex stru
tures [2℄, [9℄, [43℄. We mention also 
lassi
al potential problems deal-ing with random boundary 
onditions and sour
es [7℄ where the Monte Carlo methods are verye�
ient (e.g., see [31℄, [37℄, [35℄), [36℄). In ele
tri
al impedan
e tomography [13℄ importantproblem is to evaluate a global response to random boundary ex
itations, and to estimate lo
al�u
tuations of the solution �elds. Similar analysis is made in the inverse problems of elastog-raphy [25℄, [32℄, re
ognition te
hnology [10℄, a
ousti
 s
attering from rough surfa
es [46℄, �uiddynami
s [1℄, and rea
tion-di�usion equations with white noise boundary perturbations [42℄.It should be noted that the numeri
al simulation methods for stationary pro
esses and homoge-neous Gaussian random �elds are well developed, and the most 
onvenient and probably mostoften used are methods based on the spe
tral representations (e.g., see [41℄, [9℄, [31℄, [20℄, [19℄).The most 
ommon simulation method for inhomogeneous random pro
esses and �elds is based onthe Karhunen-Loève (K-L) expansion, also known as a proper orthogonal de
omposition (POD),a series representation 
onsisting of eigen-fun
tions as the orthogonal basis (e.g., see [2℄, [15℄, [21℄,1



[3℄, [12℄, [26℄, [27℄). The expansion is known to produ
e the most e�
ient representation amongall orthogonal bases for the Gaussian 
ase. A

ording to A.M. Yaglom's personal 
ommuni
ation,the proper orthogonal de
omposition was suggested independently by Kosambi [18℄, Loève [21℄,Karhunen [15℄, Pouga
hev [28℄, and Obukhov [24℄. We also mention a 
omprehensive studies byVan Trees [44℄, and A.M. Yaglom himself [48℄, and one generalization of K-L expansion for theWiener pro
ess [38℄, [39℄.In this paper, we 
onstru
t exa
t proper orthogonal de
omposition for some 
lassi
al boundaryvalue problems, for a dis
, ball, and a half-plane, with a Diri
hlet and Neumann boundary
onditions, where the boundary fun
tions are white noise or homogeneous (2π-periodi
) randompro
esses. In 
ase the boundary fun
tion is a white noise, the solutions are treated as generalizedrandom �elds with the 
onvergen
e in the proper spa
es and relevant generalized treatment ofboundary 
onditions, e.g., see [29℄, [30℄, [40℄.The paper is organized as follows. After a short des
ription of the spe
tral and Karhunen-Loèveexpansions, we 
onsider in Se
tion 2 the 2D Lapla
e equation, with Diri
hlet and Neumannboundary 
onditions, for a dis
 and a half-plane. Generalizations to a three-dimensional 
ase isgiven in Se
tion 3. In Se
tion 4 we analyze the biharmoni
 equation for a dis
. The plane elasti
ityproblem is presented in Se
tion 5. For all these boundary value problems we �nd expli
itly the
orrelation fun
tions, and give the Karhunen-Loève expansion of the relevant random �elds.1.1 Spe
tral representations.Let us �rst 
onsider a real-valued zero mean homogeneous Gaussian l-dimensional ve
tor random�eld u(x) = (u1(x), . . . , ul(x))T , x ∈ IRd with a given 
ovarian
e tensor B(r) with entries
Bij(r) = 〈ui(x + r)uj(x)〉, i, j = 1, . . . l,or with the 
orresponding spe
tral tensor F :

Fij(k) =

∫

IRd

e−i 2π k·rBij(r) dr, Bij(r) =

∫

IRd

ei 2π r·kFij(k) dk . (1)We 
all also Bij a 
orrelation tensor whi
h is equivalent sin
e we assume without loss of generalitythat the random �elds have zero means.Often it is reasonable to assume [20℄ that the 
ondition ∫

IRd

∑l
j=1 |Bjj(r)| dr < ∞ is satis�edwhi
h ensures that the spe
tral fun
tions Fij are uniformly 
ontinuous with respe
t to k. Notethat a weaker assumption that B is squared integrable guarantees only the existen
e of thespe
tral tensor in the spa
e L2.Let Q(k) be an l × n-matrix de�ned by Q(k)Q∗(k) = F (k), Q(−k) = Q̄(k) . Here the starstands for the 
omplex 
onjugate transpose whi
h is equivalent to taking two operations, thetranspose T , and the 
omplex 
onjugation of ea
h entry. Then the spe
tral representation of therandom �eld is written as follows (e.g., see [48℄)

u(x) =

∫

IRd

ei 2π kxQ(k)Z(dk) (2)where the 
olumn-ve
tor Z = (Z1, . . . Zn)T is a 
omplex-valued homogeneous n-dimensionalwhite noise on IRd with a unite varian
e and zero mean:
〈Z(dk)〉 = 0, 〈Zi(dk1) Z̄j(dk2)〉 = δij δ(k1 − k2) dk1 dk2, Z(−dk) = Z̄(dk) .2



Note that in the literature, di�erent forms of the Fourier transform between the 
orrelation andspe
tral tensors are used. Along with (1), we will mainly use
Fij(k) =

1

(2π)d

∫

IRd

e−i k·rBij(r) dr, Bij(r) =

∫

IRd

ei r·kFij(k) dk, i, j = 1, . . . l .The spe
tral representation (2) is used in di�erent numeri
al simulation methods, through adeterministi
 or randomized evaluation of the sto
hasti
 integral in (2), see for instan
e [31℄,[19℄, [20℄.A straightforward evaluation of the sto
hasti
 integral (2) is based on the Riemann sums 
al
u-lation with �xed 
ells (see, e.g. [41℄). The integral is approximated by a �nite sum
u(x) ≈

n
∑

i=1

[

cos(2πki · x)ξi + cos(2πki · x)ηi

]where ki are deterministi
 nodes in the Fourier spa
e, ξi and ηi are Gaussian random ve
torswith zero mean and relevant 
ovarian
e. E�
ient 
al
ulation of the above sum is usually 
arriedout by the fast Fourier transform whi
h assumes that the nodes are 
hosen uniformly. It shouldbe mentioned that this s
heme su�ers from an arti�
ially periodi
ity in the s
ale of 1/∆k where
∆k is the integration step in the Fourier spa
e. In Randomized models, the nodes are 
hosen atrandom, with an appropriate probability distribution so that the model has the desired 
orrelationstru
ture (e.g., see [31℄, [19℄).Partially homogeneous random �elds present an important 
lass of random �elds wherethis approa
h 
an be e�
iently used.Let x = (y, z), y ∈ IRn, z ∈ IRm, and let V(x) = (v1(x), . . . , vl(x))T . Assume that the random�eld V(y, z) is homogeneous with respe
t to the variable y, i.e.,

〈V(y1, z1)V
∗(y2, z2)〉 = B(y1 − y2, z1, z2)〉 .Random �elds with this property are 
alled partially homogeneous random �elds [31℄. The partialspe
tral tensor is de�ned by

f(λ, z1, z2) =
1

(2π)n

∫IRn

B(ρ, z1, z2) exp {−i(λ,ρ)} dρ .It is not di�
ult to verify that for a general 
omplex-valued random �eld V(x), whi
h is partiallyhomogeneous,
V(y, z) =

1

[p(λ)]1/2
exp {i (λ,y)}ξλ(z)its 
orrelation tensor is equal to B(ρ, z1, z2), if λ is distributed a

ording to a probability density

p(λ) whi
h 
an be 
hosen quite arbitrarily, and ξλ (λ �xed) is a homogeneous l-dimensional
omplex-valued random �eld with the 
orrelation tensor f(λ, z1, z2). A rigorous proof of thisstatement is given in [31℄.
3



1.2 The Karhunen-Loève expansion.Let us now 
onsider a real-valued inhomogeneous random �eld u(x), x ∈ G de�ned on aprobability spa
e (Ω, A, P ) and indexed on a bounded domain G. The 
ase of unbounded domains
an also be treated, in parti
ular, if the 
ovarian
e tensor belongs to a 
lass A de�ned in [4℄,for whi
h the 
orresponding 
ovarian
e operator is 
ompa
t and tra
e 
lass. This importantgeneralization is based on the result due to I.M. Novitsky [23℄ (see also [5℄). In se
tion 2.4 wedeal with an unbounded domain when analysing the Diri
hlet problem for the half-plane. Tosimplify the notations, we will not use here and in what follows the boldfa
e 
hara
ters to denotethe ve
tors if not otherwise indi
ated. They will be essentially used in Se
tion 5 for the ve
torsolution to the Lamé equation.Assume (without loss of generality) that the �eld has a zero mean and a varian
e E u2(x) thatis bounded for all x ∈ G. The Karhunen-Loève expansion has the form [48℄
u(x) =

∞
∑

k=1

√

λk ξk hk(x) ,where λk and hk(x) are the eigen-values and eigen-fun
tions of the 
ovarian
e fun
tion B(x1, x2) =
〈u(x1)u(x2)〉, and ξk is a family of random variables.By de�nition, B(x1, x2) is bounded, symmetri
 and positive de�nite. For su
h kernels, theHilbert-S
hmidt theory says that the following spe
tral representation is valid

B(x1, x2) =

∞
∑

k=1

λk hk(x1)hk(x2)where the eigen-values and eigen-fun
tions are the solutions of the following eigen-value problemfor the 
orrelation operator:
∫

G

B(x1, x2)hk(x1) dx1 = λk hk(x2) .The eigen-fun
tions form a 
omplete orthogonal set ∫

G

hi(x)hj(x) dx = δij where δij is the Kro-ne
ker delta-fun
tion. The family {ξk} is a set of un
orrelated random variables whi
h areobviously related to hk by
ξk =

1√
λk

∫

G

u(x)hk(x) dx , E ξk = 0, Eξi ξj = δij .We mention also that the assumptions of the Hilbert-S
hmidt 
an be weakened as it is done inMer
er's theorem. This will be dis
ussed in se
tion 2.It is well known that the Karhunen-Loève expansion presents an optimal (in the mean squaresense) 
onvergen
e for any distribution of u(x). If u(x) is a zero mean Gaussian random �eld, then
{ξk} is a family of standard Gaussian random variables. Some generalizations to non-gaussianrandom �elds are reported in [27℄.Consider now a 
ase when G is unbounded, e.g., a homogeneous random pro
ess u(x) is de�nedon the whole real line IR. The eigen-value problem reads

∫IR B(x2 − x1)hk(x1) dx1 = λk hk(x2) , −∞ < x2 <∞ . (3)4



Note that we 
an take h(x) = eiωx, then from (3) we get
λ =

∞
∫

−∞

B(x2 − x1) e
−iω(x2−x1) dx1 ≡ S(ω) .To make further 
onsiderations more rigorous, we assume that G is large but �nite, and u isperiodi
 (e.g., see [22℄, [44℄). Then, we may develop B(x2 − x1) in a Fourier series,

B(x− x′) =
∑

k

λk e
i 2πk(x−x′) . (4)The eigen-value problem 
an then be solved via the unique representation

B(x− x′) =
∑

k

λk e
i 2πk xe−i 2πk x′ (5)whi
h imply that ei 2πk x are the eigen-fun
tions with eigen-values λk = S(ωk). And 
onversely,if the eigen-fun
tions are Fourier modes we 
an write the equality (5) whi
h leads to (4).Thus the 
orrelation fun
tion B depends on the di�eren
e x−x′ if and only if the eigen-fun
tionsof the 
orrelation operator are Fourier modes.In our 
onsiderations this fa
t will be used in two-dimensional regions, when G is a dis
, aball or a half-plane. The 
orrelation fun
tion of a zero mean random pro
ess has the form

B(x,x′) = B(x, y;x′y′). Suppose that our random pro
ess is homogeneous with respe
t to one
oordinate, say, B = B(x − x′; y, y′). Then we 
an perform the above pro
edure over the x-dire
tion, and get a 1D eigen-value problem for every Fourier wavenumber. It means, we thenwork with the partial spe
tral density.Assume we deal with a homogeneous real-valued pro
ess on the whole line. Then it is possible to
ut-o� the integration in the eigen-value problem, i.e., we have to solve the eigen-value problem
a

∫

−a

B(x2 − x1)h(x1) dx1 = λk hk(x2),where a is su�
iently large. Then it is possible to show (e.g., see [44℄) that
λk ≈ S(ωk) = S(π k/a) , hk(x) ≈

1

2π
ei (π k x/a) ,whi
h yields an approximation

B(x1, x2) ≈ B̃a(x1, x2) =

∞
∑

k=1

1

a
S(
π k

a
) cos

(π k(x2 − x1)

a

)

,and the K-L expansion approa
hes in this 
ase to the spe
tral representation
u(x) ≈ ũa(x) =

∞
∑

k=1

[ 1

2a
S(
π k

a
)
]1/2{

ξk cos[π k x/a] + ηk sin[π k x/a]
}

.The rate of 
onvergen
e of the K-L expansion is 
losely related to the smoothness of the 
or-relation kernel and to ratio between the length a and L, the 
orrelation length of the pro
ess.For example, in [22℄ is reported that for the parti
ular 
ase B(x1, x2) = σ e−|x2−x1|/L, an upperbound for the relative error in varian
e ε of the pro
ess represented by its K-L expansion is givenby ε ≤ 4
π2

1
n

a
L where n is the number of retained terms.5



2 Sto
hasti
 boundary value problems for the 2D Lapla
eequation.Let us start with the two-dimensional boundary value problems for the Lapla
e equation. Weare interested in the statisti
al stru
ture of the solution when the solution (Diri
hlet boundary
onditions), or the normal derivative (Neumann boundary 
onditions) are homogeneous randomfun
tions (g(y)) on the boundary. The basi
 idea is �rst to establish the Karhunen-Loève ex-pansion for the 
ase when the boundary fun
tion g is a white noise, therefore, the solutions are
onsidered as generalized random �elds. This expansion gives a smooth representation for thesolution and the 
orrelation fun
tion inside the open dis
, and the 
ase of general homogeneousboundary fun
tions is immediately obtained from this expansion by a simple substitution of thespe
tral expansion of the boundary random fun
tion g(x).Before we start with the details for the Lapla
e equation, let us outline shortly the generals
heme. Assume we are given a sto
hasti
 Diri
hlet boundary value problem for a linear ellipti
equation in a domain D with a boundary Γ = ∂D:
Lu(x) = 0, x ∈ D, u(x)|x→y∈Γ = g(y)where g(y) is a random �eld with zero mean and 
ovarian
e fun
tion Bg(y1, y2) = 〈g(y1) g(y2)〉.We are interested in the 
ovarian
e of the solution, Bu(x1, x2) = 〈u(x1)u(x2)〉.Suppose that there exists a 
ontinuous normal derivative of the Green fun
tion on the boundary,

∂G
∂n

, so that the solution is represented by the Green formula:
u(x) =

∫

Γ

∂G

∂n
(x, y)g(y) dS(y) .Using the Green formula representation for the solution in points x1 and x2 we obtain

Bu(x1, x2) =

∫

Γ

∫

Γ

∂G

∂n
(x1, y1)

∂G

∂n
(x2, y2)Bg(y1, y2) dS(y1) dS(y2) . (1)If g is a white noise, Bg(y1, y2) = δ(y1 − y2), and we obtain formally from (1) that

Bu(x1, x2) =

∫

Γ

∂G

∂n
(x1, y)

∂G

∂n
(x2, y) dS(y) . (2)This representation shows that the 
ovarian
e fun
tion Bu(x, x2) solves the boundary valueproblem

LxB(x, x2) = 0, x, x2 ∈ D,

B(x, x2)|x→y∈Γ =
∂G

∂n
(x2, y)|y∈Γ , (3)so that the solution of this problem at any point x = x1 ∈ D yields Bu(x1, x2) for any �xed

x2 ∈ D whi
h de�nes well the 
ovarian
e fun
tion for any two points x1 and x2 inside thedomain D. These formal 
onsiderations leave open the singularity problem of the 
orrelationfun
tion when both points tend to one point on the boundary, but the weak 
onvergen
e to thedelta-fun
tion 
an be given in the framework of generalized solutions (e.g., see [29℄, [30℄, [40℄).6



2.1 Diri
hlet problem for a 2D dis
. White noise ex
itations.Let us 
onsider the Diri
hlet boundary value problem for the Lapla
e equation
∆u(x) = 0, x ∈ D, u(y) = g(y) y ∈ Γ = ∂D, (4)where the domain D is a dis
 K(x0, R) 
entered at O = x0, bounded by the 
ir
le Γ = S(x0, R).We denote the 
losed dis
 by K̄(x0, R) = K(x0, R) ∪ S(x0, R).The regular solution to the harmoni
 equation is represented by the Poisson integral formula[45℄:

u(x) =
R2 − r2

2πR

∫

S(x0, R)

g(y)dSy

|x− y|2 ,for any point x ∈ K(x0, R), where r = |x− x0|.We suppose that the boundary fun
tion g(y) is a zero mean Gaussian random �eld, homogeneousor not, de�ned by its 
orrelation fun
tion Bg(y1, y2) = 〈g(y1)g(y2)〉. In 
ase g is homogeneous,it is alternatively de�ned by its spe
tral density fun
tion f(k) related to the 
orrelation fun
tion
Bg(y), y = y2 − y1, by the Fourier transform

f(k) =
1

2π

∫

Bg(y)e
−i(y k) dy , Bg(y) =

∫

f(k)ei(y k) dk .When dealing with the homogeneous random pro
esses g(ϕ) on the 
ir
le, we assume through-out the paper that they are 2π-periodi
, so the spe
tra are dis
rete, and the Fourier integraltransforms be
ome Fourier series.Let us start with the 
ase when the pres
ribed boundary fun
tion g is a Gaussian white noise,
Bg(y, y

′) = δ(y−y′), thus we deal in this paper with generalized random solutions whi
h howeverare smooth in the open domain (in a dis
, ball, and a half-plane). The generalized treatmentof the 
onvergen
e to the boundary fun
tions 
an be expli
itly des
ribed (e.g., see [29℄) in moregeneral 
ases.Let us introdu
e polar 
oordinates 
entered at x0, so that a point x is spe
i�ed by (r, θ), hen
e,for two points, x1 = (r1, θ1), x2 = (r2, θ2), and ρ1 = r1/R, ρ2 = r2/R.It is 
onvenient then to rewrite the Poisson formula as follows
u(r, θ) =

1 − ρ2

2π

2π
∫

0

g(ϕ) dϕ

1 − 2ρ cos(θ − ϕ) + ρ2
(5)where ρ = r/R.Theorem 1. The solution of the Diri
hlet problem (4) in a dis
 K(x0, R) with the white noiseboundary fun
tion g(y) is an inhomogeneous 2D Gaussian random �eld uniquely de�ned by its
orrelation fun
tion

〈u(r1, θ1)u(r2, θ2)〉 = Bu(ρ1, θ1; ρ2, θ2) =
1

2π

1−ρ2
1ρ

2
2

1−2ρ1ρ2 cos(θ2−θ1)+ρ2
1ρ

2
2

(6)whi
h is harmoni
, and it depends only on the angular di�eren
e θ2 − θ1 and the produ
t ofradial 
oordinates ρ1ρ2 = r1r2/R
2. The random �eld u(r, θ) is thus homogeneous with respe
t7



to the angular 
oordinate θ, and its partial dis
rete spe
tral density has the form fθ(0) = 1/2π,
fθ(k) = (ρ1ρ2)

k/π, k = 1, . . . .Proof. We start by simple evaluations:
Bu = 〈u(r1, θ1)u(r2, θ2)〉

=
〈 1

2π

2π
∫

0

(R2 − r1
2) g(ϕ) dϕ

R2 − 2Rr1 cos(θ1 − ϕ) + r12
· 1

2π

2π
∫

0

(R2 − r2
2) g(ϕ) dϕ

R2 − 2Rr2 cos(θ2 − ϕ) + r22

〉

=
1

(2π)2

2π
∫

0

2π
∫

0

((R2 − r21)(R
2 − r22)

〈

g(ϕ′) g(ϕ′′)
〉

dϕ′ dϕ′′

[R2 − 2R r1 cos(θ1 − ϕ′) + r21] [R
2 − 2Rr2 cos(θ2 − ϕ′′) + r22]

=
1

(2π)2

2π
∫

0

1 − ρ1
2

1 − 2 ρ1 cos(θ1 − ϕ) + ρ1
2
· 1 − ρ2

2

1 − 2 ρ2 cos(θ2 − ϕ) + ρ2
2
dϕ . (7)Here we used the property of the white noise 〈g(ϕ′) g(ϕ′′)〉 = δ(ϕ′ − ϕ′′).This integral 
an be evaluated expli
itly, and the result is given in (6). However we will obtainit using Fourier series expansion whi
h not only presents a simple derivation of (6), but yieldsthe spe
trum of our random �eld, and the Karhunen-Loève expansion.Indeed, we start with the well known expansion [45℄

K(ρ; θ − ϕ) ≡ 1

2π
· 1 − ρ2

1 − 2ρ cos(θ − ϕ) + ρ2
=

1

2π
+

1

π

∞
∑

k=1

ρk cos[k(θ − ϕ)] (8)and pro
eed (7) as follows
Bu =

2π
∫

0

{

1

2π
+

1

π

∞
∑

k=1

ρk
1 cos[k(θ1 − ϕ)]

} {

1

2π
+

1

π

∞
∑

k=1

ρk
2 cos[k(θ2 − ϕ)]

}

dϕ

=
1

2π
+

1

π

∞
∑

k=1

ρk
1

2π
∫

0

cos[k(θ1 − ϕ)]K(ρ2; θ2 − ϕ) dϕ

=
1

2π
+

1

π

∞
∑

k=1

ρk
1

2π
∫

0

[cos kθ1 cos kϕ+ sin kθ1 sin ϕ]K(ρ2; θ2 − ϕ) dϕ

=
1

2π
+

1

π

∞
∑

k=1

ρk
1ρ

k
2 cos[k(θ1 − θ2)] =

1

2π
· 1 − ρ2

1ρ
2
2

1 − 2ρ1ρ2 cos(θ2 − θ1) + ρ2
1ρ

2
2

. (9)Here we used the ni
e property of the integral operator with the kernel K(ρ; θ − ϕ) that it hasthe following system of eigen-values {λk} and the 
orresponding orthonormal eigen-fun
tions
{hk(ϕ)} 
omplete in L2(0, 2π):

λ0 = 1, h0 =
1√
2π
, λ2k−1 = λ2k = ρk,

h2k−1 = π−1/2 cos(kθ) ; h2k = π−1/2 sin(kθ), k = 1, 2, . . . . (10)8



This 
an be veri�ed by a dire
t substitution of the series expansion (8) into the eigen-valueproblem
1

2π

2π
∫

0

(1 − ρ2) hk(ϕ) dϕ

1 − 2ρ cos(θ − ϕ) + ρ2
= λk hk(θ) . (11)So it remains to prove that our random �eld u(ρ, θ) has a dis
rete partial spe
tral density,

fθ(0) = 1/2π, and
fθ(k) =

1

2π

2π
∫

0

Bu(ρ1, θ1; ρ2, θ2) e
−i k (θ2−θ1) d(θ2 − θ1) = (ρ1ρ2)

k/π, k = 1, . . . . (12)A
tually this 
an be easily seen from the arguments given in (9). A dire
t proof follows fromthe Fourier transform property for 
onvolutions. Indeed, the representation (9) shows that the
orrelation fun
tion Bu is written in the form of a 
onvolution, i.e.,
Bu = K(ρ1;ψ) ∗ K(ρ2;ψ − (θ1 − θ2))

=
1

(2π)2

2π
∫

0

1 − ρ2
1

(1 − 2ρ1 cos(ψ) + ρ2
1)

· 1 − ρ2
2

(1 − 2ρ2 cos(ψ − (θ2 − θ1)) + ρ2
2)
dψ .Now we take the inverse Fourier transform of both parts, and use the Fourier transform propertyfor 
onvolutions. This yields

fθ(0) = 1/2π, fθ(k) = ρk
1 ρ

k
2/πwhi
h is the desired result. Here we used the property [11℄

1

2π

2π
∫

0

(1 − ρ2) cos(kx) dx

1 − 2ρ cos x+ ρ2
= ρkwhile the sin-transform is zero. Finally, the 
ovarian
e fun
tion Bu(x1, x2) is harmoni
 withrespe
t to both of its 
oordinates whi
h follows from the general representation (3).The proof is 
omplete.Remark 1. The angular behaviour of the 
orrelation fun
tion shows thus that the random �eldis partially homogeneous. The radial behaviour is also interesting. Let us �x a dire
tion, say theline y = 0, then, B(x1, x2) = 1

2π · R2+x1x2

R2−x1x2
, where x1 and x2 vary between −R and R. This showsthat if one of the points, x1, x2 is in the 
enter of the dis
, the 
ovarian
e equals to a 
onstantvalue, 1/2π.For illustration, in Figure 1 we show the angular (left panel) and radial (right panel) behaviourof the 
orrelation fun
tion Bu. The angular and radial fun
tions are both plotted versus these
tion number k, the number of se
tions being 50, so that θ = k 2π/50 (angular behaviour,left panel), and x = k 2R/50 (radial behaviour, right panel). The angular behaviour in the leftpanel is shown for three di�erent 
hoi
es of the radii ρ1 and ρ2. The radial behaviour is givenfor 6 di�erent values of the value x1, the radius of the dis
 was 5, see the right panel in Figure1. As expe
ted, a low number of eigen-modes in the K-L expansion is enough to have a goodapproximation; in Figure 2 we 
ompare the K-L approximation against the exa
t result, taking

M = 5 and M = 10 terms (left panel), and M = 2 and M = 5 terms (right panel).9
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Theorem 2. The Gaussian random �eld des
ribed in Theorem 1 has the following Karhunen-Loève type expansion
u(r, θ) =

ξ0√
2π

+
1√
π

∞
∑

k=1

ρk
[

ξk cos(k θ) + ηk sin(k θ)
] (13)where {ξk}, {ηk} are sets of mutually independent standard Gaussian random variables.Proof. The idea of the proof appeals to Mer
er's theorem whi
h states the following (e.g., see[14℄. Let U be a 
ompa
t set in IRd, and letK(s, t) be a symmetri
 L2(U)-kernel with eigen-values

{λn} and eigen-fun
tions hk(t):
∫

K(s, t)hk(t) dt = λkhk(x) , k = 1, 2 . . . .Mer
er's Theorem. If a nonnull, symmetri
 L2(U)-kernel K(s, t) is quasi-de�nite (i.e., whenall but a �nite number of eigen-values are of one sign) and 
ontinuous, then the series ∑∞
n=0 λnis 
onvergent, and

K(s, t) =
∞
∑

n=0

λnhn(s) h̄n(t) , (14)where h̄k(t) be the 
omplex 
onjugate of hk(t), and the series 
onverges absolutely and uniformlyin U × U .From this theorem, the Karhunen-Loève expansion 
an be obtained (e.g., see [48℄):Let v(x) be a real-valued, zero mean, gaussian random �eld with 
ontinuous 
ovarian
e fun
tion
K(x, y) whi
h has Mer
er's expansion K(x, y) =

∑

k

λkhk(x)hk(y). Then, under some regulary
onditions,
v(x) =

∞
∑

k=0

√

λk hk(x) ξk , (15)in L2 and a.s., where {ξk}k∈IN is a sequen
e of independent and identi
ally standard normallydistributed random variables.Note that although our 
orrelation fun
tion (9) is 
ontinuous everywhere inside the dis
, itin
reases in�nitely as both points approa
h a point on the boundary, i.e., when θ1 = θ2, and
ρ1 → 1, ρ2 → 1.However our kernel, the 
ovarian
e fun
tion (9), belongs to L2(K̄0), for ea
h dis
 K̄0(x0, ρ0) ⊂
K(x0, 1), and we �nd from the expansion (9) that

∫

K̄0(x0,ρ0)

Bu dx dy <∞ ,and so the weak 
onvergen
e as ρ0 → 1 
an be proven.Now we 
onsider the eigen-value problem for the 
ovarian
e fun
tion Bu:
∫ 1

0
dρ1

2π
∫

0

1

2π

(1 − ρ2
1ρ

2
2) hk(ρ1, θ1) dθ1

1 − 2ρ1ρ2 cos(θ2 − θ1) + ρ2
1ρ

2
2

= λk hk(ρ2, θ2) .Using the expansion (9) we �nd the eigen-fun
tions and eigen-values:11



λ0 = 1, h0 =
1√
2π

; λ2k−1 = λ2k =
1

2k + 1
;

h2k−1(ρ, ϕ) =
√

2k + 1 ρk cos(kθ)

π1/2
; h2k(ρ, ϕ) =

√
2k + 1 ρk sin((θ)

π1/2
,

k = 1, 2, 3, . . .where the eigen-fun
tions are orthonormal to one another:
1

∫

0

2π
∫

0

hn(ρ, θ)hm(ρ, θ) dρ dθ = δnm .Thus the Karhunen-Loève expansion (13) follows from the representation
u(r, θ) =

∞
∑

k=1

ζk
√

λk hk(ρ, θ)where ζ is a family of standard independent Gaussian random variables.The proof of Theorem 2 is 
omplete.The expli
it representation of our random �eld (13) is very 
onvenient in pra
ti
al simulations,as well as in analyti
al evaluations of di�erent statisti
al fun
tionals.Note that sin
e our random �eld is homogeneous with respe
t to the angular variable, we 
analso write down the relevant randomized spe
tral representation when ρ = ρ1 = ρ2.Indeed, we now let the dis
rete wave numbers k be randomly distributed with the distribution
pk =

1 − ρ2

ρ2
ρ2k , k = 1, 2, . . . .Then the random �eld

u(r, θ) =
ξ0√
2π

+
ρ

√

π(1 − ρ2)

[

ξ cos(k θ) + η sin(k θ)
] (16)has the desired 
orrelation fun
tion (6). Here ξ0, ξ and η are standard independent Gaussianvariables. Further, to make the distributions 
lose to Gaussian, in the spe
tral models one usuallytakes independent sums of models (16) (e.g., see [31℄).2.2 General homogeneous boundary ex
itations.Assume now that a zero mean real-valued Gaussian random pro
ess g is de�ned on the 
ir
le byits spe
trum fk so that the 
ovarian
e fun
tion reads

Bg(ϕ
′′ − ϕ′) =

f0

2π
+

1

π

∞
∑

k=1

fk cos k(ϕ′′ − ϕ′) .Substituting this in (7) and using the series expansion of the kernel K(ρ; θ−ϕ), we arrive at thefollowing series expansion for the 
ovarian
e fun
tion Bu:
Bu(ρ1, θ1; ρ2, θ2) =

f0

2π
+

1

π

∞
∑

k=1

fk ρ
k
1 ρ

k
2 cos k(θ2 − θ1) . (17)12



Thus the generalization of the random �led representation (15) has the form
u(r, θ) =

√
f0 ξ0√
2π

+
1√
π

∞
∑

k=1

√

fk ρ
k
[

ξk cos(k θ) + ηk sin(k θ)
]

. (18)The result (17) is an indi
ation that there should be a simple relation between the 
orrela-tion fun
tion Bu and the 
orrelation fun
tion Bg of the homogeneous pro
ess g de�ned on theboundary. Indeed, we present this relation below in Theorem 3.The 
orrelation fun
tion of the solution in the 
ase when g is a white noise, is given in (6). Itdepends on the di�eren
e ψ = θ2 − θ1, and on the produ
t ρ1ρ2. Thus in the notation of Poissonkernel given in (8) the 
orrelation fun
tion (6) reads
Bu = K(ρ1ρ2;ψ) =

1

2π

1−ρ2
1ρ

2
2

1−2ρ1ρ2 cos(ψ)+ρ2
1ρ

2
2

. (19)Now we 
an give the desired relation between the 
orrelation fun
tions.Theorem 3. Assume the boundary fun
tion g in the Diri
let problem (4) is a homogeneousrandom pro
ess with a 
ontinuous 
orrelation fun
tion Bg(ψ). Then the solution of the problem(4) is partially homogeneous with respe
t to the angular 
oordinate, and its 
orrelation fun
tion
Bu(ρ1, θ1; ρ2, θ2) depends on the angular di�eren
e ψ = θ2 − θ1 and the produ
t ρ1ρ2, and isexpli
itly given by the 
onvolution Bu = K ∗Bg, i.e. , by the Poisson formula

Bu(ρ1ρ2;ψ) =
1

2π

2π
∫

0

K(ρ1ρ2;ψ − ψ′)Bg(ψ
′) dψ′ (20)whi
h implies that the 
orrelation fun
tion Bu(ρ, θ) is harmoni
 in the unit dis
, and it is theunique solution of the Diri
hlet boundary value problem

∆Bu = 0, Bu|ρ→1 = Bg . (21)Proof. To obtain (20), we turn to the proof of Theorem 1, and use in the double integral in (7)the 
hange of variable ψ = ϕ′′ − ϕ′, use there the series expansions for the both Poisson kernels,and perform the integration over ϕ′′. This yields (20).Remark 2. From the proof it is 
lear that the same 
onvolution relation result remains true iftwo homogeneous and homogeneously 
orrelated sto
hasti
 pro
esses are given on the boundary.Indeed, let g1 and g2 be two homogeneous pro
esses on the 
ir
le with zero mean and a 
ross-
orrelation Bg1g2(θ2 − θ1). Then the 
orresponding solutions u1 and u2 are also homogeneously
orrelated, and the 
ross-
orrelation fun
tion Bu1u2 is related to Bg1g2 by the same 
onvolutionformula with the kernel K as in Theorem 3: Bu1u2 = K ∗Bg1g2 .Finally we note that from (18) we 
an derive the expressions for Bux and Buy , the 
orrelationfun
tions for the derivatives ux and uy whi
h is our 
ase remarkably 
oin
ide:
Bux = Buy =

1

π

∞
∑

k=1

fk k
2 ρk−1 cos [(k − 1) θ] .

13



2.3 Neumann boundary 
onditions.Let us study the 
ase when on the boundary, the normal derivative is pres
ribed, i.e., we 
onsiderthe inner problem for the dis
 D = K(x0, R):
∆u(x) = 0, x ∈ D,

∂u

∂n
(y) = g(y) y ∈ Γ = ∂D, (22)where n is the external normal ve
tor.The Poisson type formula in polar 
oordinates 
entered at x0 has the form [45℄

u(r, θ) = − 1

2π

2π
∫

0

ln(1 − 2ρ cos(θ − ϕ) + ρ2) g(ϕ) dϕ + const (23)where ρ = r/R, and const is an arbitrary 
onstant whi
h we further take equal to zero.As in the Diri
hlet problem, here the eigen-value property of the kernel (see (10) plays the 
ru
ialrole. By dire
t evaluations we 
an prove that
− 1

2π

2π
∫

0

ln(1 − 2ρ cos(θ − ϕ) + ρ2)hk(ϕ) dϕ = λk hk(θ) (24)where
λ2k−1 = λ2k =

ρk

k
; hk = π−1/2 cos(kθ) ; h2k = π−1/2 sin(kθ),

k = 1, 2, 3, . . . (25)This 
an be easily proved by substituting the expansion [11℄
ln(1 − 2ρ cos(θ − ϕ) + ρ2) = −2

∞
∑

k=1

ρk

k
cos[k(θ − ϕ)]in (24).From this, we 
an derive the following result whi
h is a 
ounterpart of Theorem 1.Theorem 4. The solution of the Neumann problem (22) in a dis
 K(x0, R) with the Gaussianwhite noise boundary fun
tion g(y) is an inhomogeneous 2D Gaussian random �eld uniquelyde�ned by the 
orrelation fun
tion

Bu(ρ1, θ1; ρ2, θ2) = KNeum(ρ1ρ2; θ2 − θ1) =
1

π

∞
∑

k=1

ρk
1ρ

k
2

k2
cos k(θ2 − θ1) . (26)The random �eld u(r, θ) is homogeneous with respe
t to the angular 
oordinate θ, and its respe
tivedis
rete spe
tral density has the form fθ(k) =

ρk
1ρk

2
πk2 k = 1, . . ..Moreover, if g is a homogeneous random pro
ess with a 
orrelation fun
tion Bg(ψ

′) then the
orrelation fun
tion of the solution is related to Bg by the 
onvolution
Bu(ρ1ρ2;ψ) =

1

2π

2π
∫

0

KNeum(ρ1ρ2;ψ − ψ′)Bg(ψ
′) dψ′ . (27)14
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Figure 3: Comparison of angular 
orrelations for Lapla
e and Neumann boundary 
onditions,for two di�erent values of the radii (left panel). Radial 
orrelation fun
tion for the Neumannboundary 
onditions (right panel).Proof. The proof of (26) is essentially the same as in the 
ase of Diri
hlet problem. The
orrelation fun
tion Bu is written in the form of a 
onvolution, i.e.,
Bu = K1(ρ1;ψ) ∗ K1(ρ2;ψ − (θ1 − θ2))where K1(ρ;ψ) = ln(1− 2ρ cos(ψ) + ρ2). Then we take the Fourier transform of both parts, anduse the Fourier transform property for 
onvolutions. This yields fθ(k) = ρk

1 ρ
k
2/πk

2 whi
h is thedesired result. The proof of (27) follows basi
ally the same s
heme, and repeats the s
heme givenin the proof of Theorem 3.From these 
onsiderations, we 
an �nd the eigen-values and eigen-fun
tions of the 
orrelationfun
tion. These are
λ2k−1 = λ2k =

1

k2 (2k + 1)
; k = 1, 2, 3, . . . (28)

h2k−1(ρ, ϕ) =
√

2k + 1 ρk cos(kθ)

π1/2
; h2k(ρ, ϕ) =

√
2k + 1 ρk sin(kθ)

π1/2
.This leads to the Karhunen-Loève expansion (26). The random �led is therefore written asfollows

u(r, θ) =
1√
π

∞
∑

k=1

ρk

k

[

ξk cos(k θ) + ηk sin(k θ)
]

.We 
ompare in Figure 3 the angular 
orrelations for the Lapla
e and Neumann boundary 
on-ditions (left panel), and show the radial behaviour of the 
orrelation fun
tion for the solution ofthe Neumann problem (right panel).2.4 Upper half-plane.Let us 
onsider the Diri
hlet problem in the half-plane:
∆u(x) = 0, x ∈ D+, u(y) = g(y) y ∈ Γ = ∂D+, (29)15



where the domain D+ is the upper half-plane with the boundary Γ = {(x, y) : y = 0}.The Poisson formula reads [45℄
u(x) =

y

π

∞
∫

−∞

g(ξ) dξ

(x− ξ)2 + y2
. (30)Dire
t evaluation of the 
ovarian
e fun
tion B(x1, y1;x2, y2) even in the 
ase when the fun
tion

g(ξ) is a white noise meets some te
hni
al di�eren
e in 
omparison to the dis
,
B(x1, y1;x2, y2) =

y1 y2

(π)2

∞
∫

−∞

dξ

[(x1 − ξ)2 + y2
1][(x2 − ξ)2 + y2

2]
. (31)Therefore, we use the Fourier transform te
hnique. Let us introdu
e the notation for the kernel

Kp(η, y) =
y

η2 + y2
(32)so that the 
ovarian
e is written in the form of 
onvolution

B(x1, y1;x2, y2) = Kp(η, y1) ∗Kp(η − (x2 − x1), y2) ,and the Fourier transform yields FB = FK(·,y1) · FK(·,y2). Sin
e [11℄
FK(·,y) =

y

π

∞
∫

−∞

cos(kx) dx

y2 + x2
= e−|k|y ,we get FB = e−|k|(y1+y2). Inverse Fourier transform �nally yields [11℄

B(x1, y1;x2, y2) = F−1(e−|k|(y1+y2)) =
1

π

y1 + y2

(y1 + y2)2 + (x1 − x2)2
. (33)Now we need to solve the eigen-value problem for the 
ovarian
e operator:

∞
∫

0

dy2

∞
∫

−∞

y1 + y2

π

hk(x2, y2) dx2

(y1 + y2)2 + (x1 − x2)2
= λk hk(x1, y1) . (34)Here we 
annot apply the 
lassi
al Hilbert-S
hmidt theory sin
e the pro
ess is de�ned on theunbounded domain D+. Therefore, we 
an apply the 
ut-o� approa
h des
ribed in se
tion 1.2.Indeed, the 
orrelation fun
tion (33) is partially homogeneous, with respe
t to the horizontal
oordinate x.Through a Fourier analysis we �nd that the partial spe
trum is S(k) = exp(−k(y1 + y2), andthe eigen-fun
tions are the Fourier modes. Thus as dis
ussed in se
tion 1.2,

λk ≈ S(ωk) = S(πk/a) = exp{−πk(y1 + y2)/a},and the spe
tral approximations are
Bu ≈ B̃a(x1, y1;x2, y2) =

∞
∑

k=1

1

a
e−

πk
a

(y1+y2) cos
[πk(x2 − x1)

a

]

, (35)16
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t result, for threedi�erent values of the 
ut-o� parameter a, ∆x = 0.01.
u ≈ ũa(x, y) =

∞
∑

k=1

1√
a

exp{−π ky/a} [ξk cos[π k x/a)] + ηk sin[π k x/a)] (36)where ξk and ηk are two mutually independent families of standard Gaussian random variables.Thus introdu
ing the 
ut-o� we 
an �nd the orthonormal set of eigen-fun
tions of the eigen-valueproblem for the 
orrelation operator (34):
h2k−1(x, y) =

cos(πkx/a)√
a

√

2π k

a
e−

πky

a , h2k(x, y) =
sin(πkx/a)√

a

√

2π k

a
e−

πky

a ,

λ2k−1 = λ2k =
a

2π k
, k = 1, 2, . . . , .Note that the 
ut-o� parameter a should be 
hosen large enough.For illustration, we present in Figure 4 the approximation (35) for 3 di�erent values of a 
omparedagainst the exa
t representation (33). The numeri
al 
onvergen
e is 
learly seen as the 
ut-o�parameter in
reases. Obviously, as mentioned at the end of se
tion 1.2, the larger a, the largerthe number of retained terms n, so that n ∼ a/ε where ε is the approximation error.Finally we noti
e that the Theorem 3 proved above for the 
ase of a dis
 holds also for thehalf-plane where the kernel K(ρ1ρ2; θ2 − θ1) should be repla
ed by the kernel (33). Thus if therandom fun
tion g de�ned on the axis x, {(x, y) : y = 0} is a homogeneous random pro
esswith the 
orrelation fun
tion Bg, then the 
orrelation fun
tion of the solution Bu(x1, y1;x2, y2) =

Bu(x2 − x1, y2 + y1) depends on x = x2 − x1 and y = y2 + y1, so Bu(x, y) is harmoni
 in D+,with the boundary 
onditions Bu|y→0 = Bg. We will show now that this is true indeed for ahalf-spa
e in any dimension. So let us give the result in more details. Here it is 
onvenient touse the boldfa
e 
hra
ter x for the horithontal 
oordinates, and y for the verti
al one.17



Theorem 5. Let u(x, y), x = (x1, . . . xn−1) be a random �eld de�ned in the half-spa
e D+ =IRn
+ as a harmoni
 fun
tion with the boundary 
ondition u|y=0 = g where g is a zero meanhomogeneous random �eld on the boundary {y = 0} with the 
orrelation fun
tion Bg(x) whi
his bounded in dimension n = 2, or tends to zero as |x| → ∞ if n > 2. Then Bu(x, y) =

Bu(x2 −x1, y1 + y2), the 
orrelation fun
tion of the solution, is a harmoni
 fun
tion in IRn
+, andis related to Bg by the Poisson type formula:

Bu(x2 − x1, y1 + y2) =
Γ(n/2)

πn/2

∫

∂D+

(y1 + y2)Bg(x
′) dS(x′)

[(x′ − (x2 − x1))2 + (y1 + y2)2]n/2
. (37)The proof is obtained by the same Fourier transform te
hnique we used above.Remark 3. We remark that exa
tly as in the 
ase of a dis
 as dis
ussed in Remark 2 to theTheorem 3, the same 
onvolution relation (37) is true for the 
ross-
orrelation fun
tions, we needonly to write it for the kernel Kp: Bu1u2 = Kp ∗Bg1g2 . Note that in the n-dimensional 
ase, Kphas the form of the kernel given in (37).In pra
ti
e, it is often important to know the statisti
al stru
ture of the gradient of the solution.Let us denote by Buxi

(x, y), i = 1, . . . , n−1, and Buy(x, y) the 
orrelation fun
tions of the partialderivatives of the solution u. They obviously also depend only on x = x2 − x1 and y = y1 + y2by the assumption that g is homogeneous. Dire
t evaluation gives
Buxi

= −∂
2Bu

∂xi
, i = 1, . . . , n− 1, Buy =

∂2Bu

∂2y
.Note that sin
e the 
orrelation fun
tion Bu is harmoni
, this implies the following remarkableproperty: Buy =

n−1
∑

i=1
Buxi

. So in dimension two, Buy = Bux .3 3D Lapla
e equation.For a ball in 3D, all 
onsiderations are quite similar, where the eigen-fun
tions involved are thespheri
al harmoni
s. The regular solution to the harmoni
 equation in a 3D ball D(x0, R) ofradius R 
entered at a point x0 is represented by the Poisson integral formula as an integral overthe sphere S(x0, R) = ∂D(x0, R) [45℄:
u(x) =

R2 − r2

4πR

∫

S(x0, R)

g(y)dSy

|x− y|3/2for any point x ∈ D(x0, R), where r = |x− x0|.In spheri
al 
oordinates 
entered at x0 the Poisson formula reads
u(r, θ, ϕ) =

1 − ρ2

4π

2π
∫

0

π
∫

0

sin(θ′) g(θ′, ϕ′) dθ′ dϕ′

[1 − 2ρ cos(ψ) + ρ2]3/2
(38)where ρ = r/R, and ψ is the angle between the ve
tors s and s′, whi
h implies,

cos(ψ) = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) . (39)Let g be a zero mean random �eld de�ned on the sphere S(x0, R). It is 
alled isotropi
, if its
orrelation fun
tion Bg(s, s
′) depends only on the angular distan
e between s and s′, i.e., only on18



the angle ψ as de�ned in (39). We say that a random �eld de�ned in a ball D(x0, R) is partiallyisotropi
 in the ball if it is isotropi
 with respe
t to the angular 
oordinates.The statement of Theorem 1 for the 3D 
ase 
an be formulated as follows.Theorem 6. The solution of the Diri
hlet problem in the ball D(x0, R) with the white noiseboundary fun
tion g(y) is an inhomogeneous 3D Gaussian random �eld uniquely de�ned by the
orrelation fun
tion
Bu = K3(ρ1ρ2;ψ12) ≡

1

4π

1 − ρ2
1ρ

2
2

[1 − 2ρ1ρ2 cos(ψ1,2) + ρ2
1ρ

2
2]

3/2
(40)where cos(ψ1,2) = cos θ1 cos θ2+sin θ1 sin θ2 cos(ϕ1−ϕ2) . The random �eld u(r, θ, ϕ) is partiallyisotropi
 in the ball, and its respe
tive dis
rete spe
tral density has the form fθ(0) = 1/4π,

fθ(k) = (ρ1ρ2)
k/2π, k = 1, . . .. Generally, if g is an isotropi
 random �eld on the sphere, the
orrelation fun
tion of the solutions Bu is related to Bg by Bu(ρ1ρ2;ψ) = K3(ρ1ρ2;ψ−ψ′)∗Bg(ψ

′)whi
h implies that the solution u is partially isotropi
 in the ball, and the 
orrelation fun
tion
Bu is harmoni
, with the pres
ribed boundary fun
tion Bg.Proof. We use here also a series expansion method. Let us re
all some de�nitions.The Legendre polynomials we denote by Pl(cos θ), - re
all that these fun
tions are de�ned on
(−1, 1) as follows:

Pl(µ) =
1

2l l!

dl

dµl
(µ2 − 1)l, l = 0, 1, . . . .The asso
iated Legendre polynomials Pm

l (µ), l = 0, 1, . . . ; m = 0, 1, . . . , l are de�ned via the
(m)-derivatives of Pl(µ) as follows

Pm
l (µ) = (1 − µ2)m/2P(m)(µ), l = 0, 1, . . . ; m = 0, 1, . . . , l .Then, the system of spheri
al harmoni
s fun
tions {Y m

l (θ, ϕ)}, l = 0, 1, . . . ; m = 0,±1,±2, . . . ,±lis de�ned as follows
Y m

l (θ, ϕ) = Pm
l (cos θ) cos(mϕ), m = 0, 1, 2, . . . , l;

Y m
l (θ, ϕ) = Pm

l (cos θ) sin(|mϕ|), m = −1,−2, . . . . (41)It is well known that this is a system of orthogonal fun
tions 
omplete in L2(S), and
||Y m

l ||2 =

π
∫

0

2π
∫

0

[Y m
l (θ, ϕ)]2 sin θ dθ dϕ = 2π

1 + δ0m

2l + 1

(l + |m|)!
(l − |m|)! .The following expansion is well known (e.g., see [45℄, [8℄):

K(ρ, ψ) ≡ 1 − ρ2

[1 − 2ρ cos(ψ) + ρ2]3/2
= 1 +

∞
∑

k=1

ρk (2k + 1)Pk(cos(ψ)) . (42)For brevity, let us introdu
e the notation for the unit ve
tors, s′, s1 and s2 de�ned by its dire
tionangles (θ′, ϕ′), (θ1, ϕ1), and (θ2, ϕ2), respe
tively, and let
(s′, s1) = cos(ψ1) = cos θ1 cos θ′ + sin θ1 sin θ′ cos(ϕ1 − ϕ′)

(s′, s2) = cos(ψ2) = cos θ2 cos θ′ + sin θ2 sin θ′ cos(ϕ2 − ϕ′) .19



In what follows, we will sometimes use a shorter notation for the integration over a surfa
emeasure ds′ on a unit sphere:
∫

ds =

2π
∫

0

π
∫

0

sin(θ′)dθ′ dϕ′ .We use the expansion (42) in the following expli
it evaluations:
Bu(ρ1, s1; ρ2, s2)

=
1

(4π)2

2π
∫

0

π
∫

0

(1 − ρ2
1)(1 − ρ2

2) sin(θ′) dθ′ dϕ′

[1 − 2ρ1 cos(ψ1) + ρ2
1]

3/2 [1 − 2ρ2ρ2 cos(ψ2) + ρ2
2]

3/2

=
1

(4π)2

∫

[

1+

∞
∑

k=1

ρk
1 (2k+1)Pk((s′, s1))

][

1+

∞
∑

k=1

ρk
2 (2k+1)Pk((s′, s2))

]

ds′

=
1

4π

[

1 +

∞
∑

k=1

(ρ1ρ2)
k (2k + 1)2

Pk((s1, s2))

2k + 1

]

. (43)Here we used the following property:
1

4π

∫

Pl((s, s1))Pk((s, s2))ds =
Pk((s1, s2))

2k + 1
δkl . (44)This 
an be derived from the following property

1

4π

∫

Pk((s, s
′))Y m

l (s′) ds′ =
1

2l + 1
Y m

l (s) δlk (45)whi
h in turn follows from
Pl((s, s

′)) =

l
∑

m=−l

κlm Y m
l (s)Y m

l (s′) . (46)Here the 
oe�
ients are given by
κlm =

2

(1 + δ0m)

(l − |m|)!
(l + |m|)! . (47)Thus the last line of (43) gives the desired result (40) and the proof is 
omplete.Now we use the series representation (43) to solve the eigen-problem for the 
orrelation fun
tion

∫ 1

0
dρ2

∫

Bu(ρ1, s1; ρ2, s2)hl(ρ2, s2) ds2 = λl hl(ρ1, s1) . (48)The next assertion follows immediately from the properties (44)-(46).Theorem 7. The eigen-value problem (48) has a 
omplete set of orthonormal eigen-fun
tionsand the relevant eigen-values (l = 0, 1, . . . , m = −l, . . . , l):
λl =

1

2l + 1
, hl(ρ, s) =

√

κlm(2l + 1)

4π
Y m

l ·
√

2l + 1 ρl . (49)20



The KL-expansions of the 
orrelation fun
tion and the random �eld are given by
Bu(ρ1, s1; ρ2, s2) =

1

4π
+

1

4π

∞
∑

k=1

(2k + 1) ρk
1 ρ

k
2

{

k
∑

m=−k

κkm Y m
k (s1)Y

m
k (s2)

}

,

u(r, s) =
ξ0√
4π

+
1√
4π

∞
∑

k=1

√
2k + 1 ρk

{

k
∑

m=−k

ξkm
√
κkm Y m

k (s)
}

,where ξ0, {ξkm} are independent standard Gaussian random variables.4 Biharmoni
 equation.Let us 
onsider the following problem for a biharmoni
 equation in a dis
 D = K(x0, R), gov-erning a slow vis
ous motion inside a 
ir
ular 
ylinder of radius R [16℄:
∆u2(x) = 0, x ∈ D, u(y) = g0(y),

∂u

∂n
(y) = gn(y) y ∈ Γ = ∂D, (50)where n is the external normal ve
tor.In polar 
oordinates 
entered at x0 with ρ = r/R the Poisson type integral formula reads [31℄

u(r, θ) =
(1 − ρ2)2

2π

2π
∫

0

{

− R

2[1 − 2ρ cos(θ − ϕ) + ρ2]

}

gn(ϕ) dϕ

+
(1 − ρ2)2

2π

2π
∫

0

[1 − ρ cos(θ − ϕ)]

[1 − 2ρ cos(θ − ϕ) + ρ2]2
g0(ϕ) dϕ . (51)Assuming the random white noise ex
itations g0 and gn are independent, we de
ompose therandom �eld into two independent 
omponents: u = u(1) +u(2). Then, the 
ovarian
e of u is thesum of 
ovarian
es of u(1) and u(2). From (51) we obtain

Bu = 〈u(r1, θ1)u(r2, θ2)〉 =
R2

4
(1 − ρ2

1)(1 − ρ2
2)B∆(ρ1, θ1; ρ2, θ2) (52)

+
1

(2π)2

2π
∫

0

(1 − ρ2
1)

2 (1 − ρ1 cos(θ1 − ϕ))

[1 + ρ2
1 − 2ρ1 cos(θ1 − ϕ)]2

· (1 − ρ2
2)

2 (1 − ρ2 cos(θ2 − ϕ))

[1 + ρ2
2 − 2ρ2 cos(θ2 − ϕ)]2

dϕwhere B∆ is the 
ovarian
e of the solution of the Diri
hlet problem for the Lapla
e equationgiven in Theorem 1.To ta
kle the se
ond term whi
h represents the 
ovarian
e of the se
ond 
omponent, u(2), we�rst remark that
1

2π

2π
∫

0

(1 − ρ2)2 (1 − ρ cos(θ − ϕ))

[1 + ρ2 − 2ρ cos(θ − ϕ)]2
cos(kϕ) dϕ =

[

1 +
k

2
((1 − ρ2)

]

ρk cos(kθ) (53)
1

(2π)

2π
∫

0

(1 − ρ2)2 (1 − ρ cos(θ − ϕ))

[1 + ρ2 − 2ρ cos(θ − ϕ)]2
sin(kϕ) dϕ =

[

1 +
k

2
((1 − ρ2)

]

ρk sin(kθ) . (54)21
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θ=k 2π/50Figure 5: Angular 
orrelation fun
tion for the biharmoni
 equation, 
ompared against the
orrelation fun
tion for the Lapla
e equation with Diri
hlet boundary 
onditions.This 
an be shown as follows. First we note that by di�erentiating with respe
t to ρ we obtainthe following useful equality

2
∞

∑

k=1

k ρk cos(kθ) = ρ
(

2
∞

∑

k=1

ρk cos(kθ)
)′

=
−4ρ2 + 2ρ3 cos θ + 2 ρ cos θ

[1 + ρ2 − 2ρ cos θ]2
.Now, 
ombining with the expansion (8) we �nd that the kernel in the eigen-value problem (53),(54) is represented as the following series

K(ρ; θ − ϕ) =
1

2π

(1 − ρ2)2 (1 − ρ cos(θ − ϕ))

[1 + ρ2 − 2ρ cos(θ − ϕ)]2
=

1 − ρ2

2π

∞
∑

k=1

k ρk cos[k(θ − ϕ)]

+
1

2π
+

1

π

∞
∑

k=1

ρk cos[k(θ − ϕ)]

=
1

2π
+

1

π

∞
∑

k=1

[(1 − ρ2) k

2
+ 1

]

ρk cos[k(θ − ϕ)] . (55)Substituting this representation in the eigen-value problem we arrive at (53), (54). The 
ovarian
e
an be evaluated by substituting the series expansion (55) in (52). This yields
Bu(2) =

1

2π
+

1

π

∞
∑

k=1

[(1 − ρ2
1) k

2
+ 1

][(1 − ρ2
2) k

2
+ 1

]

ρk
1 ρ

k
2 cos[k(θ1 − θ2)] .Analogously to the 
ase of Lapla
e equation, we 
onsider the eigen-value problem for the 
ovari-an
e kernel:

2π
∫

0

dθ1

1
∫

0

dρ1 Bu(2)(ρ1, θ1; ρ2, θ2)hk(ρ1, θ1) = λk hk(ρ2, θ2) . (56)22



Let us introdu
e the notation:
∆k =

1
∫

0

[(1 − ρ2) k

2
+ 1

]2
ρ2k dρ .Using the series expansion of the kernel, it is not di�
ult to �nd that the eigen-value problemhas the following system of eigen-fun
tions and eigen-values:

λ0 = 1, h0 =
1√
2π

; λ2k−1 = λ2k = ∆k;

h2k−1(ρ, ϕ) =
[(1 − ρ2)k

2
+ 1

] ρk

√
∆k

· cos[k(θ)]

π1/2
;

h2k(ρ, ϕ) =
[(1 − ρ2)k

2
+ 1

] ρk

√
∆k

· sin[k(θ)]

π1/2
; k = 1, 2, . . .where the eigen-fun
tions are orthonormal to one another:

1
∫

0

2π
∫

0

hn(ρ, θ)hm(ρ, θ) dρ dθ = δnm .From this we �nally arrive at the Karhunen-Loève expansion
u(2)(r, θ) =

ξ0√
2π

+
1√
π

∞
∑

k=1

[(1 − ρ2) k

2
+ 1

]

ρk
[

ξk cos kθ + ηk sin kθ
]

. (57)The �rst 
omponent is obviously represented as u(1)(r, θ) = R(1−ρ2)
2 u(r, θ), where u(r, θ) ismodeled by the KL-expansion given in (13).In Figure 5 we show the angular behaviour of the 
orrelation fun
tion of the solution to thebiharmoni
 equation 
ompared against the 
orrelation fun
tion for the Lapla
e equation. Inboth 
ases, the 
orrelations are plotted for the �xed values of ρ taken equal to 0.5, and R = 1.5 Lamé equation. Plane elasti
ity problem.5.1 White noise ex
itations.Let us 
onsider the plane elasti
ity problem in the dis
 K(x0, R):

µ∆u(x) + (λ+ µ) grad divu(x) = 0, x ∈ K(x0, R),

u(y) = g(y), y ∈ S(x0, R) (58)where u = (u1, u2)
T is the displa
ement 
olumn-ve
tor whi
h is pres
ribed on the boundary asa 
olumn-ve
tor g = (g1, g2)

T .Let us work in polar 
oordinates 
entered at x0, so that the point x is r ei θ, and on the boundary,
y = Rei ϕ, and as everywhere above, ρ = r/R.Let us re
all that the kernel in the Poisson integral formula (5) for the Lapla
e equation givenexpli
itly by (8), has in the polar 
oordinates the form

K(ρ; θ − ϕ) =
1

2π

1 − ρ2

1 − 2ρ cos(θ − ϕ) + ρ2
. (59)23



The Poisson type integral formula for the solution to the Lamé equation (58), derived in [34℄,
an be rewritten as follows:
u(r ei θ) =

2π
∫

0

K(ρ; θ − ϕ)B(ρ; θ, ϕ)g(R ei ϕ) dϕ (60)where the matrix B has the form
B = I+

λ+ µ

λ+ 3µ









Q11 Q12

Q21 Q22








, (61)with the entries given expli
itly by

Q11 = cos(2ϕ) − ρ cos(θ + ϕ) +
cos(2ϕ) − 2 ρ cos(θ + ϕ) + ρ2 cos(2θ)

1 + ρ2 − 2ρ cos(θ − ϕ)
, (62)

Q12 = sin(2ϕ) − ρ sin(θ + ϕ) +
sin(2ϕ) − 2 ρ sin(θ + ϕ) + ρ2 sin(2θ)

1 + ρ2 − 2ρ cos(θ − ϕ)
, (63)and Q22 = −Q11, Q21 = Q12, I being an identity matrix.This form of the Poisson type integral formula is simple and 
onvenient to use in numeri
alsimulations (e.g., see [35℄). However it is seen that in 
ontrast to all of the above 
onsidered
ases, the matrix kernel has loosed the ni
e property of depending only on the di�eren
e ofthe angles θ and ϕ. This property is 
ru
ial for our analysis. This in turn is related to theprobabilisti
 property of the solutions 
onsidered as random �elds, namely, that these solutionsare homogeneous with respe
t to the angular variable.From the physi
al and probabilisti
 points of view, it is 
lear that the solution of the Laméequation should be homogeneous with respe
t to the angular variable if the boundary fun
tionsare homogeneous random fun
tions, in parti
ular, when they are white noises. This means,we 
an try to �nd a transformation whi
h leads to a Poisson integral formula with a matrixkernel depending only on the di�eren
e θ − ϕ. It turns out that this 
an be done by a propertransformation of the ve
tor u = (u1, u2)

T to polar 
oordinates.So let us turn to the expansion of our displa
ement ve
tor u in polar 
oordinates
u = ur er + uθ eθ ,where er, eθ are unit ve
tors in dire
tions r and θ, respe
tively. Then, the ve
tors (u1, u2)

T and
(ur, uθ)

T are related through a rotation,








u1(r, θ)
u2(r, θ)








=









cos θ − sin θ
sin θ cos θ

















ur(r, θ)
uθ(r, θ)








, (64)and 
onversely,









ur(r, θ)
uθ(r, θ)








= RT

θ









u1(r, θ)
u2(r, θ)







where we use the notation for the rotation matrix
R θ =









cos θ − sin θ
sin θ cos θ








, (65)and RT

θ means the transpose to R θ. 24



Then, the Poisson integral formula (60) 
an be obviously rewritten as follows








ur(r, θ)
uθ(r, θ)








= RT

θ

2π
∫

0

K(ρ; θ − ϕ)









1 + βQ11 βQ12

β Q12 1 − β Q11








Rϕ









gr(R e
iϕ)

gθ(Re
i ϕ)








dϕ (66)where β = λ+µ

λ+3µ .After some transformations we 
ome to the desired form of the Poisson integral formula








ur(r, θ)
uθ(r, θ)








=

1

λ+ 3µ

2π
∫

0

K(ρ; θ − ϕ)









G11 G12

G21 G22

















gr(R e
iϕ)

gθ(Re
i ϕ)








dϕ (67)where the entries of the new matrix kernel G = G(θ − ϕ) are

G11 = [2(λ+ 2µ) cos(θ − ϕ) − (λ+ µ)ρ] + (λ+ µ)
cos(θ − ϕ) − 2ρ+ ρ2 cos(θ − ϕ)

1 + ρ2 − 2ρ cos(θ − ϕ)
,

G12 = 2µ sin(θ − ϕ) − (λ+ µ)
(1 − ρ2) sin(θ − ϕ)

1 + ρ2 − 2ρ cos(θ − ϕ)
,

G21 = − 2(λ+ 2µ) sin(θ − ϕ) − (λ+ µ)
(1 − ρ2) sin(θ − ϕ)

1 + ρ2 − 2ρ cos(θ − ϕ)
, (68)

G22 = [2µ cos(θ − ϕ) + (λ+ µ)ρ] − (λ+ µ)
cos(θ − ϕ) − 2ρ+ ρ2 cos(θ − ϕ)

1 + ρ2 − 2ρ cos(θ − ϕ)
.We are now in a position to formulate and solve the eigen-value problem for the integral operatorwith the matrix-kernel of the Poisson type integral (67)

L(ρ; θ − ϕ) =
1

λ+ 3µ
K(ρ; θ − ϕ)G(ρ; θ − ϕ) . (69)The eigen-value problem is written as the following system

2π
∫

0

L(ρ; θ − ϕ)









h1(ϕ)
h2(ϕ)








dϕ = λ









h1(θ)
h2(θ)








. (70)Theorem 7. The eigen-value problem (70) has the following system of eigen-values and eigen-fun
tions (k = 1, 2, . . . ) :

λ2k−1 = λ2k = ρk−1,









h1,2k−1

h2,2k−1








=









sin kθ
cos kθ








,









h1,2k

h2,2k








=









− cos kθ
sin kθ








,and for the 
ase k = 2, for λ3 = λ4 = ρ, there is a third eigen-fun
tion









h′1,3

h′2,3








=









1
1








.Proof. In the proof, we expand the matrix kernel in the Fourier series. In the expansion, wewill use the following formulae simply obtained via di�erentiations:25



1 − ρ2

1 + ρ2 − 2ρ cos θ
= 1 + 2

∞
∑

k=1

ρk cos (kθ) ,

ρ sin θ

1 + ρ2 − 2ρ cos θ
=

∞
∑

k=1

ρk sin (kθ) ,

ρ (cos θ − 2ρ+ ρ2 cos θ)

(1 + ρ2 − 2ρ cos θ)2
=

∞
∑

k=1

k ρk cos (kθ) ,

ρ sin θ (1 − ρ2)

(1 + ρ2 − 2ρ cos θ)2
=

∞
∑

k=1

k ρk sin (kθ) .Substituting these representations in the fun
tions (68), after some evaluations we obtain thefollowing series expansions for the kernel L:
L11 =

ρ

2π
+

1

2π (λ+ 3µ)

∞
∑

k=1

[

2µρ+
2(λ+ 2µ)

ρ
+
k (λ+ µ)(1 − ρ2)

ρ

]

ρk cos[k(θ − ϕ)] ,

L12 =
1

2π (λ+ 3µ)

∞
∑

k=1

[ 2µ

ρ
− 2µρ− k (λ+ µ)(1 − ρ2)

ρ

]

ρk sin[k(θ − ϕ)] ,

L21 =
1

2π (λ+ 3µ)

∞
∑

k=1

[

2(λ+ 2µ) ρ− 2(λ+ 2µ)

ρ
− k (λ+ µ)(1 − ρ2)

ρ

]

ρk sin[k(θ − ϕ)] ,

L22 =
ρ

2π
+

1

2π (λ+ 3µ)

∞
∑

k=1

[

2(λ+ 2µ) ρ+
2µ

ρ
− k (λ+ µ)(1 − ρ2)

ρ

]

ρk cos[k(θ − ϕ)] . (71)Note that ea
h of these series 
ould be written in the form of a power series a1ρ+a2ρ2 +a3ρ
3 +

. . . , however as we will see below, the form (71) is very 
onvenient when solving the eigen-valueproblem for the 
orrelation operator.Let us introdu
e the notations
λ11(ρ, k) =

1

2(λ+ 3µ)

[

2µρ+
2(λ+ 2µ)

ρ
+
k (λ+ µ)(1 − ρ2)

ρ

]

,

λ12(ρ, k) =
1

2(λ+ 3µ)

[ 2µ

ρ
− 2µρ− k (λ+ µ)(1 − ρ2)

ρ

]

,

λ21(ρ, k) =
1

2(λ+ 3µ)

[

2(λ+ 2µ) ρ− 2(λ+ 2µ)

ρ
− k (λ+ µ)(1 − ρ2)

ρ

]

,

λ22(ρ, k) =
1

2(λ+ 3µ)

[

2(λ+ 2µ) ρ+
2µ

ρ
− k (λ+ µ)(1 − ρ2)

ρ

]

. (72)From the expansions (71) we �nd that
26



2π
∫

0

L11(ρ; θ − ϕ)









sin kϕ
cos kϕ








dϕ = λ11(ρ, k) ρ

k









sin kθ
cos kθ








,

2π
∫

0

L12(ρ; θ − ϕ)









cos kϕ
sin kϕ








dϕ = λ12(ρ, k) ρ

k









sin kθ
− cos kθ








,

2π
∫

0

L21(ρ; θ − ϕ)









sin kϕ
cos kϕ








dϕ = λ21(ρ, k) ρ

k









− cos kθ
sin kθ








,

2π
∫

0

L22(ρ; θ − ϕ)









cos kϕ
sin kϕ








dϕ = λ22(ρ, k) ρ

k









cos kθ
sin kθ








. (73)Now, by substituting these equalities in the eigen-value problem (70) and taking into a

ountthat λ11(ρ, k) + λ12(ρ, k) = ρ−1, −λ21(ρ, k) + λ22(ρ, k) = ρ−1, we �nd the solution of the eigen-value problem for k = 1, 2 . . .. The existen
e of the eigen-fun
tion (1, 1)T for λ3 = ρ follows fromthe properties

2π
∫

0

L11(ρ; θ − ϕ) · 1 dϕ = ρ,

2π
∫

0

L22(ρ; θ − ϕ) · 1 dϕ = ρ,

2π
∫

0

L12(ρ; θ − ϕ) · 1 dϕ = 0,

2π
∫

0

L21(ρ; θ − ϕ) · 1 dϕ = 0 .The proof is 
omplete.We turn now to the derivation of the 
orrelation tensor of the solution,
Bu(ρ1, θ1; ρ2, θ2) = u(r1, θ1) ⊗ u(r2, θ2) ≡

〈









ur(r1, θ1)
uθ(r1, θ1)








(ur(r2, θ2) , uθ(r2, θ2)

〉 (74)assuming the boundary random ve
tor-fun
tion g has a Gaussian distribution spe
i�ed by thezero mean and 
ovarian
e tensor
Bg(ϕ1, ϕ2) =

〈









gr(ϕ1)
gθ(ϕ1)








(gr(ϕ2) , gθ(ϕ2)

〉

.We use here and in what follows the following notation for v⊗u, a tensor produ
t of two ve
tors:
v ⊗ u = vuT .The Poisson integral formula (67) reads









ur(r, θ)
uθ(r, θ)








=

2π
∫

0









L11(ρ; θ − ϕ) L12(ρ; θ − ϕ)
L21(ρ; θ − ϕ) L22(ρ; θ − ϕ)

















gr(Re
i ϕ)

gθ(Re
i ϕ)








dϕ . (75)Substituting this representation in (74) and 
hanging the relevant produ
t of integral expressionsby double integrals, we arrive at the following representation27



Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

L(ρ1; θ1 − ϕ′)Bg(ϕ
′, ϕ′′)LT (ρ2; θ2 − ϕ′′) dϕ′ dϕ′′ . (76)Let us again �rst 
onsider the 
ase when the boundary ve
tor-fun
tion g is a white noise, namely,assume that

Bg(ϕ1, ϕ2) =









δ(ϕ1 − ϕ2) 0
0 δ(ϕ1 − ϕ2)








. (77)Note that this property then holds also in re
tangular 
oordinates (see (95) below). Then, from(76) we obtain

Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

L(ρ1; θ1 − ϕ) LT (ρ2; θ2 − ϕ) dϕ . (78)Theorem 8. The exa
t Karhunen-Loève representations for the 
ovarian
e tensor and the ran-dom �eld (ur, uθ)
T whi
h solves the Lamé equation under the boundary white noise ex
itationswith the 
ovarian
e tensor (77) are given by

Bu(ρ1, θ1; ρ2, θ2) = (79)






























ρ1 ρ2

2π + 1
π

∞
∑

k=1

Λ11 ρ
k
1 ρ

k
2 cos [k(θ2 − θ1)]

1
π

∞
∑

k=1

Λ12 ρ
k
1 ρ

k
2 sin [k(θ2 − θ1)]

1
π

∞
∑

k=1

Λ21 ρ
k
1 ρ

k
2 sin [k(θ2 − θ1)]

ρ1 ρ2

2π + 1
π

∞
∑

k=1

Λ22 ρ
k
1 ρ

k
2 cos [k(θ2 − θ1)]































Λ11 = λ11(ρ1, k)λ11(ρ2, k) + λ12(ρ1, k)λ12(ρ2, k),

Λ12 = λ11(ρ1, k)λ21(ρ2, k) − λ12(ρ1, k)λ22(ρ2, k),

Λ21 = λ22(ρ1, k)λ12(ρ2, k) − λ21(ρ1, k)λ11(ρ2, k),

Λ22 = λ22(ρ1, k)λ22(ρ2, k) + λ21(ρ1, k)λ21(ρ2, k) , (80)and
ur(r, θ) =

ξ0 ρ

2π
+

1

π

∞
∑

k=1

λ11 ρ
k
[

ξk cos kθ + ηk sin kθ
]

+
1

π

∞
∑

k=1

λ12 ρ
k
[

− η′k cos kθ + ξ′k sin kθ
]

, (81)
uθ(r, θ) =

ξ′0 ρ
2π

+
1

π

∞
∑

k=1

λ21 ρ
k
[

− ηk cos kθ + ξk sin kθ
]

+
1

π

∞
∑

k=1

λ22 ρ
k
[

ξ′k cos kθ + η′k sin kθ
]

, (82)where {ξk, ηk} and {ξ′k, η′k}, k = 0, 1, 2, . . . are two independent families of standard independentgaussian random variables. Thus the random �eld is homogeneous with respe
t to the angularvariable, and the respe
tive partial spe
tra are: Smm(k) = 1
πΛmmρ

k
1ρ

k
2, Smm(0) = ρ1ρ2/2π, andfor n 6= m the spe
trum is pure imaginary: Smn(k) = i 1

πΛmnρ
k
1ρ

k
2 .28



Proof. To get the expansion of the 
orrelation tensor (79), we substitute the expansions (71) in(78) and use the eigen-fun
tion properties (73).To 
onstru
t the expli
it simulation formula (81), (82) for our random �eld, we �rst split it intotwo independent Gaussian random �elds:
u(r, θ) = V1(r, θ) + V2(r, θ) .We will show now that for ea
h of these random �elds we 
an obtain a Karhunen-Loève expansion.We introdu
e four single mode ve
tor fun
tions

h1k(ρ, θ) =









λ11(ρ, k) cos kθ
λ21(ρ, k) sin kθ








, h̃1k(ρ, θ) =









λ11(ρ, k) sin kθ
−λ21(ρ, k) cos kθ








, (83)

h2k(ρ, θ) =









−λ12(ρ, k) cos kθ
λ22(ρ, k) sin kθ








, h̃2k(ρ, θ) =









λ12(ρ, k) sin kθ
λ22(ρ, k) cos kθ








. (84)Here the modes are indexed by k = 1, 2 . . ., while the subindexes 1 and 2 stand for the �rst andse
ond series of eigen-fun
tions.Note that these ve
tors are pairwise orthogonal:

∫ 1

0
dρ

∫ 2π

0
dθ h1k · h̃1k = 0,

∫ 1

0
dρ

∫ 2π

0
dθ h2k · h̃2k = 0,as well as the two following ve
tors are orthogonal:

h0 =











ρ√
2π

0











. h̃0 =











0
ρ√
2π











.It is now a matter of te
hni
al evaluations to �nd that the 
orrelation tensor 
an be representedin the form:
Bu(ρ1, θ1; ρ2, θ2) = h0(ρ1) · hT

0 (ρ2) (85)
+

1

π2

∞
∑

k=1

{h1k(ρ1, θ1)h
T
1k(ρ2, θ2) + h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2)} ρk

1 ρ
k
2

+h̃0(ρ1) · h̃T
0 (ρ2) (86)
+

1

π2

∞
∑

k=1

{h2k(ρ1, θ1)h
T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2)}ρk

1 ρ
k
2 .This follows from the easily veri�ed representation

h1k(ρ1, θ1)h
T
1k(ρ2, θ2) + h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2) =









λ11(ρ1, θ1)λ11(ρ2, θ2) cos[k(θ2 − θ1)] λ11(ρ1, θ1)λ21(ρ2, θ2) sin[k(θ2 − θ1)]
−λ21(ρ1, θ1)λ11(ρ2, θ2) sin[k(θ2 − θ1)] λ21(ρ1, θ1)λ22(ρ2, θ2) cos[k(θ2 − θ1)]







and
h2k(ρ1, θ1)h

T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2) =









λ12(ρ1, θ1)λ12(ρ2, θ2) cos[k(θ2 − θ1)] −λ12(ρ1, θ1)λ22(ρ2, θ2) sin[k(θ2 − θ1)]
λ22(ρ1, θ1)λ12(ρ2, θ2) sin[k(θ2 − θ1)] λ22(ρ1, θ1)λ22(ρ2, θ2) cos[k(θ2 − θ1)]








.29



So we 
an see from (85) that the �rst and the se
ond pairs of lines present the 
ovarian
es of the�rst and se
ond ve
tors in our splitting, respe
tively:
Bu = 〈u(r1, θ1) · uT (r2, θ2)〉 = 〈V1(r1, θ1) ·VT

1 (r2, θ2)〉 + 〈V2(r1, θ1)V
T

2 (r2, θ2)〉 ,thus,
BV1 = h0(ρ1) · hT

0 (ρ2)

+

∞
∑

k=1

{h1k(ρ1, θ1)h
T
1k(ρ2, θ2)h̃1k(ρ1, θ1) h̃

T
1k(ρ2, θ2)} ρk

1 ρ
k
2 ,

BV2 = h̃0(ρ1) · h̃T
0 (ρ2)

+
∞

∑

k=1

{h2k(ρ1, θ1)h
T
2k(ρ2, θ2) + h̃2k(ρ1, θ1) h̃

T
2k(ρ2, θ2)}ρk

1 ρ
k
2where BV1 = 〈V1(r1, θ1) ·VT

1
(r2, θ2)〉 BV2 = 〈V2(r1, θ1)V

T
2

(r2, θ2)〉 .Note that ea
h part, i.e., BV1 and BV2 , is represented as an orthogonal-mode expansion. There-fore, we 
an 
onstru
t a KL-expansion for our random �elds V1 and V2.We have not yet normalized the eigen-fun
tions. We 
an do it through dividing the angularmodes by √
π, and the radial modes by ∆1(k) =

∫ 1
0 (λ2

11 + λ2
21) ρ

2k dρ, the �rst family of eigen-fun
tions (83), and by ∆2(k) =
∫ 1
0 (λ2

12 + λ2
22) ρ

2k dρ , the se
ond family of eigen-fun
tions (84).We then 
olle
t the orthonormal eigen-modes in one family:
H(1)

2k−1 =
1

√

∆1(k)π
h1k(ρ, θ), H(1)

2k =
1

√

∆1(k)π
h̃1k(ρ, θ), k = 1, 2, . . .and

H(2)
2k−1 =

1
√

∆2(k)π
h2k(ρ, θ), H(2)

2k =
1

√

∆2(k)π
h̃2k(ρ, θ), k = 1, 2, . . .Then, the orthonormal fun
tions H(1)

k and H(2)
k are eigen-fun
tions of the 
ovarian
e tensors BV1and BV2 , respe
tively, with the 
orresponding eigen-values ∆1(k) and ∆2(k):1

∫

0

2π
∫

0

BVm · H(m)
k (ρ2, θ2) dρ2 dθ2 = ∆m(k)H(m)

k (ρ1, θ1) , m = 1, 2 .We 
an now 
onstru
t a KL-expansion for the random �eld V1(r, θ) in the form
V1(r, θ) =

∞
∑

k=1

ζkH(1)
k (ρ, θ)where ζk are gaussian random variables su
h that

〈ζkζj〉 = ∆1(k) δjk ,and the same for V2(r, θ).Putting these expansions together we �nally arrive at the desired representation
ur(r, θ) =

ξ0 ρ

2π
+

1

π

∞
∑

k=1

λ11 ρ
k
[

ξk cos kθ + ηk sin kθ
]

+
1

π

∞
∑

k=1

λ12 ρ
k
[

− η′k cos kθ + ξ′k sin kθ
]

,30
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Figure 6: Correlations B11 (left panel) and B22 (right panel) for the Lamé equation, for di�erentvalues of the elasti
ity parameter α; ρ1 = ρ2 = 0.3.
uθ(r, θ) =

ξ′0 ρ
2π

+
1

π

∞
∑

k=1

λ21 ρ
k
[

− ηk cos kθ + ξk sin kθ
]

+
1

π

∞
∑

k=1

λ22 ρ
k
[

ξ′k cos kθ + η′k sin kθ
]where {ξk, ηk} and {ξ′k, η′k}, k = 0, 1, 2, . . . are two independent families of standard independentgaussian random variables.Finally note that the spe
tra given in the theorem are obtained immediately from the represen-tation (79). This 
ompletes the proof of Theorem 8.It is interesting to note that we 
ould obtain these expressions by substituting formally a gener-alized representation of the boundary white noises on the 
ir
le

g1(ϕ) =
ξ0
2π

+
1

π

∞
∑

k=1

[

ξk cos kϕ+ ηk sin kϕ
]

g2(ϕ) =
ξ′0
2π

+
1

π

∞
∑

k=1

[

ξ′k cos kϕ+ η′k sin kϕ
]into the Poisson formula (67) with the kernels given by the series expansions (71). But thejusti�
ation would then need to work with generalized sto
hasti
 pro
esses.In the Figure 6 - 10 presented below we show the longitudinal 
orrelation fun
tion B11, thetransverse 
orrelation fun
tion B22, and the 
ross-
orrelation fun
tions B12 and B21, in polar
oordinates, as well as in re
tangular 
oordinates. Figure 6 presents the angular behaviour of B11for 5 di�erent values of the elasti
ity 
onstant α (left panel), and the same for B22 (right panel).The relevant 
ross-
orrelations are shown in Figure 7. The radial behaviour of B11 and B22 isshown in Figure 8. As is 
learly seen from all these 
urves, the angular behaviour is periodi
.When plotting these fun
tions in re
tangular 
oordinates, we get a 
ompli
ated behaviour shown31
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in Figures 9 -10, where the 
orrelations depend on the starting angle θ; we present the 
urvesfor di�erent values of θ, see Figures 9 and 10.5.2 General 
ase of homogeneous ex
itations.We have so far 
onsidered the 
ase when the boundary fun
tions g1 and g2 are two independentwhite noise pro
esses. We will see now that the general 
ase when g1 and g2 are some arbitrarydependent homogeneous pro
esses, is basi
ally derived from the white noise 
ase.Thus assume we are given two homogeneous zero mean pro
esses g1 and g2 with the 
orrelationtensor Bg(ϕ2 − ϕ2), with the entries Bg,ij, i, j = 1, 2. As shown above, the 
orrelation tensorof the solution Bu is related to Bg by the double integral representation (76). Changing theintegration variable ϕ′′ to a new integration variable ψ by ϕ′′ − ϕ′ = ψ we obtain from (76) for
u = (uρ, uθ)

T :
Bu(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

L(ρ1; θ1 − ϕ′)Bg(ψ)LT (ρ2; θ2 − ψ − ϕ′) dϕ′ dψ . (87)The idea is now to evaluate expli
itly the inner integral with respe
t to ϕ′ using the seriesexpansions for the kernel L(ρ, θ) given above in (71). We now rewrite the relation (87) in adi�erent form. We 
onstru
t from the 
orrelation tensor Bu a 
olumn-ve
tor fun
tion B̂u asfollows B̂u = (Bu,11, Bu,12, Bu,21, Bu,22)
T . Analogously, we use the notation B̂g for the 
olumn-ve
tor B̂g = (Bg,11, Bg,12, Bg,21, Bg,22)

T .Using this notation, we 
an rewrite (87) as follows
B̂u(ρ1, θ1; ρ2, θ2) =

2π
∫

0

2π
∫

0

L(ρ1; θ1 − ϕ′) ⊗ L(ρ2; θ2 − ψ − ϕ′) B̂g(ψ) dϕ′ dψ . (88)Here we denote by ⊗ a tensor produ
t of two matri
es whi
h is de�ned in our 
ase as a 4 × 4matrix, represented as a 2×2-blo
k matrix ea
h blo
k being a 2×2 matrix of the form Lij(ρ1; θ1−
ϕ′)L(ρ2; θ2 − ψ − ϕ′), i, j = 1, 2.We will now evaluate expli
itly all the 16 entries aij of the matrix

A =

2π
∫

0

L(ρ1; θ1 − ϕ′) ⊗ L(ρ2; θ2 − ψ − ϕ′) dϕ′ . (89)Substituting the series representation of the matrix L given by (71) in (89) we obtain after along but simple 
al
ulations
a11 =

ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ11(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a12 =
1

π

∞
∑

k=1

λ11(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a13 = − 1

π

∞
∑

k=1

λ12(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a14 =
1

π

∞
∑

k=1

λ12(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)] (90)34



a21 =
1

π

∞
∑

k=1

λ11(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a22 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ11(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a23 =
1

π

∞
∑

k=1

λ12(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a24 = − 1

π

∞
∑

k=1

λ12(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)] (91)

a31 = − 1

π

∞
∑

k=1

λ21(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a32 =
1

π

∞
∑

k=1

λ21(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a33 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ22(ρ1, k)λ11(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a34 =
1

π

∞
∑

k=1

λ22(ρ1, k)λ12(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)] (92)

a41 =
1

π

∞
∑

k=1

λ21(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)]

a42 = − 1

π

∞
∑

k=1

λ21(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a43 =
1

π

∞
∑

k=1

λ22(ρ1, k)λ21(ρ2, k) ρ
k
1ρ

k
2 sin [k(θ2 − θ1 − ψ)]

a44 =
ρ1ρ2

2π
+

1

π

∞
∑

k=1

λ22(ρ1, k)λ22(ρ2, k) ρ
k
1ρ

k
2 cos [k(θ2 − θ1 − ψ)] . (93)Thus we see from these formulae that the entries of the matrix A depend on the di�eren
e

θ = θ2 − θ1, hen
e the 
orrelation tensor Bu also depends on θ = θ2 − θ1, and from (88), (89) wearrive at the desired 
onvolution representation
B̂u(ρ1, ρ2; θ) =

2π
∫

0

A(ρ1, ρ2; θ − ψ) B̂g(ψ) dψ . (94)Note that if the boundary 
orrelation tensor Bg is given by its spe
tral expansion, we 
an expressthe 
orrelation tensor of the solution through the spe
tra. For instan
e, assuming the spe
traltensor is real-valued, so that
Bg,ij(ϕ

′′ − ϕ) =
fij(0)

2π
+

1

π

∞
∑

k=1

fij(k) cos k(ϕ′′ − ϕ′) , i, j = 1, 2 ,35



we 
an derive a general formula for the 
ovarian
e tensor by substituting this expansion in (87).After routine evaluations we obtain the general formulae
B11 =

f11(0) ρ1 ρ2

2π
+

1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
11 cos[k(θ2 − θ1)] + Λs

11 sin[k(θ2 − θ1)]
)

,

B12 =
1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
12 cos[k(θ2 − θ1)] + Λs

12 sin[k(θ2 − θ1)]
)

,

B21 =
1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
21 cos[k(θ2 − θ1)] + Λs

21 sin[k(θ2 − θ1)]
)

,

B22 =
f22(0) ρ1 ρ2

2π
+

1

π

∞
∑

k=1

ρk
1 ρ

k
2

(

Λc
22 cos[k(θ2 − θ1)] + Λs

22 sin[k(θ2 − θ1)]
)

,where
Λc

11 = f11λ
1
11λ

2
11 + f22λ

1
12λ

2
12 , Λs

11 = f21λ
1
11λ

2
12 − f12λ

1
12λ

2
11 ,

Λc
12 = f21λ

1
12λ

2
21 + f12λ

1
11λ

2
22 , Λs

12 = f11λ
1
11λ

2
21 − f22λ

1
12λ

2
22 ,

Λc
21 = f21λ

1
22λ

2
11 + f12λ

1
21λ

2
12 , Λs

21 = f22λ
1
22λ

2
12 − f11λ

1
21λ

2
11 ,

Λc
22 = f22λ

1
22λ

2
22 + f11λ

1
21λ

2
21 , Λs

22 = f21λ
1
22λ

2
21 − f12λ

1
21λ

2
22 .Here we use the notations λm

ij = λij(ρm, k), m = 1, 2.Remark 3.Note that using the relation between the ve
tors in polar and re
tangular 
oordinates,








u1(r, θ)
u2(r, θ)








= R θ









uρ(r, θ)
uθ(r, θ







we 
an easily relate the desired statisti
al 
hara
teristi
s in these two 
oordinate systems. Forexample, the 
ovarian
e tensors are related as follows
B(u1,u2)(ρ1, ρ2; θ1, θ2) = R θ1 B(ur ,uθ)(ρ1, ρ2; θ1, θ2)RT

θ2
(95)The KL-expansion in the re
tangular 
oordinates is also obtained dire
tly from the KL-expansionof the random �eld in the polar 
oordinates on the basis that the eigen-fun
tions are related by

hrectangular = R θ hpolar and h̃rectangular = R θ h̃polar.Let us write down here the relation (95) in details. We denote the entries of the 
ovarian
ematrix B(u1,u2) by Brec
ij , and the entries of the 
ovarian
e matrix B(ur,uθ) by Bpol

ij . From (95) weobtain
Brec

11 =cos θ1 cos θ2B
pol
11 −cos θ1 sin θ2B

pol
12 −sin θ1 cos θ2B

pol
21 +sin θ1 sin θ2B

pol
22 ,

Brec
12 =cos θ1 sin θ2B

pol
11 +cos θ1 cos θ2B

pol
12 −sin θ1 sin θ2B

pol
21 −sin θ1 cos θ2B

pol
22 ,

Brec
21 =sin θ1 cos θ2B

pol
11 −sin θ1 sin θ2B

pol
12 +cos θ1 cos θ2B

pol
21 −cos θ1 sin θ2B

pol
22 ,

Brec
22 =sin θ1 sin θ2B

pol
11 +sin θ1 cos θ2B

pol
12 +sin θ2 cos θ1B

pol
21 +cos θ1 cos θ2B

pol
22 .This representation 
learly shows that the property that the 
ovarian
e fun
tions Bpol

ij all dependonly on the angle di�eren
e θ2 − θ1 does not generally hold for the 
ovarian
e fun
tions Brec
ij . Itis however seen that Brec

ij will depend only on θ2−θ1 if (ur, uθ) is homogeneous, and Bpol
11 = Bpol

22 .36
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