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Abstra
tMeasuring dependen
e in a multivariate time series is tantamount to modelling its dynami
stru
ture in spa
e and time. In the 
ontext of a multivariate normally distributed time series,the evolution of the 
ovarian
e (or 
orrelation) matrix over time des
ribes this dynami
. A widevariety of appli
ations, though, requires a modelling framework di�erent from the multivariatenormal. In risk management the non-normal behaviour of most �nan
ial time series 
alls fornon-Gaussian dependen
e. The 
orre
t modelling of non-Gaussian dependen
es is therefore akey issue in the analysis of multivariate time series. In this paper we use 
opulae fun
tionswith adaptively estimated time varying parameters for modelling the distribution of returns,free from the usual normality assumptions. Further, we apply 
opulae to estimation of Value-at-Risk (VaR) of portfolios and show their better performan
e over the RiskMetri
s approa
h,a widely used methodology for VaR estimation.1 INTRODUCTIONTime series of �nan
ial data are high dimensional and have typi
ally a non-Gaussian behavior. Thestandard modelling approa
h based on properties of the multivariate normal distribution thereforeoften fails to reprodu
e the stylized fa
ts (i.e. fat tails, asymmetry) observed in returns from�nan
ial assets.A 
orre
t understanding of the time varying multivariate (
onditional) distribution of returns isvital to many standard appli
ations in �nan
e like portfolio sele
tion, asset pri
ing and Value-at-Risk 
al
ulation. Empiri
al eviden
e from asymmetri
 return distributions have been reportedin the re
ent literature. Longin and Solnik (2001) investigate the distribution of joint extremesfrom international equity returns and reje
t multivariate normality in their lower orthant, Ang andChen (2002) test for 
onditional 
orrelation asymmetries in U.S. equity data, reje
ting multivariate1



normality at daily, weekly and monthly frequen
ies, Hu (2006) models the distribution of indexreturns with mixtures of 
opulae, �nding asymmetries in the dependen
e stru
ture a
ross markets.For a 
on
ise survey on stylized empiri
al fa
ts from �nan
ial returns see Cont (2001) and Granger(2003).Modelling distributions with 
opulae has drawn attention from many resear
hers as it avoids thepro
rustean bedöf normality assumptions, produ
ing better �ts of the empiri
al 
hara
teristi
s of�nan
ial returns. A natural extension is to apply 
opulae in a dynami
 framework with 
onditionaldistributions modelled by 
opulae with time varying parameters. The question though is how tosteer the time varying 
opulae parameters. This question is exa
tly in the fo
us of this paper.A possible approa
h is to estimate the parameter from stru
turally invariant periods. There is abroad �eld of e
onometri
 literature on stru
tural breaks. Tests for unit-root in ma
roe
onomi
series against stationarity with stru
tural break at a known 
hange point have been investigatedby Perron (1989) and for unknown 
hange point by Zivot and Andrews (1992), Sto
k (1994) andHansen (2001); Andrews (1993) tests for parameter instability in nonlinear models; Andrews andPloberger (1994) 
onstru
t asymptoti
 optimal tests for multiple stru
tural breaks. In a di�erentset up, Quintos et al. (2001) test for 
onstant tail index 
oe�
ient in Asian equity data againstbreak at unkwnown point.Time varying 
opulae and stru
tural breaks are 
ombined in Patton (2006). The dependen
e stru
-ture a
ross ex
hange rates is modelled with time varying 
opulae with parameter spe
i�ed to evolveas an ARMA type pro
ess. Tests for stru
tural break in the ARMA 
oe�
ients at known 
hangepoint are performed and strong eviden
e of break is found. In a similar fashion, Rodriguez (2007)models the dependen
e a
ross sets of Asian and Latin Ameri
an sto
k indexes using time varying
opula where the parameter follows regime-swit
hing dynami
s. Common to these papers is thatthey employ a �xed (parametri
) stru
ture for the pattern of 
hanges in the 
opula parameter.In this paper we follow a semiparametri
 approa
h, sin
e we are not spe
ifying the parameter 
hang-ing s
heme. We rather lo
ally sele
t the time varying 
opula parameter. The 
hoi
e is performedvia an adaptive estimation under the assumption of lo
al homogeneity: for every time point there2
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Figure 1: Time varying dependen
e parameter and global parameter (horizontal line) estimatedwith Clayton 
opula. Portfolio of sto
ks from Allianz, Mün
hener Rü
kversi
herung, BASF, Bayer,DaimlerChrysler and Volkswagenexists an interval of time homogeneity in whi
h the 
opula parameter 
an be well approximated bya 
onstant. This interval is re
overed from the data using lo
al 
hange point analysis. This does notimply that the model follows a 
hange point stru
ture: the adaptive estimation also applies whenthe parameter smoothly varies from one value to another, see Spokoiny (2007).Figure 1 shows the time varying 
opula parameter determined by our pro
edure for a portfolio
omposed of daily pri
es of six German equities and the �global� 
opula parameter, shown by a 
on-stant horizontal line. The absen
e of parametri
 spe
i�
ation for time variations in the dependen
estru
ture - its dynami
s is adaptively obtained from the data - allows for �exibility in estimatingdependen
e shifts a
ross time.The obtained time varying dependen
e stru
ture 
an be used in �nan
ial engineering appli
ations,the most prominent being the 
al
ulation of the Value-at-Risk (VaR) of a portfolio. Using 
opulaewith adaptively estimated dependen
e parameters we estimate the VaR from DAX portfolios overtime. As ben
hmark pro
edure we 
hoose RiskMetri
s, a widely used methodology based on 
on-ditional normal distributions with a GARCH spe
i�
ation for the 
ovarian
e matrix. Ba
ktestingunderlines the improved performan
e of the proposed adaptive time varying 
opulae �tting.This paper is organized as follows: Se
tion 2 presents the basi
 
opulae de�nitions, Se
tion 3dis
usses the VaR and its estimation pro
edure. The adaptive 
opula estimation is exposed inSe
tion 4 and applied on simulated data in Se
tion 5. In Se
tion 6 the VaR from DAX portfolios is3



estimated based on adaptive time varying 
opulae. The estimation performan
e is 
ompared withthe RiskMetri
s approa
h by means of ba
ktesting.2 COPULAECopulae merge marginal into joint distributions, providing a natural way for measuring the depen-den
e stru
ture between random variables. Copulae are present in the literature sin
e Sklar (1959),although related 
on
epts originate in Hoe�ding (1940) and Fré
het (1951), and have been widelystudied in the statisti
al literature, see Joe (1997), Nelsen (1998) and Mari and Kotz (2001). Appli-
ations of 
opulae in �nan
e, insuran
e and e
onometri
s have been investigated in Embre
hts et al.(2002), Embre
hts et al. (2003a), Franke et al. (2004) and Patton (2004) among others. Cherubiniet al. (2004) and M
Neil et al. (2005) provide an overview of 
opulae for pra
ti
al problems in�nan
e and insuran
e.Assuming absolutely 
ontinuous distributions and 
ontinuous marginals throughout this paper, wehave from Sklar's theorem that for a d -dimensional distribution fun
tion F with marginal 
df's
F1, . . . , Fd there exists a unique 
opula C : [0, 1]d → [0, 1] satisfying

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (2.1)for every x = (x1, . . . , xd)
⊤ ∈ R

d . Conversely, for a random ve
tor X = (X1, . . . ,Xd)
⊤ with 
df

FX the 
opula of X may be written as
CX(u1, . . . , ud) = FX{F−1

1 (u1), . . . , F
−1
d (ud)}where uj = Fj(xj) , Fj is the 
df of Xj and F−1

j (α) = inf{xj : Fj(xj) ≥ α} its generalized inverse,
j = 1, . . . , d . A prominent 
opula is the Gaussian

CGa
Ψ (u1, . . . , ud) = FY {Φ

−1(u1), . . . ,Φ
−1(ud)} (2.2)4



where Φ(s) , s ∈ R stands for the one-dimensional standard normal 
df, FY is the 
df of Y =

(Y1, . . . , Yd)
⊤ ∼ Nd(0,Ψ) and Ψ is a 
orrelation matrix. The Gaussian 
opula represents thedependen
e stru
ture of the multivariate normal distribution. In 
ontrast, the Clayton 
opula givenby

Cθ(u1, . . . , ud) =








d∑

j=1

u−θ
j


 − d + 1





−θ−1 (2.3)for θ > 0 , expresses asymmetri
 dependen
e stru
tures.The dependen
e at upper and lower orthants of a 
opula C may be expressed by the upper andlower tail dependen
e 
oe�
ients
λU = lim

u→0

Ĉ(u, . . . , u)

u

λL = lim
u→0

C(u, . . . , u)

uwhere u ∈ (0, 1] and Ĉ is the survival 
opula of C , see Joe (1997) and Embre
hts et al. (2003b).While Gaussian 
opulae are asymptoti
ally independent at the tails (λL = λU = 0) , the d -dimensional Clayton 
opulae exhibit lower tail dependen
e (λL = d−1/θ) but are asymptoti
allyindependent at the upper tail (λU = 0) . Joe (1997) provides a summary of diverse 
opula familiesand detailed des
ription of their properties.For estimating the 
opula parameter, 
onsider a sample {xt}
T
t=1 of realizations from X where the
opula of X belongs to a parametri
 family C = {Cθ, θ ∈ Θ} . Using (2.1), the log-likelihood readsas

L(θ; x1, . . . , xT ) =

T∑

t=1

log c{F1(xt,1), . . . , Fd(xt,d); θ} +

T∑

t=1

d∑

j=1

log fj(xt,j).where c(u1, . . . , ud) = ∂dC(u1,...,ud)
∂u1...∂ud

is the density of the 
opula C and fj is the probability densityfun
tion of Fj . The 
anoni
al maximum likelihood estimator θ̂ maximizes the pseudo log-likelihoodwith empiri
al marginal 
df's̃
L(θ) =

T∑

t=1

log c{F̂1(xt,1), . . . , F̂d(xt,d); θ}5



where
F̂j(s) =

1

T + 1

T∑

k=1

1{xk,j≤s} (2.4)for j = 1, . . . , d. Note that F̂j di�ers from the usual empiri
al 
df by the denominator T +1 . Thisensures that {F̂1(xt,1), . . . , F̂d(xt,d)}
⊤ ∈ (0, 1)d and avoids in�nite values the 
opula density maytake on the boundary of the unit 
ube, see M
Neil et al. (2005). Joe (1997), Cherubini et al. (2004)and Chen and Fan (2006) provide a detailed exposition of inferen
e methods for 
opulae.3 VALUE-AT-RISK AND COPULAEThe dependen
e (over time) between asset returns is espe
ially important in risk management sin
ethe pro�t and loss (P&L) fun
tion determines the Value-at-Risk. More pre
isely, the Value-at-Risk of a portfolio is determined by the multivariate distribution of risk fa
tor in
rements. If

w = (w1, . . . , wd)
⊤ ∈ R

d denotes a portfolio of positions on d assets and St = (St,1, . . . , St,d)
⊤a non-negative random ve
tor representing the pri
es of the assets at time t , the value Vt of theportfolio w is given by

Vt =

d∑

j=1

wjSt,j.The random variable
Lt = (Vt − Vt−1) (3.1)
alled pro�t and loss (P&L) fun
tion, expresses the 
hange in the portfolio value between twosubsequent time points. De�ning the log-returns Xt = (Xt,1, . . . ,Xt,d)

⊤ where Xt,j = log St,j −

log St−1,j and log S0,j = 0 , j = 1, . . . , d , (3.1) 
an be written as
Lt =

d∑

j=1

wjSt−1,j {exp(Xt,j) − 1} . (3.2)
6



The 
df of Lt is given by Ft,Lt(x) = Pt(Lt ≤ x) . The Value-at-Risk at level α from a portfolio wis de�ned as the α -quantile from Ft,Lt :
VaRt(α) = F−1

t,Lt
(α). (3.3)It follows from (3.2) that Ft,Lt depends on the spe
i�
ation of the d -dimensional distribution of therisk fa
tors Xt . Thus, modelling their distribution over time is essential for obtaining the quantiles(3.3).The RiskMetri
s te
hnique, a widely used methodology for VaR estimation, assumes that riskfa
tors Xt follow a 
onditional multivariate normal distribution L(Xt|Ft−1)=N(0,Σt) , where

Ft−1 = σ(X1, . . . ,Xt−1) is the σ -�eld generated by the �rst t− 1 observations, and estimates the
ovarian
e matrix Σt for one-period return as
Σ̂t = λΣ̂t−1 + (1 − λ)Xt−1X

⊤
t−1 (3.4)where the parameter λ is the so-
alled de
ay fa
tor. λ = 0.94 provides the best ba
ktesting resultsfor daily returns a

ording to J.P.Morgan/Reuters (1996). In the 
opulae based approa
h one �rst
orre
ts the 
ontemporaneous mean and volatility in the log-returns pro
ess:

Xt,j = µt,j + σt,jεt,j (3.5)where µt,j = E[Xt,j | Ft−1] is the 
onditional mean and σ2
t,j = E[(Xt,j−µt,j)

2 | Ft−1] the 
onditionalvarian
e of Xt,j . The standardised innovations εt = (εt,1, . . . , εt,d)
⊤ have joint 
df Fεt given by

Fεt(x1, . . . , xd) = Cθ{Ft,1(x1), . . . , Ft,d(xd)} (3.6)where Ft,j is the 
df of εt,j and Cθ is a 
opula belonging to a parametri
 family C = {Cθ, θ ∈ Θ} .For details on the above model spe
i�
ation see Chen and Fan (2006) and Chen et al. (2006).For the Gaussian 
opula with Gaussian marginals we re
over the 
onditional Gaussian RiskMetri
sframework. 7



To obtain the Value-at-Risk in this set up, the dependen
e parameter and 
df's from residuals areestimated from a sample of log-returns and used to generate P&L Monte Carlo samples. Theirquantiles at di�erent levels are the estimators for the Value-at-Risk, see Embre
hts et al. (2002).The whole pro
edure 
an be summarized as follows, see Härdle et al. (2002) and Gia
omini andHärdle (2005): for a portfolio w ∈ R
d and a sample {xt,j}

T
t=1 , j = 1, . . . , d of log-returns, theValue-at-Risk at level α is estimated a

ording to the following steps1. determination of innovations {ε̂t}

T
t=1 by e.g. deGARCHing2. spe
i�
ation and estimation of marginal 
df's Fj(ε̂j)3. spe
i�
ation of a parametri
 
opula family C and estimation of the dependen
e parameter θ4. generation of Monte Carlo sample of innovations ε and losses L5. estimation of V̂aR(α) , the empiri
al α -quantile of FL .4 MODELLING WITH TIME VARYING COPULAEVery similar to the RiskMetri
s pro
edure, one 
an perform a moving (�xed length) window es-timation of the 
opula parameter. This pro
edure though does not �ne tune lo
al 
hanges independen
es. In fa
t, the 
df Fεt from (3.6) is modelled as Ft,εt = Cθt

{Ft,1(·), . . . , Ft,d(·)} withprobability measure Pθt
. The moving window of �xed width will estimate a θt for ea
h t , but has
lear limitations. The 
hoi
e of a small window results in a high pass �ltering and hen
e, in a veryunstable estimate with huge variability. The 
hoi
e of a large window leads to a poor sensitivity ofthe estimation pro
edure and to a high delay in the rea
tion to 
hanges in dependen
e measuredby the parameter θt .In order to 
hoose an interval of homogeneity we employ a lo
al parametri
 �tting approa
h asintrodu
ed by Polzehl and Spokoiny (2006), Belomestny and Spokoiny (2007) and Spokoiny (2007).The basi
 idea is to sele
t for ea
h time point t0 an interval It0 = [t0−mt0 , t0] of length mt0 in su
h8



a way that the time varying 
opula parameter θt 
an be well approximated by a 
onstant value θ .The question is of 
ourse how to sele
t mt0 in an online situation from histori
al data. The aimshould be to sele
t It0 as 
lose as possible to the so-
alled öra
le
hoi
e interval. The �ora
le� 
hoi
eis de�ned as the largest interval I = [t0 − m∗
t0 , t0] , for whi
h the small modelling bias 
ondition(SMB):

∆I(θ) =
∑

t∈I

K(Pθt
, Pθ) ≤ ∆ (4.1)for some ∆ ≥ 0 holds. Here θ is 
onstant and

K(Pϑ, Pϑ′) = Eϑ log
p(y, ϑ)

p(y, ϑ′)denotes the Kullba
k-Leibler divergen
e. In su
h an ora
le 
hoi
e interval, the parameter θt0 =

θt|t=t0

an be �optimally� estimated from I = [t0−m∗

t0, t0] . The error and risk bounds are 
al
ulatedin Spokoiny (2007). It is important to mention that the 
on
ept of lo
al parametri
 approximationallows to treat in a uni�ed way the 
ase of �swit
hing regime� models with spontaneous 
hanges ofparameters and the �smooth transition� 
ase when the parameter varies smoothly in time.The �ora
le� 
hoi
e of the interval of homogeneity depends of 
ourse on the unknown time varying
opula parameter θt . The next Se
tion presents an adaptive (data driven) pro
edure whi
h �mimi
s�the �ora
le� in the sense that it delivers the same a

ura
y of estimation as the �ora
le� one. Thetri
k is to �nd the largest interval in whi
h the hypothesis of a lo
al 
onstant 
opula parameteris supported. The Lo
al Change Point (LCP) dete
tion pro
edure, originates from Mer
urio andSpokoiny (2004) and sequentially tests the hypothesis: θt is 
onstant (i.e. θt = θ ) within someinterval I (lo
al parametri
 assumption).The LCP pro
edure for a given point t0 starts with a family of nested intervals I0 ⊂ I1 ⊂ I2 ⊂

. . . ⊂ IK = IK+1 of the form Ik = [t0 − mk, t0] . The sequen
e mk determines the length of theseinterval �
andidates�, see Subse
tion (4.2). Every interval Ik leads to an estimate θ̃k of the 
opulaparameter θt0 . The pro
edure sele
ts one interval Î out of the given family and therefore, the
orresponding estimate θ̂ = θ̃bI
. 9



t0 − mk t0 − mk−1 t0 − mk−2 t0

︸ ︷︷ ︸
Tk

︸ ︷︷ ︸
Tk−1

︸ ︷︷ ︸
Ik−2︸ ︷︷ ︸

Ik−1︸ ︷︷ ︸
IkFigure 2: Choi
e of the intervals Ik and TkThe idea of the pro
edure is to sequentially s
reen ea
h interval Tk = [t0−mk, t0−mk−1] and 
he
kea
h point τ ∈ Tk as a possible 
hange point lo
ation, see Subse
tion (4.1) for more details. Thefamily of intervals Ik and Tk are illustrated in Figure 2. The interval Ik is a

epted if no 
hangepoint is dete
ted within T1, . . . ,Tk . If the hypothesis of homogeneity is reje
ted for an interval-
andidate Ik the pro
edure stops and sele
ts the latest a

epted interval. The formal des
riptionreads as follows:Start the pro
edure with k = 1 and1. test the hypothesis H0,k of no stru
tural 
hanges within Tk using the larger testing interval

Ik+1 ;2. if no 
hange points were found in Tk , then Ik is a

epted. Take the next interval Tk+1and repeat the previous step until homogeneity is reje
ted or the largest possible interval
IK = [t0 − mK , t0] is a

epted;3. if H0,k is reje
ted for Tk , the estimated interval of homogeneity is the last a

epted interval
Î = Ik−1 .4. if the largest possible interval IK is a

epted we take Î = IK .We estimate the 
opula dependen
e parameter θ at time instant t0 from observations in Î , assum-ing the homogeneous model within Î , i.e. we de�ne θ̂t0 = θ̃bI . We also denote by Îk the largesta

epted interval after k steps of the algorithm and by θ̂k the 
orresponding estimate of the 
opulaparameter. 10



It is worth mentioning that the obje
tive of the des
ribed estimation algorithm is not to dete
tthe points of 
hange for the 
opula parameter, but rather to determine the 
urrent dependen
estru
ture from histori
al data by sele
ting an interval of time homogeneity. This distinguishes ourapproa
h from other pro
edures for estimating a time varying parameter by 
hange point dete
tion.A visible advantage of our approa
h is that it equally applies to the 
ase of spontaneous 
hangesin the dependen
e stru
ture and in the 
ase of smooth transition in the 
opula parameter. Theobtained dependen
e stru
ture 
an be used for di�erent purposes in �nan
ial engineering, the mostprominent being the 
al
ulation of the VaR, see also Se
tion 6.The theoreti
al results from Spokoiny and Chen (2007) and Spokoiny (2007) indi
ate that theproposed pro
edure provides the rate optimal estimation of the underlying parameter when thissmoothly varies with time. It has also been shown that the pro
edure is very sensitive to stru
turalbreaks and provides the minimal possible delay in dete
tion of 
hanges, where the delay dependson the size of 
hange in terms of Kullba
k-Leibler divergen
e.4.1 Test of homogeneity against a 
hange point alternativeIn the homogeneity test against 
hange point alternative we want to 
he
k every point of an interval
T (re
all Figure 2), here 
alled tested interval, on a possible 
hange in the dependen
e stru
ture atthis moment. To perform this 
he
k, we assume a larger testing interval I of form I = [t0−m, t0] , sothat T is an internal subset within I . The null hypothesis H0 means that ∀t ∈ I , θt = θ , i.e., theobservations in I follow the model with dependen
e parameter θ . The alternative hypothesis H1
laims that ∃τ ∈ T su
h that θt = θ1 for t ∈ J = [τ, t0] and θt = θ2 6= θ1 for t ∈ Jc = [t0 −m, τ) ,i.e. the parameter θ 
hanges spontaneously in some point τ ∈ T . Figure 3 depi
ts I , T and thesubintervals J and Jc determined by the point τ ∈ T .Let LI(θ) be the log-likelihood and θ̃I the maximum likelihood estimate for the interval I. Thelog-likelihood fun
tions 
orresponding to H0 and H1 are LI(θ) and LJ(θ1)+LJc(θ2) respe
tively.

11



t0 − m τ

Jc

' $

J
' $

t0

︸ ︷︷ ︸
T︸ ︷︷ ︸

IFigure 3: Testing interval I , tested interval T , subintervals J and Jc for a point τ ∈ TThe likelihood ratio test for the single 
hange point with known �xed lo
ation τ 
an be written as
TI,τ = max

θ1,θ2

{LJ(θ1) + LJc(θ2)} − max
θ

LI(θ)

= LJ(θ̃J) + LJc(θ̃Jc) − LI(θ̃I).The test statisti
 for unknown 
hange point lo
ation is de�ned as
TI = max

τ∈T

TI,τ .The 
hange point test 
ompares this test statisti
 with a 
riti
al value zI whi
h may depend on theinterval I . One reje
ts the hypothesis of homogeneity if TI > zI .4.2 Parameters of the LCP pro
edureIn order to apply the LCP testing pro
edure for lo
al homogeneity, we have to spe
ify some param-eters. This in
ludes: sele
tion of interval 
andidates Ik , or equivalently, of the tested intervals Tkand 
hoi
e of respe
tive 
riti
al values zk . One possible parameter set that has been su

esfullyemployed in simulations is presented below.Sele
tion of interval 
andidates Ik and internal points Tk : it is useful to take the set ofnumbers mk de�ning the length of Ik and Tk in form of a geometri
 grid. We �x the value m0and de�ne mk = [m0c
k] for k = 1, 2, . . . ,K and c > 1 where [x] means the integer part of x .We set Ik = [t0 − mk, t0] and Tk = [t0 − mk, t0 − mk−1] for k = 1, 2, . . . ,K , see Figure 2.Choi
e of the 
riti
al values zk . The algorithm is in fa
t a multiple testing pro
edure. Mer
urio12



and Spokoiny (2004) suggested to sele
t the 
riti
al value zk to provide the overall �rst type errorprobability of reje
ting the hypothesis of homogeneity in the homogeneous situation. Here, wefollow another proposal from Spokoiny and Chen (2007) whi
h fo
uses on estimation losses 
ausedby the �false alarm� - in our 
ase obtaining a too small homogeneity interval - rather than on itsprobability.In the homogeneous situation with θt ≡ θ∗ for all t ∈ Ik+1 , the desirable behavior of the pro
edureis that after the �rst k steps the sele
ted interval Îk 
oin
ides with Ik and the 
orrespondingestimate θ̂k 
oin
ides with θ̃k , that means there is no �false alarm�. In the 
ontrary, in 
ase of�false alarm� the sele
ted interval Îk is smaller than Ik , and hen
e, the 
orresponding estimate
θ̂k has larger variability than θ̃k . This means that the �false alarm� at the early steps of thepro
edure is more 
riti
al than at the �nal steps, as it may lead to sele
ting an estimate withvery high varian
e. The di�eren
e between θ̂k and θ̃k 
an naturally be measured by the value
LIk

(θ̃k, θ̂k) = LIk
(θ̃k) − LIk

(θ̂k) normalized by the risk R(θ∗) of the non-adaptive estimate θ̃k :
R(θ∗) = max

k≥1
Eθ∗

∣∣LIk
(θ̃k, θ

∗)
∣∣1/2

.The 
onditions we impose read as:
Eθ∗

∣∣LIk
(θ̃k, θ̂k)

∣∣1/2
≤ ρR(θ∗), k = 1, . . . ,K, θ∗ ∈ Θ. (4.2)The 
riti
al values zk are sele
ted as minimal values providing these 
onstraints. In total we have

K 
onditions to sele
t K 
riti
al values z1, . . . , zK . The values zk 
an be sequentially sele
tedby Monte Carlo simulation where one simulates under H0 : θt = θ∗ , ∀t ∈ IK . The parameter
ρ de�nes how 
onservative the pro
edure is. Small ρ leads to larger 
riti
al values and hen
e toa 
onservative and non-sensitive pro
edure while an in
rease in ρ results in more sensitiveness at
ost of stability. For details, see Spokoiny and Chen (2007) or Spokoiny (2007).
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θ∗ = 0.5 θ∗ = 1.0 θ∗ = 1.5

k ρ = 0.2 ρ = 0.5 ρ = 1.0 ρ = 0.2 ρ = 0.5 ρ = 1.0 ρ = 0.2 ρ = 0.5 ρ = 1.0

1 3.64 3.29 2.88 3.69 3.29 2.84 3.95 3.49 2.96
2 3.61 3.14 2.56 3.43 2.91 2.35 3.69 3.02 2.78
3 3.31 2.86 2.29 3.32 2.76 2.21 3.34 2.80 2.09
4 3.19 2.69 2.07 3.04 2.57 1.80 3.14 2.55 1.86
5 3.05 2.53 1.89 2.92 2.22 1.53 2.95 2.65 1.49
6 2.87 2.26 1.48 2.92 2.17 1.19 2.83 2.04 0.94
7 2.51 1.88 1.02 2.64 1.82 0.56 2.62 1.79 0.31
8 2.49 1.72 0.35 2.33 1.39 0.00 2.35 1.33 0.00
9 2.18 1.23 0.00 2.03 0.81 0.00 2.10 0.60 0.00

10 0.92 0.00 0.00 0.82 0.00 0.00 0.79 0.00 0.00Table 1: Criti
al values zk(ρ, θ∗) for m0 = 20 and c = 1.25 . Clayton 
opula, based on 5000simulations 5 SIMULATED EXAMPLESIn this Se
tion we apply the LCP pro
edure on simulated data with dependen
e stru
ture given bythe Clayton 
opula. We generate sets of 6 dimensional data with a sudden jump in the dependen
eparameter given by
θt =





ϑa if − 390 ≤ t ≤ 10

ϑb if 10 < t ≤ 210for di�erent values of (ϑa, ϑb) : one of them is �xed at 0.1 (
lose to independen
e) while the otheris set to larger values.The LCP pro
edure is implemented with the family of interval 
andidates in form of a geometri
grid de�ned by m0 = 20 and c = 1.25 . The 
riti
al values, sele
ted a

ording to (4.2) for di�erent
ρ and θ∗ , are displayed in Table 1. The 
hoi
e of θ∗ has negligible in�uen
e in the 
riti
al valuesfor �xed ρ , therefore we use z1, . . . , zK obtained with θ∗ = 1.0 . Based on our experien
e, seeSpokoiny and Chen (2007) and Spokoiny (2007), the default 
hoi
e for ρ is 0.5 .Figure 4 shows the pointwise median and quantiles of the estimated parameter θ̂t for distin
tvalues of (ϑa, ϑb) based on 100 simulations. The dete
tion delay δ at rule r ∈ [0, 1] to jump of14
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Figure 4: Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from θ̂t . True parameter
θt (dashed) with ϑa = 0.10 , ϑb = 0.50 , 0.75 and 1.00 (left, top to bottom) and ϑb = 0.10 ,
ϑa = 0.50 , 0.75 and 1.00 (right, top to bottom). Based on 100 simulations from Clayton 
opula,estimated with LCP, m0 = 20 , c = 1.25 and ρ = 0.5size γ = θt − θt−1 at t is expressed by

δ(t, γ, r) = min{u ≥ t : θ̂u = θt−1 + rγ} − t (5.1)and represents the number of steps ne
essary for the estimated parameter to rea
h the r -fra
tionof a jump in the true parameter.Dete
tion delays are proportional to the probability of error of type II , i.e. the probability ofa

epting homogeneity in 
ase of a jump. Thus, tests with higher power 
orrespond to lower delays
δ. Moreover, as the Kullba
k-Leibler divergen
es for upward and downward jumps are proportionalto the power of the respe
tive homogeneity tests, larger divergen
es result in faster jump dete
tions.The des
riptive statisti
s for dete
tion delays to jumps at t = 11 for di�erent values of (ϑa, ϑb) are15



(ϑa, ϑb) r mean std dev. max min
0.25 9.06 7.28 56 0

(0.50, 0.10) 0.50 13.64 9.80 60 0
0.75 21.87 14.52 89 3

0.25 5.16 4.24 21 0
(0.75, 0.10) 0.50 8.85 5.55 25 0

0.75 16.72 10.37 64 3

0.25 4.47 2.94 12 0
(1.00, 0.10) 0.50 7.94 4.28 22 0

0.75 14.79 7.38 62 5

0.25 8.94 6.65 36 0
(0.10, 0.50) 0.50 14.21 9.06 53 0

0.75 21.43 12.15 68 0

0.25 9.00 4.80 25 0
(0.10, 0.75) ) 0.50 14.30 5.96 40 3

0.75 21.00 10.97 75 6

0.25 7.39 3.67 19 0
(0.10, 1.00) 0.50 13.10 4.13 22 2

0.75 20.13 7.34 55 10Table 2: Statisti
s for dete
tion delay δ 
al
ulated as in (5.1) at rule r , based on 100 simulationsfrom Clayton 
opula, m0 = 20 , c = 1.25 and ρ = 0.5in Table 2. The mean dete
tion delay de
reases with γ = ϑb − ϑa and are higher for downwardthan for upward jumps. Figure 5 shows that for Clayton 
opulae the Kullba
k-Leibler divergen
e ishigher for upward than for downward jumps. Figure 6 displays the mean dete
tion delays againstjump size for upward and downward jumps.The LCP pro
edure is also applied on simulated data with smooth transition in the dependen
eparameter given by
θt =





ϑa if − 350 ≤ t ≤ 50

ϑa + t−50
100 (ϑb − ϑa) if 50 < t ≤ 150

ϑb if 150 < t ≤ 350Figure 7 depi
ts the pointwise median and quantiles of the estimated parameter θ̂t and the trueparameter θt for (ϑa, ϑb) set to (0.10, 1.00) and (1.00, 0.10) .
16
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Figure 7: Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from θ̂t and true parameter
θt (dashed) with ϑa = 0.10 and ϑb = 1.00 (left) and ϑa = 1.00 and ϑb = 0.10 (right). Based on
100 simulations from Clayton 
opula, estimated with LCP, m0 = 20 , c = 1.25 and ρ = 0.517



6 EMPIRICAL RESULTSIn this Se
tion the Value-at-Risk from German sto
k portfolios is estimated based on time varying
opulae and RiskMetri
s (RM) approa
hes. The time varying 
opula parameters are sele
ted byLo
al Change Point (LCP) and moving window (MW) pro
edures. Ba
ktesting is used to evaluatethe performan
es of the three methods in VaR estimation.Two groups of 6 sto
ks listed on DAX are used to 
ompose the portfolios. Sto
ks from group 1belong to three di�erent industries: automotive (Volkswagen and DaimlerChrysler), insuran
e (Al-lianz and Mün
hener Rü
kversi
herung) and 
hemi
al (Bayer and BASF) while group 2 is 
omposedof sto
ks from six industries: ele
tri
al (Siemens), energy (E.ON), metallurgi
al (ThyssenKrupp),airlines (Lufthansa), pharma
euti
al (S
hering) and 
hemi
al (Henkel). The portfolio values are
al
ulated using 1270 observations, from 01.01.2000 to 31.12.2004, of the daily sto
k pri
es (dataavailable in http://sfb649.wiwi.hu-berlin.de/fed
).The sele
ted 
opula belongs to the Clayton family (2.3). Clayton 
opulae have a natural inter-pretation and are well advo
ated in risk management appli
ations. In line with the stylized fa
tsfor �nan
ial returns, Clayton 
opulae are asymmetri
 and present lower tail dependen
e, modellingjoint extreme events at lower orthants with higher probability than Gaussian 
opulae for the same
orrelation, see M
Neil et al. (2005). This fa
t is essential for VaR 
al
ulations and is illustratedby the ratio between (2.2) and (2.3) for o�-diagonal elements of Ψ set to 0.25 and θ = 0.5 . Forthe quantiles ui = 0.05 , i = 1, . . . , 6 the ratio CGa
Ψ (u1, . . . , u6)/Cθ(u1, . . . , u6) equals 2.3 × 10−2while for the 0.01 quantiles it equals 1.3 × 10−3 .The VaR estimation follows the steps des
ribed in Se
tion 3. In the RiskMetri
s approa
h the log-returns Xt are assumed 
onditionally normal distributed with zero mean and 
ovarian
e matrixfollowing a GARCH spe
i�
ation with �xed de
ay fa
tor λ = 0.94 as in (3.4).In the time varying 
opulae estimation the log-returns are modelled as in (3.5) where the innovations

εt have 
df
Ft,εt(x1, . . . , xd) = Cθt

{Ft,1(x1), . . . , Ft,d(xd)}18



p -values LB p -values ARCH
j group 1 group 2 group 1 group 2

1 0.33 0.52 0.15 0.04
2 0.13 0.35 0.15 0.98
3 0.21 0.08 0.34 0.72
4 0.99 0.05 0.10 0.18
5 0.90 0.07 0.91 0.77
6 0.28 0.81 0.28 0.94Table 3: p -values from Ljung-Box (LB) and ARCH tests on residuals ε̂t,j , j = 1, . . . , 6 for groups1 and 2and Cθ is the Clayton 
opula. The univariate log-returns Xt,j 
orresponding to sto
k j are de-volatized a

ording to RiskMetri
s, i.e. with zero 
onditional means and 
onditional varian
es σ2

t,jestimated by the univariate version of (3.4) with de
ay fa
tor equal to 0.94. We note that this 
hoi
esets the same spe
i�
ation for the dynami
s of the univariate returns a
ross all methods (RM, MWand LCP), making their performan
es in VaR estimation 
omparable. Moreover, as the means fromdaily returns are 
learly dominated by the varian
es and are approximately independent on theavailable information sets, see Jorion (1995), Fleming et al. (2001) and Christo�ersen and Diebold(2006), their spe
i�
ation is very unlikely to 
ause a per
eptible bias in the estimated varian
esand dependen
e parameters. Therefore the zero mean assumption is, as pointed out by Kim et al.(1999), as good as any other 
hoi
e. Daily returns are also modelled with zero 
onditional meansin Fan and Gu (2003) and Härdle et al. (2003) among others.The GARCH spe
i�
ation (3.4) with λ = 0.94 optimizes varian
e fore
asts a
ross a large numberof assets, J.P.Morgan/Reuters (1996), and is widely used in the �nan
ial industry. Di�erent 
hoi
esfor the de
ay fa
tor (like 0.85 or 0.98) result in negligible 
hanges (about 3%) in the estimateddependen
e parameter.The p -values from Ljung-Box (LB) test for serial 
orrelation and from ARCH test for heteros
edas-ti
ity e�e
ts in the obtained residuals ε̂t,j are in Table 3. Normality is reje
ted by Jarque-Bera testwith p -values approximately 0.00 for all residuals in both groups. The empiri
al 
df's of residualsas de�ned in (2.4) are used for the 
opula estimation.19



In the MW approa
h the size of the estimating window is �xed as 250 days 
orresponding to onebusiness year, the same size is used in e.g. Fan and Gu (2003); for the LCP pro
edure, followingSubse
tion 4.2, we set the family of interval 
andidates as a geometri
 grid with m0 = 20 and
c = 1.25 and ρ = 0.5 . We have 
hosen these parameters from our experien
e in simulations,for details on robustness of the reported results with respe
t to the 
hoi
e of m0 and c refer toSpokoiny (2007).The performan
e of the VaR estimation is evaluated based on ba
ktesting. At ea
h time t theestimated Value-at-Risk at level α for a portfolio w is 
ompared with the realization lt of the
orresponding P&L fun
tion, see (3.2), an ex
eedan
e o

uring for ea
h lt smaller than V̂aRt(α) .The ratio of the number of ex
eedan
es to the number of observations gives the ex
eedan
e ratio

α̂w(α) =
1

T

T∑

t=1

1
{lt< dVaRt(α)}As the �rst 250 observations are used for estimation, T = 1020 . The di�eren
e between α̂ andthe desired level α is expressed by the relative ex
eedan
e error

ew =
α̂w − α

α
.We 
ompute ex
eedan
e ratios and relative ex
eedan
e errors to levels α = 0.05 and 0.01 for aset W = {w∗, wn;n = 1, . . . , 100} of portfolios where ea
h wn = (wn,1, . . . , wn,6)

⊤ is a realizationof a random ve
tor uniformly distributed on S = {(x1, . . . , x6) ∈ R
6 :

∑6
i=1 xi = 1, xi ≥ 0.1}and w∗ = 1

6I6 , with Id denoting the (d × 1) ve
tor of ones, is the equally weighted portfolio.The degree of diversi�
ation of a portfolio 
an be measured based on the majorization pre-orderingon S , see Marshall and Olkin (1979), i.e. a portfolio wa is more diversi�ed than portfolio wb if
wa ≺ wb. Under the majorization pre-ordering the ve
tor w∗ satis�es w∗ � w for all w ∈ S ,therefore the equally weighted portfolio is the most diversi�ed portfolio from W , see Ibragimov andWalden (2007).

20



The average relative ex
eedan
e error over portfolios and the 
orresponding standard deviation
AW =

1

|W|

∑

w∈W

ew

DW =

{
1

|W|

∑

w∈W

(ew − AW)2

} 1

2are used to evaluate the performan
es of the time varying 
opulae and RiskMetri
s methods in VaRestimation.
2001 2002 2003 2004 2005
0

1

2

Figure 8: Estimated 
opula parameter θ̂t for group 1, LCP method, m0 = 20 , c = 1.25 and
ρ = 0.5 , Clayton 
opula
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Figure 9: Estimated 
opula parameter θ̂t for group 2, LCP method, m0 = 20 , c = 1.25 and
ρ = 0.5 , Clayton 
opulaThe dependen
e parameter estimated with LCP for sto
ks from group 1 and 2 are shown in �gures8 and 9. The di�erent industry 
on
entrations in ea
h group are re�e
ted in the higher parametervalues obtained for group 1. The P&L and the VaR at level 0.05 estimated with LCP, MW andRM methods for the equally weighted portfolio w∗ are in Figure 10 (group 1) and 11 (group 2). Ex-21



RM MW LCP
α

5.00 1.00 5.00 1.00 5.00 1.00 (×10−2)

α̂w∗ 6.11 1.48 5.62 0.59 5.52 0.69
α̂w1

5.91 1.38 5.42 0.49 5.42 0.69 (×10−2)
α̂w2

6.40 1.28 5.91 0.49 5.71 0.59

AW 0.23 0.45 0.11 −0.49 0.11 −0.36
DW 0.04 0.14 0.06 0.08 0.06 0.10Table 4: Ex
eedan
e ratios for portfolios w∗ , w1 and w2 , average and standard deviation fromrelative ex
eedan
e errors a
ross levels and methods, group 1
eedan
e ratios for portfolios w∗ , w1 and w2 , average relative ex
eedan
e errors and 
orrespondingstandard deviations a
ross methods and levels are shown in Table 4 (group 1) and 5 (group 2).Based on the ex
eedan
e errors the LCP pro
edure outperforms the MW (se
ond best) and RMmethods in VaR estimation in group 1. At level 0.05 the average error asso
iated with 
opulamethods are about half the error from RM estimation for nearly the same standard deviation. Atlevel 0.01 the LCP average error is the smallest in absolute value and 
opula methods present lessstandard deviations. At this level 
opula methods overestimate VaR and RM underestimates it.While overestimation of VaR means that a �nan
ial institution would be requested to keep more
apital aside than ne
essary to guarantee the desired 
on�den
e level, underestimation means thatless 
apital is reserved and the desired level is not guaranteed. Therefore, from the regulatorypoint of view overestimation is preferred to underestimation. In the less 
on
entrated group 2, LCPoutperforms MW and RM at level 0.05 presenting the smallest average error in magnitude fornearly the same value of DW . At level 0.01 
opula methods overestimate and RM underestimatesthe VaR by about 60% .It is interesting to note the e�e
t of portfolio diversi�
ation on the ex
eedan
e errors for group 1and level 0.01. The errors de
rease with in
reasing portfolio diversi�
ation for 
opulae methods but22
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Figure 10: P&L (dots), Value-at-Risk at level α = 0.05 (line), ex
eedan
es (
rosses), estimatedwith LCP (above), MW (middle) and RM (below), for equally weighted portfolio w∗ , group 1be
ome larger under the RM estimation. For another groups and levels the diversi�
ation e�e
tsare not 
lear. Refer to Ibragimov (2007) and Ibragimov and Walden (2007) for details on the e�e
tsof portfolio diversi�
ation under heavy-tailed distributions in risk management.7 CONCLUSIONIn this paper we modelled the dependen
e stru
ture from German equity returns using time varying
opulae with adaptively estimated parameters. In 
ontrast to Patton (2006) and Rodriguez (2007),neither did we spe
ify the dynami
s nor assumed regime swit
hing models for the 
opula parameter.The parameter 
hoi
e was performed under the lo
al homogeneity assumption with homogeneityintervals re
overed from the data through lo
al 
hange point analysis.We used time varying Clayton 
opulae, whi
h are asymmetri
 and present lower tail dependen
e, to23



RM MW LCP
α

5.00 1.00 5.00 1.00 5.00 1.00 (×10−2)

α̂w∗ 5.42 1.58 4.53 0.39 4.53 0.30
α̂w1

5.81 1.77 5.02 0.39 5.02 0.39 (×10−2)
α̂w2

5.62 1.58 5.12 0.39 5.22 0.30

AW 0.16 0.57 −0.10 −0.65 −0.09 −0.65
DW 0.04 0.16 0.06 0.09 0.06 0.08Table 5: Ex
eedan
e ratios for portfolios w∗ , w1 and w2 , average and standard deviation fromrelative ex
eedan
e errors a
ross levels and methods, group 2estimate the Value-at-Risk from portfolios of two groups of German se
urities, presenting di�erentlevels of industry 
on
entration. RiskMetri
s, a widely used methodology based on multivariatenormal distributions was 
hosen as ben
hmark for 
omparison. Based on ba
ktesting the adaptive
opula a
hieved the best VaR estimation performan
e in both groups, with average ex
eedan
eserrors mostly small in magnitude and 
orresponding to su�
ient 
apital reserve for 
overing lossesat the desired levels.The better VaR estimates provided by Clayton 
opulae indi
ate that the dependen
e stru
ture fromGerman equities may 
ontain nonlinearities and asymmetries, like e.g. stronger dependen
e at lowertails than at upper tails, that 
an not be 
aptured by the multivariate normal distribution. Thisasymmetry translates into extremely negative returns being more 
orrelated than extremely positivereturns. Thus, our results for the German equities resemble those from Longin and Solnik (2001),Ang and Chen (2002) and Patton (2006) for international markets, U.S. equities and deuts
he mark/ japanese yen ex
hange rates, where empiri
al eviden
e for asymmetri
 dependen
es with in
reasing
orrelations in market downturns were found.Furthermore, in the non-Gaussian framework - with nonlinearities and asymmetries taken into
onsideration through the use of Clayton 
opulae - the adaptive estimation produ
es better VaR24
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Figure 11: P&L (dots), Value-at-Risk at level α = 0.05 (line), ex
eedan
es (
rosses), estimatedwith LCP (above), MW (middle) and RM (below) for equally weighted portfolio w∗ , group 2�ts than the moving window estimation. The high sensitive adaptive pro
edure 
an 
apture lo
al
hanges in the dependen
e parameter that are not dete
ted by the estimation with a s
rollingwindow of �xed size.The main advantage of using time varying 
opulae to model dependen
e dynami
s is that thenormality assumption is not needed. With the proposed adaptively estimated time varying 
opulaeneither normality assumption nor spe
i�
ation for the dependen
e dynami
s are ne
essary. Hen
e,the method provides more �exibilty in modelling dependen
es between markets and e
onomies overtime.
25
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