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Abstract

In this paper we propose a Libor model with a high-dimensional spe-
cially structured system of driving CIR volatility processes. A stable
calibration procedure which takes into account a given local correlation
structure is presented. The calibration algorithm is FFT based, so fast
and easy to implement.

1 Introduction

Since Brace, Gatarek, Musiela (1997), Jamshidian (1997), and Miltersen, Sand-
mann and Sondermann (1997), almost independently, initiated the development
of the Libor market interest rate model, research has grown immensely towards
improved models that fit market quotes of standard interest rate products such
as cap and swaption prices for different strikes and maturities. As a matter
of fact, while caps can be priced using a Black type formula and swaptions
via closed form approximations with high accuracy, an important drawback of
the market model is the impossibility of matching cap and swaption volatility
smiles and skews observed in the markets. As a remedy, various alternatives to
the standard Libor market model have been proposed. They can be roughly
categorized into three streams: local volatility models, stochastic volatility
models, and jump-diffusion models. Especially jump-diffusion and stochastic
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volatility models are popular due to their economically meaningful behavior,
and the greater flexibility they offer compared to local volatility models for in-
stance. For local volatility Libor models we refer to Brigo and Mercurio (2006).
Jump-diffusion models for assets go back to Merton (1976) and Eberlein (1998).
Jamshidian (2001) developed a general semimartingale framework for the Libor
process which covers the possibility of incorporating jumps as well as stochas-
tic volatility. Specific jump-diffusion Libor models are proposed, among oth-
ers, by Glasserman and Kou (2003) and Belomestny and Schoenmakers (2006).
Levy Libor models are studied by Eberlein and Özkan (2005). Incorporation of
stochastic volatility has been proposed by Andersen and Brotherton-Ratcliffe
(2001), Piterbarg (2004), Wu and Zhang (2006), Zhu (2007).

In the present article we focus on a flexible particularly structured Heston
type stochastic volatility Libor model that, due to its very construction, can be
calibrated to the cap/strike matrix in a robust way. In this model we incorporate
a core idea from Belomestny and Schoenmakers (2006), who propose a jump-
diffusion Libor model as a perturbation of a given input Libor market model. As
a main issue, Belomestny and Schoenmakers (2006) furnish the jump-diffusion
extension in such a way that the (local) covariance structure of the extended
model coincides with the (local) covariance structure of the market model. The
approach of perturbing a given market model while preserving its covariance
structure, has turned out to be fruitfull and is carried over into the design of
the stochastic volatility Libor model presented in this paper. In fact, this idea is
supported by the following arguments (see also Belomestny and Schoenmakers
(2006)).

1. Cap prices do not depend on the (local) correlation structure of forward
Libors in a Libor market model but, typically, do depend only weakly on
this in a more general model. Since this correlation structure contains
important information about, for example, prices of ATM swaptions, we
do not want to destroy this (input) correlation structure while calibrating
the extended model to the cap(let)-strike matrix.

2. The lack of smile behavior of a Libor market model is considered a conse-
quence of Gaussianity of the driving random sources (Wiener processes).
Therefore we want to perturb this Gaussian randomness to a non-Gaussian
one by incorporating a CIR volatility process, while maintaining the (lo-
cal) correlation structure of the Libor market model we started with.

3. Preserving the correlation structure allows for robust calibration, since
it significantly reduces the number of parameters to be calibrated while
holding a realistic correlation structure.

Specifically, the perturbation part of the presented model will involve CIR
volatility processes, and so the construction will finally resemble a Heston type
Libor model (Heston (1993)). The CIR model, as developed by its founders
Cox, Ingersoll, Ross (1985), was originally derived in a framework based on
equilibrium assumptions.
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The idea of utilizing a Heston type process has already been formulated in
Wu and Zhang (2006), and Zhu (2007). However, the present article differs from
these works in the following respects.

1. As opposed to a one-dimensional stochastic volatility process as in Wu &
Zhang, or a (possibly) vector valued one which inhibits only one source
of randomness as in Zhu (2007), we will study multi-dimensional CIR
vector volatility processes with each component being driven by its own
Brownian motion. This leads to a more realistic local correlation structure
and renders the model more flexible for calibration.

2. We suggest a multi-dimensional partial-Gaussian and partial-Heston type
model, where each forward Libor is driven by a linear combination of CIR
processes.

3. While in both papers the issue of robust calibration has not been ad-
dressed, we give full consideration to this problem using novel ideas men-
tioned above.

Furthermore, approximative analytic pricing formulas for caplets and swaptions
are derived for this new Libor model which allow for fast calibration to these
products. Ultimately, complex structured Over The Counter products may be
priced by Monte Carlo using guidelines for simulating Heston type models as
given in Kahl and Jäckel (2006).

2 Dynamics of the Libor Model

Consider a fixed sequence of tenor dates 0 =: T0 < T1 < . . . < Tn, called
a tenor structure, together with a sequence of so called day-count fractions
δi := Ti+1−Ti, i = 1, . . . , n−1. With respect to this tenor structure we consider
zero bond processes Bi, i = 1, . . . , n, where each Bi lives on the interval [0, Ti]
and ends up with its face value Bi(Ti) = 1. With respect to this bond system
we deduce a system of forward rates, called Libor rates, which are defined by

Li(t) :=
1
δi

(
Bi(t)

Bi+1(t)
− 1
)

, 0 ≤ t ≤ Ti, 1 ≤ i ≤ n− 1.

Note that Li is the annualized effective forward rate to be contracted at the
date t, for a loan over a forward period [Ti, Ti+1]. Based on this rate one has to
pay at Ti+1 an interest amount of $δiLi(Ti) on a $1 notional.

For a pre-specified volatility process γi ∈ Rm, adapted to the filtration gen-
erated by some standard Brownian motion W ∈ Rm, the dynamics of the cor-
responding Libor model have the form,

dLi

Li
= (...)dt + γ>i dW (1)

i = 1, ..., n−1. The drift term, adumbrated by the dots, is known under different
numeraire measures, such as the risk-neutral, spot, terminal and all measures
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induced by individual bonds taken as numeraire. If the processes t → γi(t) in
(1) are deterministic, one speaks of a Libor market model.

In this work we study extensions of a Libor market model, which is given
via a deterministic volatility structure γ, with respect to an extended Brownian
filtration. In particular, we consider extensions with the following structure,

dLi

Li
= (...)dt +

√
1− r2

i γ>i dW + riβ
>
i dU, 1 ≤ i < n, (2)

dUk =
√

vkdW̃k 1 ≤ k ≤ d,

dvk = κk(θk − vk)dt + σk
√

vk

(
ρkdW̃k +

√
1− ρ2

kdW k

)
, (3)

where W̃ and W are mutually independent d-dimensional standard Brownian
motions, both independent of W . In (2), βi ∈ Rd are chosen to be deterministic
vector functions. They will be specified later. The ri are constants that may
be considered ”allotment” or ”proportion” factors, quantifying how much of the
original input market model should be in play. For ri = 0 for all i, it is easily seen
from (2) that the classical market model is retrieved. As such, for small values
of the ri, the extended model may be regarded as a perturbation of the former.
Finally, from a modeling point of view system (2) is obviously overparameterized
in the following sense. By setting βik =: αkβ̃ik and vk =: α−2

k ṽk, θk =: α−2
k θ̃k,

σk =: α−1
k σ̃k, we retrieve exactly the same model. From now on we therefore

normalize by setting θk ≡ 1 without loss of generality.

It is helpful to think of the Libor model as a vector-valued stochastic process of
dimension n − 1 driven by m + 2d standard Brownian motions with dynamics
of the form

dLi

Li
= (...)dt + Γ>i dW, i = 1, ..., n− 1,

where

Γi =



√
1− r2

i γi1√
1− r2

i γi2

·
·√

1− r2
i γim

riβi1
√

v1

·
·

riβid
√

vd


dW =



dW1

dW2

·
·

dWm

dW̃1

·
·

dW̃d


. (4)

In (4) the square-root processes vk are given by (3) (with θk ≡ 1).

In our approach we will work throughout under the terminal measure Pn. Fol-
lowing Jamshidian (1997, 2001), the Libor dynamics in this measure are given
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by

dLi

Li
= −

n−1∑
j=i+1

δLj

1 + δLj

(
m+d∑
k=1

ΓjkΓik

)
dt + Γ>i dW(n). (5)

Often it turns out technically more convenient to work with the log-Libor dy-
namics. A straightforward application of Itô’s lemma to (5) yields,

d lnLi = −1
2
|Γi|2dt−

n−1∑
j=i+1

δLj

1 + δLj

(
m+d∑
k=1

ΓjkΓik

)
dt + Γ>i dW(n), 1 ≤ i < n.

(6)

3 Reduction of parameters by covariance assump-
tion

Within the particular framework constructed above, one could interpret the
second diffusion part in (2), namely riβ

>
i dU , as an extension or perturbation of

a given Libor market model.
Let us integrate the diffusion part of (6) from zero to t and define the resulting
zero-mean random variable by

ξi(t) :=
∫ t

0

Γ>i dW(n). (7)

Recall that γi ∈ Rm is the (given) deterministic volatility structure of the
input market model obtained by some calibration procedure to ATM caps and
ATM swaptions. We assume further that the matrix (γi,j(t))1≤i<n,1≤j≤m has
full rank m for all t. The deterministic vector functions βi ∈ Rd will allow
additional degrees of freedom for the upcoming fitting to the volatility curve.
We will now see that under the covariance assumption we will have to restrict
ourselves to specified values for the βi.

For the covariance function of ξi(t) in the terminal measure we obtain

En(ξi(t)ξj(t)) =
√

1− r2
i

√
1− r2

j

∫ t

0

γ>i γjds + rirjEn

∫ t

0

β>i dU ·
∫ t

0

β>j dU

=
√

1− r2
i

√
1− r2

j

∫ t

0

γ>i γjds + rirj

d∑
k=1

En

∫ t

0

βikβjk d〈Uk〉

=
√

1− r2
i

√
1− r2

j

∫ t

0

γ>i γjds + rirj

d∑
k=1

∫ t

0

βikβjk Envk ds

=:
√

1− r2
i

√
1− r2

j

∫ t

0

γ>i γjds + rirj

∫ t

0

β>i Λ(t)βj ds (8)
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where Λ(t) denotes a diagonal matrix in Rd×d whose elements are the expected
values λk = Envk ∈ R.

The square-root diffusions in (2) have a limiting stationary distribution. The
transition law of the general CIR process

v(t) = v(u) +
∫ t

u

(
κ(θ − v(s))ds + σ

√
v(s)dW (s)

)
,

is known. In particular, we have the representation

v(t) =
σ2
(
1− e−κ(t−u)

)
4κ

χ2
α,c, t > u,

where χ2
α,c is a noncentral chi-square random variable with α degrees of freedom

and noncentrality c, where

α :=
4θκ

σ2
, c :=

4κe−κ(t−u)

σ2
(
1− e−κ(t−u)

)v(u).

For the expectation we have

E[v(t) | Fu] = (v(u)− θ)e−κ(t−u) + θ, t ≥ u, (9)

e.g. see Glasserman (2003) for details. It is natural to take the limit expectation
as the starting value of the process. Thus, we set

vk(0) = θk = 1, for k = 1, . . . , d,

to obtain Evk(t) ≡ 1, hence Λ = I is constant.

Let us now introduce the covariance restriction mentioned in the introduction,
which will be in fact a modified version of the covariance restriction in Be-
lomestny and Schoenmakers (2006). In the latter article one requires (in a
jump-diffusion context)

En(ξi(t)ξj(t)) =
∫ t

0

γ>i γjds. (10)

In view of (8) and as a next simplification, we set ri ≡ r, to yield from (10),∫ t

0

γ>i γjds =
∫ t

0

β>i βjds, (11)

which is obviously satisfied by taking β ≡ γ, and then, in particular, we have
d = m. However, in order to obtain closed-form expressions for characteristic
functions later on, we would like β(t) to be piecewise constant in time. For a
better tractability we even assume β(t) to be time independent. In either case
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this means that (11) has to be relaxed. As a first relaxation of (11) we require
only ∫ Tk

0

γ>i γjdt =
∫ Tk

0

β>i βjdt, k ≤ min(i, j), (12)

which can be satisfied by taking β(t) suitably piecewise constant. Unfortunately,
for time independent β, (12) can still not be matched in general. As a pragmatic
solution for this case, we therefore relax (12) further to

β>i βj =
1

min(i, j)

min(i,j)∑
k=1

1
Tk

∫ Tk

0

γ>i γjdt, (13)

or as an alternative,

β>i βj =
1

Tmin(i,j)

∫ Tmin(i,j)

0

γ>i γjdt. (14)

It can be shown that in both cases the matrix (β>i βj) is positive definite and so
defines a covariance structure.

Of course there are further variations possible. Note that even when m <
n−1, exact fitting of (13) or (14), respectively, may require d = n−1. Depending
on the readers preferences however, one may choose any d, d < n− 1, and then
fit (13) or (14) after dimension reduction via principal component analysis of
the respective symmetric right-hand-sides.

4 Dynamics under various measures

4.1 Dynamics under forward measures

So far the Libor dynamics have been considered under the terminal measure.
In order to price caplets later on, however, we will need to represent the above
process under various forward measures. In what follows we denote the time
independent solution for β of either (13), (14), or any other sensible choice of
the reader for the covariance constraint, by γ ∈ R(n−1)×d. Thus, spelling out
(5) with ri ≡ r yields

dLi

Li
= −

n−1∑
j=i+1

δjLj

1 + δjLj

[
(1− r2)γ>i γj + r2

d∑
k=1

γikγjkvk

]
dt

+
√

1− r2γ>i dW (n) + r
d∑

k=1

√
vkγikdW̃

(n)
k (15)

with corresponding volatility processes

dvk = κk(1− vk)dt + σk
√

vk

(
ρkdW̃

(n)
k +

√
1− ρ2

kdW
(n)

k

)
, (16)
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under the measure Pn. By rearranging terms we may write,

dLi

Li
=
√

1− r2γ>i

dW (n) −
√

1− r2

n−1∑
j=i+1

δjLj

1 + δjLj
γjdt



+ r
d∑

k=1

γik

√
vk

dW̃
(n)
k − r

n−1∑
j=i+1

δjLj

1 + δjLj
γjk

√
vkdt


=:
√

1− r2γ>i dW (i+1) + r
d∑

k=1

γik

√
vkdW̃

(i+1)
k . (17)

Since Li is a martingale under Pi+1, we have that both W (i+1) and W̃ (i+1)

in (17) are standard Brownian motions under Pi+1. In terms of these new
Brownian motions the volatility dynamics becomes

dvk = κk(1− vk)dt + rσkρk

n−1∑
j=i+1

δjLj

1 + δjLj
γjkvkdt

+ ρkσk
√

vkdW̃
(i+1)
k +

√
1− ρ2

kσk
√

vkdW
(n,i+1)

k . (18)

As shown in the Appendix, the process W
(n,i+1)

in (18) is standard Brownian
motion under both measures Pi+1 and Pn.

By freezing the Libors at their initial values in (18), we obtain an approxi-
mative CIR dynamics

dvk ≈ κ
(i+1)
k

(
θ
(i+1)
k − vk

)
dt + σk

√
vk

(
ρkdW̃

(i+1)
k +

√
1− ρ2

kdW
(i+1)

k

)
(19)

with reversion speed parameter

κ
(i+1)
k := κk − rσkρk

n−1∑
j=i+1

δjLj(0)
1 + δjLj(0)

γjk, (20)

and mean reversion level

θ
(i+1)
k :=

κk

κ
(i+1)
k

. (21)

The approximative dynamics (19) for the volatility process will be used for
calibration in Section 5.

4.2 Dynamics under swap measures

An interest rate swap is a contract to exchange a series of floating interest
payments in return for a series of fixed rate payments. Consider a series of
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payment dates between Tp+1 and Tq, q > p. The fixed leg of the swap pays δjK
at each time Tj+1, j = p, . . . , q−1 where δj = Tj+1−Tj . In return, the floating
leg pays δjLj(Tj) at time Tj+1, where Lj(Tj) is the rate fixed at time Tj for
payment at Tj+1. Thus, the time t value of the interest rate swap is

q−1∑
j=p

δjBj+1(t)(Lj(t)−K).

The swap rate Sp,q(t) is the value of the fixed rate K, such that the present
value of the contract is zero, hence after some rearranging

Sp,q(t) =

∑q−1
j=p δjBj+1(t)Lj(t)∑q−1

j=p δjBj+1(t)
=

Bp(t)−Bq(t)∑q−1
j=p δjBj+1(t)

. (22)

So Sp,q is a martingale under the probability measure Pp,q, induced by the
annuity numeraire Bp,q =

∑q−1
j=p δjBj+1(t). Therefore we may write

dSp,q(t) = σp,q(t)Sp,q(t)dW(p,q)(t), (23)

where dW(p,q)(t) is standard Brownian motion under Pp,q. From (22) we see that
the swap rate can be expressed as a weighted sum of the constituent forwards
rates,

Sp,q(t) =
q−1∑
j=p

wj(t)Lj(t)

with

wj(t) =
δjBj+1(t)

Bp,q
.

An application of Ito’s Lemma yields

dSp,q(t) =
q−1∑
j=p

∂Sp,q(t)
∂Lj(t)

dLj(t) +
q−1∑
j=p

q−1∑
i=p

∂2Sp,q

∂Lj(t)∂Li(t)
dLj(t)dLi(t)

=
q−1∑
j=p

∂Sp,q(t)
∂Lj(t)

Lj(t)Γ>j
[
dW(n) + (. . .)dt

]
. (24)

Equating (23) and (24), gives

dSp,q(t) = Sp,q(t)

q−1∑
j=p

νj(t)Γ>j

 dW(p,q)(t)

with W(p,q) = (W (p,q), W̃ (p,q)) and

νj(t) :=
∂Sp,q(t)
∂Lj(t)

Lj(t)
Sp,q(t)

.
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The change of measure from W(n) to W(p,q) can be found in Schoenmakers
(2005). In particular,

dW (p,q) = dW (n) −
√

1− r2

q−1∑
i=p

wi

n−1∑
j=i+1

δjLj

1 + δjLj
γjdt

and

dW̃ (p,q) = dW̃
(n)
k − r

q−1∑
i=p

wi

n−1∑
j=i+1

δjLj

1 + δjLj
γjk

√
vkdt.

In terms of these new Brownian motions the volatility processes read,

dvk = κk(1− vk)dt + rσkρk

q−1∑
i=p

wi(t)
n−1∑

j=i+1

δjLj

1 + δjLj
γjkvkdt

+ ρkσk
√

vkdW̃
(p,q)
k +

√
1− ρ2

kσk
√

vkdW
(p,q,n)

k . (25)

As shown in the Appendix, the process W
(p,q,n)

in (25) is standard Brownian
motion under both measures Pp,q and Pn. Assuming now that ∂Sp,q(t)

∂Lj(t)
and Lj(t)

Sp,q(t)

are approximately constant in time, we freeze the weights at their initial time
t = 0. Then the swap rate dynamic is approximately given by

dSp,q(t) ≈ Sp,q(t)

q−1∑
j=p

νj(0)Γ>j

 dW(p,q)(t). (26)

Similarly, freezing the Libors in the drift term of (25) leads to an approximated
volatility process vk given by

dvk ≈ κ
(p,q)
k

(
θ
(p,q)
k − vk

)
dt + σk

√
vk

(
ρkdW̃

(p,q)
k +

√
1− ρ2

kdW
(p,q,n)

k

)
(27)

with reversion speed parameter

κ
(p,q)
k := κk − rσkρk

q−1∑
i=p

wi(0)
n−1∑

j=i+1

δjLj(0)
1 + δjLj(0)

γjk, (28)

and mean reversion level

θ
(p,q)
k :=

κk

κ
(p,q)
k

. (29)

5 Calibration to Caplet prices

A caplet for the period [Tj , Tj+1] with strike K is an option that pays (Lj(Tj)−
K)+δj at time Tj+1, where 1 ≤ j < n. It is well-known that under the forward
measure Pj+1 the j-th caplet price at time zero is given by

Cj(K) = δjBj+1(0)Ej+1(Lj(Tj)−K)+.
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Thus, under Pj+1 the j-th caplet price is determined by the dynamics of Lj only.
The FFT-method of Carr and Madan (1999) can be straightforwardly adapted
to the caplet pricing problem as done in Belomestny and Schoenmakers (2006).
We here recap the main results.

In terms of the log-moneyness variable

v := ln
K

Lj(0)
(30)

the j-th caplet price can be expressed as

Cj(v) := Cj(evLj(0)) = δjBj+1(0)Lj(0)Ej+1

(
eXj(Tj) − ev

)+

,

where Xj(t) = lnLj(t)− lnLj(0). One then defines the auxiliary function

Oj(v) := δ−1
j B−1

j+1(0)L−1
j (0)Cj(v)− (1− ev)+ (31)

and can show the following proposition.

Proposition 1 For the Fourier transform of the function Oj defined above and
ϕj+1(·; t) denoting the characteristic function of the process Xj(t) under Pj+1

we have

F {Oj} (z) =
∫ ∞
−∞

Oj(v)eivzdv =
1− ϕj+1(z − i;Tj)

z(z − i)
. (32)

The proof can be found in Belomestny/Reiß (2006). Next, combining (30),
(31), and (32) yields

Cj(K) = δBj+1(0) (Lj(0)−K)+ (33)

+
δBj+1(0)Lj(0)

2π

∫ ∞
−∞

1− ϕj+1(z − i;Tj)
z(z − i)

e
−iz ln K

Lj(0) dz.

We now outline a calibration procedure for the Libor structure (2), under the
following additional assumptions.

(i) The input market Libor volatility structure γ ∈ R(n−1)×m is assumed to
be of full rank, that is m = n − 1. (Strictly speaking it would be enough
to require the right-hand-sides of (13) or (14) to be of full rank.)

(ii) The terminal log-Libor increment d lnLn−1 is influenced by a single stochas-
tic volatility shock dUn−1, the one but last, hence d lnLn−2, by only dUn−1

and dUn−2, and so forth. Put differently, we assume β ∈ R(n−1)×d to be
a squared upper triangular matrix of rank n− 1, hence d = n− 1.

(iii) The ri are taken to be constant, that is ri ≡ r, and the matrix β is
determined as the time independent upper triangular solution γ of the
covariance condition (13) or (14), depending on the readers preference.
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(iv) Recall that vk(0) ≡ θk ≡ 1, 1 ≤ k < n.

For the Libor dynamics structured in the above way we thus have

d lnLi(t) = −1
2

[
(1− r2) |γi|2 + r2

n−1∑
k=i

γ2
ikvk

]
dt

+
√

1− r2γ>i dW (i+1)

+ r
n−1∑
k=i

γik

√
vkdW̃

(i+1)
k , 1 ≤ i < n, (34)

where for i = n− 1 the dynamics of vn−1 is given by (16), and for i < n− 1 the
dynamics of vk, i ≤ k < n, is approximately given by (19).

We will calibrate the structure to prices of caplets according to the following
roadmap.

1. First step i = n − 1. Calibrate r and the parameter set (κn−1 , θn−1 =
1 , σn−1 , ρn−1 ) to the Tn−1 column of the cap-strike matrix via (33) using
the explicitly known characteristic function ϕn of ln[Ln−1(Tn−1)/Ln−1(0)]
(see Appendix (8.0.1)).

2. For i = n− 2 down to 1 carry out the next iteration step:

3. The k-th step i = n−k. Transform the yet known parameter set (κj , σj , ρj)
i < j < n , via (20) and (21) into the corresponding set
(κ(i+1)

j , σ
(i+1)
j , ρ

(i+1)
j , θ

(i+1)
j ), i < j < n. By the upper triangular struc-

ture of the square matrix γ we obviously have κ
(i+1)
i = κi, hence by

(21) θ
(i+1)
i = 1. Then calibrate the at this stage unknown parameter set

(κi, σi, ρi ) to the Ti column of the cap-strike matrix via (33) using the
explicitly known characteristic function ϕi+1 of ln[Li(Ti)/Li(0)] under the
approximation (17)-(19) (see Appendix (8.0.1)).

The above calibration algorithm includes at each step, as usual, the minimiza-
tion of some objective function. As such function we take the weighted sum
of squares of the corresponding differences between observed market prices and
prices induced by the model. The weights are taken to be proportional to Black-
Scholes vegas. As an initial values for the local optimization routine at time
step i + 1 the values of estimated parameters at time step i are used.

6 Calibration to swaption prices

A European swaption over a period [Tp, Tq] gives the right to enter at Tp into
an interest rate swap with strike rate K. The swaption value at time t ≤ Tp is

12



given by
Swpnp,q(t) = Bp,q(t)EFt

p,q(Sp,q(Tp)−K)+.

Since the approximative model (26)-(27) for Sp,q has an affine structure with
constant coefficients one can write down the characteristic function of Sp,q ana-
lytically under Pp,q and follow the lines of the previous section to calibrate the
model.

Remark 2 Due to the covariance restrictions (13)-(14), one can expect that
the model prices of ATM swaptions are not far from market prices because our
model employs a covariance structure of LMM calibrated to the market prices of
ATM swaptions.

7 Calibration to real data

In this section we calibrate the model (17)-(19) to market data available on
14.08.2007. The caplet-strike volatility matrix is partially shown in Table 1.
The corresponding implied volatility surface is shown in Figure 1.

Pronounced smiles are clearly observable. Due to the structure of the given
data we are going to calibrate the jump diffusion model based on semi-annual
tenors, i.e. δj ≡ 0.5, with n = 41, and where the initial calibration date
14.08.2007 is identified with T0 = 0.

In a pre-calibration a standard market model is calibrated to ATM caps and
ATM swaptions using Schoenmakers (2005). However, we emphasize that the
method by which this input market model is obtained is not essential nor a
discussion point for this paper. For the pre-calibration we have used a volatility
structure of the form

γi(t) = cig(Ti − t)ei, 0 ≤ t ≤ Ti, 1 ≤ i < n,

where g is a simple parametric function and ei are unit vectors. The pre-
calibration routine returns ei ∈ Rn−1 such that (ei,k) is upper triangular and

e>i ej = ρij = exp
[
−|j − i|

m− 1
(− ln ρ∞

−η
i2 + j2 + ij −mi−mj − 3i− 3j + 3m + 2

(m− 2)(m− 3)

)]
, (35)

i, j = 1, . . . ,m := n− 1, 0 ≤ η ≤ − ln ρ∞,

with n = 41, ρ∞ = 0.23, η = 1.42. The function g is given by

g(s) = g∞ + (1− g∞ + as)e−bs.

with a = 0.32, b = 0.07, and g∞ = 0.58. The loading factors ci can be readily
computed from

(σATM
Ti

)2Ti = c2
i

∫ Ti

0

g2(s) ds, i = 1, . . . , n− 1,

13



T/K 2 2.25 2.5 3 3.5 4

0 24.80 22.60 21.00 18.50 14.90 10.60

0.5 24.80 22.60 21.00 18.50 14.90 10.60

1.0 22.71 20.81 19.45 17.25 14.90 12.47

1.5 20.62 19.02 17.89 16.01 14.90 14.34

2 21.31 19.59 18.51 16.67 15.40 14.63

2.5 21.99 20.17 19.13 17.34 15.91 14.92

3.0 21.72 20.27 19.21 17.40 15.99 14.98

3.5 21.45 20.37 19.29 17.46 16.08 15.05

4.0 20.85 20.26 19.17 17.44 16.01 15.06

4.5 20.23 20.15 19.04 17.43 15.95 15.06

5.0 20.46 19.92 18.87 17.15 15.71 14.78

5.5 20.69 19.69 18.69 16.87 15.48 14.49

6.0 20.92 19.46 18.51 16.59 15.25 14.22

6.5 21.16 19.22 18.33 16.31 15.01 13.93

7.0 20.81 19.09 18.15 16.21 14.92 13.88

7.5 20.46 18.95 17.97 16.11 14.82 13.82

8.0 20.11 18.82 17.78 16.01 14.72 13.76

8.5 19.75 18.68 17.60 15.91 14.62 13.70

9.0 19.40 18.54 17.41 15.81 14.52 13.64

Table 1: Caplet volatilities σK
T (in %) for different strikes and different tenor

dates (in years).

using the initial Libor curve, which is obtained by a standard stripping procedure
from the yield curve at 14.08.2007. Table 2 shows the calibrated values of ci.
Finally, the calibration procedure presented in Section 5 delivers the following
parameter values: r = 0.18 and ρ, σ, κ varying across several chosen maturities
as shown in Table 3. The quality of the calibration can be seen in Figure 2, where
calibrated volatility curves are shown for several caplet periods (corresponding
to Table 7) together with the market caplet volas. The overall relative root-
mean-square fit we have reached shows to be 0.5%-5%, when the caplet maturity
ranges from 0.5 to 20.

14
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Figure 1: Caplet implied volatility surface σK
T .

8 Appendix

8.0.1 The Conditional Characteristic Function

We need to determine the conditional characteristic function of lnLj(T ) given
Lj(0) for all j = 1, ..., n− 1. under the relevant measure Pj+1 when the Heston
CIR-process has for each component k = 1, ..., n− 1 the general form

dvk = κ
(j+1)
k (θ(j+1)

k − vk)dt + σkρk
√

vkdW̃
(j+1)
k + σk

√
(1− ρ2

k)
√

vkdW
(j+1)

k ,

(36)
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1 2 3 4 5 6 7 8 9 10

0.096 0.090 0.101 0.111 0.106 0.101 0.099 0.097 0.092 0.087

11 12 13 14 15 16 17 18 19 20

0.084 0.081 0.078 0.076 0.073 0.071 0.068 0.066 0.064 0.062

21 22 23 24 25 26 27 28 29 30

0.060 0.059 0.058 0.057 0.056 0.055 0.054 0.0534 0.0526 0.0518

31 32 33 34 35 36 37 38 39 40

0.051 0.050 0.050 0.049 0.049 0.048 0.049 0.048 0.047 0.047

Table 2: The values of loadings factors ci calibrated to ATM caplets volatilities.

Tenor 20 19 18 17

ρ -0.7832 -0.7832 -0.7832 -0.7832

σ 7.4920 7.4920 6.2427 5.0198

κ 2.3376 2.3376 3.9385 4.5590

Table 3: Parameters estimates for chosen tenors.

In this case and a forward Libor dynamic given by (34) , with general v ∈ Rn−1 ,
the solution is of the form

ϕj+1(z ;T, l, v) = Ej+1

[
eiz ln Lj(T )

∣∣∣Lj(0) = l, vk(0) = vk, k = 1, ..., n− 1
]

= ϕj+1,0 (z ;T ) exp(iz ln l)
n−1∏
k=j

ϕj+1,k (z;T ) (37)

where

ϕj+1,0(z ;T ) = exp
(
−1

2
(1− r2)η2

j (T )
(
z2 + iz

))
, η2

j (T ) =
∫ T

0

|γj |2 dt

and each ϕj+1,k (z ;T ) = ϕj+1,k (z ;T, l, vk) satisfies the parabolic equation

∂ϕj+1,k

∂T
= κ

(j+1)
k (θ(j+1)

k − vk)
∂ϕj+1,k

∂vk
− 1

2
r2γ2

jkvk
∂ϕj+1,k

∂l
+

1
2
σ2

kvk
∂2ϕj+1,k

∂v2
k

+
1
2
r2γ2

jkvk
∂2ϕj+1,k

∂l2
+ σkρkrγjkvk

∂2ϕj+1,k

∂vk∂l

with the terminal condition

ϕj+1,k(z ; 0, l, vk) = 1,

as can be easily verified by the Feynman-Kac formula.
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Figure 2: Caplet volas from the calibrated model (solid lines) and market caplets
volas σK

T (dashed lines) for different caplet periods.

Since γj are constant, the above equation can be solved explicitly. The ansatz

ϕj+1,k(z;T, l, vk) = exp (Aj,k(z;T ) + vkBj,k(z;T ))

will yield

Aj,k(z;T ) =
κ

(j+1)
k θ

(j+1)
k

σ2
k

{
(aj,k + dj,k)T − 2 ln

[
1− gj,kedj,kT

1− gj,k

]}

Bj,k(z;T ) =
(aj,k + dj,k)(1− edj,kT )

σ2
k(1− gj,kedj,kT )

,

where

aj,k = κ
(j+1)
k − irρkσkγjkz

dj,k =
√

a2
j,k + r2γ2

jkσ2
k(z2 + iz)

gj,k =
aj,k + dj,k

aj,k − dj,k
.
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Note that the first lower index j + 1 at the characteristic function refers to
the measure, whereas the first index j at the introduced coefficients refers to
relevant forward Libor. The second index refers to the component.
It is again the choice of γ that enables the product in (37) to be startet at j.
This crucial feature will show to be beneficial in the calibration part. When
j = n−1, for example, only the last ln-Libor will contribute a non-trivial factor
to the characteristic function. For all others we have

ϕn,k ≡ 1 , k = 1, ..., n− 2 .

8.0.2 CIR

Consider a CIR model of the form

dv(t) = κ(θ − v(t))dt + σ
√

v(t)dW (t), κ, θ, σ > 0.

Given v(u), v(t) with t > u is distributed with density

νχ2
d(νx, ξ)

where χ2
d(x, ξ) is the density of a noncentral chi-square random variable with d

degrees of freedom and noncentrality parameter ξ and

ν =
4κ

σ2(1− e−κ(t−u))

ξ =
4κe−κ(t−u)

σ2(1− e−κ(t−u))
v(u)

d =
4θκ

σ2
.

The conditional mean of v(t) is given by

E(v(t)|v(u)) = ν−1(ξ + d) = (v(u)− θ)e−κ(t−u) + θ

and the conditional second moment is

E(v2(t)|v(u)) =
(2(d + 2ξ) + (ξ + d)2)

ν2

=
(

1 +
2
d

)
[E(v(t)|v(u))]2 − 2

d
e−2κ(t−u)v2(u).
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8.0.3 Measure Invariance

Why is dW
(n,i+1)

k invariant under the various measures?

See Jamshidian for the compensator, which is given by

µi+1

W
(n)
k

= 〈W (n)

k , lnM〉.

with
M = Πn−1

j=i+1(1 + δLj).

That is, we have

〈W (n)

k , lnM〉 = dW
(n)

k d lnM = dW
(n)

k d

 n−1∑
j=i+1

ln (1 + δLj)



=
n−1∑

j=i+1

dW
(n)

k d ln(1 + δLj)

=
n−1∑

j=i+1

δLj

1 + δLj
dW

(n)

k d lnLj

A closer look at (15) reveils that all terms are negligible, since of higher order
than dt, or zero due to independence of W and W or W̃ , respectively. We thus
have

〈W (n)

k , lnM〉 = 0

or in other words, as indicated by dW
(n,i+1)

k :

dW
(n)

k = dW
(i+1)

k .

Analoguosly we obtain by exchanging W k with W̃k that

〈W̃ (n)
k , lnM〉 = dW̃

(n)
k d lnM

=
n−1∑

j=i+1

δLj

1 + δLj
dW̃

(n)
k d lnLj

=
n−1∑

j=i+1

rδLj

1 + δLj
βjk

√
vk

t dt
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