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AbstratMeasuring dependene in a multivariate time series is tantamount to modelling its dynamistruture in spae and time. In the ontext of a multivariate normally distributed time series,the evolution of the ovariane (or orrelation) matrix over time desribes this dynami. A widevariety of appliations, though, requires a modelling framework di�erent from the multivariatenormal. In risk management the non-normal behaviour of most �nanial time series alls fornon-Gaussian dependene. The orret modelling of non-Gaussian dependenes is therefore akey issue in the analysis of multivariate time series. In this paper we use opulae funtionswith adaptively estimated time varying parameters for modelling the distribution of returns,free from the usual normality assumptions. Further, we apply opulae to estimation of Value-at-Risk (VaR) of portfolios and show their better performane over the RiskMetris approah,a widely used methodology for VaR estimation.1 INTRODUCTIONTime series of �nanial data are high dimensional and have typially a non-Gaussian behavior. Thestandard modelling approah based on properties of the multivariate normal distribution thereforeoften fails to reprodue the stylized fats (i.e. fat tails, asymmetry) observed in returns from�nanial assets.A orret understanding of the time varying multivariate (onditional) distribution of returns isvital to many standard appliations in �nane like portfolio seletion, asset priing and Value-at-Risk alulation. Empirial evidene from asymmetri return distributions have been reportedin the reent literature. Longin and Solnik (2001) investigate the distribution of joint extremesfrom international equity returns and rejet multivariate normality in their lower orthant, Ang andChen (2002) test for onditional orrelation asymmetries in U.S. equity data, rejeting multivariate1



normality at daily, weekly and monthly frequenies, Hu (2006) models the distribution of indexreturns with mixtures of opulae, �nding asymmetries in the dependene struture aross markets.For a onise survey on stylized empirial fats from �nanial returns see Cont (2001) and Granger(2003).Modelling distributions with opulae has drawn attention from many researhers as it avoids theprorustean bedöf normality assumptions, produing better �ts of the empirial harateristis of�nanial returns. A natural extension is to apply opulae in a dynami framework with onditionaldistributions modelled by opulae with time varying parameters. The question though is how tosteer the time varying opulae parameters. This question is exatly in the fous of this paper.A possible approah is to estimate the parameter from struturally invariant periods. There is abroad �eld of eonometri literature on strutural breaks. Tests for unit-root in maroeonomiseries against stationarity with strutural break at a known hange point have been investigatedby Perron (1989) and for unknown hange point by Zivot and Andrews (1992), Stok (1994) andHansen (2001); Andrews (1993) tests for parameter instability in nonlinear models; Andrews andPloberger (1994) onstrut asymptoti optimal tests for multiple strutural breaks. In a di�erentset up, Quintos et al. (2001) test for onstant tail index oe�ient in Asian equity data againstbreak at unkwnown point.Time varying opulae and strutural breaks are ombined in Patton (2006). The dependene stru-ture aross exhange rates is modelled with time varying opulae with parameter spei�ed to evolveas an ARMA type proess. Tests for strutural break in the ARMA oe�ients at known hangepoint are performed and strong evidene of break is found. In a similar fashion, Rodriguez (2007)models the dependene aross sets of Asian and Latin Amerian stok indexes using time varyingopula where the parameter follows regime-swithing dynamis. Common to these papers is thatthey employ a �xed (parametri) struture for the pattern of hanges in the opula parameter.In this paper we follow a semiparametri approah, sine we are not speifying the parameter hang-ing sheme. We rather loally selet the time varying opula parameter. The hoie is performedvia an adaptive estimation under the assumption of loal homogeneity: for every time point there2
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Figure 1: Time varying dependene parameter and global parameter (horizontal line) estimatedwith Clayton opula. Portfolio of stoks from Allianz, Münhener Rükversiherung, BASF, Bayer,DaimlerChrysler and Volkswagenexists an interval of time homogeneity in whih the opula parameter an be well approximated bya onstant. This interval is reovered from the data using loal hange point analysis. This does notimply that the model follows a hange point struture: the adaptive estimation also applies whenthe parameter smoothly varies from one value to another, see Spokoiny (2007).Figure 1 shows the time varying opula parameter determined by our proedure for a portfolioomposed of daily pries of six German equities and the �global� opula parameter, shown by a on-stant horizontal line. The absene of parametri spei�ation for time variations in the dependenestruture - its dynamis is adaptively obtained from the data - allows for �exibility in estimatingdependene shifts aross time.The obtained time varying dependene struture an be used in �nanial engineering appliations,the most prominent being the alulation of the Value-at-Risk (VaR) of a portfolio. Using opulaewith adaptively estimated dependene parameters we estimate the VaR from DAX portfolios overtime. As benhmark proedure we hoose RiskMetris, a widely used methodology based on on-ditional normal distributions with a GARCH spei�ation for the ovariane matrix. Baktestingunderlines the improved performane of the proposed adaptive time varying opulae �tting.This paper is organized as follows: Setion 2 presents the basi opulae de�nitions, Setion 3disusses the VaR and its estimation proedure. The adaptive opula estimation is exposed inSetion 4 and applied on simulated data in Setion 5. In Setion 6 the VaR from DAX portfolios is3



estimated based on adaptive time varying opulae. The estimation performane is ompared withthe RiskMetris approah by means of baktesting.2 COPULAECopulae merge marginal into joint distributions, providing a natural way for measuring the depen-dene struture between random variables. Copulae are present in the literature sine Sklar (1959),although related onepts originate in Hoe�ding (1940) and Fréhet (1951), and have been widelystudied in the statistial literature, see Joe (1997), Nelsen (1998) and Mari and Kotz (2001). Appli-ations of opulae in �nane, insurane and eonometris have been investigated in Embrehts et al.(2002), Embrehts et al. (2003a), Franke et al. (2004) and Patton (2004) among others. Cherubiniet al. (2004) and MNeil et al. (2005) provide an overview of opulae for pratial problems in�nane and insurane.Assuming absolutely ontinuous distributions and ontinuous marginals throughout this paper, wehave from Sklar's theorem that for a d -dimensional distribution funtion F with marginal df's
F1, . . . , Fd there exists a unique opula C : [0, 1]d → [0, 1] satisfying

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (2.1)for every x = (x1, . . . , xd)
⊤ ∈ R

d . Conversely, for a random vetor X = (X1, . . . ,Xd)
⊤ with df

FX the opula of X may be written as
CX(u1, . . . , ud) = FX{F−1

1 (u1), . . . , F
−1
d (ud)}where uj = Fj(xj) , Fj is the df of Xj and F−1

j (α) = inf{xj : Fj(xj) ≥ α} its generalized inverse,
j = 1, . . . , d . A prominent opula is the Gaussian

CGa
Ψ (u1, . . . , ud) = FY {Φ

−1(u1), . . . ,Φ
−1(ud)} (2.2)4



where Φ(s) , s ∈ R stands for the one-dimensional standard normal df, FY is the df of Y =

(Y1, . . . , Yd)
⊤ ∼ Nd(0,Ψ) and Ψ is a orrelation matrix. The Gaussian opula represents thedependene struture of the multivariate normal distribution. In ontrast, the Clayton opula givenby

Cθ(u1, . . . , ud) =








d∑

j=1

u−θ
j


 − d + 1





−θ−1 (2.3)for θ > 0 , expresses asymmetri dependene strutures.The dependene at upper and lower orthants of a opula C may be expressed by the upper andlower tail dependene oe�ients
λU = lim

u→0

Ĉ(u, . . . , u)

u

λL = lim
u→0

C(u, . . . , u)

uwhere u ∈ (0, 1] and Ĉ is the survival opula of C , see Joe (1997) and Embrehts et al. (2003b).While Gaussian opulae are asymptotially independent at the tails (λL = λU = 0) , the d -dimensional Clayton opulae exhibit lower tail dependene (λL = d−1/θ) but are asymptotiallyindependent at the upper tail (λU = 0) . Joe (1997) provides a summary of diverse opula familiesand detailed desription of their properties.For estimating the opula parameter, onsider a sample {xt}
T
t=1 of realizations from X where theopula of X belongs to a parametri family C = {Cθ, θ ∈ Θ} . Using (2.1), the log-likelihood readsas

L(θ; x1, . . . , xT ) =

T∑

t=1

log c{F1(xt,1), . . . , Fd(xt,d); θ} +

T∑

t=1

d∑

j=1

log fj(xt,j).where c(u1, . . . , ud) = ∂dC(u1,...,ud)
∂u1...∂ud

is the density of the opula C and fj is the probability densityfuntion of Fj . The anonial maximum likelihood estimator θ̂ maximizes the pseudo log-likelihoodwith empirial marginal df's̃
L(θ) =

T∑

t=1

log c{F̂1(xt,1), . . . , F̂d(xt,d); θ}5



where
F̂j(s) =

1

T + 1

T∑

k=1

1{xk,j≤s} (2.4)for j = 1, . . . , d. Note that F̂j di�ers from the usual empirial df by the denominator T +1 . Thisensures that {F̂1(xt,1), . . . , F̂d(xt,d)}
⊤ ∈ (0, 1)d and avoids in�nite values the opula density maytake on the boundary of the unit ube, see MNeil et al. (2005). Joe (1997), Cherubini et al. (2004)and Chen and Fan (2006) provide a detailed exposition of inferene methods for opulae.3 VALUE-AT-RISK AND COPULAEThe dependene (over time) between asset returns is espeially important in risk management sinethe pro�t and loss (P&L) funtion determines the Value-at-Risk. More preisely, the Value-at-Risk of a portfolio is determined by the multivariate distribution of risk fator inrements. If

w = (w1, . . . , wd)
⊤ ∈ R

d denotes a portfolio of positions on d assets and St = (St,1, . . . , St,d)
⊤a non-negative random vetor representing the pries of the assets at time t , the value Vt of theportfolio w is given by

Vt =

d∑

j=1

wjSt,j.The random variable
Lt = (Vt − Vt−1) (3.1)alled pro�t and loss (P&L) funtion, expresses the hange in the portfolio value between twosubsequent time points. De�ning the log-returns Xt = (Xt,1, . . . ,Xt,d)

⊤ where Xt,j = log St,j −

log St−1,j and log S0,j = 0 , j = 1, . . . , d , (3.1) an be written as
Lt =

d∑

j=1

wjSt−1,j {exp(Xt,j) − 1} . (3.2)
6



The df of Lt is given by Ft,Lt(x) = Pt(Lt ≤ x) . The Value-at-Risk at level α from a portfolio wis de�ned as the α -quantile from Ft,Lt :
VaRt(α) = F−1

t,Lt
(α). (3.3)It follows from (3.2) that Ft,Lt depends on the spei�ation of the d -dimensional distribution of therisk fators Xt . Thus, modelling their distribution over time is essential for obtaining the quantiles(3.3).The RiskMetris tehnique, a widely used methodology for VaR estimation, assumes that riskfators Xt follow a onditional multivariate normal distribution L(Xt|Ft−1)=N(0,Σt) , where

Ft−1 = σ(X1, . . . ,Xt−1) is the σ -�eld generated by the �rst t− 1 observations, and estimates theovariane matrix Σt for one-period return as
Σ̂t = λΣ̂t−1 + (1 − λ)Xt−1X

⊤
t−1 (3.4)where the parameter λ is the so-alled deay fator. λ = 0.94 provides the best baktesting resultsfor daily returns aording to J.P.Morgan/Reuters (1996). In the opulae based approah one �rstorrets the ontemporaneous mean and volatility in the log-returns proess:

Xt,j = µt,j + σt,jεt,j (3.5)where µt,j = E[Xt,j | Ft−1] is the onditional mean and σ2
t,j = E[(Xt,j−µt,j)

2 | Ft−1] the onditionalvariane of Xt,j . The standardised innovations εt = (εt,1, . . . , εt,d)
⊤ have joint df Fεt given by

Fεt(x1, . . . , xd) = Cθ{Ft,1(x1), . . . , Ft,d(xd)} (3.6)where Ft,j is the df of εt,j and Cθ is a opula belonging to a parametri family C = {Cθ, θ ∈ Θ} .For details on the above model spei�ation see Chen and Fan (2006) and Chen et al. (2006).For the Gaussian opula with Gaussian marginals we reover the onditional Gaussian RiskMetrisframework. 7



To obtain the Value-at-Risk in this set up, the dependene parameter and df's from residuals areestimated from a sample of log-returns and used to generate P&L Monte Carlo samples. Theirquantiles at di�erent levels are the estimators for the Value-at-Risk, see Embrehts et al. (2002).The whole proedure an be summarized as follows, see Härdle et al. (2002) and Giaomini andHärdle (2005): for a portfolio w ∈ R
d and a sample {xt,j}

T
t=1 , j = 1, . . . , d of log-returns, theValue-at-Risk at level α is estimated aording to the following steps1. determination of innovations {ε̂t}

T
t=1 by e.g. deGARCHing2. spei�ation and estimation of marginal df's Fj(ε̂j)3. spei�ation of a parametri opula family C and estimation of the dependene parameter θ4. generation of Monte Carlo sample of innovations ε and losses L5. estimation of V̂aR(α) , the empirial α -quantile of FL .4 MODELLING WITH TIME VARYING COPULAEVery similar to the RiskMetris proedure, one an perform a moving (�xed length) window es-timation of the opula parameter. This proedure though does not �ne tune loal hanges independenes. In fat, the df Fεt from (3.6) is modelled as Ft,εt = Cθt

{Ft,1(·), . . . , Ft,d(·)} withprobability measure Pθt
. The moving window of �xed width will estimate a θt for eah t , but haslear limitations. The hoie of a small window results in a high pass �ltering and hene, in a veryunstable estimate with huge variability. The hoie of a large window leads to a poor sensitivity ofthe estimation proedure and to a high delay in the reation to hanges in dependene measuredby the parameter θt .In order to hoose an interval of homogeneity we employ a loal parametri �tting approah asintrodued by Polzehl and Spokoiny (2006), Belomestny and Spokoiny (2007) and Spokoiny (2007).The basi idea is to selet for eah time point t0 an interval It0 = [t0−mt0 , t0] of length mt0 in suh8



a way that the time varying opula parameter θt an be well approximated by a onstant value θ .The question is of ourse how to selet mt0 in an online situation from historial data. The aimshould be to selet It0 as lose as possible to the so-alled öralehoie interval. The �orale� hoieis de�ned as the largest interval I = [t0 − m∗
t0 , t0] , for whih the small modelling bias ondition(SMB):

∆I(θ) =
∑

t∈I

K(Pθt
, Pθ) ≤ ∆ (4.1)for some ∆ ≥ 0 holds. Here θ is onstant and

K(Pϑ, Pϑ′) = Eϑ log
p(y, ϑ)

p(y, ϑ′)denotes the Kullbak-Leibler divergene. In suh an orale hoie interval, the parameter θt0 =

θt|t=t0
an be �optimally� estimated from I = [t0−m∗

t0, t0] . The error and risk bounds are alulatedin Spokoiny (2007). It is important to mention that the onept of loal parametri approximationallows to treat in a uni�ed way the ase of �swithing regime� models with spontaneous hanges ofparameters and the �smooth transition� ase when the parameter varies smoothly in time.The �orale� hoie of the interval of homogeneity depends of ourse on the unknown time varyingopula parameter θt . The next Setion presents an adaptive (data driven) proedure whih �mimis�the �orale� in the sense that it delivers the same auray of estimation as the �orale� one. Thetrik is to �nd the largest interval in whih the hypothesis of a loal onstant opula parameteris supported. The Loal Change Point (LCP) detetion proedure, originates from Merurio andSpokoiny (2004) and sequentially tests the hypothesis: θt is onstant (i.e. θt = θ ) within someinterval I (loal parametri assumption).The LCP proedure for a given point t0 starts with a family of nested intervals I0 ⊂ I1 ⊂ I2 ⊂

. . . ⊂ IK = IK+1 of the form Ik = [t0 − mk, t0] . The sequene mk determines the length of theseinterval �andidates�, see Subsetion (4.2). Every interval Ik leads to an estimate θ̃k of the opulaparameter θt0 . The proedure selets one interval Î out of the given family and therefore, theorresponding estimate θ̂ = θ̃bI
. 9



t0 − mk t0 − mk−1 t0 − mk−2 t0

︸ ︷︷ ︸
Tk

︸ ︷︷ ︸
Tk−1

︸ ︷︷ ︸
Ik−2︸ ︷︷ ︸

Ik−1︸ ︷︷ ︸
IkFigure 2: Choie of the intervals Ik and TkThe idea of the proedure is to sequentially sreen eah interval Tk = [t0−mk, t0−mk−1] and hekeah point τ ∈ Tk as a possible hange point loation, see Subsetion (4.1) for more details. Thefamily of intervals Ik and Tk are illustrated in Figure 2. The interval Ik is aepted if no hangepoint is deteted within T1, . . . ,Tk . If the hypothesis of homogeneity is rejeted for an interval-andidate Ik the proedure stops and selets the latest aepted interval. The formal desriptionreads as follows:Start the proedure with k = 1 and1. test the hypothesis H0,k of no strutural hanges within Tk using the larger testing interval

Ik+1 ;2. if no hange points were found in Tk , then Ik is aepted. Take the next interval Tk+1and repeat the previous step until homogeneity is rejeted or the largest possible interval
IK = [t0 − mK , t0] is aepted;3. if H0,k is rejeted for Tk , the estimated interval of homogeneity is the last aepted interval
Î = Ik−1 .4. if the largest possible interval IK is aepted we take Î = IK .We estimate the opula dependene parameter θ at time instant t0 from observations in Î , assum-ing the homogeneous model within Î , i.e. we de�ne θ̂t0 = θ̃bI . We also denote by Îk the largestaepted interval after k steps of the algorithm and by θ̂k the orresponding estimate of the opulaparameter. 10



It is worth mentioning that the objetive of the desribed estimation algorithm is not to detetthe points of hange for the opula parameter, but rather to determine the urrent dependenestruture from historial data by seleting an interval of time homogeneity. This distinguishes ourapproah from other proedures for estimating a time varying parameter by hange point detetion.A visible advantage of our approah is that it equally applies to the ase of spontaneous hangesin the dependene struture and in the ase of smooth transition in the opula parameter. Theobtained dependene struture an be used for di�erent purposes in �nanial engineering, the mostprominent being the alulation of the VaR, see also Setion 6.The theoretial results from Spokoiny and Chen (2007) and Spokoiny (2007) indiate that theproposed proedure provides the rate optimal estimation of the underlying parameter when thissmoothly varies with time. It has also been shown that the proedure is very sensitive to struturalbreaks and provides the minimal possible delay in detetion of hanges, where the delay dependson the size of hange in terms of Kullbak-Leibler divergene.4.1 Test of homogeneity against a hange point alternativeIn the homogeneity test against hange point alternative we want to hek every point of an interval
T (reall Figure 2), here alled tested interval, on a possible hange in the dependene struture atthis moment. To perform this hek, we assume a larger testing interval I of form I = [t0−m, t0] , sothat T is an internal subset within I . The null hypothesis H0 means that ∀t ∈ I , θt = θ , i.e., theobservations in I follow the model with dependene parameter θ . The alternative hypothesis H1laims that ∃τ ∈ T suh that θt = θ1 for t ∈ J = [τ, t0] and θt = θ2 6= θ1 for t ∈ Jc = [t0 −m, τ) ,i.e. the parameter θ hanges spontaneously in some point τ ∈ T . Figure 3 depits I , T and thesubintervals J and Jc determined by the point τ ∈ T .Let LI(θ) be the log-likelihood and θ̃I the maximum likelihood estimate for the interval I. Thelog-likelihood funtions orresponding to H0 and H1 are LI(θ) and LJ(θ1)+LJc(θ2) respetively.

11
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IFigure 3: Testing interval I , tested interval T , subintervals J and Jc for a point τ ∈ TThe likelihood ratio test for the single hange point with known �xed loation τ an be written as
TI,τ = max

θ1,θ2

{LJ(θ1) + LJc(θ2)} − max
θ

LI(θ)

= LJ(θ̃J) + LJc(θ̃Jc) − LI(θ̃I).The test statisti for unknown hange point loation is de�ned as
TI = max

τ∈T

TI,τ .The hange point test ompares this test statisti with a ritial value zI whih may depend on theinterval I . One rejets the hypothesis of homogeneity if TI > zI .4.2 Parameters of the LCP proedureIn order to apply the LCP testing proedure for loal homogeneity, we have to speify some param-eters. This inludes: seletion of interval andidates Ik , or equivalently, of the tested intervals Tkand hoie of respetive ritial values zk . One possible parameter set that has been suesfullyemployed in simulations is presented below.Seletion of interval andidates Ik and internal points Tk : it is useful to take the set ofnumbers mk de�ning the length of Ik and Tk in form of a geometri grid. We �x the value m0and de�ne mk = [m0c
k] for k = 1, 2, . . . ,K and c > 1 where [x] means the integer part of x .We set Ik = [t0 − mk, t0] and Tk = [t0 − mk, t0 − mk−1] for k = 1, 2, . . . ,K , see Figure 2.Choie of the ritial values zk . The algorithm is in fat a multiple testing proedure. Merurio12



and Spokoiny (2004) suggested to selet the ritial value zk to provide the overall �rst type errorprobability of rejeting the hypothesis of homogeneity in the homogeneous situation. Here, wefollow another proposal from Spokoiny and Chen (2007) whih fouses on estimation losses ausedby the �false alarm� - in our ase obtaining a too small homogeneity interval - rather than on itsprobability.In the homogeneous situation with θt ≡ θ∗ for all t ∈ Ik+1 , the desirable behavior of the proedureis that after the �rst k steps the seleted interval Îk oinides with Ik and the orrespondingestimate θ̂k oinides with θ̃k , that means there is no �false alarm�. In the ontrary, in ase of�false alarm� the seleted interval Îk is smaller than Ik , and hene, the orresponding estimate
θ̂k has larger variability than θ̃k . This means that the �false alarm� at the early steps of theproedure is more ritial than at the �nal steps, as it may lead to seleting an estimate withvery high variane. The di�erene between θ̂k and θ̃k an naturally be measured by the value
LIk

(θ̃k, θ̂k) = LIk
(θ̃k) − LIk

(θ̂k) normalized by the risk R(θ∗) of the non-adaptive estimate θ̃k :
R(θ∗) = max

k≥1
Eθ∗

∣∣LIk
(θ̃k, θ

∗)
∣∣1/2

.The onditions we impose read as:
Eθ∗

∣∣LIk
(θ̃k, θ̂k)

∣∣1/2
≤ ρR(θ∗), k = 1, . . . ,K, θ∗ ∈ Θ. (4.2)The ritial values zk are seleted as minimal values providing these onstraints. In total we have

K onditions to selet K ritial values z1, . . . , zK . The values zk an be sequentially seletedby Monte Carlo simulation where one simulates under H0 : θt = θ∗ , ∀t ∈ IK . The parameter
ρ de�nes how onservative the proedure is. Small ρ leads to larger ritial values and hene toa onservative and non-sensitive proedure while an inrease in ρ results in more sensitiveness atost of stability. For details, see Spokoiny and Chen (2007) or Spokoiny (2007).
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θ∗ = 0.5 θ∗ = 1.0 θ∗ = 1.5

k ρ = 0.2 ρ = 0.5 ρ = 1.0 ρ = 0.2 ρ = 0.5 ρ = 1.0 ρ = 0.2 ρ = 0.5 ρ = 1.0

1 3.64 3.29 2.88 3.69 3.29 2.84 3.95 3.49 2.96
2 3.61 3.14 2.56 3.43 2.91 2.35 3.69 3.02 2.78
3 3.31 2.86 2.29 3.32 2.76 2.21 3.34 2.80 2.09
4 3.19 2.69 2.07 3.04 2.57 1.80 3.14 2.55 1.86
5 3.05 2.53 1.89 2.92 2.22 1.53 2.95 2.65 1.49
6 2.87 2.26 1.48 2.92 2.17 1.19 2.83 2.04 0.94
7 2.51 1.88 1.02 2.64 1.82 0.56 2.62 1.79 0.31
8 2.49 1.72 0.35 2.33 1.39 0.00 2.35 1.33 0.00
9 2.18 1.23 0.00 2.03 0.81 0.00 2.10 0.60 0.00

10 0.92 0.00 0.00 0.82 0.00 0.00 0.79 0.00 0.00Table 1: Critial values zk(ρ, θ∗) for m0 = 20 and c = 1.25 . Clayton opula, based on 5000simulations 5 SIMULATED EXAMPLESIn this Setion we apply the LCP proedure on simulated data with dependene struture given bythe Clayton opula. We generate sets of 6 dimensional data with a sudden jump in the dependeneparameter given by
θt =





ϑa if − 390 ≤ t ≤ 10

ϑb if 10 < t ≤ 210for di�erent values of (ϑa, ϑb) : one of them is �xed at 0.1 (lose to independene) while the otheris set to larger values.The LCP proedure is implemented with the family of interval andidates in form of a geometrigrid de�ned by m0 = 20 and c = 1.25 . The ritial values, seleted aording to (4.2) for di�erent
ρ and θ∗ , are displayed in Table 1. The hoie of θ∗ has negligible in�uene in the ritial valuesfor �xed ρ , therefore we use z1, . . . , zK obtained with θ∗ = 1.0 . Based on our experiene, seeSpokoiny and Chen (2007) and Spokoiny (2007), the default hoie for ρ is 0.5 .Figure 4 shows the pointwise median and quantiles of the estimated parameter θ̂t for distintvalues of (ϑa, ϑb) based on 100 simulations. The detetion delay δ at rule r ∈ [0, 1] to jump of14
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Figure 4: Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from θ̂t . True parameter
θt (dashed) with ϑa = 0.10 , ϑb = 0.50 , 0.75 and 1.00 (left, top to bottom) and ϑb = 0.10 ,
ϑa = 0.50 , 0.75 and 1.00 (right, top to bottom). Based on 100 simulations from Clayton opula,estimated with LCP, m0 = 20 , c = 1.25 and ρ = 0.5size γ = θt − θt−1 at t is expressed by

δ(t, γ, r) = min{u ≥ t : θ̂u = θt−1 + rγ} − t (5.1)and represents the number of steps neessary for the estimated parameter to reah the r -frationof a jump in the true parameter.Detetion delays are proportional to the probability of error of type II , i.e. the probability ofaepting homogeneity in ase of a jump. Thus, tests with higher power orrespond to lower delays
δ. Moreover, as the Kullbak-Leibler divergenes for upward and downward jumps are proportionalto the power of the respetive homogeneity tests, larger divergenes result in faster jump detetions.The desriptive statistis for detetion delays to jumps at t = 11 for di�erent values of (ϑa, ϑb) are15



(ϑa, ϑb) r mean std dev. max min
0.25 9.06 7.28 56 0

(0.50, 0.10) 0.50 13.64 9.80 60 0
0.75 21.87 14.52 89 3

0.25 5.16 4.24 21 0
(0.75, 0.10) 0.50 8.85 5.55 25 0

0.75 16.72 10.37 64 3

0.25 4.47 2.94 12 0
(1.00, 0.10) 0.50 7.94 4.28 22 0

0.75 14.79 7.38 62 5

0.25 8.94 6.65 36 0
(0.10, 0.50) 0.50 14.21 9.06 53 0

0.75 21.43 12.15 68 0

0.25 9.00 4.80 25 0
(0.10, 0.75) ) 0.50 14.30 5.96 40 3

0.75 21.00 10.97 75 6

0.25 7.39 3.67 19 0
(0.10, 1.00) 0.50 13.10 4.13 22 2

0.75 20.13 7.34 55 10Table 2: Statistis for detetion delay δ alulated as in (5.1) at rule r , based on 100 simulationsfrom Clayton opula, m0 = 20 , c = 1.25 and ρ = 0.5in Table 2. The mean detetion delay dereases with γ = ϑb − ϑa and are higher for downwardthan for upward jumps. Figure 5 shows that for Clayton opulae the Kullbak-Leibler divergene ishigher for upward than for downward jumps. Figure 6 displays the mean detetion delays againstjump size for upward and downward jumps.The LCP proedure is also applied on simulated data with smooth transition in the dependeneparameter given by
θt =





ϑa if − 350 ≤ t ≤ 50

ϑa + t−50
100 (ϑb − ϑa) if 50 < t ≤ 150

ϑb if 150 < t ≤ 350Figure 7 depits the pointwise median and quantiles of the estimated parameter θ̂t and the trueparameter θt for (ϑa, ϑb) set to (0.10, 1.00) and (1.00, 0.10) .
16
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6 EMPIRICAL RESULTSIn this Setion the Value-at-Risk from German stok portfolios is estimated based on time varyingopulae and RiskMetris (RM) approahes. The time varying opula parameters are seleted byLoal Change Point (LCP) and moving window (MW) proedures. Baktesting is used to evaluatethe performanes of the three methods in VaR estimation.Two groups of 6 stoks listed on DAX are used to ompose the portfolios. Stoks from group 1belong to three di�erent industries: automotive (Volkswagen and DaimlerChrysler), insurane (Al-lianz and Münhener Rükversiherung) and hemial (Bayer and BASF) while group 2 is omposedof stoks from six industries: eletrial (Siemens), energy (E.ON), metallurgial (ThyssenKrupp),airlines (Lufthansa), pharmaeutial (Shering) and hemial (Henkel). The portfolio values arealulated using 1270 observations, from 01.01.2000 to 31.12.2004, of the daily stok pries (dataavailable in http://sfb649.wiwi.hu-berlin.de/fed).The seleted opula belongs to the Clayton family (2.3). Clayton opulae have a natural inter-pretation and are well advoated in risk management appliations. In line with the stylized fatsfor �nanial returns, Clayton opulae are asymmetri and present lower tail dependene, modellingjoint extreme events at lower orthants with higher probability than Gaussian opulae for the sameorrelation, see MNeil et al. (2005). This fat is essential for VaR alulations and is illustratedby the ratio between (2.2) and (2.3) for o�-diagonal elements of Ψ set to 0.25 and θ = 0.5 . Forthe quantiles ui = 0.05 , i = 1, . . . , 6 the ratio CGa
Ψ (u1, . . . , u6)/Cθ(u1, . . . , u6) equals 2.3 × 10−2while for the 0.01 quantiles it equals 1.3 × 10−3 .The VaR estimation follows the steps desribed in Setion 3. In the RiskMetris approah the log-returns Xt are assumed onditionally normal distributed with zero mean and ovariane matrixfollowing a GARCH spei�ation with �xed deay fator λ = 0.94 as in (3.4).In the time varying opulae estimation the log-returns are modelled as in (3.5) where the innovations

εt have df
Ft,εt(x1, . . . , xd) = Cθt

{Ft,1(x1), . . . , Ft,d(xd)}18



p -values LB p -values ARCH
j group 1 group 2 group 1 group 2

1 0.33 0.52 0.15 0.04
2 0.13 0.35 0.15 0.98
3 0.21 0.08 0.34 0.72
4 0.99 0.05 0.10 0.18
5 0.90 0.07 0.91 0.77
6 0.28 0.81 0.28 0.94Table 3: p -values from Ljung-Box (LB) and ARCH tests on residuals ε̂t,j , j = 1, . . . , 6 for groups1 and 2and Cθ is the Clayton opula. The univariate log-returns Xt,j orresponding to stok j are de-volatized aording to RiskMetris, i.e. with zero onditional means and onditional varianes σ2

t,jestimated by the univariate version of (3.4) with deay fator equal to 0.94. We note that this hoiesets the same spei�ation for the dynamis of the univariate returns aross all methods (RM, MWand LCP), making their performanes in VaR estimation omparable. Moreover, as the means fromdaily returns are learly dominated by the varianes and are approximately independent on theavailable information sets, see Jorion (1995), Fleming et al. (2001) and Christo�ersen and Diebold(2006), their spei�ation is very unlikely to ause a pereptible bias in the estimated varianesand dependene parameters. Therefore the zero mean assumption is, as pointed out by Kim et al.(1999), as good as any other hoie. Daily returns are also modelled with zero onditional meansin Fan and Gu (2003) and Härdle et al. (2003) among others.The GARCH spei�ation (3.4) with λ = 0.94 optimizes variane foreasts aross a large numberof assets, J.P.Morgan/Reuters (1996), and is widely used in the �nanial industry. Di�erent hoiesfor the deay fator (like 0.85 or 0.98) result in negligible hanges (about 3%) in the estimateddependene parameter.The p -values from Ljung-Box (LB) test for serial orrelation and from ARCH test for heterosedas-tiity e�ets in the obtained residuals ε̂t,j are in Table 3. Normality is rejeted by Jarque-Bera testwith p -values approximately 0.00 for all residuals in both groups. The empirial df's of residualsas de�ned in (2.4) are used for the opula estimation.19



In the MW approah the size of the estimating window is �xed as 250 days orresponding to onebusiness year, the same size is used in e.g. Fan and Gu (2003); for the LCP proedure, followingSubsetion 4.2, we set the family of interval andidates as a geometri grid with m0 = 20 and
c = 1.25 and ρ = 0.5 . We have hosen these parameters from our experiene in simulations,for details on robustness of the reported results with respet to the hoie of m0 and c refer toSpokoiny (2007).The performane of the VaR estimation is evaluated based on baktesting. At eah time t theestimated Value-at-Risk at level α for a portfolio w is ompared with the realization lt of theorresponding P&L funtion, see (3.2), an exeedane ouring for eah lt smaller than V̂aRt(α) .The ratio of the number of exeedanes to the number of observations gives the exeedane ratio

α̂w(α) =
1

T

T∑

t=1

1
{lt< dVaRt(α)}As the �rst 250 observations are used for estimation, T = 1020 . The di�erene between α̂ andthe desired level α is expressed by the relative exeedane error

ew =
α̂w − α

α
.We ompute exeedane ratios and relative exeedane errors to levels α = 0.05 and 0.01 for aset W = {w∗, wn;n = 1, . . . , 100} of portfolios where eah wn = (wn,1, . . . , wn,6)

⊤ is a realizationof a random vetor uniformly distributed on S = {(x1, . . . , x6) ∈ R
6 :

∑6
i=1 xi = 1, xi ≥ 0.1}and w∗ = 1

6I6 , with Id denoting the (d × 1) vetor of ones, is the equally weighted portfolio.The degree of diversi�ation of a portfolio an be measured based on the majorization pre-orderingon S , see Marshall and Olkin (1979), i.e. a portfolio wa is more diversi�ed than portfolio wb if
wa ≺ wb. Under the majorization pre-ordering the vetor w∗ satis�es w∗ � w for all w ∈ S ,therefore the equally weighted portfolio is the most diversi�ed portfolio from W , see Ibragimov andWalden (2007).

20



The average relative exeedane error over portfolios and the orresponding standard deviation
AW =

1

|W|

∑

w∈W

ew

DW =

{
1

|W|

∑

w∈W

(ew − AW)2

} 1

2are used to evaluate the performanes of the time varying opulae and RiskMetris methods in VaRestimation.
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Figure 8: Estimated opula parameter θ̂t for group 1, LCP method, m0 = 20 , c = 1.25 and
ρ = 0.5 , Clayton opula
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Figure 9: Estimated opula parameter θ̂t for group 2, LCP method, m0 = 20 , c = 1.25 and
ρ = 0.5 , Clayton opulaThe dependene parameter estimated with LCP for stoks from group 1 and 2 are shown in �gures8 and 9. The di�erent industry onentrations in eah group are re�eted in the higher parametervalues obtained for group 1. The P&L and the VaR at level 0.05 estimated with LCP, MW andRM methods for the equally weighted portfolio w∗ are in Figure 10 (group 1) and 11 (group 2). Ex-21



RM MW LCP
α

5.00 1.00 5.00 1.00 5.00 1.00 (×10−2)

α̂w∗ 6.11 1.48 5.62 0.59 5.52 0.69
α̂w1

5.91 1.38 5.42 0.49 5.42 0.69 (×10−2)
α̂w2

6.40 1.28 5.91 0.49 5.71 0.59

AW 0.23 0.45 0.11 −0.49 0.11 −0.36
DW 0.04 0.14 0.06 0.08 0.06 0.10Table 4: Exeedane ratios for portfolios w∗ , w1 and w2 , average and standard deviation fromrelative exeedane errors aross levels and methods, group 1eedane ratios for portfolios w∗ , w1 and w2 , average relative exeedane errors and orrespondingstandard deviations aross methods and levels are shown in Table 4 (group 1) and 5 (group 2).Based on the exeedane errors the LCP proedure outperforms the MW (seond best) and RMmethods in VaR estimation in group 1. At level 0.05 the average error assoiated with opulamethods are about half the error from RM estimation for nearly the same standard deviation. Atlevel 0.01 the LCP average error is the smallest in absolute value and opula methods present lessstandard deviations. At this level opula methods overestimate VaR and RM underestimates it.While overestimation of VaR means that a �nanial institution would be requested to keep moreapital aside than neessary to guarantee the desired on�dene level, underestimation means thatless apital is reserved and the desired level is not guaranteed. Therefore, from the regulatorypoint of view overestimation is preferred to underestimation. In the less onentrated group 2, LCPoutperforms MW and RM at level 0.05 presenting the smallest average error in magnitude fornearly the same value of DW . At level 0.01 opula methods overestimate and RM underestimatesthe VaR by about 60% .It is interesting to note the e�et of portfolio diversi�ation on the exeedane errors for group 1and level 0.01. The errors derease with inreasing portfolio diversi�ation for opulae methods but22
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Figure 10: P&L (dots), Value-at-Risk at level α = 0.05 (line), exeedanes (rosses), estimatedwith LCP (above), MW (middle) and RM (below), for equally weighted portfolio w∗ , group 1beome larger under the RM estimation. For another groups and levels the diversi�ation e�etsare not lear. Refer to Ibragimov (2007) and Ibragimov and Walden (2007) for details on the e�etsof portfolio diversi�ation under heavy-tailed distributions in risk management.7 CONCLUSIONIn this paper we modelled the dependene struture from German equity returns using time varyingopulae with adaptively estimated parameters. In ontrast to Patton (2006) and Rodriguez (2007),neither did we speify the dynamis nor assumed regime swithing models for the opula parameter.The parameter hoie was performed under the loal homogeneity assumption with homogeneityintervals reovered from the data through loal hange point analysis.We used time varying Clayton opulae, whih are asymmetri and present lower tail dependene, to23



RM MW LCP
α

5.00 1.00 5.00 1.00 5.00 1.00 (×10−2)

α̂w∗ 5.42 1.58 4.53 0.39 4.53 0.30
α̂w1

5.81 1.77 5.02 0.39 5.02 0.39 (×10−2)
α̂w2

5.62 1.58 5.12 0.39 5.22 0.30

AW 0.16 0.57 −0.10 −0.65 −0.09 −0.65
DW 0.04 0.16 0.06 0.09 0.06 0.08Table 5: Exeedane ratios for portfolios w∗ , w1 and w2 , average and standard deviation fromrelative exeedane errors aross levels and methods, group 2estimate the Value-at-Risk from portfolios of two groups of German seurities, presenting di�erentlevels of industry onentration. RiskMetris, a widely used methodology based on multivariatenormal distributions was hosen as benhmark for omparison. Based on baktesting the adaptiveopula ahieved the best VaR estimation performane in both groups, with average exeedaneserrors mostly small in magnitude and orresponding to su�ient apital reserve for overing lossesat the desired levels.The better VaR estimates provided by Clayton opulae indiate that the dependene struture fromGerman equities may ontain nonlinearities and asymmetries, like e.g. stronger dependene at lowertails than at upper tails, that an not be aptured by the multivariate normal distribution. Thisasymmetry translates into extremely negative returns being more orrelated than extremely positivereturns. Thus, our results for the German equities resemble those from Longin and Solnik (2001),Ang and Chen (2002) and Patton (2006) for international markets, U.S. equities and deutshe mark/ japanese yen exhange rates, where empirial evidene for asymmetri dependenes with inreasingorrelations in market downturns were found.Furthermore, in the non-Gaussian framework - with nonlinearities and asymmetries taken intoonsideration through the use of Clayton opulae - the adaptive estimation produes better VaR24
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Figure 11: P&L (dots), Value-at-Risk at level α = 0.05 (line), exeedanes (rosses), estimatedwith LCP (above), MW (middle) and RM (below) for equally weighted portfolio w∗ , group 2�ts than the moving window estimation. The high sensitive adaptive proedure an apture loalhanges in the dependene parameter that are not deteted by the estimation with a srollingwindow of �xed size.The main advantage of using time varying opulae to model dependene dynamis is that thenormality assumption is not needed. With the proposed adaptively estimated time varying opulaeneither normality assumption nor spei�ation for the dependene dynamis are neessary. Hene,the method provides more �exibilty in modelling dependenes between markets and eonomies overtime.
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