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Abstra
tEnergeti
 solutions to rate-independent pro
esses are usually 
onstru
ted viatime-in
remental minimization problems. In this work we show that all energeti
solutions 
an be approximated by in
remental problems if we allow approximateminimizers, where the error in minimization has to be of the order of the timestep. Moreover, we study sequen
es of problems where the energy fun
tionals havea Γ-limit.1 Introdu
tionEnergeti
 solutions to rate-independent pro
esses were introdu
ed in [MiT99,MiT04℄ andfurther developed for example in [MaM05, FrM06℄; a re
ent survey is [Mie05℄. Theyallow for a mathemati
al treatment of a variety of evolution problems in the materials
ien
es, for example in elastoplasti
ity [HaR99, OrR99, CHM02℄, phase transitions inshape-memory alloys [AuP02,MTL02,AuS05,KMR05℄ and 
ra
k formation in brittle ma-terials [FrM98, DFT05℄. Re
ently, in [MRS07℄ sequen
es of su
h pro
esses have beenstudied in the framework of Γ-
onvergen
e and 
onditions were derived that guaranteethat solutions of the problems in the sequen
e admit a limit point solving the limit prob-lem. Here we go the opposite dire
tion and show that every solution to the limit problemoriginates from time-dis
rete solutions to the approximate problems. This shows thatthe limit problem 
an be used e�e
tively in the study of sequen
es of rate-independentproblems. Roughly speaking, the theory in [MRS07℄ states that the solution set is uppersemi-
ontinuous in the Γ-limit, whereas here we study the lower semi-
ontinuity.We now des
ribe the general framework in order to introdu
e the main ideas. Pre
isete
hni
al assumptions are postponed until Se
tions 2 and 4.Let the state spa
e Q of the system be the produ
t of two Hausdor� topologi
al spa
es
F and Z. As we will deal with sequen
es rather than with general topology tools, alltopologi
al notions are to be understood in a sequential sense. For example, 
ompa
tnessalways means sequential 
ompa
tness. Here F 
orresponds to the elasti
 (or, more gen-erally, non-dissipative) and Z to the internal (or dissipative) variables. This splitting istypi
al in 
ontinuum me
hani
s with dissipation, see [HaN75,ZiW87,HaR99,Fré02℄. Thesystem itself is modeled by two fun
tionals: an energy-storage fun
tional E : [0, T ]×Q →
R∞ := R ∪ {+∞} and a dissipation distan
e D : Z ×Z → [0,∞]. The triple (Q, E ,D) is
alled an energeti
 rate-independent system.The energy E models the elasti
 or non-dissipative part of the problem and depends onthe pro
ess time via a time-dependent loading. The value D(z0, z1) denotes the minimaldissipated energy when the state is 
hanged from z0 ∈ Z to z1 ∈ Z. Be
ause of this1



physi
al interpretation, we require the triangle inequality and the positivity D(z1, z2) = 0if and only if z1 = z2. However, we do not require D to be symmetri
 as the physi
aldissipation might not have this property, e.g. in elastoplasti
ity [HaR99℄, in 
ra
k for-mation in brittle materials [FrM98,DFT05℄, or in damage [Fré02,BMR07℄. Although Da
ts only on the dissipative part Z of the underlying state spa
e Q, for q1 = (φ1, z1) and
q2 = (φ2, z2) we also write D(q1, q2) when in fa
t we mean D(z1, z2).For a pro
ess z : [0, T ] → Z (only in the dissipation part of the state spa
e) and s, t ∈
[0, T ], de�ne the total dissipation DissD(z; [s, t]) of z in the subinterval [s, t] to be the totalvariation of z with respe
t to the quasimetri
 D, i.e.

DissD(z; [s, t]) := sup

{ N
∑

j=1

D(z(τj−1), z(τj)) : s = τ0 < · · · < τN = t, N ∈ N

}

.Again, for a pro
ess q : [0, T ] → F × Z = Q with t 7→ (φ(t), z(t)), we also write
DissD(q; [s, t]) when we really mean DissD(z; [s, t]).An energeti
 solution to the evolution system asso
iated with E and D is a pro
ess q :
[0, T ] → Q that satis�es the stability 
ondition (S) and the energy balan
e (E) for all
t ∈ [0, T ]:(i) E(t, q(t)) ≤ E(t, q̂) + D(q(t), q̂) for all q̂ ∈ Q (S)(ii) E(t, q(t)) + DissD(q; [0, t]) = E(0, q(0)) +

∫ t

0

∂tE(τ, q(τ)) dτ (E)In this 
ase, we also say that q is a solution of the energeti
 rate-independent system
(Q, E ,D).The so-
alled stable sets

S(t) :=
{

q ∈ Q : E(t, q) < ∞ and E(t, q) ≤ E(t, q̂) + D(q, q̂) for all q̂ ∈ Q
}play a vital role in the theory and allow 
ondition (S) to be rephrased into

q(t) ∈ S(t) for all t ∈ [0, T ]. (S')Additionally to (S) & (E), we pres
ribe a stable initial value q(0) = q0 ∈ S(0).In the 
ase that Q is a Bana
h spa
e, E is 
onvex and di�erentiable, and D is giventhrough D(z1, z2) = R(z2 − z1) with a 
onvex, 1-homogeneous potential R : Z → [0,∞],this notion is equivalent to the doubly-nonlinear di�erential in
lusion (
f. [CoV90℄)
0 ∈ ∂R(q̇(t)) + DE(t, q(t)) in Q∗ (SF)and the variational inequality
〈DE(t, q(t)), v − q̇(t)〉 + R(v) −R(q̇(t)) ≥ 0 for all v ∈ Q, (VI)
f. [MiT04,Mie05℄. In this setting, the notion of rate-independen
e manifests itself throughthe 1-homogeneity of R. In 
ontrast to (SF) and (VI), however, the energeti
 formulation2



(S) & (E) is derivative-free and no linear stru
ture of Q needs to be assumed. Thisallows for the treatment of more general problems in 
ontinuum me
hani
s, 
f. Se
tion 7of [Mie05℄ for a survey.In the main existen
e proof of the theory one 
onstru
ts approximate solutions usinga time-in
remental problem. For this, let Π = (0, t1, . . . , tN−1, T ) be a partition of theinterval [0, T ] and 
onsider:
{For j = 1, . . . , N , indu
tively �nd qj ∈ Q su
h that

qj ∈ Argmin
{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

.
(IPΠ)The existen
e result is then obtained by 
onstru
ting limits of the dis
rete solutions

(qn
j )j=0,...,Nn

of (IPΠn), where Πn = (tn1 , t
n
1 , . . . , t

n
Nn

) is a sequen
e of partitions whose�neness
‖Πn‖ := max

k=1,...,Nn

(tnk − tnk−1).tends to 0 as n → ∞. Then, with the help of a generalized Helly's sele
tion prin
iple,we obtain a subsequen
e 
onverging pointwise to a limit and this limit is shown to be asolution, 
f. [Mie05℄ for a full exposition. One 
an now pose the question whether everysolution of (S) & (E) 
an be obtained in su
h a way. This, unfortunately, is not true ingeneral (see Counterexample 2.3). For many purposes, however, it su�
es to show thatwe 
an �nd a solution to an ε-approximate in
remental problem for ε > 0 and suitablepartitions Π = (0, t1, . . . , tN−1, T ) of [0, T ]:
{For j = 1, . . . , N , indu
tively �nd qj ∈ Q su
h that

qj ∈ Argminε

{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

,
(AIPΠ

ε )where we employed the set of ε-minimizers, ε ≥ 0, whi
h, for a fun
tional F : X → R∞,is de�ned as
Argminε(F ) = Argminε

{

F (x) : x ∈ X
}

:=
{

x ∈ X : F (x) ≤ infX F + ε
}

.In Se
tion 2, we will show the reverse approximability of all solutions to (S) & (E) bydis
rete solutions to (AIPΠ
ε ) with ε = cR ‖Π‖, where cR is the reverse approximation
onstant.Afterwards, we investigate reverse approximability for sequen
es of problems. These aregiven through sequen
es of energy fun
tionals (Ek)k and dissipation distan
es (Dk)k. Forthe kth problem, k ∈ N∞ = N ∪ {∞}, we denote by (Sk) and (Ek) the solution 
on-ditions 
orresponding to (S) and (E), respe
tively. To treat su
h sequen
es of prob-lems, approximate in
remental problems for sequen
es are employed, 
f. [MRS07℄: Let

Π = (0, t1, . . . , tN−1, T ) be a partition of the interval [0, T ], let ε > 0, and 
onsider:
{For j = 1, . . . , N , indu
tively �nd qj ∈ Q su
h that

qj ∈ Argminε

{

Ek(tj, q̂) + Dk(qj−1, q̂) : q̂ ∈ Q
}

.
(AIPΠ

k,ε)Obviously, this problem always has a solution. In Se
tion 4 of [MRS07℄ it is shown thatsubsequen
es of solutions to (AIPΠ
k,ε) 
onverge (in a 
ertain sense) to a solution of (S∞)3



& (E∞). As for single problems, one 
an be interested in the reverse question: To agiven solution to (S∞) & (E∞) 
an one �nd solutions to the 
orresponding approximatein
remental problems (AIPΠ
k,ε)? This question is answered positively in Se
tion 4.In other words, [MRS07℄ shows that the limes superior (here in the topologi
al or Painlevé�Kuratowski sense with respe
t to pointwise 
onvergen
e in Q) of (interpolants of) thetime-dis
rete solutions for the kth fun
tionals Ek and Dk on in
reasingly �ner partitionsis 
ontained in the set of time-
ontinuous solutions to the limit problem asso
iated with

E∞ and D∞. We here show that also a reverse in
lusion holds (with little di�erent 
hoi
esof the partition �neness).In Se
tion 4 we also show that one 
annot expe
t to �nd time-
ontinuous solutions to(Sk) & (Ek), whi
h approximate a solution to (S∞) & (E∞).Se
tion 5 provides a more quantitative approa
h by assuming that everything is de�nedin Bana
h spa
es and that the Γ-
onvergen
e is more expli
it. In parti
ular, we dis
uss akind of ba
kward error analysis for spa
e-time dis
retizations for a phase transformationmodel that 
ould be easily be generalized to elastoplasti
ity as dis
ussed in [HaR99℄.Finally, Se
tion 6 dis
usses the relations to regularization and relaxation.2 Approximation for single problemsIn this se
tion, the approximability of solutions to (S) & (E) by dis
rete solutions to(AIPΠ
ε ) is investigated.On E and D 
onsider the following standard assumptions, 
f. [Mie05℄ for an explanationof their physi
al relevan
e:Control of the power ∂tE :there exist cE

0 ∈ R, cE
1 > 0 su
h that:If q ∈ Q satis�es E(s, q) < ∞ for some s ∈ [0, T ], then(i) E(., q) ∈ C1([0, T ]) and(ii) |∂tE(t, q)| ≤ cE

1 (E(t, q) + cE
0 ) for all t ∈ [0, T ].

(2.E)
Quasimetri
:For all z1, z2, z3 ∈ Z :(i) D(z1, z2) = 0 if and only if z1 = z2 (positivity) and(ii) D(z1, z3) ≤ D(z1, z2) + D(z2, z3) (triangle inequality). (2.D)By the Gronwall lemma, (2.E) immediately implies
E(t, q) + cE

0 ≤ (E(s, q) + cE
0 )ecE

1
|t−s| for all t, s ∈ [0, T ], q ∈ Q. (2.1)Applying this estimate on (2.E), we get

|∂tE(t, q)| ≤ cE
1 (E(s, q) + cE

0 )ecE
1
|t−s| for all t, s ∈ [0, T ], q ∈ Q. (2.2)4



Hen
e, for an energeti
 solution q : [0, T ] → Q and for all t ∈ [0, T ], we have the a-prioriestimates
E(t, q(t)) + cE

0 ≤ (E(0, q(0)) + cE
0 )ecE

1
t, (2.3)

|∂tE(t, q(t))| ≤ cE
1 (E(0, q(0)) + cE

0 )ecE
1

t, (2.4)
DissD(q; [0, t]) ≤ (E(0, q(0)) + cE

0 )ecE
1

t, (2.5)
f. Se
tion 3.1 in [Mie05℄.Throughout this se
tion, we silently assume (2.E) and (2.D) to hold. Note that while herewe only require these two 
onditions, for the existen
e of a solution all results known sofar need additional assumptions, 
f. [MiT04,Mie05℄.We 
ommen
e with a lemma whi
h allows us to estimate the energy of approximativeminimizers.Lemma 2.1. Let q : [0, T ] → Q be a solution of (S) & (E) with initial value q0 = q(0) ∈
S(0) and let Π = (0, t1, . . . , tN−1, T ) be a partition of the interval [0, T ]. Let

qj := q(tj) for j = 1, . . . , N − 1.Then, for all δ ≥ 0 there exists M = M(q0, δ) ∈ R su
h that for all j = 1, . . . , N and
q∗j ∈ Argminδ

{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

,it holds that E(s, q∗j ) ≤ M for all s ∈ [0, T ]. Further, M(q0, δ) is monotoni
 in δ.Proof. First, we use the δ�minimality of q∗j to derive
E(tn, q∗j ) + D(qj−1, q

∗
j ) ≤ E(tj , qj−1) + D(qj−1, qj−1) + δ

≤ E(tj−1, qj−1) +

∫ tn

tj−1

∂tE(τ, qj−1) dτ + δ, (2.6)where we exploited D(qj−1, qj−1) = 0. We 
an now use the growth estimate (2.2) todedu
e
∫ tj

tj−1

∂tE(τ, qj−1) dτ ≤

∫ tj

tj−1

cE
1

(

E(tj−1, qj−1) + cE
0

)

ecE
1

(τ−tj−1) dτ

=
(

E(tj−1, qj−1) + cE
0

)

(

ecE
1

(tj−tj−1) − 1
)

. (2.7)The a-priori bound (2.3) on the energy of the 
ontinuous solution provides the ne
essaryinformation to estimate the term E(tj−1, qj−1). Indeed,
E(tj−1, qj−1) + cE

0 ≤
(

E(0, q0) + cE
0

)

ecE
1

tj−1 ≤
(

E(0, q0) + cE
0

)

ecE
1

T =: Lwhere L = L(q0, c
E
0 , cE

1 ) only depends on q0,cE
0 , and cE

1 . We 
ombine this with the previousestimates (2.6), (2.7) to get
E(tj , q

∗
j ) ≤ E(tj , q

∗
j ) + D(qj−1, q

∗
j )

≤ E(tj−1, qj−1) +
(

E(tj−1, qj−1) + cE
0

)

(

ecE
1

(tj−tj−1) − 1
)

+ δ

≤ L + L
(

ecE
1

T − 1
)

+ δ =: L1 = L1(q0, δ).5



Using (2.1) with s = tj, the result follows with M = (L1(q0, δ) + cE
0 )ecE

1
T − c0. Themonotoni
ity 
laim is 
lear.We are now in a position to prove that every solution of (S) & (E) gives rise to a solutionof (AIPΠ

ε ).Theorem 2.2. Let q : [0, T ] → Q be a solution of (S) & (E) with initial value q0 =
q(0) ∈ S(0). Then, there exits a 
onstant cR = cR(q0) > 0 su
h that for any partition
Π = (0, t1, . . . , tN−1, T ) of the interval [0, T ], the values qj := q(tj), j = 1, . . . , N , solve(AIPΠ

ε ) with ε = cR ‖Π‖, i.e.
qj ∈ ArgmincR‖Π‖

{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
} for j = 1, . . . , N.The quantity cR = cR(q0) is 
alled the reverse approximation 
onstant of the problem.Proof. The energy balan
e (E) implies

E(tj , qj) + DissD(q; [tj−1, tj]) = E(tj−1, qj−1) +

∫ tj

tj−1

∂tE(τ, q(τ)) dτ.The stability qj−1 ∈ S(tj−1) gives E(tj−1, qj−1) ≤ E(tj−1, q̂) + D(qj−1, q̂) for all q̂ ∈ Q.Together with DissD(q; [tj−1, tj ]) ≥ D(qj−1, qj) this gives
E(tj , qj) + D(qj−1, qj) ≤ E(tj−1, q̂) + D(qj−1, q̂) +

∫ tj

tj−1

∂tE(τ, q(τ)) dτ, (2.8)and we 
ontinue by estimating the integral term using the growth estimate (2.4) to �nd
∫ tj

tj−1

∂tE(τ, q(τ)) dτ ≤

∫ tj

tj−1

cE
1

(

E(0, q0) + cE
0

)

ecE
1

τ dτ

≤ cE
1

(

E(0, q0) + cE
0

)

ecE
1

T (tj − tj−1). (2.9)Assuming E(tj−1, q̂) < ∞, the quantity E(tj−1, q̂) 
an be estimated using (2.2):
E(tj−1, q̂) = E(tj , q̂) −

∫ tj

tj−1

∂tE(τ, q̂) dτ

≤ E(tj, q̂) +

∫ tj

tj−1

cE
1

(

E(0, q̂) + cE
0

)

ecE
1

τ dτ (2.10)Now 
hoose q̂ := q∗j with q∗j ∈ Argminδ

{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
} for some

0 < δ ≤ min{1, ‖Π‖}. Su
h a q∗j always exists, and E(s, q∗j ) < ∞ for all s ∈ [0, T ]. ByLemma 2.1, we 
an bound E(0, q∗j ) in (2.10) by a 
onstant M = M(q0, δ) ≤ M(q0, 1) =: M1(note the monotoni
ity of M in δ), whi
h does not depend on Π (or any other quantitiesex
ept q0). This gives
E(tj−1, q

∗
j ) ≤ E(tj, q

∗
j ) + cE

1 (M1 + cE
0 )ecE

1
T (tj − tj−1). (2.11)6



Plugging (2.9) and (2.11) into (2.8), we see
E(tj , qj) + D(qj−1, qj) ≤ E(tj, q

∗
j ) + D(qj−1, q

∗
j ) + cE

1 (E(0, q0) + M1 + 2cE
0 )ecE

1
T ‖Π‖

≤ inf
{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

+ δ + c̃ ‖Π‖ ,

≤ inf
{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

+ cR ‖Π‖where we have set c̃ := cE
1 (E(0, q0) + M1 + 2cE

0 )ecE
1

T and cR := 1 + c̃. As M1 only dependson q0, so does cR, and the proof is 
omplete.We 
lose this se
tion with an example showing that one 
annot expe
t approximabilityby (IPΠ) instead of (AIPΠ
ε ).Counterexample 2.3. On the spa
e Q = [−1, 1] and in the time interval [0, T ] = [0, 1],we 
onsider the potential

E(t, q) := (1 + q)(1 − q) +
t

2
qtogether with the dissipation distan
e D(u, v) := |v − u|. It is easily seen that thispotential ful�lls all the requirements of the theory on the 
ompa
t interval [−1, 1]. Thefun
tional E(t, .) has pre
isely two (stri
t) lo
al minima, one at −1 and the other at

+1. There, E takes the values E(t,−1) = −t/2 and E(t, +1) = t/2, respe
tively. Thegraph of E(t, .) lies above the supporting hyperplane through the points (−1, E(t,−1)) =
(−1,−t/2) and (+1, E(t, +1)) = (+1, t/2); this hyperplane is represented by the linearmap q 7→ tq/2.At t = 0, the set of stable states S(0) 
ontains 0, be
ause

E(0, q) + D(0, q) = 1 − q2 + |q| ≥ 1 = E(0, 0),sin
e q2 ≤ |q| in [−1, 1]. The following two pro
esses are both solutions to the energeti
formulation (S) & (E) with initial value q0 = 0 ∈ S(0):
q−(t) :=

{

0 if t = 0,

−1 if t ∈ (0, 1]
and q+(t) :=

{

0 if t = 0,

+1 if t ∈ (0, 1]We have −1, +1 ∈ S(t) for all t ∈ [0, 1]. For −1 this is 
lear sin
e −1 is the globalminimum for all t ≥ 0. For+1, the hyperplane q 7→ tq/2 supports the graph of E(t, .). Thishyperplane has at most slope 1/2; therefore, if we add the linear map q 7→ D(+1, q) = 1−q(sin
e q ∈ [−1, 1]) to the graph, we still have a hyperplane with negative slope −1/2supporting the graph and going through (+1, E(t, +1)). Hen
e, also +1 ∈ S(t). We havethus established the validity of (S) for q− and q+. Further, for t ∈ (0, 1], the energybalan
e (E) holds as well:
E(t, q±(t)) + DissD(q±; [0, t]) = E(t,±1) + D(0,±1) =

±t

2
+ 1

= E(0, q0) +

∫ t

0

∂tE(τ, q±(τ)) dτ7



sin
e ∂tE(τ, q±(τ)) = ±1/2 almost everywhere. For t = 0, the energy balan
e is trivial.While both q− and q+ solve (S) & (E), the in
remental problem (IPΠ) will always sele
t
q−: In the �rst step, at time t1 > 0, we seek the global minimizer of E(t1, .) + D(0, .).But this global minimizer 
learly is −1. So, the dis
rete solution will jump to q1 = −1and, be
ause −1 ∈ S(t) for all t, stay there forever. Passing to the limit, we get thesolution pro
ess q− from above. The other solution q+, however, is not sele
ted. Thisshows that not all solutions of (S) & (E) 
orrespond to dis
rete solutions if we only allowstri
t minimizers in the in
remental problem.Note that E(t, .) is the restri
tion of the double-well potential

(t, q) 7→ |1 − q| |1 + q| +
t

2
qto the interval [−1, 1]. We refrained from 
arrying out the example on a bigger spa
e forease of notation only; everything works just the same for bigger intervals.Hen
e, the this example represents physi
ally a phase-transition problem, where the ener-gies of the two phases 
hange in the 
ourse of time due to a pres
ribed loading (q 7→ tq/2).Our results therefore re�e
t that while there might be a �preferred� solution q−, anothersolution, namely q+, 
an also o

ur if we allow for small (in fa
t, arbitrarily small) pertur-bations. This is nothing else but the instability of rate-independent evolution pro
essesand seems to be well in line with physi
al intuition.Remark 2.4. The last 
ounterexample also shows that the error order ε = O(‖Π‖) isoptimal: If the solution q+ is to be sele
ted, the dis
rete solution must jump from 0 to

+1 at time t1. The di�eren
e between E(t1,−1) and E(t1, +1) is t1, hen
e the error in theminimization of E(t1, .) +D(0, .) is t1 = O(‖Π‖) and nothing better than linear order 
anbe a
hieved.In summary, the results of the this se
tion suggest that (AIPΠ
ε ) is better suited than (IPΠ)as a time dis
retization of (S) & (E). This holds espe
ially in numeri
al appli
ations, 
f.Se
tion 5.3 Sets of approximate minimizers and Γ-
onvergen
eIn this se
tion, we provide some auxiliary results on ε-minimizers of Γ-
onverging fun
-tionals. This preliminary 
onsiderations will be needed in the following se
tion. Theresult is stated in a little more generality than what is needed subsequently in order to
larify ideas and avoid too mu
h notational 
lutter.In the following, let X be a Hausdor� spa
e and, just like in Se
tion 2, all topologi
alnotions are to be understood in a sequential sense. The fun
tional F∞ : X → R∞ is 
alledthe (sequential) Γ-limit of the sequen
e (Fk)k of fun
tionals Fk : X → R∞, if it satis�es

8



the following two 
onditions:(i) For all x ∈ X and all (xk)k with xk → x the lim inf-inequality holds:
F∞(x) ≤ lim inf

k→∞
Fk(xk)(ii) For all x ∈ X there exists a re
overy sequen
e (xk)k,i.e. xk → x andF∞(x) = lim

k→∞
Fk(xk).The (unique) Γ-limit of the sequen
e (Fk)k is denoted by F∞ = Γ-limk Fk.Here, only the sequential notion of Γ-
onvergen
e is employed even though X mightnot be �rst 
ountable, in whi
h 
ase sequential and general topologi
al 
on
epts di�er.Still, in the 
al
ulus of variations it is often more 
onvenient to use sequen
es instead ofneighborhoods and nets. For Γ-
onvergen
e in general topologi
al spa
es, see [Dal93℄.We also need the following notion of uniform 
oer
ivity: A family (Fk)k, k ∈ N, offun
tionals Fk : X → R∞ is 
alled equi-mildly 
oer
ive if there exists a 
ompa
t set

K ⊆ X with
infX Fk = infK Fk for all k ∈ N. (3.1)The �rst result of this se
tion shows that ε-minimizers of F∞ 
an be approximated arbi-trarily well by (ε + δ)-minimizers of the Fk, where δ > 0.Proposition 3.1. Let Fk : X → R∞, k ∈ N, be equi-mildly 
oer
ive fun
tionals andassume F∞ = Γ-limk Fk. Then, for all ε ≥ 0 and x ∈ Argminε(F∞) and all re
overysequen
es (xk)k for x (in parti
ular xk → x) and for every δ > 0 it holds that xk ∈

Argminε+δ(Fk) for all k ≥ k0 = k0(δ) with k0(δ) su�
iently large.Proof. From the 
onvergen
e of in�ma with respe
t to Γ-
onvergen
e in the 
ase ofequi-mildly 
oer
ive fun
tionals [Dal93,Bra02℄, we know that infX F∞ = limk→∞ infX Fk.Hen
e, for k su�
iently large, it holds that
|infX F∞ − infX Fk| ≤

δ

2
.Let now (xk)k be a re
overy sequen
e at x, i.e. xk → x and F∞(x) = limk→∞ Fk(xk)(be
ause F∞ = Γ-limk Fk, there exists at least one su
h sequen
e). This implies, again for

k big enough, that
|Fk(xk) − F∞(x)| ≤

δ

2
.Combining these two estimates with |F∞(x) − infX F∞| ≤ ε yields

|Fk(xk) − infX Fk| ≤ |Fk(xk) − F∞(x)| + |F∞(x) − infX F∞| + |infX F∞ − infX Fk|

≤
δ

2
+ ε +

δ

2
= ε + δ,i.e. xk ∈ Argminε+δ(Fk) for all k su�
iently large.9



Remark 3.2. An inspe
tion of the proof reveals that if infX Fk = infX F∞ for all k ∈ N,then we do not need the assumptions of equi-mild 
oer
iveness as it is only needed for
onvergen
e of in�ma. This equality of in�ma is indeed easy to ful�ll in the 
al
ulus ofvariations: We 
an always set F ′
k := Fk+ck, where ck is 
hosen pre
isely to ensure equalityof in�ma. This translation does not 
hange the minimization problem asso
iated with Fk,in parti
ular Argmin Fk = Argmin F ′

k.One 
ould hope to avoid the usage of the sequen
e (xk)k and 
onje
ture that an ε-minimizer of F∞ is also an nε-minimizer of Fk for some n ∈ N and for k su�
ientlylarge. Even if all the Fk are lower semi
ontinuous, however, this is not the 
ase as shownby the following 
ounterexample.Counterexample 3.3. Let X = [−1, 1] and for k ∈ N de�ne
Fk(x) :=

{

−1 if x = 1/k,

0 otherwise, and F∞(x) :=

{

−1 if x = 0,

0 otherwise.Clearly, F∞ = Γ-limk Fk and all Fk, F∞ are lower semi
ontinuous. However, for any
ε ∈ [0, 1), the only ε-minimizer is x = 0, but x = 0 is no (ε+δ)-minimizer of any Fk aslong as ε + δ < 1.The next 
ounterexample shows that in Proposition 3.1 we 
annot repla
e the Γ-limit bythe (sequential) Γ-limes inferior Γ-lim infk Fk of the sequen
e (Fk)k, whi
h is de�ned asthe fun
tional F∗ : X → R∞ with

F∗ = Γ-lim infk Fk := inf { lim inf
k→∞

Fk(xk) : xk → x }. (3.2)Counterexample 3.4. Let again X = [−1, 1] and for all k ∈ N de�ne
Gk(x) :=











(−1)k if x = 1/k,

−1/2 if x = 1,

0 otherwise, and G∗(x) :=











−1 if x = 0,

−1/2 if x = 1,

0 otherwise.Clearly, G∗ = Γ-lim infk Gk, but the Gk do not Γ-
onverge. In fa
t, for x = 0, onewould need to 
onstru
t a sequen
e (xk)k with −1 = G∗(0) ≥ lim supk→∞ Gk(xk). But as
G2l ≥ −1/2, it follows that lim supk→∞ Gk(xk) ≥ −1/2, whi
h leads to the 
ontradi
tion
−1 ≥ −1/2.While for the subsequen
e (xkl

)l with kl = 2l + 1 and x2l+1 = 1/(2l + 1) we even have
x2l+1 ∈ Argminε(F2l+1) (without δ), the 
on
lusion of Proposition 3.1 fails, be
ause we
annot �nd a �whole� sequen
e (xk)k with xk ∈ Argminε+δ(Fk): The only, say, 1/6-minimizer of G∗ is x∗ = 0 (ε = 1/6), but any (1/6 + 1/6)-minimizer (δ = 1/6) for G2lmust be x2l = 1 and hen
e the sequen
e (xk)k 
annot 
onverge to x∗ = 0.4 Approximation for sequen
es of problemsIn this se
tion we will show that, under suitable 
onvergen
e assumptions on the involvedfun
tionals, solutions to (S∞) & (E∞) 
an be approximated by solutions to (AIPΠ

k,ε).10



Appli
ations are given in Se
tions 5 and 6.On the state spa
e Q = F × Z, 
onsider a sequen
e (Ek)k of energy-storage fun
tionals
Ek : [0, T ] ×Q → R∞ as well as a limit energy E∞ : [0, T ] ×Q → R∞. We require thesefun
tionals to ful�ll the following assumption, where, for brevity, we denote by N∞ theset N ∪ {∞}:Uniform 
ontrol of the power ∂tEk:there exist cE

0 ∈ R, cE
1 > 0 su
h that for all k ∈ N∞ :If q ∈ Q satis�es Ek(s, q) < ∞ for some s ∈ [0, T ], then(i) Ek(., q) ∈ C1([0, T ]) and(ii) |∂tEk(t, q)| ≤ cE
1 (cE

0 + Ek(t, q)) for all t ∈ [0, T ].

(4.E1)
Equi-
oer
ivityFor all t ∈ [0, T ] and E ∈ R, the set
⋃

k∈N

{

q ∈ Q : Ek(t, q) ≤ E
} is relatively 
ompa
t. (4.E2)Further, let us be given a sequen
e (Dk)k of dissipation distan
es Dk : Z × Z → [0,∞]and a limit dissipation D∞ : Z × Z → [0,∞]. We assume:Quasimetri
:For all k ∈ N∞ and z1, z2, z3 ∈ Z :(i) Dk(z1, z2) = 0 if and only if z1 = z2 (positivity) and(ii) Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3) (triangle inequality). (4.D)Of 
ourse, the Gronwall- and a-priori estimates (2.1)�(2.5) from Se
tion 2 now hold forall Ek with k ∈ N∞.We want the fun
tionals Ek and Dk to 
onverge to E∞ and D∞, respe
tively, in an appro-priate sense:

Γ-limit for Ek:For all t ∈ [0, T ] : E∞(t, .) = Γ-limk Ek(t, .).
(4.Γ1)Continuous 
onvergen
e of Dk:For all sequen
es (qk)k, (q̃k)k with qk → q, q̃k → q̃ that additionallysatisfy supk∈N(Ek(t, qk) + Ek(t, q̃k)) < ∞ for one (hen
e all) t ∈ [0, T ] :

Dk(qk, q̃k) → D∞(q, q̃).

(4.Γ2)Note that 
onditions (4.Γ1) and (4.Γ2) together imply the joint Γ-
onvergen
e E∞(t, .) +
D∞(q, .) = Γ-limk(Ek(t, .) + Dk(q, .)) for all t ∈ [0, T ] and q ∈ Q.Example 4.1. Let Q be a Bana
h spa
e equipped with weak sequential 
onvergen
e andlet Q be 
ompa
tly embedded into another Bana
h spa
e Q1. Be
ause Q ⊆ Q1, we 
an
hoose the Q1�Norm ‖.‖1 as our dissipation distan
e for all k, i.e. D∞(u, v) = Dk(u, v) :=11



D(u, v) := ‖v − u‖1. The 
ompa
t embedding then ensures the 
ontinuity of D and hen
ealso the 
ontinuous 
onvergen
e of Dk to D∞.This example shows that we 
an use the L1(Ω) norm as a weakly 
ontinuous dissipationdistan
e in H1(Ω), whi
h is a 
ommon situation in 
ontinuum me
hani
s [Mie05℄.After these preparations we 
an state the main approximation result. It shows thatsolutions to (S∞) & (E∞) 
an be �reversely approximated� by solutions to (AIPΠ
k,ε).Theorem 4.2. Let the assumptions (4.E1), (4.E2), (4.D), (4.Γ1), and (4.Γ2) hold.Moreover, let q∞ : [0, T ] → Q be a solution to (S∞) & (E∞) with initial value q0 =

q∞(0) ∈ S∞(0). Then, for all ε > 0, for all partitions Π = (0, t1, . . . , tN−1, T ) of [0, T ] with
‖Π‖ ≤ ε/(2cR) (cR = cR(q0) > 0 is the reverse approximation 
onstant from Theorem 2.2applied to E∞ and D∞), and for all k, there exist a dis
rete solution qΠ

k := (qk
0 , q

k
1 , . . . , q

k
N),de�ned on the partition Π, of the approximate in
remental problem (AIPΠ

k,ε) asso
iatedwith Ek and Dk, su
h that qk
j → q(tj) as k → ∞.Proof. The main idea of the proof is to �rst 
onstru
t a dis
rete solution to (AIPΠ

∞,ε/2)and then show how this dis
rete solution 
an be 
hanged to yield an solution of (AIPΠ
k,ε)for k su�
iently large. In detail, however, some further te
hni
alities are needed.As E∞ and D∞ ful�ll all the prerequisites of Theorem 2.2, for a partition Π su�
iently�ne, i.e. ‖Π‖ ≤ ε/(2cR), we 
an �nd a dis
rete ε/2-solution q̃Π = (q̃0, q̃1, . . . , q̃N) for(AIPΠ

∞,ε/2), i.e.
q̃j ∈ Argminε/2

(

E∞(tj , .) + D∞(q̃j−1, .)
) for j = 1, . . . , N.Note that Theorem 2.2 uses the 
hoi
e q̃j = q(tj).By assumptions (4.Γ1) and (4.Γ2) we have E∞(tj, .) + D∞(q̃j−1, .) = Γ-limk(Ek(tj , .) +

Dk(q̃j−1, .)). Condition (4.E2) provides the equi-mild 
oer
iveness (3.1) (in fa
t, take
E := E∞(tj , q̃j−1) + 1 and observe that infQ

(

Ek(tj , .) + Dk(q̃j−1, .)
)

≤ Ek(tj , q̃j−1) ≤ E forall k large enough). Hen
e, using Proposition 3.1 for ea
h q̃j we �nd re
overy sequen
es
(qk

j )k with qk
j → q̃j as k → ∞ and

Ek(tj, q
k
j ) + Dk(q̃j−1, q

k
j ) ≤ infQ

(

Ek(tj , .) + Dk(q̃j−1, .)
)

+
ε

2
+

ε

6
(4.1)for all j = 1, . . . , N and k su�
iently large.Be
ause qk

j → q̃j as k → ∞ and the energies are bounded for k su�
iently large (
f. (4.1)),the 
ontinuous 
onvergen
e assumption (4.Γ2) shows Dk(q
k
j , q̃j) → 0 and Dk(q̃j , q

k
j ) → 0as k → ∞, i.e.

max
{

Dk(q
k
j , q̃j),Dk(q̃j , q

k
j )

}

≤
ε

6
(4.2)for all j = 1, . . . , N and k su�
iently large.So far we have 
onstru
ted sequen
es and sele
ted some k0 = k0(ε) large enough su
hthat (4.1) and (4.2) are ful�lled for all qk

j with k ≥ k0. We still need to show that these
qk
j form a dis
rete solution to (AIPΠ

k,ε). 12



For all k ≥ k0 and all j = 2, . . . , N , we �nd by the triangle inequality and estimate (4.2)
infQ

(

Ek(tj, .) + Dk(q̃j−1, .)
)

≤ infQ
(

Ek(tj , .) + Dk(q
k
j−1, .)

)

+ Dk(q̃j−1, q
k
j−1)

≤ infQ
(

Ek(tj , .) + Dk(q
k
j−1, .)

)

+
ε

6
. (4.3)In the 
ase j = 1, we have qk

0 = q̃0 = q0 for all k and hen
e (4.3) also holds for j = 1.Now, using �rst the triangle inequality, then (4.1) and (4.2), and �nally (4.3), we dedu
e
Ek(tj, q

k
j ) + Dk(q

k
j−1, q

k
j ) ≤ Ek(tj , q

k
j ) + Dk(q̃j−1, q

k
j ) + Dk(q

k
j−1, q̃j−1)

≤ infQ
(

Ek(tj , .) + Dk(q̃j−1, .)
)

+
ε

2
+

ε

6
+

ε

6

≤ infQ
(

Ek(tj , .) + Dk(q
k
j−1, .)

)

+
ε

2
+

ε

6
+

ε

6
+

ε

6
= infQ

(

Ek(tj, .) + Dk(q
k
j−1, .)

)

+ ε. (4.4)But this is just qk
j ∈ Argminε

(

Ek(tj , .) + Dk(q
k
j−1, .)

) for j = 1, . . . , N , and the existen
eof solutions to (AIPΠ
k,ε) is shown for k ≥ k0 = k0(ε). Trivially, we 
an �ll up this sequen
efor k < k0 with arbitrary solutions to (AIPΠ

k,ε). The 
laim qk
j → q̃j = q(tj) is 
lear by the
hoi
e of the qk

j and Theorem 2.2.To formulate the next result we have to strengthen the 
onditions on the sequential
onvergen
e on Q, su
h that we are able to extra
t from a double sequen
e a suitablediagonal sequen
e. For E ∈ R we introdu
e the sublevel sets
Λ(E) =

{

q ∈ Q : there exists (t, k) ∈ [0, T ] × N∞ with Ek(t, q) ≤ E
}

.The assumption reads as follows.There exists a metri
 d : Q×Q → [0,∞)su
h that for all E ∈ R and for all qk ∈ Λ(E), k ∈ N∞ :

qk → q∞ if and only if d(qk, q∞) → 0. (4.5)The �nal result states that every solution of the energeti
 system (Q, E∞,D∞) 
an beapproximated by solutions of the approximate in
remental problems (AIPΠn

kn,εn
), if thepartitions Πn, εn → 0, and kn → ∞ are 
hosen suitably.Theorem 4.3. Let the assumptions of Theorem 4.2 and the new assumption (4.5) hold.Moreover, let q∞ : [0, T ] → Q be a solution to (S∞) & (E∞) with initial value q0 =

q∞(0) ∈ S∞(0). Then, for every sequen
e εn → 0, there exists a sequen
e of partitions
Πn = (0, tn1 , . . . , t

n
N(n)−1, T ) of [0, T ] with ‖Πn‖ → 0 as n → ∞, a sequen
e (kn)n of problemindi
es with kn → ∞ as n → ∞, and dis
rete solution qΠn

kn
:= (qkn

0 , qkn

1 , . . . , qkn

N(n)), de�nedon the partition Πn, of the approximate in
remental problem (AIPΠn

kn,εn
) asso
iated with

Ekn
and Dkn

su
h that the pie
ewise 
onstant interpolants qn : [0, T ] → Q of these dis
retesolutions 
onverge on a dense subset T of [0, T ] to the solution q∞.13



Proof. We use a sequen
e of nested partitions Πn ⊆ Πn+1 with ‖Πn‖ ≤ εn/(2cR), where
cR = cR(q0) > 0 is the reverse approximation 
onstant from Theorem 2.2. Then, T :=
⋃

n∈N
Πn is dense in [0, T ].Applying Theorem 2.2 we �nd, for ea
h n ∈ N, a sequen
e (

(qn,k
j )j=0,...,N(n)

)

k∈N
in QN(n)of solutions to (AIPΠn

k,εn
), su
h that

qn,k
j → q(tnj ), E(tnj , q

n,k
j ) → E(tnj , q(t

n
j )) for all n ∈ N j = 0, ..., N(n).With E := sup

{

E∞(t, q(t)) : t ∈ [0, T ]
}

< ∞ (
f. [Mie05℄), we �nd K(n) ∈ N, su
h that
max

{

Ek(t
n
j , q

n,k
j ) : j = 0, 1, ..., N(n)

}

≤ E+1 for all k ≥ K(n). Thus, we 
an employassumption (4.5) on the set Λ(E+1) and obtain, for �xed n ∈ N,
δ(n, k) = max

{

d(qn,k
j , q(tnj )) : j = 0, 1, ..., N(n)

}

→ 0 for k → ∞.Choose the subsequen
e (kn)n∈N su
h that kn ≥ K(n) and δ(n, kn) ≤ 1/n and de�ne thesolutions (qkn

0 , ..., qkn

N(n)) via qkn

j = qn,kn

j . Sin
e the sequen
e of partitions is nested, forea
h t ∈ T there exists a m(t) su
h that t ∈ Πn for n ≥ m(t), i.e., t = tnJ(t,n). Thus,
d(qn(t), q(t)) = d(qn,kn

J(t,n), q(t
n
J(t,n))) ≤ δ(n, kn) ≤ 1/n for n ≥ m(t).This is the desired 
onvergen
e result, and the theorem is established.Remark 4.4. The 
onvergen
e result in Theorem 4.3 
an be strengthened to 
onvergen
efor all t ∈ [0, T ]. For this, one �rst uses the ideas in the proof of Helly's sele
tion prin
iple(
f. e.g. [MaM05,MRS07℄) to show that zn(t) → z∞(t) for all t. For this one uses theuniform a priori bound on the dissipation and in
ludes all jump points of z∞ into T .Next, one needs to impose the further assumption that the global minimizer φ = Φ(t, z)of E(t, ·, z) is unique. Then, it 
an be shown φn(t) → φ(t) as well, 
f. [MaM05℄.Just like in Se
tion 2, we 
annot expe
t stri
t approximability of solutions to (S∞) &(E∞) by dis
rete solutions of (IPΠ
k ) instead of (AIPΠ

k,ε). This, in fa
t, has been settledalready in Counterexample 2.3, be
ause the latter shows that even for a 
onstant sequen
eof fun
tionals, we 
annot get stri
t approximability.To 
on
lude this se
tion, we further show that one 
annot expe
t approximability of solu-tions to (S∞) & (E∞) by time-
ontinuous solutions to (Sk) & (Ek) instead of approximatetime-in
remental solutions to (AIPΠ
k,ε).Counterexample 4.5. Consider the state spa
e Q = [0, 1], the time interval [0, T ] =

[0, 2] and the energy fun
tionals
E∞(t, q) := −q and Ek(t, q) :=

q2

2k
− q for k ∈ Nfor t ∈ [0, 2] and q ∈ R. Also, 
hoose Dk(q1, q2) = D∞(q1, q2) := D(q1, q2) := |q2 − q1|. Asinitial value we sele
t q0 = 0. This setting 
an be seen as a degenerately 
onvex problemin the limit k = ∞ with stri
tly 
onvex approximations for k ∈ N. The pro
ess

q∞(t) :=

{

0 if t ∈ [0, 1),

1 if t ∈ [1, 2], 14



is one of the many solutions of the rate-independent formulation asso
iated with E∞ andD.The stable states S∞(t) are easily seen to be the whole spa
e, i.e. S∞(t) = S∞(0) = [0, 1],thus the stability 
ondition is trivially ful�lled. For t ∈ [0, 1), the energy balan
e is trivialand for t ∈ [1, 2] we have
E∞(t, q∞(t)) + DissD(q∞; [0, t]) = E∞(t, 1) + D(0, 1) = −1 + 1 = 0

= E∞(0, q0) +

∫ t

0

∂tE∞(τ, q∞(τ)) dτ.Hen
e, q∞ is an energeti
 solution of (S∞) & (E∞). We now show that q∞ 
annot beapproximated by solutions to (Sk) & (Ek).For all k ∈ N, the stable sets Sk(t) = Sk(0) again are the whole spa
e [0, 1], sin
e it holdsfor all q, q̂ ∈ [0, 1] that
Ek(t, q̂) + D(q, q̂) − Ek(t, q) =

q̂2 − q2

2k
+ (q − q̂) + |q̂ − q|

=

{

(q̂2 − q2)/(2k) if q̂ ≥ q

(q − q̂)(2 − (q̂ + q)/(2k)) ≥ (q − q̂)(2 − k−1) if q̂ < q

}

≥ 0,i.e. q ∈ Sk(t). Now, the zero-pro
ess qk ≡ 0 trivially is a solution of (Sk) & (Ek) andbe
ause the problem is stri
tly 
onvex and the stable sets are 
onvex, we immediatelyget the uniqueness of this solution [Mie05, Theorem 4.2℄. But, obviously, the zero-pro
essdoes not approximate q∞ in any reasonable sense.5 Quantitative ba
kward error analysisIn this se
tion we use the shorthand E = E∞ and D = D∞. Moreover, without loss ofgenerality, we assume that the energies E(t, q) and Ek(t, q) are uniformly bounded frombelow by a positive 
onstant. Hen
e, we may 
hoose the 
onstant cE
0 to be 0.The aim of this se
tion is twofold. Under additional quantitative 
ontinuity assumptionswe prove exa
t estimates for the reverse approximation. Using this we then provide anexample where the Γ-
onvergen
e is realized as numeri
al approximation via Galerkinsubspa
es Vk ⊆ Q, where Q now is a Bana
h spa
e and the proje
tions Pk : Q → Vk ⊆ Qsatisfy Pkq → q for all q ∈ Q.We 
onsider the limit fun
tionals E : [0, T ] ×Q → R and D : Q×Q → [0,∞) as above.Moreover, we have fun
tionals Ek and Dk su
h that

Ek(t, q) = +∞ for q ∈ Q \ Vk.On the other hand, the main assumptions involve 
ontinuity properties of E and D:
|E(t, q) − E(t, q̂)| ≤

c

2
(E(t, q) + E(t, q̂)) ‖q − q̂‖ , (5.1)

|D(q0, q1) −D(q̂0, q̂1)| ≤ c(‖q0 − q̂0‖ + ‖q1 − q̂1‖) (5.2)15



Further, we assume quanti�ed estimates on the approximations. For all q, q̃ ∈ Vk and all
t ∈ [0, T ] we have an αk > 0 su
h that

|Ek(t, q) − E(t, q)| ≤ E(t, q)αk (5.3)
|Dk(q0, q1) −D(q0, q1)| ≤

αk

2
(E(t, q0) + E(t, q1)) (5.4)Lemma 5.1. Let q : [0, T ] → Q be given su
h that

Eq = sup
{

E(t, q(s)) : s, t ∈ [0, T ]
}

< ∞,

δk = sup
{

‖Pkq(t) − q(t)‖ : s, t ∈ [0, T ]
}

< ∞Moreover, assume αk ≤ 1 and cδk ≤ 1/2. Then,
sup

{

E(t, Pkq(s)) : s, t ∈ [0, T ]
}

≤ 2Eq, (5.5)
sup

{

Ek(t, Pkq(s)) : s, t ∈ [0, T ]
}

≤ 4Eq. (5.6)Proof. Using (5.1) we have for q̂ := Pkq(s)

E(t, q̂) − E(t, q(s)) ≤
c

2
(E(t, q(s)) + E(t, q̂))δk,whi
h implies

E(t, q̂) ≤
1 + cδk/2

1 − cδk/2
E(t, q(s)) ≤

5

3
Eq.Hen
e, (5.5) is established and (5.6) follows by applying (5.3) to q = Pkq(s).To simplify notation in the proof of the main result of this se
tion (
f. Theorem 5.3), weintrodu
e

ιk(t, q) := inf
{

Ek(t, q̂) + Dk(q, q̂) : q̂ ∈ Q
}and similarly for the limit fun
tionals E and D. The next result is a quantitative versionof Lemma 2.1.Lemma 5.2. Let q : [0, T ] → Q be a solution to the system asso
iated with the fun
tion-als E and D, where E satis�es (4.E1). Then, for all s, t ∈ [0, T ] we have

ι(s, q(s)) ≤ ecE
1
|t−s|ι(t, q(s)). (5.7)Moreover, if Π = (0=t0, t1, ..., tN=T ) is a partition, then (q(tj))j solves (AIPΠ

ε(Π)) with
ε(Π) = 2(ecE

1
‖Π‖ − 1)Eq. (5.8)Proof. For estimate (5.7) 
hoose qρ in Argminρ E(t, .) + D(q(s), .). Then, we have

ι(s, q(s)) = E(s, q(s)) ≤ E(s, qρ) + D(q(s), qρ)

≤ ecE
1
|t−s|(E(t, qρ) + D(q(s), qρ)) ≤ ecE

1
|t−s|(ι(t, q(s)) + ρ),16



where the �rst estimate uses stability of q(s), the se
ond follows from (2.1), and the thirdis the de�nition of qρ. For ρ → 0 we obtain estimate (5.7).Using the energy balan
e (E) and (2.2) we �nd with ιj := ι(tj , qj) = E(tj, q(tj)),
E(tj , qj) + D(qj−1, qj) ≤ E(tj, qj) + DissD(q; [tj−1, tj ])

= E(tj−1, qj−1) +

∫ tj

tj−1

∂tE(τ, q(τ)) dτ ≤ ιj−1 +

∫ tj

tj−1

cE
1 ecE

1
(τ−tj−1)Eq dτ.Using (5.7) with s = tj−1 and t = tj we pro
eed to get

E(tj , qj) + D(qj−1, qj) ≤ ecE
1

(tj−tj−1)ι(tj , qj−1) + (ecE
1

(tj−tj−1) − 1)Eq.Using ι(tj , qj−1) ≤ E(tj, q(tj−1)) ≤ Eq and tj−tj−1 ≤ ‖Π‖, we obtain
E(tj , qj) + D(qj−1, qj) ≤ ι(tj , qj−1) + 2(ecE

1
‖Π‖ − 1)Eq,and (5.8) is established.Theorem 5.3. Let q : [0, T ] → Q be a solution to the energeti
 system (Q, E ,D). Letthe assumptions of Se
tion 4 as well as the estimates (5.1)�(5.4) hold and let δk and Eqbe de�ned as in Lemma 5.1. Then, for all k ∈ N su
h that cδk ≤ 1/2 and αk ≤ 1, andall partitions Π = (0 = t0, t1, . . . , tN = T ) of [0, T ], the sequen
es (Pkq(tj))j=0,...,N aresolutions to (AIPΠ

k,ε̂(k,Π)) with
ε̂(k, Π) = Eq

[

2(ecE
1
‖Π‖ − 1)Eq + 11αk + 5cδk

]

.Proof. For short notation let qk
j = Pkq(tj) and qj = q(tj). We use the assumptions (5.3)and (5.4) and the a-priori estimates (5.5) and (5.6) to estimate as follows:

Ek(tj, q
k
j ) −Dk(q

k
j−1, q

k
j ) ≤ E(tj, q

k
j ) + D(qk

j−1, q
k
j ) + 4Eqαk

≤ E(tj, qj) + D(qj−1, qj) + Eq(4αk + 3cδk). (5.9)Next we estimate ιk(tj , q
k
j−1) from below using ι(tj , qj−1). For this let ρ0 := Ek(tj, q

k
j−1) −

ιk(tj, q
k
j−1), whi
h implies ρ0 ≥ 0. If ρ0 = 0, then
ιk(tj, q

k
j−1) = Ek(tj , q

k
j−1) ≥ E(tj , q

k
j−1) − 2Eqαk

≥ E(tj, qj−1) − Eq(2αk + 2cδk) ≥ ι(tj , qj−1) − Eq(2αk + 2cδk). (5.10)If ρ0 > 0, we �nd, for ea
h ρ ∈ (0, ρ0), a qρ ∈ Vk with Ek(tj , qρ) + Dk(q
k
j−1, qρ) ≤

Ek(tj, q
k
j−1) ≤ 4Eq and qρ ∈ Argminρ(Ek(tj , .) + Dk(q

k
j−1, .). Hen
e, we estimate

ιk(tj, q
k
j−1) ≥ −ρ + Ek(tj , qρ) + Dk(q

k
j−1, qρ)

≥ −ρ + E(tj, qρ) + D(qk
j−1, qρ) − 7Eqαk

≥ −ρ + E(tj, qρ) + D(qj−1, qρ) − Eq(7αk + cδk)

≥ −ρ + ι(tj , qj−1) − Eq(7αk + cδk).17



Taking the limit ρ ց 0 and 
ombining with the 
ase ρ0 = 0, see (5.10), we �nd
ι(tj , qj−1) ≤ ιk(tj , q

k
j−1) + Eq(7αk + 2cδk). (5.11)We 
on
lude by noting that Lemma 5.2 gives

E(tj , qj−1) + D(qj−1, qj) ≤ ι(tj , qj−1) + ε(Π)with ε(Π) de�ned in (5.8). Combining this with (5.9) and (5.11) we have
Ek(tj, q

k
j−1) + Dk(q

k
j−1, q

k
j ) ≤ ιk(tj, q

k
j−1) + ε(Π) + Eq(11αk + 5cδk),whi
h gives the desired result for ε̂(k, Π).We 
onsider an example for phase transitions on a smooth, bounded domain Ω ⊆ R

d with
d ≥ 2. The state spa
e is Q = Z = H1(Ω) with dissipation distan
e

D(q0, q1) := ‖q1 − q0‖L1(Ω) . (5.12)The energy fun
tional takes the form
E(t, q) :=

∫

Ω

1

2
|∇q(x)|2 + G(q(x)) − f(t, x)q(x) dx, (5.13)where the loading f satis�es f ∈ C1([0, T ]×Ω). The potentialG ∈ C2(R; R) has a boundedse
ond derivative G′′ and is 
oer
ive, i.e., there is C > 0 su
h that G(q) ≥ q2/C − C. Itis important to note that G may be non
onvex, su
h that also E(t, .) : Q → R may benon
onvex. Thus, in general, the energeti
 solutions for the fun
tionals E and D will notbe 
ontinuous in time (even for the L1-norm). Moreover, uniqueness of solutions underan initial 
ondition q(0) = q0 
annot be expe
ted, 
f. [Mie05℄.The 
lassi
al existen
e results apply (see [MiT04,MaM05℄) giving solutions

q ∈ L∞([0, T ]; H1(Ω)) ∩ BV([0, T ]; L1(Ω))for ea
h stable initial datum q0 ∈ H1(Ω). However, the stability 
ondition q(t) ∈ S(t)gives the variational inequality
∆q − G′(q) + f(t, .) ∈ ∂ Sign(0) = [−1, 1].We assume that the domain is a 
onvex polytope and that f is bounded. Then, ellipti
regularity implies
q ∈ L∞([0, T ]; H2(Ω)).Our appli
ation of Γ-
onvergen
e relates to a sequen
e of numeri
al approximations, asis dis
ussed in mu
h greater detail in [MiR06℄. For this we 
hoose a sequen
es (Tk)k oftriangulations, su
h that the maximal diameters
hk = ρ(Tk) with ρ(T ) := max

{

diam(T ) : T ∈ T
}18



tend to 0. However, as our estimates are quantitative, we give estimates for all triangu-lations. Thus, we simplify the notation by using the subs
ript T instead of k.Let VT ⊂ Q = H1(Ω) be a spa
e of 
ontinuous, pie
ewise linear fun
tions (�nite-elementspa
e) asso
iated with T . By PT we denote the H1-orthogonal proje
tion of Q onto VT ,whi
h satis�es
PT q → q in H1(Ω) for all ρ(T ) → 0,There exists C > 0 su
h that for all q ∈ H2(Ω) : ‖PT q − q‖Q ≤ Cρ(T ) ‖q‖H2(Ω) .For any given T we de�ne
DT (q, q̂) := D(q, q̂),

ET (t, q) :=

∫

Ω

1

2
|∇q|2 dx +

∑

T∈T

vol T

d + 1

d
∑

j=0

[

G(q(XT
j ))] − f(t, XT

j )q(XT
j )

]

,where (XT
j )j=0,...,d are the verti
es of the tetrahedron T ∈ T . For q ∈ VT one has

|ET (t, q) − E(t, q)| ≤ E(t, q)α(T ),where the 
lass of triangulations must be restri
ted in su
h a way that α(T ) → 0 for
ρ(T ) → 0. For instan
e, for quasi-uniform meshes one has α(T ) ≤ Cquρ(T )2, where the
onstant Cqu only depends on the lower bound of the interior angles.Thus, (5.3) and (5.4) hold. Of 
ourse, (5.1) and (5.2) hold trivially. Moreover, δk inLemma 5.1 is given as

δT = sup
{

‖PT q(t) − q(t)‖ : t ∈ [0, T ]
}

≤ Cρ(T )‖q‖L∞([0,T ];H2(Ω)).As a result, we obtain the following reverse approximation result whi
h 
an be seen as atype of justi�
ation of a ba
kward error analysis of spa
e-time dis
retization.Theorem 5.4. Let Q = H1(Ω) and E , D be as given in (5.12) and (5.13) with G and f asspe
i�ed. Let q : [0, T ] → Q solve the rate-independent energeti
 system (Q, E ,D). Then,there exists a 
onstant C∗ su
h that the following holds: If Π = (0 = t0, t1, . . . , tN = T ) is apartition of [0, T ] with �neness ‖Π‖ and T is a triangulation of Ω with ‖Π‖+ρ(T )+α(T ) ≤
1/C∗, then the sequen
e (qTj )j=0,...,N de�ned via qTj := PT q(tj) is a solution to (AIPΠ

T ,ε)with ε = C∗

(

‖Π‖+ρ(T )+α(T )
) and satis�es ∥

∥qTj − q(tj)
∥

∥

Q
≤ C∗ρ(T ) for j = 0, 1, ..., N .6 Regularization and relaxation6.1 An example with a regularized fun
tionalLet the state spa
e Q be the Sobolev spa
e H1(0, 1) equipped with its weak topology.Consider the fun
tionals

Ek(t, z) :=

∫ 1

0

1

k
(z′′(x))2 + W (z′(x)) + G(z(x)) − f(t, x)z(x) dx, (6.1)

E∞(t, z) :=

∫ 1

0

W ∗∗(z′(x)) + G(z(x)) − f(t, x)z(x) dx, (6.2)19



where f : [0, T ] → R is a pres
ribed loading G is as in the previous se
tion. The double-well potential is given via W (s) := min{(s − 1)2, (s + 1)2} and has the 
onvexi�
ation
W ∗∗ with W ∗∗(s) = W (s) for |s| ≥ 1 and W ∗∗(s) = 0 on [−1, 1]. In order to apply Ek, weneed twi
e (weak) di�erentiability of z, whi
h is only given in the subspa
e H2(0, 1). Wetherefore set Ek := +∞ on H1(0, 1) \ H2(0, 1). Hen
e, Ek 
an be seen as a regularizationof E given via

E(t, z) :=

∫ 1

0

W (z′(x)) + G(z(x)) − f(t, x)z(x) dx, (6.3)whi
h is not weakly lower semi-
ontinuous on H1(0, 1). All the Ek have 
losed and boundedsublevels in H2(0, 1). Owing to the 
ompa
t embedding H2(0, 1)
c
→֒ H1(0, 1), these sub-levels are 
ompa
t in the weak topology of H1(0, 1).Further, for all k we use the L1(0, 1)�norm as dissipation distan
e, i.e. D(u, v) := ‖v − u‖1.Thus, solutions to the rate-independent energeti
 system (Q, Ek,D) exist by the standardresults of the theory [MaM05,Mie05,FrM06℄ and satisfy the di�erential in
lusion

0 ∈ Sign(∂tz) +
1

k
∂4

xz − ∂x(DW (∂xz)) + G′(z) − f(t, .) a.e. in (t, x) ∈ [0, T ] × Ωtogether with a smooth stable initial 
ondition z(0, .) = z0 ∈ H2(0, 1). Similarly, solutionsto the problem asso
iated with E∞ and D satisfy
0 ∈ Sign(∂tz) − ∂x(DW ∗∗(∂xz)) + G′(z) − f(t, .) a.e. in (t, x) ∈ [0, T ] × Ω.It is well-known that the Ek Γ-
onverge to E∞ and all assumptions on the Ek are alsoeasily seen to hold for adequately 
hosen loadings f [Mül93,Da
89℄. Further, as notedin Example 4.1, the 
onstant sequen
e of dissipation distan
es 
onverges in the requiredsense.From the results in [MRS07℄ we know that solutions to the in
remental problem (IPΠ

k )for the kth problem admit a subsequen
e 
onverging to a solution of (S∞) & (E∞). Now,the results of Se
tion 4 imply that every solution to (S∞) & (E∞) 
an be approximatedby solutions to (AIPΠ
k,ε).6.2 An example for relaxationWe might en
ounter energy fun
tionals E : Q → R∞ for whi
h an in�mizing sequen
e
onverges, but the limit is no minimizer of E . Su
h fun
tionals E 
annot have 
losedsublevels, i.e. they are not lower semi
ontinuous. In appli
ations, this situation is 
ausedby the development of mi
rostru
ture [Mül93,Mül99℄. In order to analyze the ma
ros
opi
behavior of minimizers of su
h fun
tionals, we 
an �relax� E to its lower semi
ontinuousenvelope E∗∗ : Q → R∞ and study the problem asso
iated with the new fun
tional E∗∗.The framework of Γ-
onvergen
e is designed in su
h a way that if we take the Γ-limit ofthe 
onstant sequen
e (E)k, we arrive at the relaxation E∗∗ of E [Dal93,Bra02℄. Thus, we
an apply the methods developed above in order to understand the 
onne
tion betweenthe original and the relaxed problem. 20



In [MRS07℄ it is shown that the relaxed problem is not �too small�, i.e. a sequen
e of so-lutions to the approximate in
remental problem (AIPΠ
ε ) for the original energy fun
tional

E admits a limit point, whi
h is an energeti
 solution to (S∗∗) & (E∗∗) for the relaxedfun
tional E∗∗. In this work, we have shown that the relaxed problem also is not �toobig�, i.e. for every solution of (S∗∗) & (E∗∗) we 
an �nd an asso
iated sequen
e of solutionsto (AIPΠ
ε ).Con
retely, one 
an examine the energies E and E∞ from the last subse
tion (see (6.3) and(6.2)) on
e again to realize that E∞ is the relaxation of E . Again, our results are appli
ableand show reverse approximability of the relaxed problems by approximate solutions to thenon-relaxed problems.In the terminology of the relaxation theory for rate-independent problems as introdu
edin [Mie03, Mie04℄, we have shown the lower in
remental relaxation 
ondition. Su
h a
onditions has previously been seen to hold in the spe
ial 
ase of the theory of phase-transitions in elasti
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