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Abstra
tAging has be
ome the paradigm to des
ribe dynami
al behavior of glassysystems, and in parti
ular spin glasses. Trap models have been introdu
ed assimple 
ari
atures of e�e
tive dynami
s of su
h systems. In this Letter we showthat in a wide 
lass of mean �eld models and on a wide range of time s
ales,aging o

urs pre
isely as predi
ted by the REM-like trap model of Bou
haudand Dean. This is the �rst rigorous result about aging in mean �eld modelsex
ept for the REM and the spheri
al model.A key 
on
ept that has emerged over the last years in the study of dynami
al prop-erties of 
omplex systems, is that of �aging�. It is applied to systems whose dy-nami
s are dominated by slow transients towards equilibrium (see e.g. [BCKM98℄ ,[FLDM01℄, [Bir05℄, [IM05℄ for ex
ellent reviews). This phenomena o

urs in a hugevariety of systems, su
h as glasses, spin-glasses, bio-mole
ules, polymers, plasti
s,and has obvious pra
ti
al impli
ations in real-world appli
ations.When dis
ussing aging dynami
s, it is all important to spe
ify the pre
ise time-s
ales
onsidered in relation to the volume. On the one hand, one may study the non-a
tivated regime, where the in�nite volume limit at �xed time t is taken �rst, and thenone analyzes the ensuing dynami
s as t tends to in�nity. This non-a
tivated regimehas been studied intensively for Langevin dynami
s of various soft-spin versions ofmean �eld spin glasses [CK93, CD95, SCM04, Gui07℄.For longer time s
ales, that is times diverging with the volume of the system, afull pi
ture is largely missing. The slow dynami
s of 
omplex systems in su
h times
ales is often attributed to the presen
e of �thermally a
tivated� barrier 
rossingsin the 
on�guration spa
e [Gol69℄. For instan
e, the standard pi
ture of the spinglass phase typi
ally involves a highly 
omplex lands
ape of the free energy fun
tionexhibiting many nested valleys organized a

ording to some hierar
hi
al tree stru
-ture (see e.g. [BK01, FS02℄). To su
h a pi
ture 
orresponds the heuristi
 image ofa sto
hasti
 dynami
s that, on time-s
ales that diverge with the size of the system,
an be des
ribed as performing a sequen
e of �jumps� between di�erent valleys atrandom times those rates are governed by the depths of the valleys and the heightsof 
onne
ting passes or saddle points. The extreme situation here 
orresponds to
onsidering time s
ales just before the equilibration time. While at these s
ales therelation to the equilibrium Gibbs distribution is most immediate, in many glassysystems these time s
ales appear to be beyond experimental or numeri
al rea
h.In this letter we show that the me
hanism for aging is universal for a 
lass of Glauberdynami
s of p-spin Spin Glasses (with p ≥ 3) , out of equilibrium, in a wide rangeof time s
ales. These time s
ales exponentially long but still mu
h shorter than thetime s
ales needed to rea
h equilibrium. Thus this me
hanism is essetially a transientone, linked to the exploration of the energy lands
ape way before the dynami
s 
anfeel the ground state. This me
hanism has been �rst established for the simple 
aseof the REM, hen
e our title. 1



To 
apture the features of a
tivated dynami
s, Bou
haud and others [Bou92, BD95,MB96, RMB00, BCKM98℄ introdu
ed an interesting ansatz, that is a mapping ofthe dynami
s onto �trap models�. These trap models are Markov jump pro
esses ona state spa
e that simply enumerates the valleys of the free energy lands
ape. Whilethis pi
ture is intuitively appealing, its derivation is based on knowledge obtained inmu
h simpler 
ontexts, su
h as di�usions in �nite dimensional potential lands
apes.Mathemati
ally, trap models are 
ontinuous time Markov 
hains whose state spa
eis a (in�nite or growing with some parameter) graph (e.g. Z
d). To the verti
es (=traps) of this graph one asso
iates independent random variables whose 
ommondistribution is assumed to be heavy tailed, that is their mean is in�nite. Thesevariables represent the mean waiting times of the Markov 
hain in the 
orrespondingtrap.Trap models involve the ad-ho
 introdu
tion of three major features that ultimatelyneed justi�
ation. This is the independen
e of the waiting times asso
iated to thetraps, the heavy-tailed nature of their distribution, and �nally the Markov propertyof the dynami
s.In a series of papers [B�05, B�M06, B�08, B�07℄ (see [B�06℄ for a 
omprehensivereview) a systemati
 investigation of a variety of trap models was initiated. In thispro
ess, it emerged that the �slow-down� of the dynami
s appears to be universalfor these trap models (ex
ept in the ex
eptional dimension 1), and, more pre
isely,that it has a s
aling limit given by an α-stable subordinator. Equivalently it wasshown that the 
lassi
al Dynkin-Lamperti pi
ture for heavy-tailed renewal pro
essesis universally satis�ed for these trap models (in dimension larger than 1).In 
ontrast, very little has been done 
on
erning the derivation of trap-model dy-nami
s from sto
hasti
 dynami
s of even moderately realisti
 spin-glasses, su
h asthe p-spin intera
tion SK models. The only 
ase where this has been a
hieved so faris the simplest of these models, the Random Energy Model (REM) of Derrida witha parti
ular form of the transition rates. In [BBG02, BBG03a, BBG03b℄ this wasa
hieved by a very detailed analysis of the dynami
s at time s
ales just before theequilibration time, and at temperatures below the 
riti
al one. This result relied,in parti
ular, on the detailed understanding of the equilibrium distribution of thismodel. More re
ently, in [B�08℄, the same model was analyzed at mu
h shorter (butstill exponentially large) time s
ales. It emerged that the same aging me
hanism isin pla
e there and that aging 
an also o

ur above the 
riti
al temperature.All these works made 
ru
ial use of the independen
e of energies of di�erent spin 
on-�gurations assumed in the de�nition of the REM. In the present letter we presentthe �rst rigorous aging results in a model with 
orrelated energies, the p-spin in-tera
tion Sherrington-Kirkpatri
k (SK) model of spin glasses with p ≥ 3. Quitesurprisingly, the results obtained point again to the validity of the REM-like trapmodel as universal aging me
hanism.The p-spin SK model. We re
all that the p-spin SK model is is de�ned as follows. Aspin 
on�guration σ is a vertex of the hyper
ube SN ≡ {−1, 1}N . The Hamiltonianis given by

HN(σ) ≡ − 1

N (p−1)/2

N
∑

i1,...,ip=1

Ji1...ipσi1 . . . σip , (1)
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where Ji1...ip are independent Gaussian random variables with mean zero and varian
eone. Alternatively, we 
an des
ribe the Hamiltonian as a 
entered normal pro
essindexed by SN with 
ovarian
e
E[HN (σ)HN(τ)] = NRN (σ, τ)p, (2)where RN(σ, τ) denotes as usual the normalized overlap, RN(σ, τ) ≡ N−1

∑N
i=1 σiτi.We de�ne a random Gibbs measure on SN , µβ,N ≡ Z−1

β,Ne−βHn(σ). Note that inthe limit p ↑ ∞ one re
overs the random energy model [GM84℄, where HN(σ) arei.i.d. Gaussian random variables with varian
e N .Dynami
s. We 
onsider a 
ontinuous time Markov dynami
s σN (t) on SN whosetransition rates are
pN(σ, τ) = N−1eβHN (σ) (3)if σ and τ are related by �ipping a single spin, and are zero otherwise. It is easy tosee that this dynami
s is reversible with respe
t to the Gibbs measure µβ,N . Onealso sees that it represents a nearest-neighbor random walk on the hyper
ube withtraps of random depths.It is thus useful to look at this dynami
s as at a time 
hange of a simple unbiaseddis
rete-time random walk YN(k), k ∈ N, on SN started out of equilibrium1 at someat some �xed point of SN , say at {1, . . . , 1}: We de�ne the 
lo
k-pro
ess by

SN(k) =

k−1
∑

i=0

ei exp
{

− βHN

(

YN(i)
)}

, (4)where (ei, i ∈ N) is a sequen
e of mean-one i.i.d. exponential random variables. Then
σN(t) 
an be written as

σN (t) = YN(S−1
N (t)). (5)

SN(k) is the instant of the k-th jump of σN (t).The REM-like trap model. The idea suggested by the known behavior of the equilib-rium distribution is that this dynami
s, for β > βc, will spend long periods of time inthe states σ(1), σ(2), . . . et
. and will move �qui
kly� from one of these 
on�gurationsto the next. Based on this intuition, Bou
haud et al. [Bou92, BD95℄ proposed the�REM-like� trap model: Consider a 
ontinuous time Markov pro
ess ZM whose statespa
e is the set KM ≡ {1, . . . , M} of M points, representing the M �deepest� traps.Ea
h of the states is assigned a random variable εk (representing minus the energy ofthe state k) whi
h is taken to be exponentially distributed with rate one. If the pro-
ess is in state k, it waits an exponentially distributed time with mean proportionalto eβεk , and then jumps with equal probability in one of the other states k′ ∈ KM .The quantity that is used to 
hara
terize the �aging� phenomenon is the probability
Π̃M(t, s) that during a time-interval [t, t + s] the pro
ess does not jump. Bou
haudand Dean [BD95℄ showed that, for β > 1,

lim
s,t↑∞

lim
M↑∞

Π̃M(t, s)

H1/β(s/t)
= 1, (6)1Note that this makes the situation di�erent from the one in [BGM05℄ where the equilibrateddynami
s was studied numeri
ally. This makes a 
omparison of these results with ours di�
ult.3



where the fun
tion Hα is de�ned by
Hα(w) ≡ sin(πα)

π

∫ ∞

w

dx

(1 + x)xα
. (7)The dynami
s of the REM-like trap model 
an be seen as a time 
hange of a sim-ple random walk ỸM on the �
omplete graph� KM by the 
lo
k pro
ess, S̃M(k) =

∑k−1
i=0 ei exp{βεYM(i)}. As explained in [B�08℄, the result (6) 
an be dedu
ed fromthe stronger 
laim

lim
n↑∞

lim
M↑∞

n−βS̃M(nt) = cV1/β(t), t ≥ 0, (8)where Vα(t) is the α-stable subordinator (in
reasing Lévy pro
ess) with Lapla
etransform E[e−λVα(t)] = exp(−tλα).The REM. In [BBG02, BBG03a, BBG03b℄ it was 
on�rmed that the REM-like pi
-ture is 
orre
t, at least for the dynami
s de�ned in (3). This result was furtherextended to shorter time s
ales in [B�08℄ where the point of view of (8) was putin the foreground. Namely, it was shown that the 
lo
k pro
ess 
onverges againto the stable subordinator: For every 0 < ̺ < 1, if β̺ ≡ β/
√

̺ > βc ≡
√

2 ln 2,
γ = β

√
2̺ ln 2,

lim
N↑∞

e−γNN
β̺

2βc SN(t2N̺) = cVβc/β̺
(t). (9)This implies then a similar aging result as in (6), Π(teγN , seγN)

N→∞−−−→ Hβc/β̺
(s/t),as in the REM-like trap model for the probability ΠN(t, s) that σN (t) does not jumpbetween t and t + s.Note that this result has an interesting interpretation: at a time-s
ale eγNN−

β̺

2βc thepro
ess su

eeds to make 2̺N steps, that is it explores a subset of 
on�guration spa
ethat 
orresponds to a �little REM� in volume n = ̺N . At this time s
ale, the pro
essfeels an e�e
tive inverse temperature β̺. If the e�e
tive temperature is below the
riti
al one for the standard REM, the system shows aging, otherwise it does not. Itmay seem somewhat 
ounterintuitive that the systems is `e�e
tively �warming up�as time goes by.Let us dis
uss the heuristi
s of this result. When the random walk has made 2̺Nsteps, with ̺ < 1, it has only explored a small fra
tion of the total 
on�gurationspa
e. In parti
ular, it has not had time to �nd the absolute minima of HN , hen
eit is still out of equilibrium. Moreover, the random walk will essentially not havevisited any 
on�guration twi
e. Therefore, the minimum of HN along on those
on�gurations that were visited is the minimum of 2̺N independent Gaussian randomvariables of mean zero and varian
e N . It is well know (see e.g. [LLR83℄) that this isof the order N
√

2̺ ln 2. Then the mean waiting time in this extreme trap is of order
exp(βN

√
2̺ ln 2) = eγN , up to a polynomial 
orre
tion. Now the 
ondition that

β̺ > βc implies that this time is of the same order as the total time the pro
ess hasa

umulated in all the other sites along its way, and, more pre
isely, the pro
ess willhave spent all but a negligible fra
tion of its time in the �few� �deepest trap�. Againstandard results of extreme value theory imply that the pre
ise statisti
s of the timesspent in the deepest traps are asymptoti
ally governed by a Poisson pro
ess, and that4



the sum of these random times, after res
aling, 
onverge to a stable subordinator,as 
laimed.
p-spin models We will now present our main results for the p-spin SK model. The fullproofs of these results are given in [BB�℄. First, sin
e the valleys in the free-energylands
ape 
ontains more than one 
on�guration, we should 
hange the two-pointfun
tion Π. We set

Πε
N (t, s) = P{RN

(

σN

(

teγN
)

, σN

(

(t + s)eγN
))

≥ 1 − ε
}

, (10)that is the overlap at two far-distant time instants is ex
eptionally large. Then, asimilar result as in the REM holds, at least if p ≥ 3. Namely, there is a p-dependent
onstant ̺p, su
h that , if ̺ and β satisfy the 
onditions
β̺ ≡ β/

√
̺ >

√
2 ln 2 ≡ βc

̺ < ̺p,
(11)then, for any ε ∈ (0, 1), t > 0, and s > 0,

lim
N→∞

Πε
N(t, s) = Hβc/β̺

(s/t). (12)The basis of this result is again the statement analogous to (9) that shows that theproperly res
aled 
lo
k-pro
ess 
onverges to a stable subordinator.The fun
tion ̺p used in (11) to limit the 
onsidered time s
ales is in
reasing and itsatis�es
̺3 ≃ 0.763941 and lim

p→∞
̺p = 1, (13)hen
e in the limit p ↑ ∞ we re
over the result for the REM.Note the r�le of the two restri
tions on β and ̺. The �rst one is again the statementthat the e�e
tive temperature at the time s
ale 
onsidered is below the 
riti
al one.The se
ond 
ondition is related to the 
orrelation of the energies. It implies that theREM-like behavior holds only up to time s
ales where the explored region is still sosmall that the pro
ess does not feel the 
orrelations; essentially it ensures that thepro
ess does not have enough time to get 
lose enough to a point it visited before sothat it is able to feel the 
orrelations.The heuristi
 justi�
ation of the results in the p-spin model is rather similar to thatof the REM. The di�eren
e here is that the energies at the sites that the walk hasvisited are 
orrelated. Our assertion is that under the 
ondition ρ < ρp, this has onlya mild e�e
t and does not 
hange the overall pi
ture. The reason for this relies onthe geometri
 properties of typi
al traje
tories of the random walk on the hyper
ube,and on the extreme value properties of 
orrelated Gaussian pro
esses. First, it hasbeen shown (see e.g. [Bov06, BGK06, BA℄ that if p is larger than 2 and if Kρ isa totally random subset of the hyper
ube SN of 
ardinality 2ρ, with ρ su�
ientlysmall (depending on p), then the extremal pro
ess of HN restri
ted to Kρ are thesame as if HN(σ) were independent random variables. Note that this is not true inthe standard SK model with p = 2 whi
h is the reason our results 
an be expe
tedonly for p ≥ 3.Now it is 
lear that the traje
tories of the random walk 
annot look exa
tly likea totally random set, after all the traje
tory is 
onne
ted, while in Kρ essentially5



all points are isolated. However, a detailed analysis of the random walk revealsthat its traje
tories look very mu
h like a random set Kρ with linear pie
es betweenthem joining the points up in a minimal way. Hen
e, the 
orrelations have someimpa
t only very lo
ally in time, implying in parti
ular that deep traps will not bemade of single points but 
onsist of a deep valley (along the traje
tory) that hasapproximately the same depth and whose shape and width we 
an des
ribe quitepre
isely. Remarkably, ea
h valley is essentially of a size independent of N (that isthe number of sites 
ontributing signi�
antly to the residen
e time in the valley isessentially �nite), and di�erent valleys are statisti
ally independent.The fa
t that traps are �nite may appear quite surprising to those familiar with thestati
s of p-spin models. From the results there (see [Tal03, Bov06℄), one knows thatthe Gibbs measure 
on
entrates on �lumps� whose radius is of order Nεp, with εp > 0.The mystery is however solved easily: Around a lo
al minimum σ0 with HN(σ0) ∼
−γN/β, the pro
ess HN(σ) does grows essentially linearly with the distan
e d(σ0, σ)from the minimum, E[HN(σ) − HN(σ0)] ∼ c(p, γ, β)d(σ0, σ). Therefore, the Gibbsmass de
reases exponentially with d(σ0, σ). For the support of the Gibbs measure,one needs to take into a

ount the entropy, that is that the volumes of the balls ofradius r in
reases like exp(N(ln 2 − I(1 − r/N))). For the dynami
s, at least at ourtime-s
ales, this is, however, irrelevant, sin
e the simple random walk leaves a lo
alminimum essentially ballisti
ally.Remark: We 
on
lude the Letter with a remark on the r�le of the parti
ular
hoi
e of the transition probabilities (3) depending only on starting points. Clearlythese favor the proximity to Bou
haud's model. For us, on a te
hni
al level, theindependen
e of the random walk traje
tory of the random environment de�ned bythe Hamiltonian is 
ru
ial. Even in the 
ase of the REM, we do not know at thispoint how to deal with di�erent, and more usual, dynami
s su
h as Metropolis orheat bath. This problem remains one of the great 
hallenges in the �eld.Referen
es[BA℄ G. Ben Arous and Kuptov A. in preparation.[BB�℄ Gérard Ben Arous, Anton Bovier, and Ji°í �erný. Universality of theREM for dynami
s of mean-�eld spin glasses. arXiv:0706.2135.[BBG02℄ G. Ben Arous, A. Bovier, and V. Gayrard. Aging in the random energymodel. Phys. Rev. Letts, 88(8):087201, February 2002.[BBG03a℄ Gérard Ben Arous, Anton Bovier, and Véronique Gayrard. Glauber dy-nami
s of the random energy model. I. Metastable motion on the extremestates. Comm. Math. Phys., 235(3):379�425, 2003.[BBG03b℄ Gérard Ben Arous, Anton Bovier, and Véronique Gayrard. Glauberdynami
s of the random energy model. II. Aging below the 
riti
al tem-perature. Comm. Math. Phys., 236(1):1�54, 2003.[B�05℄ Gérard Ben Arous and Ji°í �erný. Bou
haud's model exhibits two agingregimes in dimension one. Ann. Appl. Probab., 15(2):1161�1192, 2005.6



[B�06℄ G. Ben Arous and J. �erný. Dynami
s of trap models. In É
ole d'Étéde Physique des Hou
hes, Session LXXXIII �Mathemati
al Statisti
alPhysi
s�, pages 331�394. Elsevier, 2006.[B�07℄ Gérard Ben Arous and Ji°í �erný. S
aling limit for trap models on Z
d.Ann. Probab., 35(6):2356�2384, 2007.[B�08℄ Gérard Ben Arous and Ji°í �erný. The ar
sine law as a universal agings
heme for trap models. to appear in Comm. Pure Appl. Math., 2008.[BCKM98℄ J.-P. Bou
haud, L. Cugliandolo, J. Kur
han, and M. Mézard. Out ofequilibrium dynami
s in spin-glasses and other glassy systems. In A. P.Young, editor, Spin glasses and random �elds. World S
ienti�
, Singa-pore, 1998.[B�M06℄ Gérard Ben Arous, Ji°í �erný, and Thomas Mountford. Aging in two-dimensional Bou
haud's model. Probab. Theor. Rel. Fields, 134(1):1�43,2006.[BD95℄ J.-P. Bou
haud and D. S. Dean. Aging on Parisi's tree. J. Phys I(Fran
e),5:265, 1995.[BGK06℄ G. Ben Arous, V. Gayrard, and A. Kuptsov. A new REM 
onje
ture.arXiv:math/0612373, 2006.[BGM05℄ Alain Billoire, Lu
a Giomi, and Enzo Marinari. Europhys. Lett., 71:824�830, 2005.[Bir05℄ Giulio Biroli. A 
rash 
ourse on aging. J. Stat. Me
h., 014, 2005.[BK01℄ G. Biroli and J. Kur
han. Metastable states in glassy systems. Physi
alReview E, 6401(1):016101, July 2001.[Bou92℄ J.-P. Bou
haud. Weak ergodi
ity breaking and aging in disordered sys-tems. J. Phys. I (Fran
e), 2:1705�1713, september 1992.[Bov06℄ Anton Bovier. Statisti
al me
hani
s of disordered systems. CambridgeUniversity Press, Cambridge, 2006.[CD95℄ L. F. Cugliandolo and D. S. Dean. Full dynami
al solution for a spheri
alspin-glass model. J. Phys. A, 28(15):4213�4234, 1995.[CK93℄ L. F. Cugliandolo and J. Kur
han. Analyti
al solution of the o�-equilibrium dynami
s of a long-range spin-glass. Phys. Rev. Lett., 71:173,1993.[FLDM01℄ Daniel S. Fisher, Pierre Le Doussal, and Cé
ile Monthus. Nonequilibriumdynami
s of random �eld Ising spin 
hains: exa
t results via real spa
erenormalization group. Phys. Rev. E (3), 64(6, part 2):066107, 41, 2001.[FS02℄ J. F. Fontanari and P. F. Stadler. Fra
tal geometry of spin-glass models.J. Phys. A., 35(7):1509�1516, February 2002.7



[GM84℄ D. J. Gross and M. Mezard. The simplest spin glass. Nu
lear Physi
s B,240(4):431�452, November 1984.[Gol69℄ Martin Goldstein. Vis
ous liquids and the glass transition: A potentialenergy barrier pi
ture. The Journal of Chemi
al Physi
s, 51(9):3728�3739, 1969.[Gui07℄ Ali
e Guionnet. Dynami
s for spheri
al models of spin-glass and aging.In Spin glasses, volume 1900 of Le
ture Notes in Math., pages 117�144.Springer, Berlin, 2007.[IM05℄ Feren
 Iglói and Cé
ile Monthus. Strong disorder RG approa
h of randomsystems. Phys. Rep., 412(5-6):227�431, 2005.[LLR83℄ M.R. Leadbetter, G. Lindgren, and H. Rootzén. Extremes and relatedproperties of random sequen
es and pro
esses. Springer Series in Statis-ti
s. Springer-Verlag, New York, 1983.[MB96℄ C. Monthus and J.-P. Bou
haud. Models of traps and glass phenomenol-ogy. J. Phys. A, 29:3847�3869, 1996.[RMB00℄ B. Rinn, P. Maass, and J.-P. Bou
haud. Multiple s
aling regimes insimple aging models. Phys. Rev. Lett, 84:5403�5406, 2000.[SCM04℄ G. Semerjian, L. F. Cugliandolo, and A. Montanari. On the sto
hasti
dynami
s of disordered spin models. J. Statist. Phys., 115(1-2):493�530,2004.[Tal03℄ Mi
hel Talagrand. Spin glasses: a 
hallenge for mathemati
ians.Springer-Verlag, Berlin, 2003.

8


