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Abstract

Measuring dependence in a multivariate time series is tantamount to modelling its dynamic
structure in space and time. In the context of a multivariate normally distributed time series,
the evolution of the covariance (or correlation) matrix over time describes this dynamic. A wide
variety of applications, though, requires a modelling framework different from the multivariate
normal. In risk management the non-normal behaviour of most financial time series calls for
non-Gaussian dependence. The correct modelling of non-Gaussian dependences is therefore a
key issue in the analysis of multivariate time series. In this paper we use copulae functions
with adaptively estimated time varying parameters for modelling the distribution of returns,
free from the usual normality assumptions. Further, we apply copulae to estimation of Value-
at-Risk (VaR) of portfolios and show their better performance over the RiskMetrics approach,

a widely used methodology for VaR estimation.

1 INTRODUCTION

Time series of financial data are high dimensional and have typically a non-Gaussian behavior. The
standard modelling approach based on properties of the multivariate normal distribution therefore
often fails to reproduce the stylized facts (i.e. fat tails, asymmetry) observed in returns from

financial assets.

A correct understanding of the time varying multivariate (conditional) distribution of returns is
vital to many standard applications in finance like portfolio selection, asset pricing and Value-
at-Risk calculation. Empirical evidence from asymmetric return distributions have been reported
in the recent literature. Longin and Solnik (2001) investigate the distribution of joint extremes
from international equity returns and reject multivariate normality in their lower orthant, Ang and

Chen (2002) test for conditional correlation asymmetries in U.S. equity data, rejecting multivariate



normality at daily, weekly and monthly frequencies, Hu (2006) models the distribution of index
returns with mixtures of copulae, finding asymmetries in the dependence structure across markets.
For a concise survey on stylized empirical facts from financial returns see Cont (2001) and Granger

(2003).

Modelling distributions with copulae has drawn attention from many researchers as it avoids the
procrustean bedof normality assumptions, producing better fits of the empirical characteristics of
financial returns. A natural extension is to apply copulae in a dynamic framework with conditional
distributions modelled by copulae with time varying parameters. The question though is how to

steer the time varying copulae parameters. This question is exactly in the focus of this paper.

A possible approach is to estimate the parameter from structurally invariant periods. There is a
broad field of econometric literature on structural breaks. Tests for unit-root in macroeconomic
series against stationarity with structural break at a known change point have been investigated
by Perron (1989) and for unknown change point by Zivot and Andrews (1992), Stock (1994) and
Hansen (2001); Andrews (1993) tests for parameter instability in nonlinear models; Andrews and
Ploberger (1994) construct asymptotic optimal tests for multiple structural breaks. In a different
set up, Quintos et al. (2001) test for constant tail index coefficient in Asian equity data against

break at unkwnown point.

Time varying copulae and structural breaks are combined in Patton (2006). The dependence struc-
ture across exchange rates is modelled with time varying copulae with parameter specified to evolve
as an ARMA type process. Tests for structural break in the ARMA coefficients at known change
point are performed and strong evidence of break is found. In a similar fashion, Rodriguez (2007)
models the dependence across sets of Asian and Latin American stock indexes using time varying
copula where the parameter follows regime-switching dynamics. Common to these papers is that

they employ a fixed (parametric) structure for the pattern of changes in the copula parameter.

In this paper we follow a semiparametric approach, since we are not specifying the parameter chang-
ing scheme. We rather locally select the time varying copula parameter. The choice is performed

via an adaptive estimation under the assumption of local homogeneity: for every time point there
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Figure 1: Time varying dependence parameter and global parameter (horizontal line) estimated
with Clayton copula. Portfolio of stocks from Allianz, Miinchener Riickversicherung, BASF, Bayer,
DaimlerChrysler and Volkswagen

exists an interval of time homogeneity in which the copula parameter can be well approximated by
a constant. This interval is recovered from the data using local change point analysis. This does not
imply that the model follows a change point structure: the adaptive estimation also applies when

the parameter smoothly varies from one value to another, see Spokoiny (2007).

Figure 1 shows the time varying copula parameter determined by our procedure for a portfolio
composed of daily prices of six German equities and the “global” copula parameter, shown by a con-
stant horizontal line. The absence of parametric specification for time variations in the dependence
structure - its dynamics is adaptively obtained from the data - allows for flexibility in estimating

dependence shifts across time.

The obtained time varying dependence structure can be used in financial engineering applications,
the most prominent being the calculation of the Value-at-Risk (VaR) of a portfolio. Using copulae
with adaptively estimated dependence parameters we estimate the VaR from DAX portfolios over
time. As benchmark procedure we choose RiskMetrics, a widely used methodology based on con-
ditional normal distributions with a GARCH specification for the covariance matrix. Backtesting

underlines the improved performance of the proposed adaptive time varying copulae fitting.

This paper is organized as follows: Section 2 presents the basic copulae definitions, Section 3
discusses the VaR and its estimation procedure. The adaptive copula estimation is exposed in

Section 4 and applied on simulated data in Section 5. In Section 6 the VaR from DAX portfolios is



estimated based on adaptive time varying copulae. The estimation performance is compared with

the RiskMetrics approach by means of backtesting.

2 COPULAE

Copulae merge marginal into joint distributions, providing a natural way for measuring the depen-
dence structure between random variables. Copulae are present in the literature since Sklar (1959),
although related concepts originate in Hoeffding (1940) and Fréchet (1951), and have been widely
studied in the statistical literature, see Joe (1997), Nelsen (1998) and Mari and Kotz (2001). Appli-
cations of copulae in finance, insurance and econometrics have been investigated in Embrechts et al.
(2002), Embrechts et al. (2003a), Franke et al. (2004) and Patton (2004) among others. Cherubini
et al. (2004) and McNeil et al. (2005) provide an overview of copulae for practical problems in

finance and insurance.

Assuming absolutely continuous distributions and continuous marginals throughout this paper, we
have from Sklar’s theorem that for a d-dimensional distribution function F with marginal cdf’s

Fi,...,Fy there exists a unique copula C :[0,1]% — [0,1] satisfying

F(z1,...,2q) = C{Fi(z1),..., Fa(zq)} (2.1)

for every x = (x1,...,24)" € R?. Conversely, for a random vector X = (X1,...,X,)" with cdf

Fx the copula of X may be written as

Cx(ul, ce ,ud) = Fx{Ffl(ul), - ,chl(ud)}

where u; = Fj(x;), F} is the cdf of X; and Fj_l(a) = inf{z; : Fj(x;) > a} its generalized inverse,

j=1,....d. A prominent copula is the Gaussian

C‘ga(ul, R ,ud) = Fy{q)il(ul), o 7@71(ud)} (22)



where ®(s), s € R stands for the one-dimensional standard normal cdf, Fy is the cdf of ¥ =
(Y1,...,Yy)" ~ Ng(0,¥) and ¥ is a correlation matrix. The Gaussian copula represents the
dependence structure of the multivariate normal distribution. In contrast, the Clayton copula given

by

_p—1
d

Colur,...,ug) =< [ D u;® | —d+1 (2.3)
j=1

for 6 > 0, expresses asymmetric dependence structures.

The dependence at upper and lower orthants of a copula C' may be expressed by the upper and

lower tail dependence coefficients

Ay = lim
u—0 u
C(u,..
A, = lim CERRRPL)
u—0 U

where u € (0,1] and C is the survival copula of C, see Joe (1997) and Embrechts et al. (2003b).
While Gaussian copulae are asymptotically independent at the tails (A, = Ay = 0), the d-
dimensional Clayton copulae exhibit lower tail dependence (A = d=1/ %) but are asymptotically
independent at the upper tail (Ay = 0). Joe (1997) provides a summary of diverse copula families

and detailed description of their properties.

For estimating the copula parameter, consider a sample {x;}L; of realizations from X where the

copula of X belongs to a parametric family € = {Cp,0 € O}. Using (2.1), the log-likelihood reads

as
T T d
LO;z1,...,27) = Z logc{Fi(z¢1), ..., Falzeq); 0} + Z Z log f;(x+,5).
t=1 t=1 j=1
d
where c(uq,...,uq) = %f&;:d) is the density of the copula C' and f; is the probability density

function of F};. The canonical mazimum likelihood estimator 9 maximizes the pseudo log-likelthood

with empirical marginal cdf’s

T
L(9) = Z log c{F1(x¢1),..., Fa(zeq);0}
t=1



where

T
~ 1
k=1

for j =1,...,d. Note that ﬁj differs from the usual empirical cdf by the denominator 7'+ 1. This
ensures that {F} (1), - ,ﬁd(xt,d)}T € (0,1)? and avoids infinite values the copula density may
take on the boundary of the unit cube, see McNeil et al. (2005). Joe (1997), Cherubini et al. (2004)

and Chen and Fan (2006) provide a detailed exposition of inference methods for copulae.

3 VALUE-AT-RISK AND COPULAE

The dependence (over time) between asset returns is especially important in risk management since
the profit and loss (PE6L) function determines the Value-at-Risk. More precisely, the Value-at-
Risk of a portfolio is determined by the multivariate distribution of risk factor increments. If
w = (wy,...,wg) € R? denotes a portfolio of positions on d assets and Sy = (Sg1,...,S5.4)"
a non-negative random vector representing the prices of the assets at time ¢, the value V; of the

portfolio w is given by
d
‘/t == Z ijt,j-
j=1

The random variable

L= (Vi — Vi) (3.1)

called profit and loss (P&L) function, expresses the change in the portfolio value between two
subsequent time points. Defining the log-returns X; = (Xtyl,...,Xt,d)T where X;; = logS;; —

log S¢—1,; and logSp; =0, j=1,...,d, (3.1) can be written as

d
L= w;Si_1; {exp(Xy;) — 1} (3.2)
j=1



The cdf of L; is given by Fip,(z) = P(Ls < x). The Value-at-Risk at level o from a portfolio w

is defined as the a-quantile from Fjy, :
VaRy(a) = F;th(a). (3.3)

It follows from (3.2) that F} 1, depends on the specification of the d-dimensional distribution of the
risk factors X;. Thus, modelling their distribution over time is essential for obtaining the quantiles

(3.3).

The RiskMetrics technique, a widely used methodology for VaR estimation, assumes that risk
factors X; follow a conditional multivariate normal distribution L(X:JF:—1)=N(0,%;), where
Fi-1 =0(X1,...,Xy—1) is the o-field generated by the first ¢ — 1 observations, and estimates the

covariance matrix Y; for one-period return as
S = A8+ (1= N X1 X, (3.4)

where the parameter A is the so-called decay factor. A = 0.94 provides the best backtesting results
for daily returns according to J.P.Morgan/Reuters (1996). In the copulae based approach one first

corrects the contemporaneous mean and volatility in the log-returns process:
Xij = g+ 0vjer (3:5)

where iy ; = E[Xy ; | F;—1] is the conditional mean and at%j = E[(X:j—pej)* | Fi—1] the conditional

variance of X ;. The standardised innovations e; = (g1, .. ’%d)T have joint cdf F, given by

Fet (.%'1, e ,.Qfd) = CG{Ft,l(xl)a e 7Ft,d(xd)} (36)

where Fj ; is the cdf of ¢;; and Cjy is a copula belonging to a parametric family € = {Cy,0 € ©} .
For details on the above model specification see Chen and Fan (2006) and Chen et al. (2006).
For the Gaussian copula with Gaussian marginals we recover the conditional Gaussian RiskMetrics

framework.



To obtain the Value-at-Risk in this set up, the dependence parameter and cdf’s from residuals are
estimated from a sample of log-returns and used to generate P&L Monte Carlo samples. Their

quantiles at different levels are the estimators for the Value-at-Risk, see Embrechts et al. (2002).

The whole procedure can be summarized as follows, see Hérdle et al. (2002) and Giacomini and
Hirdle (2005): for a portfolio w € R? and a sample {x;;}L |, j =1,...,d of log-returns, the

Value-at-Risk at level « is estimated according to the following steps

1. determination of innovations {&}{ ; by e.g. deGARCHing

2. specification and estimation of marginal cdf’s Fj(&})

3. specification of a parametric copula family € and estimation of the dependence parameter 6
4. generation of Monte Carlo sample of innovations ¢ and losses L

5. estimation of \zﬁ{(a) , the empirical «-quantile of FT, .

4 MODELLING WITH TIME VARYING COPULAE

Very similar to the RiskMetrics procedure, one can perform a moving (fized length) window es-
timation of the copula parameter. This procedure though does not fine tune local changes in
dependences. In fact, the cdf F;, from (3.6) is modelled as Fi., = Cp,{Fi1(-),...,Frq(-)} with
probability measure Fp, . The moving window of fixed width will estimate a 6; for each ¢, but has
clear limitations. The choice of a small window results in a high pass filtering and hence, in a very
unstable estimate with huge variability. The choice of a large window leads to a poor sensitivity of
the estimation procedure and to a high delay in the reaction to changes in dependence measured

by the parameter 0;.

In order to choose an interval of homogeneity we employ a local parametric fitting approach as
introduced by Polzehl and Spokoiny (2006), Belomestny and Spokoiny (2007) and Spokoiny (2007).

The basic idea is to select for each time point ¢y an interval Iy, = [tg—mu,, to] of length my, in such



a way that the time varying copula parameter 6; can be well approximated by a constant value 6.
The question is of course how to select my, in an online situation from historical data. The aim
should be to select Iy, as close as possible to the so-called 6raclechoice interval. The "oracle” choice
is defined as the largest interval I = [tg — mj , 1o}, for which the small modelling bias condition
(SMB):

Ar(0) =) K(Py,, Pp) < A (4.1)
tel

for some A > 0 holds. Here 6 is constant and

p(y,9)
p(y, ")

K(Pg, Pg/) = Eg log

denotes the Kullback-Leibler divergence. In such an oracle choice interval, the parameter 6, =
0t|;—s, can be “optimally” estimated from I = [to—my,,?o] . The error and risk bounds are calculated
in Spokoiny (2007). It is important to mention that the concept of local parametric approximation
allows to treat in a unified way the case of “switching regime” models with spontaneous changes of

parameters and the “smooth transition” case when the parameter varies smoothly in time.

The “oracle” choice of the interval of homogeneity depends of course on the unknown time varying
copula parameter ;. The next Section presents an adaptive (data driven) procedure which “mimics”
the “oracle” in the sense that it delivers the same accuracy of estimation as the “oracle” one. The
trick is to find the largest interval in which the hypothesis of a local constant copula parameter
is supported. The Local Change Point (LCP) detection procedure, originates from Mercurio and
Spokoiny (2004) and sequentially tests the hypothesis: 6; is constant (i.e. 6; = 6) within some

interval I (local parametric assumption).

The LCP procedure for a given point ¢y starts with a family of nested intervals Iy C I} C I» C
... CIg = Ig 41 of the form I = [tg — my, to]. The sequence my determines the length of these
interval ¢andidates; see Subsection (4.2). Every interval Ij leads to an estimate 51% of the copula
parameter 6, . The procedure selects one interval T out of the given family and therefore, the

corresponding estimate = 07
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Figure 2: Choice of the intervals [ and T

The idea of the procedure is to sequentially screen each interval Ty = [to —my, to —mi—1] and check
each point 7 € T3 as a possible change point location, see Subsection (4.1) for more details. The
family of intervals I and Tj are illustrated in Figure 2. The interval [ is accepted if no change
point is detected within T7,..., Ty . If the hypothesis of homogeneity is rejected for an interval-
candidate I the procedure stops and selects the latest accepted interval. The formal description

reads as follows:

Start the procedure with k=1 and

1. test the hypothesis Hyj of no structural changes within T} using the larger testing interval

Ty

2. if no change points were found in Ty, then I is accepted. Take the next interval Tgiq
and repeat the previous step until homogeneity is rejected or the largest possible interval

Ik = [to — mg,to] is accepted,;

3. if Hyy, is rejected for Ty, the estimated interval of homogeneity is the last accepted interval

~)

=1 1.

4. if the largest possible interval [y is accepted we take 7= I .

We estimate the copula dependence parameter 6 at time instant ¢y from observations in T , assum-
ing the homogeneous model within 7 , i.e. we define é\to = gf. We also denote by ./T\k the largest
accepted interval after &k steps of the algorithm and by @\k the corresponding estimate of the copula

parameter.

10



It is worth mentioning that the objective of the described estimation algorithm is not to detect
the points of change for the copula parameter, but rather to determine the current dependence
structure from historical data by selecting an interval of time homogeneity. This distinguishes our
approach from other procedures for estimating a time varying parameter by change point detection.
A visible advantage of our approach is that it equally applies to the case of spontaneous changes
in the dependence structure and in the case of smooth transition in the copula parameter. The
obtained dependence structure can be used for different purposes in financial engineering, the most

prominent being the calculation of the VaR, see also Section 6.

The theoretical results from Spokoiny and Chen (2007) and Spokoiny (2007) indicate that the
proposed procedure provides the rate optimal estimation of the underlying parameter when this
smoothly varies with time. It has also been shown that the procedure is very sensitive to structural
breaks and provides the minimal possible delay in detection of changes, where the delay depends

on the size of change in terms of Kullback-Leibler divergence.

4.1 Test of homogeneity against a change point alternative

In the homogeneity test against change point alternative we want to check every point of an interval
T (recall Figure 2), here called tested interval, on a possible change in the dependence structure at
this moment. To perform this check, we assume a larger testing interval I of form I = [tgy—m, o], so
that T is an internal subset within I. The null hypothesis Hy means that Vt € I, 0; = 0, i.e., the
observations in I follow the model with dependence parameter 6. The alternative hypothesis Hy
claims that 37 € T such that 0, = 6, for t € J = [1,t9] and 0, = 05 # 0 for t € J¢ = [ty —m,T),
i.e. the parameter 6 changes spontaneously in some point 7 € T. Figure 3 depicts I, T and the

subintervals J and J¢ determined by the point 7€ T .

Let L;(#) be the log-likelihood and 51 the maximum likelihood estimate for the interval I. The

log-likelihood functions corresponding to Hy and Hy are Lj(0) and Lj(61)+ Lje(02) respectively.

11
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Figure 3: Testing interval [, tested interval T, subintervals J and J¢ for a point 7 € T
The likelihood ratio test for the single change point with known fixed location 7 can be written as

Trr = max{L;(01) + Lje(f2)} — max L;(0)
1,92

= Ly(0s) + Lye(0s:) = L1(61).
The test statistic for unknown change point location is defined as

T] = max TI,T~
TeT

The change point test compares this test statistic with a critical value 3; which may depend on the

interval I. One rejects the hypothesis of homogeneity if 177 > 35.

4.2 Parameters of the LCP procedure

In order to apply the LCP testing procedure for local homogeneity, we have to specify some param-
eters. This includes: selection of interval candidates I}, or equivalently, of the tested intervals T
and choice of respective critical values 3;. One possible parameter set that has been succesfully

employed in simulations is presented below.

Selection of interval candidates I, and internal points 7} : it is useful to take the set of
numbers my, defining the length of I and T% in form of a geometric grid. We fix the value myg
and define my, = [moc*] for k = 1,2,...,K and ¢ > 1 where [z] means the integer part of .

We set I = [to — mg, to] and Ty = [to — myp,to — mi—1] for k=1,2,..., K, see Figure 2.

Choice of the critical values 3. The algorithm is in fact a multiple testing procedure. Mercurio

12



and Spokoiny (2004) suggested to select the critical value 35 to provide the overall first type error
probability of rejecting the hypothesis of homogeneity in the homogeneous situation. Here, we
follow another proposal from Spokoiny and Chen (2007) which focuses on estimation losses caused
by the “false alarm” - in our case obtaining a too small homogeneity interval - rather than on its

probability.

In the homogeneous situation with 6, = 6* for all ¢t € Iy, 1, the desirable behavior of the procedure
is that after the first k steps the selected interval ./T\k coincides with [ and the corresponding
estimate é\k coincides with 67k, that means there is no false alarm: In the contrary, in case of
“false alarm” the selected interval fk is smaller than I, and hence, the corresponding estimate
«/9\;§ has larger variability than 5;9. This means that the “false alarm” at the early steps of the
procedure is more critical than at the final steps, as it may lead to selecting an estimate with
very high variance. The difference between é\k and 67k can naturally be measured by the value

le(g?k, 0),) = ij(g?k) - ij(é\k) normalized by the risk (6*) of the non-adaptive estimate 6y :

*\ ~ * 1/2
9%(9 ) = I]Iﬁlgi{Eg ij(ek,e )‘ .
The conditions we impose read as:
Eo| L1, 0k, 00> < pR(6%),  k=1,....,K, 0" c®. (4.2)

The critical values 3, are selected as minimal values providing these constraints. In total we have
K conditions to select K critical values 31,...,3x . The values 3; can be sequentially selected
by Monte Carlo simulation where one simulates under Hy : 6; = 0%, Vt € I . The parameter
p defines how conservative the procedure is. Small p leads to larger critical values and hence to
a conservative and non-sensitive procedure while an increase in p results in more sensitiveness at

cost of stability. For details, see Spokoiny and Chen (2007) or Spokoiny (2007).

13



0* =0.5 0* =1.0 0* =15
k| p=02 p=05 p=10]|p=02 p=05 p=10|p=02 p=05 p=10
1 3.64 3.29 2.88 3.69 3.29 2.84 3.95 3.49 2.96
2 3.61 3.14 2.56 3.43 2.91 2.35 3.69 3.02 2.78
3 3.31 2.86 2.29 3.32 2.76 2.21 3.34 2.80 2.09
4 3.19 2.69 2.07 3.04 2.57 1.80 3.14 2.55 1.86
5 3.05 2.53 1.89 2.92 2.22 1.53 2.95 2.65 1.49
6 2.87 2.26 1.48 2.92 2.17 1.19 2.83 2.04 0.94
7 2.51 1.88 1.02 2.64 1.82 0.56 2.62 1.79 0.31
8 2.49 1.72 0.35 2.33 1.39 0.00 2.35 1.33 0.00
9 2.18 1.23 0.00 2.03 0.81 0.00 2.10 0.60 0.00
10 0.92 0.00 0.00 0.82 0.00 0.00 0.79 0.00 0.00

Table 1: Critical values 3i(p,0*) for my = 20 and ¢ = 1.25. Clayton copula, based on 5000

simulations

5 SIMULATED EXAMPLES

In this Section we apply the LCP procedure on simulated data with dependence structure given by
the Clayton copula. We generate sets of 6 dimensional data with a sudden jump in the dependence

parameter given by

Jq it —390<t<10
0 =

I it 10 <t <210

for different values of (¥,,7p): one of them is fixed at 0.1 (close to independence) while the other

is set to larger values.

The LCP procedure is implemented with the family of interval candidates in form of a geometric
grid defined by mg =20 and ¢ = 1.25. The critical values, selected according to (4.2) for different
p and 0%, are displayed in Table 1. The choice of 8* has negligible influence in the critical values
for fixed p, therefore we use 3i,...,3x obtained with 6* = 1.0. Based on our experience, see

Spokoiny and Chen (2007) and Spokoiny (2007), the default choice for p is 0.5.

Figure 4 shows the pointwise median and quantiles of the estimated parameter é\t for distinct

values of (J,,9) based on 100 simulations. The detection delay 6 at rule r € [0,1] to jump of

14
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Figure 4: Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from 6,. True parameter
0; (dashed) with ¥, = 0.10, 9, = 0.50, 0.75 and 1.00 (left, top to bottom) and 9, = 0.10,
¥q = 0.50, 0.75 and 1.00 (right, top to bottom). Based on 100 simulations from Clayton copula,
estimated with LCP, mog =20, ¢=1.25 and p = 0.5

size v = 0; — 0;_1 at t is expressed by
o(t,y,r) = min{u >t: 0, =01+ ryy—t (5.1)

and represents the number of steps necessary for the estimated parameter to reach the r-fraction

of a jump in the true parameter.

Detection delays are proportional to the probability of error of type I, i.e. the probability of
accepting homogeneity in case of a jump. Thus, tests with higher power correspond to lower delays
0. Moreover, as the Kullback-Leibler divergences for upward and downward jumps are proportional

to the power of the respective homogeneity tests, larger divergences result in faster jump detections.

The descriptive statistics for detection delays to jumps at ¢ = 11 for different values of (¥4, ) are

15



(g, Vp) r mean std dev. max min
0.25 9.06 7.28 o6 0
(0.50,0.10) | 0.50 | 13.64 9.80 60 0
0.75 | 21.87 14.52 89 3
0.25 5.16 4.24 21 0
(0.75,0.10) | 0.50 8.85 5.55 25 0
0.75 | 16.72 10.37 64 3
0.25 4.47 2.94 12 0
(1.00,0.10) | 0.50 | 7.94 428 2 0
0.75 | 14.79 7.38 62 )
0.25 8.94 6.65 36 0
(0.10,0.50) | 0.50 | 14.21 9.06 53 0
0.75 | 21.43 12.15 68 0
0.25 9.00 4.80 25 0
(0.10,0.75)) | 0.50 | 14.30 596 40 3
0.75 | 21.00 10.97 75 6
0.25 7.39 3.67 19 0
(0.10,1.00) | 0.50 | 13.10 413 22 2
0.75 | 20.13 7.34 95 10

Table 2: Statistics for detection delay ¢ calculated as in (5.1) at rule r, based on 100 simulations

from Clayton copula, mg =20, ¢=1.25 and p=0.5

in Table 2. The mean detection delay decreases with ~ = 9, — 9, and are higher for downward
than for upward jumps. Figure 5 shows that for Clayton copulae the Kullback-Leibler divergence is
higher for upward than for downward jumps. Figure 6 displays the mean detection delays against

jump size for upward and downward jumps.

The LCP procedure is also applied on simulated data with smooth transition in the dependence

parameter given by

Uq if  —350 <t <50
0r = Yo+ 5220 —V,) if 50 <t <150
i if 150 < ¢ < 350

Figure 7 depicts the pointwise median and quantiles of the estimated parameter 6A?t and the true

parameter 6, for (J,,9) set to (0.10,1.00) and (1.00,0.10).
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Figure 5: Kullback-Leibler divergences X (0.10,7) (full) and XK (¢,0.10) (dashed), Clayton copula

25 25
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9
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Figure 6: Mean detection delays (dots) at rule » = 0.75, 0.50 and 0.25 from top to bottom. Left:
Jp = 0.10 (upward jump). Right: ¥, = 0.10 (downward jump), based on 100 simulations from
Clayton copula, mg =20, ¢=1.25 and p=10.5

0 100 200 300 0 100 200 300

Figure 7: Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from 6, and true parameter
0; (dashed) with 9, = 0.10 and ¥, = 1.00 (left) and ¥, = 1.00 and ¥, = 0.10 (right). Based on
100 simulations from Clayton copula, estimated with LCP, mg =20, ¢=1.25 and p=0.5
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6 EMPIRICAL RESULTS

In this Section the Value-at-Risk from German stock portfolios is estimated based on time varying
copulae and RiskMetrics (RM) approaches. The time varying copula parameters are selected by
Local Change Point (LCP) and moving window (MW) procedures. Backtesting is used to evaluate

the performances of the three methods in VaR estimation.

Two groups of 6 stocks listed on DAX are used to compose the portfolios. Stocks from group 1
belong to three different industries: automotive (Volkswagen and DaimlerChrysler), insurance (Al-
lianz and Miinchener Riickversicherung) and chemical (Bayer and BASF) while group 2 is composed
of stocks from six industries: electrical (Siemens), energy (E.ON), metallurgical (ThyssenKrupp),
airlines (Lufthansa), pharmaceutical (Schering) and chemical (Henkel). The portfolio values are
calculated using 1270 observations, from 01.01.2000 to 31.12.2004, of the daily stock prices (data

available in http://stb649.wiwi.hu-berlin.de/fedc).

The selected copula belongs to the Clayton family (2.3). Clayton copulae have a natural inter-
pretation and are well advocated in risk management applications. In line with the stylized facts
for financial returns, Clayton copulae are asymmetric and present lower tail dependence, modelling
joint extreme events at lower orthants with higher probability than Gaussian copulae for the same
correlation, see McNeil et al. (2005). This fact is essential for VaR calculations and is illustrated
by the ratio between (2.2) and (2.3) for off-diagonal elements of ¥ set to 0.25 and 6 = 0.5. For
the quantiles u; = 0.05, ¢ = 1,...,6 the ratio C‘ga(ul, oy ug)/Co(ut, . .., ug) equals 2.3 x 1072

while for the 0.01 quantiles it equals 1.3 x 1073.

The VaR estimation follows the steps described in Section 3. In the RiskMetrics approach the log-
returns X; are assumed conditionally normal distributed with zero mean and covariance matrix

following a GARCH specification with fixed decay factor A = 0.94 as in (3.4).

In the time varying copulae estimation the log-returns are modelled as in (3.5) where the innovations

g; have cdf

Fic,(z1,...,2q) = Co,{Fi1(z1),..., Fralzq)}
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p-values LB p-values ARCH
j | group 1 group 2 | group 1 group 2
1 0.33 0.52 0.15 0.04
2 0.13 0.35 0.15 0.98
3 0.21 0.08 0.34 0.72
4 0.99 0.05 0.10 0.18
) 0.90 0.07 0.91 0.77
6 0.28 0.81 0.28 0.94

Table 3: p-values from Ljung-Box (LB) and ARCH tests on residuals & ;, j=1,...,6 for groups
1 and 2

and Cjy is the Clayton copula. The univariate log-returns X; ; corresponding to stock j are de-

2

volatized according to RiskMetrics, i.e. with zero conditional means and conditional variances oy ;
b2

estimated by the univariate version of (3.4) with decay factor equal to 0.94. We note that this choice
sets the same specification for the dynamics of the univariate returns across all methods (RM, MW
and LCP), making their performances in VaR estimation comparable. Moreover, as the means from
daily returns are clearly dominated by the variances and are approximately independent on the
available information sets, see Jorion (1995), Fleming et al. (2001) and Christoffersen and Diebold
(2006), their specification is very unlikely to cause a perceptible bias in the estimated variances
and dependence parameters. Therefore the zero mean assumption is, as pointed out by Kim et al.
(1999), as good as any other choice. Daily returns are also modelled with zero conditional means

in Fan and Gu (2003) and Hérdle et al. (2003) among others.

The GARCH specification (3.4) with A = 0.94 optimizes variance forecasts across a large number
of assets, J.P.Morgan/Reuters (1996), and is widely used in the financial industry. Different choices
for the decay factor (like 0.85 or 0.98) result in negligible changes (about 3%) in the estimated

dependence parameter.

The p-values from Ljung-Box (LB) test for serial correlation and from ARCH test for heteroscedas-
ticity effects in the obtained residuals & ; are in Table 3. Normality is rejected by Jarque-Bera test
with p-values approximately 0.00 for all residuals in both groups. The empirical cdf’s of residuals

as defined in (2.4) are used for the copula estimation.
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In the MW approach the size of the estimating window is fixed as 250 days corresponding to one
business year, the same size is used in e.g. Fan and Gu (2003); for the LCP procedure, following
Subsection 4.2, we set the family of interval candidates as a geometric grid with mg = 20 and
¢ =125 and p = 0.5. We have chosen these parameters from our experience in simulations,
for details on robustness of the reported results with respect to the choice of mg and c¢ refer to

Spokoiny (2007).

The performance of the VaR estimation is evaluated based on backtesting. At each time ¢ the
estimated Value-at-Risk at level « for a portfolio w is compared with the realization [; of the
corresponding P&L function, see (3.2), an exceedance occuring for each [; smaller than \7a\Rt(a).

The ratio of the number of exceedances to the number of observations gives the ezceedance ratio

1

Qu(a) = Z; Lo <VaRe(@)}
=

As the first 250 observations are used for estimation, 7" = 1020. The difference between a and

the desired level « is expressed by the relative exceedance error

We compute exceedance ratios and relative exceedance errors to levels o = 0.05 and 0.01 for a
set W= {w*,wy;n =1,...,100} of portfolios where each wy,, = (wp1,...,we) " is a realization
of a random vector uniformly distributed on S = {(x1,...,26) € RS : 0 2, = 1,2, > 0.1}
and w* = %Hﬁ, with I; denoting the (d x 1) vector of ones, is the equally weighted portfolio.
The degree of diversification of a portfolio can be measured based on the majorization pre-ordering
on S, see Marshall and Olkin (1979), i.e. a portfolio w, is more diversified than portfolio wy if
wg < wp. Under the majorization pre-ordering the vector w* satisfies w* < w for all w € §,
therefore the equally weighted portfolio is the most diversified portfolio from W, see Ibragimov and

Walden (2007).
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The average relative exceedance error over portfolios and the corresponding standard deviation

1
Ayw = Tix;] :E:: CEw

weW
1
1 5|7
l)WV = Ve (eU)‘_ fiWV)
(%

are used to evaluate the performances of the time varying copulae and RiskMetrics methods in VaR

estimation.

1 1 1 |
2001 2002 2003 2004 2005

Figure 8: Estimated copula parameter é\t for group 1, LCP method, mg = 20, ¢ = 1.25 and
p = 0.5, Clayton copula

1 1 1
2001 2002 2003 2004 2005

Figure 9: Estimated copula parameter é\t for group 2, LCP method, mg = 20, ¢ = 1.25 and
p = 0.5, Clayton copula

The dependence parameter estimated with LCP for stocks from group 1 and 2 are shown in figures
8 and 9. The different industry concentrations in each group are reflected in the higher parameter
values obtained for group 1. The P&L and the VaR at level 0.05 estimated with LCP, MW and

RM methods for the equally weighted portfolio w* are in Figure 10 (group 1) and 11 (group 2). Ex-
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RM MW LCP

5.00 1.00 | 5.00 1.00 | 5.00 1.00 | (x1072)

Q= | 6.11  1.48 | 5.62 0.59 | 5.52 0.69
Oy, | 591 138 | 5.42 0.49 | 5.42 0.69 | (x1072)
Qw, | 640 128 | 5.91 0.49 | 5.71 0.59

Aw | 023 045 | 0.11 —0.49 | 0.11 —0.36
Dy | 0.04 0.14 | 0.06 0.08 | 0.06 0.10

Table 4: Exceedance ratios for portfolios w*, w; and ws, average and standard deviation from

relative exceedance errors across levels and methods, group 1

ceedance ratios for portfolios w*, w; and ws , average relative exceedance errors and corresponding

standard deviations across methods and levels are shown in Table 4 (group 1) and 5 (group 2).

Based on the exceedance errors the LCP procedure outperforms the MW (second best) and RM
methods in VaR estimation in group 1. At level 0.05 the average error associated with copula
methods are about half the error from RM estimation for nearly the same standard deviation. At
level 0.01 the LCP average error is the smallest in absolute value and copula methods present less
standard deviations. At this level copula methods overestimate VaR and RM underestimates it.
While overestimation of VaR means that a financial institution would be requested to keep more
capital aside than necessary to guarantee the desired confidence level, underestimation means that
less capital is reserved and the desired level is not guaranteed. Therefore, from the regulatory
point of view overestimation is preferred to underestimation. In the less concentrated group 2, LCP
outperforms MW and RM at level 0.05 presenting the smallest average error in magnitude for
nearly the same value of Dyy. At level 0.01 copula methods overestimate and RM underestimates

the VaR by about 60% .

It is interesting to note the effect of portfolio diversification on the exceedance errors for group 1

and level 0.01. The errors decrease with increasing portfolio diversification for copulae methods but
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Figure 10: P&L (dots), Value-at-Risk at level o = 0.05 (line), exceedances (crosses), estimated
with LCP (above), MW (middle) and RM (below), for equally weighted portfolio w*, group 1

become larger under the RM estimation. For another groups and levels the diversification effects
are not clear. Refer to Ibragimov (2007) and Ibragimov and Walden (2007) for details on the effects

of portfolio diversification under heavy-tailed distributions in risk management.

7 CONCLUSION

In this paper we modelled the dependence structure from German equity returns using time varying
copulae with adaptively estimated parameters. In contrast to Patton (2006) and Rodriguez (2007),
neither did we specify the dynamics nor assumed regime switching models for the copula parameter.
The parameter choice was performed under the local homogeneity assumption with homogeneity

intervals recovered from the data through local change point analysis.

We used time varying Clayton copulae, which are asymmetric and present lower tail dependence, to
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RM MW LCP

5.00  1.00 5.00 1.00 5.00 1.00 | (x1072)

Qu+ | 542 1.58 4.53 0.39 4.53 0.30
Qw, | 5.81 177 5.02 0.39 5.02 0.39 | (x1072%)
Qw, | 5.62 1.58 5.12 0.39 5.22 0.30

Aw | 016 057 | —0.10 —-0.65 | —0.09 —0.65
Dy | 0.04 0.16 0.06 0.09 0.06 0.08

Table 5: Exceedance ratios for portfolios w*, w; and ws, average and standard deviation from

relative exceedance errors across levels and methods, group 2

estimate the Value-at-Risk from portfolios of two groups of German securities, presenting different
levels of industry concentration. RiskMetrics, a widely used methodology based on multivariate
normal distributions was chosen as benchmark for comparison. Based on backtesting the adaptive
copula achieved the best VaR estimation performance in both groups, with average exceedances
errors mostly small in magnitude and corresponding to sufficient capital reserve for covering losses

at the desired levels.

The better VaR estimates provided by Clayton copulae indicate that the dependence structure from
German equities may contain nonlinearities and asymmetries, like e.g. stronger dependence at lower
tails than at upper tails, that can not be captured by the multivariate normal distribution. This
asymmetry translates into extremely negative returns being more correlated than extremely positive
returns. Thus, our results for the German equities resemble those from Longin and Solnik (2001),
Ang and Chen (2002) and Patton (2006) for international markets, U.S. equities and deutsche mark
/ japanese yen exchange rates, where empirical evidence for asymmetric dependences with increasing

correlations in market downturns were found.

Furthermore, in the non-Gaussian framework - with nonlinearities and asymmetries taken into

consideration through the use of Clayton copulae - the adaptive estimation produces better VaR
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Figure 11: P&L (dots), Value-at-Risk at level a = 0.05 (line), exceedances (crosses), estimated
with LCP (above), MW (middle) and RM (below) for equally weighted portfolio w*, group 2

fits than the moving window estimation. The high sensitive adaptive procedure can capture local

changes in the dependence parameter that are not detected by the estimation with a scrolling

window of fixed size.

The main advantage of using time varying copulae to model dependence dynamics is that the
normality assumption is not needed. With the proposed adaptively estimated time varying copulae
neither normality assumption nor specification for the dependence dynamics are necessary. Hence,

the method provides more flexibilty in modelling dependences between markets and economies over

time.
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