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Abstract

Energetic solutions to rate-independent processes are usually constructed via
time-incremental minimization problems. In this work we show that all energetic
solutions can be approximated by incremental problems if we allow approximate
minimizers, where the error in minimization has to be of the order of the time
step. Moreover, we study sequences of problems where the energy functionals have
a I'-limit.

1 Introduction

Energetic solutions to rate-independent processes were introduced in [MiT99, MiT04]| and
further developed for example in [MaMO05, FrMO06]; a recent survey is [Mie05]. They
allow for a mathematical treatment of a variety of evolution problems in the material
sciences, for example in elastoplasticity [HaR99, OrR99, CHMO02|, phase transitions in
shape-memory alloys [AuP02, MTL02, AuS05, KMR05| and crack formation in brittle ma-
terials [FrM98, DFT05|. Recently, in [MRS07| sequences of such processes have been
studied in the framework of I'-convergence and conditions were derived that guarantee
that solutions of the problems in the sequence admit a limit point solving the limit prob-
lem. Here we go the opposite direction and show that every solution to the limit problem
originates from time-discrete solutions to the approximate problems. This shows that
the limit problem can be used effectively in the study of sequences of rate-independent
problems. Roughly speaking, the theory in [MRS07| states that the solution set is upper
semi-continuous in the I'-limit, whereas here we study the lower semi-continuity.

We now describe the general framework in order to introduce the main ideas. Precise
technical assumptions are postponed until Sections 2 and 4.

Let the state space Q of the system be the product of two Hausdorff topological spaces
F and Z. As we will deal with sequences rather than with general topology tools, all
topological notions are to be understood in a sequential sense. For example, compactness
always means sequential compactness. Here F corresponds to the elastic (or, more gen-
erally, non-dissipative) and Z to the internal (or dissipative) variables. This splitting is
typical in continuum mechanics with dissipation, see [HaN75,ZiW87, HaR99, Fré02]. The
system itself is modeled by two functionals: an energy-storage functional £ : [0,T] x Q —
Ry := RU {400} and a dissipation distance D : Z x Z — [0,00]. The triple (Q, &, D) is
called an energetic rate-independent system.

The energy £ models the elastic or non-dissipative part of the problem and depends on
the process time via a time-dependent loading. The value D(zg, 2;) denotes the minimal
dissipated energy when the state is changed from zy € Z to 2; € Z. Because of this



physical interpretation, we require the triangle inequality and the positivity D(z1, z5) = 0
if and only if z; = 2. However, we do not require D to be symmetric as the physical
dissipation might not have this property, e.g. in elastoplasticity [HaR99|, in crack for-
mation in brittle materials [FrM98, DEFT05]|, or in damage |Fré02, BMRO7|. Although D
acts only on the dissipative part Z of the underlying state space Q, for ¢; = (¢1, z1) and
G2 = (b2, z2) we also write D(qi, ¢2) when in fact we mean D(zq, 29).

For a process z : [0,7] — Z (only in the dissipation part of the state space) and s,t €
[0, T, define the total dissipation Dissp(z;[s,t]) of z in the subinterval [s, t] to be the total
variation of z with respect to the quasimetric D, i.e.

Dissp(z; [s,t]) :== sup{ ZD(Z(Tj_l), 2(15)) + s=T1<---<Ty=t,NeN }

Again, for a process ¢ : [0,7] — F x Z2 = Q with t — (¢(t), 2(t)), we also write
Dissp(q; [s,t]) when we really mean Dissp(z; [s, t]).

An energetic solution to the evolution system associated with £ and D is a process ¢ :
[0,7] — Q that satisfies the stability condition (S) and the energy balance (E) for all
t € 10,77

() E(tq(t) < E(t,) +Dlq(t),q) forall g Q (9)

(i) E(t q(t)) + Dissp(g: [0, ]) = £(0, g(0)) + / D€ (7, (7)) dr ()

In this case, we also say that ¢ is a solution of the energetic rate-independent system
(Q,E,D).
The so-called stable sets

S(t):={qeQ : E,q) <ocoand E(t,q) <E(t,§) +D(q,q) forall g € Q}
play a vital role in the theory and allow condition (S) to be rephrased into
q(t) € S(t) for all t € [0, 7. (S")

Additionally to (S) & (E), we prescribe a stable initial value ¢(0) = ¢o € S(0).

In the case that Q is a Banach space, £ is convex and differentiable, and D is given
through D(zy, z0) = R(22 — z1) with a convex, 1-homogeneous potential R : Z — [0, oo},
this notion is equivalent to the doubly-nonlinear differential inclusion (cf. [CoV90])

0 € IR((t)) + DE(t, q(t)) in Q" (SF)
and the variational inequality
(DE(t,q(t)),v—q(t)) + R(v) — R(4(t)) >0 for all v € Q, (VI)

cf. [MiT04,Mie05]. In this setting, the notion of rate-independence manifests itself through
the 1-homogeneity of R. In contrast to (SF) and (VI), however, the energetic formulation
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(S) & (E) is derivative-free and no linear structure of Q needs to be assumed. This
allows for the treatment of more general problems in continuum mechanics, cf. Section 7
of [Mie05| for a survey.

In the main existence proof of the theory one constructs approximate solutions using
a time-incremental problem. For this, let I = (0,¢1,...,ty_1,7T) be a partition of the
interval [0, 7] and consider:

For j =1,..., N, inductively find ¢; € Q such that

q; S Argmin { g(tj> Cj) + D(Qj—l, Cj) : qA € Q }

The existence result is then obtained by constructing limits of the discrete solutions

(¢})j=o..., of (IP"), where IT, = (t},t},... ,t} ) is a sequence of partitions whose
fineness
I = s (0~ 1)

tends to 0 as n — oo. Then, with the help of a generalized Helly’s selection principle,
we obtain a subsequence converging pointwise to a limit and this limit is shown to be a
solution, cf. [Mie05| for a full exposition. One can now pose the question whether every
solution of (S) & (E) can be obtained in such a way. This, unfortunately, is not true in
general (see Counterexample 2.3). For many purposes, however, it suffices to show that
we can find a solution to an e-approzimate incremental problem for ¢ > 0 and suitable
partitions IT = (0,1, ...,tx-1,7") of [0,7T]:

For j =1,..., N, inductively find ¢; € Q such that
{ J y qj € Q (AIPT)

q; € Argmin, { £(t;,G) + D(gj-1,4) : € Q},

where we employed the set of e-minimizers, € > 0, which, for a functional F': X — R,
is defined as

Argmin_(F) = Argmin_ { F(z) : 2 € X} :={2€X : F(z)<infyx F+e}.

In Section 2, we will show the reverse approzimability of all solutions to (S) & (E) by
discrete solutions to (AIPI) with ¢ = cg||II||, where cg is the reverse approzimation
constant.

Afterwards, we investigate reverse approximability for sequences of problems. These are
given through sequences of energy functionals (&), and dissipation distances (D). For
the kth problem, &k € N, = N U {cc0}, we denote by (Si) and (Ej) the solution con-
ditions corresponding to (S) and (E), respectively. To treat such sequences of prob-
lems, approzimate incremental problems for sequences are employed, cf. [MRSO7|: Let
II=(0,t1,...,tn-1,T) be a partition of the interval [0, 7], let € > 0, and consider:

For j =1,..., N, inductively find ¢; € Q such that
{ J y g € Q (AIPEE)

q; € Argmin, { &(t;,4) + Di(gj—1,4) = §€ Q}.

Obviously, this problem always has a solution. In Section 4 of [MRS07| it is shown that
subsequences of solutions to (AIP;!.) converge (in a certain sense) to a solution of (Sy)
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& (Es). As for single problems, one can be interested in the reverse question: To a
given solution to (Se) & (Ex) can one find solutions to the corresponding approximate
incremental problems (AIPEE)? This question is answered positively in Section 4.

In other words, [MRS07| shows that the limes superior (here in the topological or Painlevé—
Kuratowski sense with respect to pointwise convergence in Q) of (interpolants of) the
time-discrete solutions for the kth functionals & and D on increasingly finer partitions
is contained in the set of time-continuous solutions to the limit problem associated with
€~ and Do,. We here show that also a reverse inclusion holds (with little different choices
of the partition fineness).

In Section 4 we also show that one cannot expect to find time-continuous solutions to
(Sk) & (Eg), which approximate a solution to (Su) & (Exo).

Section 5 provides a more quantitative approach by assuming that everything is defined
in Banach spaces and that the I'-convergence is more explicit. In particular, we discuss a
kind of backward error analysis for space-time discretizations for a phase transformation
model that could be easily be generalized to elastoplasticity as discussed in [HaR99|.
Finally, Section 6 discusses the relations to regularization and relaxation.

2 Approximation for single problems

In this section, the approximability of solutions to (S) & (E) by discrete solutions to
(ATPI) is investigated.

On & and D consider the following standard assumptions, cf. [Mie05| for an explanation
of their physical relevance:

Control of the power O, :

there exist ¢j € R, cf’ > 0 such that:

If ¢ € Q satisfies £(s,q) < oo for some s € [0,7], then (2.E)
(i) &(.,q) € C'([0,T]) and

(i) [0:E(t, q)| < cF(E(t,q) + cf) for all t € [0,T].

Quasimetric:
For all z1, 29,23 € Z:
o U | . (2D)
(i) D(z1,22) = 0if and only if z; = 25 (positivity) and
(ii) D(z1,23) < D(21,22) + D(22, 23) (triangle inequality).
By the Gronwall lemma, (2.E) immediately implies
E(t,q) +cf < (E(s,q) + COE)eCW_S| for all t,s € [0,7],q € Q. (2.1)
Applying this estimate on (2.E), we get
0,E(t,q)| < P (E(s,q) + c&F)ect = for all t,s € [0,T],¢q € Q. (2.2)



Hence, for an energetic solution ¢ : [0,7] — Q and for all ¢ € [0, T], we have the a-priori
estimates

E(t,q(t) +cf < (£(0,q(0)) + cf )et™, (2.3)
10:E(t,q()] < F (£(0,4(0)) + et (2.4)
Dissp(q; [0,1]) < (£(0,(0)) + ¢f)et™, (2.5)

cf. Section 3.1 in [Mie05].

Throughout this section, we silently assume (2.E) and (2.D) to hold. Note that while here
we only require these two conditions, for the existence of a solution all results known so
far need additional assumptions, cf. [MiT04, Mie05].

We commence with a lemma which allows us to estimate the energy of approximative
minimizers.

Lemma 2.1. Let q:[0,T] — Q be a solution of (S) € (E) with initial value gy = q(0) €
S(0) and let 1T = (0,11, ...,ty_1,T) be a partition of the interval [0,T]. Let

q; = q(t;) forj=1,....N —1.

Then, for all 6 > 0 there exists M = M(qo,d) € R such that for all j =1,...,N and
q; € Argminé { g(tﬁ qA) + D(qj—17 qA) : qA € Q }7

it holds that E(s,q;) < M for all s € [0,T]. Further, M(qo,0) is monotonic in d.

Proof. First, we use the d—minimality of ¢; to derive
E(tn,q;) + D(gj-1,q;) < E(t4,q5-1) + D(gj-1,¢5-1) + 6

tn
< 5(tj_1, Qj_l) + / 8“?(7’, Qj_l) dr + 5, (26)
ti—1

where we exploited D(g;_1,¢;—1) = 0. We can now use the growth estimate (2.2) to
deduce

2 L
/ at€(7—> Qj—l) dr < / C{E (5(tj_1, C_Ij_l) + Cg) eC{E(T—tjﬂ) dr
tj—1 tiq

= (g(tj_1, Qj_l) + Céa) <ec¥(tj_tj’1) — 1) . (2.7)

The a-priori bound (2.3) on the energy of the continuous solution provides the necessary
information to estimate the term £(¢;_1, ¢j—1). Indeed,

E(ty 1, q51) + ek < (£(0,q0) + cF) ettt < (£(0,q0) + B) et = L

where L = L(qo, cg, cP) only depends on qo,céE, and cf. We combine this with the previous
estimates (2.6), (2.7) to get

E(ty,q5) < E(t;, 45) + D(gj-1, ;)
< E(tj1,qi—1) + (E(tj—1,gj—1) + ) <ecf(tj—tj—1) — 1) +6

<L+1L <eCfT — 1) +6 = Ly = Ly(qo,0).



Using (2.1) with s = t;, the result follows with M = (Ly(qo,0) + cF)e’” — ¢y. The
monotonicity claim is clear. O

We are now in a position to prove that every solution of (S) & (E) gives rise to a solution
of (AIPH).

Theorem 2.2. Let q : [0,7] — Q be a solution of (S) & (E) with initial value qo =
q(0) € §(0). Then, there exits a constant cg = cr(qo) > 0 such that for any partition
II =(0,t1,...,ty—1,T) of the interval [0,T], the values q; == q(t;), j =1,..., N, solve
(AP with & = cg |||, i-e.

qj € Argmin,_ {&(t;,q) +D(gj-1,q) : € Q} forj=1,...,N.

The quantity cg = cr(qo) s called the reverse approximation constant of the problem.

Proof. The energy balance (E) implies

E(t;,q5) + Disso(q: -1, 4)]) = E(t;1,51) / & (7, gl

J

The stability ¢;—1 € S(tj-1) gives E(tj-1,q-1) < E(tj-1,4) + D(gj-1,9) for all ¢ € Q.
Together with Dissp(q; [tj—1,t;]) > D(g;j—1,q;) this gives

E(tj,q;) +D(gj-1,q9;) < E(tj—1,q) + D(gj-1.q / 0 E(T,q(7)) dr, (2.8)

J

and we continue by estimating the integral term using the growth estimate (2.4) to find

t; t; 5
/ 0E(T,q(1)) dr < / ' (E(0,q0) + ) et dr
ti—1

ti—1

< P (£(0,q0) +c¥) et T(t; —t;1). (2.9)

Assuming £(t;_1,q) < oo, the quantity £(¢;_1,q) can be estimated using (2.2):

E(tj_1,q) = / KE(T,q)

J

< E(t,49) +/ 7 (£00,9) + ) eIT dr (2.10)

Now choose ¢ := ¢; with ¢; € Argmln5{€ i,q) + D(gj—1,4) : q € Q} for some
0 < ¢ < min{l, ||H||} Such a ¢; always exists, and £(s,q}) < oo for all s € [0,7]. By
Lemma 2.1, we can bound £(0, q]*) in (2.10) by a constant M = M(qo, ) < M(qo, 1) =: M
(note the monotonicity of M in ), which does not depend on IT (or any other quantities
except qo). This gives

E(t;- 1,q])<8(J,q])—|rc1 (M, +cb)e ef Tty —tj1). (2.11)



Plugging (2.9) and (2.11) into (2.8), we see

E(tj.q) + D(gj—1,4) < E(t,q}) + D(q-1,4}) + P (£(0, qo) + My + 2¢F)e " |[TI|
<inf{&(t;,q) +D(gj-1.4) : ¢€ Q}+d+e|I,
<inf { &(t;,q4) +D(gj-1,4) = G€ Q} +cr |1

where we have set &:= ¢Z(£(0, o) + My +2¢F)e’ ™ and ¢y := 1+ & As M only depends
on g, so does cg, and the proof is complete. O

We close this section with an example showing that one cannot expect approximability
by (IPM) instead of (AIPI).

Counterexample 2.3. On the space Q@ = [—1, 1] and in the time interval [0, 7] = [0, 1],
we consider the potential

E(t.q) = (1+9)(1 — ) + 54

together with the dissipation distance D(u,v) := |v —u|. It is easily seen that this
potential fulfills all the requirements of the theory on the compact interval [—1,1]. The
functional £(¢,.) has precisely two (strict) local minima, one at —1 and the other at
+1. There, & takes the values £(t,—1) = —t/2 and &(t,+1) = t/2, respectively. The
graph of £(¢,.) lies above the supporting hyperplane through the points (—1,&(t, —1)) =
(—=1,—t/2) and (+1,&(t,+1)) = (+1,t/2); this hyperplane is represented by the linear
map q — tq/2.

At t = 0, the set of stable states S(0) contains 0, because
£(0,¢) +D(0,q) =1 —¢* +]q| =1 =¢£(0,0),

since ¢* < |g| in [—1,1]. The following two processes are both solutions to the energetic
formulation (S) & (E) with initial value ¢o = 0 € S(0):

o [0 itt=o . P LR
TS e 0,1] T 4 it e 0,1]

We have —1,+1 € S(t) for all ¢t € [0,1]. For —1 this is clear since —1 is the global
minimum for allt > 0. For +1, the hyperplane ¢ — tq/2 supports the graph of £(t,.). This
hyperplane has at most slope 1/2; therefore, if we add the linear map ¢ — D(+1,q) = 1—¢q
(since ¢ € [—1,1]) to the graph, we still have a hyperplane with negative slope —1/2
supporting the graph and going through (+1,&(¢,+1)). Hence, also +1 € S(t). We have
thus established the validity of (S) for ¢_ and ¢.. Further, for ¢t € (0,1], the energy
balance (E) holds as well:

E(t, o (1)) + Dissp(gs: [0,8]) = (¢, £1) + D(0, £1) % +1

—c0.a)+ | 06 (r, g (7)) dr



since 0,E(T, q+ (7)) = £1/2 almost everywhere. For ¢ = 0, the energy balance is trivial.

While both ¢_ and ¢, solve (S) & (E), the incremental problem (IP™) will always select
g_: In the first step, at time ¢; > 0, we seek the global minimizer of £(¢1,.) + D(0,.).
But this global minimizer clearly is —1. So, the discrete solution will jump to ¢ = —1
and, because —1 € S(t) for all ¢, stay there forever. Passing to the limit, we get the
solution process q_ from above. The other solution ¢, however, is not selected. This
shows that not all solutions of (S) & (E) correspond to discrete solutions if we only allow
strict minimizers in the incremental problem.

Note that £(t,.) is the restriction of the double-well potential

t
(t,Q)’—)|1—€I||1+€I|+§q

to the interval [—1,1]. We refrained from carrying out the example on a bigger space for
ease of notation only; everything works just the same for bigger intervals.

Hence, the this example represents physically a phase-transition problem, where the ener-
gies of the two phases change in the course of time due to a prescribed loading (¢ — tq/2).
Our results therefore reflect that while there might be a “preferred” solution ¢_, another
solution, namely ¢, can also occur if we allow for small (in fact, arbitrarily small) pertur-
bations. This is nothing else but the instability of rate-independent evolution processes
and seems to be well in line with physical intuition.

Remark 2.4. The last counterexample also shows that the error order e = O(]|II]]) is
optimal: If the solution ¢, is to be selected, the discrete solution must jump from 0 to
+1 at time ¢;. The difference between £(ty, —1) and £(t1, +1) is ¢1, hence the error in the
minimization of £(t1,.) +D(0,.) is t; = O(||II]|) and nothing better than linear order can
be achieved.

In summary, the results of the this section suggest that (AIPI) is better suited than (IP)
as a time discretization of (S) & (E). This holds especially in numerical applications, cf.
Section b.

3 Sets of approximate minimizers and ['-convergence

In this section, we provide some auxiliary results on e-minimizers of I'-converging func-
tionals. This preliminary considerations will be needed in the following section. The
result is stated in a little more generality than what is needed subsequently in order to
clarify ideas and avoid too much notational clutter.

In the following, let X be a Hausdorff space and, just like in Section 2, all topological
notions are to be understood in a sequential sense. The functional F, : X — R is called
the (sequential) T'-limit of the sequence (F}); of functionals Fj : X — R, if it satisfies



the following two conditions:

(i) For all x € X and all (xy), with xx — x the lim inf-inequality holds:
Fo(x) < lilzgn inf Fj,(zy)

(i) For all x € X there exists a recovery sequence (),

ie. xp — v andF(x) = klim Fi(z).

The (unique) I-limit of the sequence (F})y is denoted by F, = I'-limy, Fj.

Here, only the sequential notion of I'-convergence is employed even though X might
not be first countable, in which case sequential and general topological concepts differ.
Still, in the calculus of variations it is often more convenient to use sequences instead of
neighborhoods and nets. For I'-convergence in general topological spaces, see [Dal93].

We also need the following notion of uniform coercivity: A family (Fy)g, & € N, of
functionals Fy : X — R, is called equi-mildly coercive if there exists a compact set
K C X with

il’lf;\{ F, = il’lfK F}, for all £k € N. (31)

The first result of this section shows that e-minimizers of F,, can be approximated arbi-
trarily well by (¢ 4+ §)-minimizers of the Fj, where § > 0.

Proposition 3.1. Let F, : X — R, k € N, be equi-mildly coercive functionals and
assume Fy, = T-limy Fy. Then, for all e > 0 and x € Argmin_(F.,) and all recovery

sequences (zg)r for x (in particular vy — x) and for every 6 > 0 it holds that xp €
Argmin_, 5(Fy) for all k > ko = ko(6) with ko(6) sufficiently large.

Proof. From the convergence of infima with respect to I'-convergence in the case of
equi-mildly coercive functionals [Dal93, Bra02|, we know that infy F., = limy_, . infy F}.
Hence, for k sufficiently large, it holds that

0
|iI1fX FOO — iIle Fk| S 5

Let now (zx)r be a recovery sequence at z, i.e. x; — z and F(x) = limg_ o Fi(zg)
(because F,, = I'-limy, F}, there exists at least one such sequence). This implies, again for

k big enough, that

| Fi(2k) — Foo()] <

N S

Combining these two estimates with |F(z) —infy F| < & yields
|Fy(xg) — infy Fy| < |Fp(xg) — Foo(2)| + |Foo(z) — infy Fi| + |infy Fiy — infy Fi|

<5+5+5—5+5
_2 2_ )

i.e. zp € Argmin__ ;(F},) for all k sufficiently large. O



Remark 3.2. An inspection of the proof reveals that if inf» Fj, = infy F, for all £ € N,
then we do not need the assumptions of equi-mild coerciveness as it is only needed for
convergence of infima. This equality of infima is indeed easy to fulfill in the calculus of
variations: We can always set F} := Fj+cy, where ¢ is chosen precisely to ensure equality
of infima. This translation does not change the minimization problem associated with Fj,
in particular Argmin Fj, = Argmin Fj.

One could hope to avoid the usage of the sequence (xy)r and conjecture that an e-
minimizer of F, is also an ne-minimizer of Fj for some n € N and for k sufficiently
large. Even if all the F}, are lower semicontinuous, however, this is not the case as shown
by the following counterexample.

Counterexample 3.3. Let X = [—1,1] and for k € N define

Fu(x) -1 ifz=1/k, q Fo(a) -1 ifx=0,
x) = an () =
g 0 otherwise, 0 otherwise.

Clearly, F,, = I'-limy Iy and all Fj, F,, are lower semicontinuous. However, for any
e € [0,1), the only e-minimizer is x = 0, but x = 0 is no (¢40)-minimizer of any Fj, as
long as e + 6 < 1.

The next counterexample shows that in Proposition 3.1 we cannot replace the I'-limit by
the (sequential) I'-limes inferior I'-liminfy F} of the sequence (F}y)g, which is defined as
the functional F, : X — R, with

F, = I-liminfy, F, := inf { li]gn inf Fy(xg) @ zp — x}. (3.2)
Counterexample 3.4. Let again X = [—1,1] and for all £ € N define
(—=1)* ifx=1/k, -1 if v =0,
Gi(z) =< —1/2 ifz =1, and Gi(z) =4 —-1/2 ifz=1,
0 otherwise, 0 otherwise.

Clearly, G, = I'-liminf, G, but the G} do not I'-converge. In fact, for z = 0, one
would need to construct a sequence (zy); with —1 = G.(0) > limsup,_, ., Gx(zx). But as
Go > —1/2, it follows that limsup,_, . Gi(zxr) > —1/2, which leads to the contradiction
1> -1/2.

While for the subsequence (xy,); with k; = 21 + 1 and x4 = 1/(2l + 1) we even have
Torr1 € Argmin,(Fyy) (without §), the conclusion of Proposition 3.1 fails, because we
cannot find a “whole” sequence (xy), with z; € Argmin_ s(F)): The only, say, 1/6-
minimizer of G, is x, = 0 (¢ = 1/6), but any (1/6 + 1/6)-minimizer (6 = 1/6) for Gy
must be x9 = 1 and hence the sequence (1), cannot converge to x, = 0.

4 Approximation for sequences of problems

In this section we will show that, under suitable convergence assumptions on the involved
functionals, solutions to (S.) & (Eu) can be approximated by solutions to (AIP},).

10



Applications are given in Sections 5 and 6.

On the state space Q@ = F x Z, consider a sequence (&)x of energy-storage functionals
& [0,T] x Q@ — R, as well as a limit energy & : [0,7] x Q — R,,. We require these
functionals to fulfill the following assumption, where, for brevity, we denote by N, the
set NU {oo}:

Uniform control of the power 0;&y:

there exist ¢) € R, ¢}’ > 0 such that for all k € N, :

If ¢ € Q satisfies & (s, q) < oo for some s € [0,7], then (4.E1)
() &(.q) € C(0,T]) and

(i) [0:E(t, q)| < (el + Ex(t, q)) for all t € [0, T7.

Equi-coercivity
For all t € [0,7] and E € R, the set (4.E2)

: - ) ) "
UkeN { g€ Q : &lt,q) < E} is relatively compact

Further, let us be given a sequence (Dy ), of dissipation distances Dy : Z2 x Z — [0, o0]
and a limit dissipation Dy, : Z x Z — [0, 00]. We assume:

Quasimetric:
For all k € Ny, and 21, 29,23 € Z : (4.D)
(i) Di(z1,22) = 0if and only if z; = 25 (positivity) and '

(ii) Di(z1, 23) < Di(z1, 22) + Di(22, 23) (triangle inequality).

Of course, the Gronwall- and a-priori estimates (2.1)—(2.5) from Section 2 now hold for
all & with k € N.

We want the functionals &, and Dy, to converge to £, and D, respectively, in an appro-
priate sense:

[-limat for &:

4.11
For all t € [0,T] : Ex(t,.) = I-limy, Ek(t, ). (41)
Continuous convergence of Dy.:
For all sequences (qx )k, (Gk)r wWith ¢z — ¢, @ — ¢ that additionally (412)

satisfy supgen(Ex(t, qx) + Ex(t, Gr)) < oo for one (hence all) ¢t € [0, 7] :
Note that conditions (4.I'1) and (4.I'2) together imply the joint [-convergence E(t,.) +
Doo(q,.) = I-limg (& (t,.) + Di(q,.)) for all t € [0,T] and ¢ € Q.

Example 4.1. Let Q be a Banach space equipped with weak sequential convergence and
let @ be compactly embedded into another Banach space Q. Because Q C Q;, we can
choose the Q; Norm ||.||; as our dissipation distance for all k, i.e. Deo(u,v) = Dy(u,v) :=

11



D(u,v) := ||[v — ul|;. The compact embedding then ensures the continuity of D and hence
also the continuous convergence of Dy to D.

This example shows that we can use the L!(Q) norm as a weakly continuous dissipation
distance in H'(Q), which is a common situation in continuum mechanics [Mie05.

After these preparations we can state the main approximation result. It shows that
solutions to (Sw) & (Eo) can be “reversely approximated” by solutions to (AIP},).

Theorem 4.2. Let the assumptions (4.E1), (4.E2), (4.D), (4.I'1), and (4.1'2) hold.
Moreover, let ¢o : [0,T] — Q be a solution to (Se) & (Es) with initial value gy =
400 (0) € §(0). Then, for alle > 0, for all partitions 11 = (0,t1,...,tn_1,T) of [0, T] with
||| <e/(2cr) (cr = cr(qo) > 0 is the reverse approzimation constant from Theorem 2.2
applied to €., and Dy, ), and for all k, there exist a discrete solution gl == (g5, q¥, ..., q%),
defined on the partition 11, of the approximate incremental problem (AIPI,;IE) associated
with &, and Dy, such that qf — q(t;) as k — oo.

Proof. The main idea of the proof is to first construct a discrete solution to (AIPEO’EM)
and then show how this discrete solution can be changed to yield an solution of (ATP}!,)

for k sufficiently large. In detail, however, some further technicalities are needed.

As &, and D, fulfill all the prerequisites of Theorem 2.2, for a partition II sufficiently
fine, i.e. ||II|| < &/(2cg), we can find a discrete e/2-solution ¢"' = (Go, Gy, ..., qGn) for
(AIP;E/Q), ie.

q; € Argmin_ (Eoo(tj, )+ Doo(qj-1, )) forj=1,...,N.

Note that Theorem 2.2 uses the choice ¢; = ¢(¢;).

By assumptions (4.I'l) and (4.I'2) we have E.(t;,.) + Doo(Gj—1,.) = I-limy(Ex(t,,.) +
Dy (gj—1,-)). Condition (4.E2) provides the equi-mild coerciveness (3.1) (in fact, take
E = goo(tj, (jj_l) +1 and observe that il’lfQ (5k(tj, ) + ,Dk((jj—la )) S 5k(tj, (jj_l) S FE for
all k£ large enough). Hence, using Proposition 3.1 for each ¢; we find recovery sequences
(qf)k with q;? — ¢; as k — oo and

€

~ . ~ €
gk(tj, qf) + Dk(q]'_l, q;g) S lIlfQ (gk(tj, ) + Dk(q]‘—la )) + 5 + 6 (4.1)

forall j =1,..., N and k sufficiently large.

Because ¢f — ¢; as k — oo and the energies are bounded for k sufficiently large (cf. (4.1)),
the continuous convergence assumption (4.I'2) shows Dy(g}, ¢;) — 0 and Dy(g;,¢}) — 0
as k — oo, i.e.

_ ~ e
max {Di(q}, G;), De(qs, 4) } < 6

forall j =1,..., N and k sufficiently large.

(4.2)

So far we have constructed sequences and selected some kg = ko(e) large enough such
that (4.1) and (4.2) are fulfilled for all g§ with k& > ko. We still need to show that these
g} form a discrete solution to (AIP},).

12



For all k > kg and all j =2,..., N, we find by the triangle inequality and estimate (4.2)

il’lfQ (gk(tj, ) + Dk(dj_l, )) S iIlfQ (gk(tj, ) —+ Dk(qf_l, )) -+ Dk(c'jj_h Q;‘C—1>

< infg (Ek(t;,.) + Dildh, ) + %. (4.3)

In the case j = 1, we have ¢§ = Gy = qo for all k and hence (4.3) also holds for j = 1.
Now, using first the triangle inequality, then (4.1) and (4.2), and finally (4.3), we deduce

Eulty, ) + Dild)_y, df) < &lty.q5) + Di(- 1q])+Dk(q] 1 dj-1)

)
15 9
< lan ( k(tJ7 ) + Dk(Qj—h )) + 5 + =+ 6
< lan (gk(tj, ) + Dk(qf_l, )) + ;
( €

fo (E(t;,.) + Drlqf_y,.)) +e

TR

6
€ €
6 6 6

(4.4)

But this is just q;? € Argmin, (Ek(tj, )+ Dk(qf_l, )) for j = 1,..., N, and the existence
of solutions to (AIPEE) is shown for k > ko = ko(e). Trivially, we can fill up this sequence
for k < ko with arbitrary solutions to (AIPI,;{ ). The claim q — @; = q(t;) is clear by the
choice of the q;? and Theorem 2.2. O

To formulate the next result we have to strengthen the conditions on the sequential
convergence on Q, such that we are able to extract from a double sequence a suitable
diagonal sequence. For E € R we introduce the sublevel sets

AE)={qe Q : there exists (t,k) € [0,T] x N with &,(t,q) < E }.
The assumption reads as follows.

There exists a metric d : @ x Q — [0, 00)
such that for all £ € R and for all ¢, € A(E), k € Ny
Gk — oo if and only if  d(qk, ¢so) — 0. (4.5)

The final result states that every solution of the energetic system (Q, &+, Do) can be
approximated by solutions of the approximate incremental problems (AIPE:%), if the
partitions II,,, €, — 0, and k,, — oo are chosen suitably.

Theorem 4.3. Let the assumptions of Theorem 4.2 and the new assumption (4.5) hold.
Moreover, let qs : [0,T] — Q be a solution to (Se) & (Es) with initial value qo =
0o(0) € Sxo(0). Then, for every sequence €, — 0, there exists a sequence of partitions
IL, = (0,87, ..o thy—10 T) 0f [0, TT with [[IL,[| — 0 asn — oo, a sequence( 0w )n Of problem
indices with k, — 00 asn — 00, and discrete solution q" = (qo ,q1 ey qN(n)), defined
on the partition 11,,, of the approzimate incremental problem (AIP};I:%) associated with
Ek, and Dy, such that the piecewise constant interpolants g, : [0,T] — Q of these discrete
solutions converge on a dense subset T of [0,T] to the solution G-
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Proof. We use a sequence of nested partitions II,, C I1,,,1 with ||IL,|| < &,/(2cg), where
cr = cr(qo) > 0 is the reverse approximation constant from Theorem 2.2. Then, 7 :=

U, en 1L is dense in [0, T7.
Applying Theorem 2.2 we find, for each n € N, a sequence ((qy’k)jzo,...,z\/(n)) in QN

of solutions to (AIP?Zn), such that

keN

g = q(t)), £, q7") = £t q(t}))  foralln €N j=0,..., N(n).

With E = sup { Ex(t,q(t)) : t € [0,T] } < oo (cf. [Mie05]), we find K (n) € N, such that
max{gk(t?,q;’k) : j=0,1,...., N(n) } < E+1 for all £ > K(n). Thus, we can employ
assumption (4.5) on the set A(E+1) and obtain, for fixed n € N,

d(n, k) = max{d(q;’k,q(t?)) : j=0,1,..,N(n)} -0 fork— oc.

Choose the subsequence (k,)nen such that k, > K(n) and d(n, k,) < 1/n and define the
solutions (gim, ...,qf\?(n)) via qf" = q]”k" Since the sequence of partitions is nested, for
each ¢ € T there exists a m(t) such that ¢ € II,, for n > m(?), ie., t =}, . Thus,

d(T, (1), q(t)) = d(qy At ) < 0(n,kn) < 1/n for n > m(t).

This is the desired convergence result, and the theorem is established. O

Remark 4.4. The convergence result in Theorem 4.3 can be strengthened to convergence
for all ¢ € [0,T]. For this, one first uses the ideas in the proof of Helly’s selection principle

(cf. e.g. [IMaMO05, MRSO07|) to show that Z,(t) — 2.(t) for all t. For this one uses the
uniform a priori bound on the dissipation and includes all jump points of z,, into 7.

Next, one needs to impose the further assumption that the global minimizer ¢ = O(t, 2)
of £(t,-, z) is unique. Then, it can be shown ¢,(t) — ¢(t) as well, cf. [MaMO05].

Just like in Section 2, we cannot expect strict approximability of solutions to (Sy) &
(Eo) by discrete solutions of (IP}') instead of (AIP}!.). This, in fact, has been settled
already in Counterexample 2.3, because the latter shows that even for a constant sequence
of functionals, we cannot get strict approximability.

To conclude this section, we further show that one cannot expect approximability of solu-
tions to (Ss) & (Es) by time-continuous solutions to (Sy) & (Ej) instead of approximate
time-incremental solutions to (ATP},).

Counterexample 4.5. Consider the state space Q = [0, 1], the time interval [0,7] =
[0,2] and the energy functionals

2

Exlt,q) :=—q and &(t,q) = g—k —qforkeN

for t € [0,2] and g € R. Also, choose Di(q1,¢2) = Doo(q1,G2) := D(q1, q2) = |g2 — q1|. As
initial value we select gy = 0. This setting can be seen as a degenerately convex problem
in the limit £ = oo with strictly convex approximations for k € N. The process

)0 ifte]o,1),
Goo(t) = {1 itte(l,2,
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is one of the many solutions of the rate-independent formulation associated with £, and D.
The stable states Sy (t) are easily seen to be the whole space, i.e. Suo(t) = S5 (0) = [0, 1],
thus the stability condition is trivially fulfilled. For ¢ € [0, 1), the energy balance is trivial
and for ¢ € [1,2] we have

Eoo(t, qoo(t)) 4+ Dissp(Guo; [0,t]) = Ex(t, 1) + D(0,1) = —-14+1=0

=E-(0,q) + /Ot 04Eoo (T, oo (7)) drT.

Hence, ¢ is an energetic solution of (Sw) & (Es). We now show that g, cannot be
approximated by solutions to (Sg) & (Eg).

For all £ € N, the stable sets Si(t) = Sk(0) again are the whole space [0, 1], since it holds
for all ¢,q € [0, 1] that

~2 2
A R @ —q R
Ew(t,q) +D(q,q) — Ek(t, q) = o +(q—q)+|q—ql

:{@?—fV@@ ﬁqu}>0

(-2 (G+a)/(2k) = (¢—2-k") ifg<gqg

ie. ¢ € Sk(t). Now, the zero-process ¢, = 0 trivially is a solution of (Sg) & (Ex) and
because the problem is strictly convex and the stable sets are convex, we immediately
get the uniqueness of this solution [Mie05, Theorem 4.2|. But, obviously, the zero-process
does not approximate ¢, in any reasonable sense.

5 Quantitative backward error analysis

In this section we use the shorthand £ = £, and D = D,,. Moreover, without loss of
generality, we assume that the energies £(t,q) and &(t,q) are uniformly bounded from
below by a positive constant. Hence, we may choose the constant ¢ to be 0.

The aim of this section is twofold. Under additional quantitative continuity assumptions
we prove exact estimates for the reverse approximation. Using this we then provide an
example where the I'-convergence is realized as numerical approximation via Galerkin
subspaces V, C Q, where O now is a Banach space and the projections P, : @ — V,, C Q
satisfy P,q — ¢ for all ¢ € Q.

We consider the limit functionals £ : [0,7] x @ — R and D : Q x Q — [0, 00) as above.
Moreover, we have functionals £, and D, such that

Ek(t,q) =400 forge Q\ V.

On the other hand, the main assumptions involve continuity properties of £ and D:

E(t.q) = £ < 5(Etq) +E(t.0) lg—dll. (5.1)
D@0, 1) = Pldo, @0)| < elllao — doll + llax — ) (5.2)
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Further, we assume quantified estimates on the approximations. For all ¢, € V}, and all
t € [0,7] we have an ay, > 0 such that

!
Di(90, ¢1) — D0, 1)| < gk (E(t q0) +E(t q1)) (5.4)
Lemma 5.1. Let q:[0,7] — Q be given such that

E,=sup{&(t,q(s)) : s,t€[0,T]} < oo,
o =sup { [|[Pug(t) —q(®)| : s.t€[0,T]} < o0

Moreover, assume oy, < 1 and cd, < 1/2. Then,

sup { E(t, Pyq(s)) : s,t €[0,T)} <2E,, (5.5)
sup { E(t, Pug(s)) = s,t €[0,T)} <4E,. (5.6)

Proof. Using (5.1) we have for ¢ := Pyq(s)

E(t,q) — E(t,q(s)) < S(E(t q(s)) + E(E 7))o,

N O

which implies

1 2
(i) < o

5
_— < -k,

Hence, (5.5) is established and (5.6) follows by applying (5.3) to ¢ = Prq(s). O

To simplify notation in the proof of the main result of this section (cf. Theorem 5.3), we
introduce

Lk(taQ) ;= inf { gk(tan) + Dk(Q>Cj) : Cj € Q}

and similarly for the limit functionals £ and D. The next result is a quantitative version
of Lemma 2.1.

Lemma 5.2. Let q:[0,7] — Q be a solution to the system associated with the function-
als € and D, where & satisfies (4.E1). Then, for all s,t € [0,T] we have

(s.q(5)) < eI olu(t, g(s)). (5.7)

Moreover, if Il = (0=tg, t1,....,tn=T) is a partition, then (q(t;)); solves (AIP?(H)) with
e(I1) = 2(e M — 1) 5. (5.8)
Proof. For estimate (5.7) choose g, in Argmin, E(t,.) + D(q(s),.). Then, we have

Ws,q(s)) = E(s,q(s)) < E(5,9,) + D(a(s), q,)
< eIt q,) + Dla(s), 4,)) < eIt q(5)) + p),
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where the first estimate uses stability of ¢(s), the second follows from (2.1), and the third
is the definition of ¢,. For p — 0 we obtain estimate (5.7).

Using the energy balance (E) and (2.2) we find with ¢; := (¢, ¢;) = E(¢;,q(t;)),
E(t,45) + D(gj1,¢5) < E(t5, ;) + Dissp(g; [tj-1,15])

tj t;
= 5(tj_1, Qj—l) + / 8155(7', q(T)) dr S Lj—1 + / ClEeC{E(T_tjfl)Eq dr.
ti—1 t

-1
Using (5.7) with s =t;_y and ¢ = t; we proceed to get
E(ty a5) + D(gj-1,q5) < TG Du(ty, q50) + (770D — 1)E,.
Using u(tj, ¢;—1) < E(t;,q(t;—1)) < E, and t;—t;_; < |[II||, we obtain
E(tjq5) + D(gj-1,05) <ty gj-1) + 2(e M — 1),
and (5.8) is established. O

Theorem 5.3. Let q : [0,T] — Q be a solution to the energetic system (Q,E,D). Let
the assumptions of Section 4 as well as the estimates (5.1)—(5.4) hold and let 6, and E,
be defined as in Lemma 5.1. Then, for all k € N such that cd, < 1/2 and ap < 1, and
all partitions II = (0 = to,t1,...,tx = T) of [0,T], the sequences (Prq(t;))=o
solutions to (AIPl,;I’é(k’H)) with

.....

E(k,11) = B, |2(e“TM — 1) B, 4 11y, + 5cdy, | -

Proof. For short notation let qf = Puq(t;) and g; = q(t;). We use the assumptions (5.3)
and (5.4) and the a-priori estimates (5.5) and (5.6) to estimate as follows:

En(t, Qf) - Dk(Qf_p Qf) E(t;, Qf) + D(Q;?—h Qf) +4E,0

<
< 5(tj, q]‘) + D(q]'_l, q]') + Eq(40ék + 365k) (59)

Next we estimate ¢ (t;,¢¥_;) from below using ¢(t;, q;_1). For this let po := & (t;,q5_,) —
w(tj,qf_,), which implies py > 0. If py = 0, then

w(ty, @ 1) = Elty, @ 1) = Ety, q)y) — 2Eqay,
> E(tj,qi—1) — Ey(20u 4 2¢6) > u(t), qi—1) — Ey(20u + 2¢6y,). (5.10)

If po > 0, we find, for each p € (0,p9), a q, € Vi with &E(5,q,) + Dk(qf_l,qp) <
Ee(tj,qf_1) < 4E, and g, € Argmin (& (t;,.) + Di(qr_,,.). Hence, we estimate

w(ty, 45—1) = —p + Exlts, o) + D)1, qp)

—p+E(t,q,) + D(‘Jf—h qp) — TE

—p+ E(tj,q,) +D(gj-1,q,) — Ey(Toy, + cby)
—p+ u(tj, qi—1) — Ey(Tay + coy,).

AVARAVARIY
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Taking the limit p \, 0 and combining with the case py = 0, see (5.10), we find

u(ty, qi-1) < uilty, qi_y) + Eq(Toy + 2¢6y). (5.11)
We conclude by noting that Lemma 5.2 gives

E(tj,q5-1) + D(gj-1,q5) < ulty,qj-1) + (1)
with £(II) defined in (5.8). Combining this with (5.9) and (5.11) we have

Eelty, diy) + Duldl_y, db) < wlty, f_y) + (1) + Ey(1lay, + 5cdy),

which gives the desired result for £(k, IT). O

We consider an example for phase transitions on a smooth, bounded domain Q C R? with
d > 2. The state space is Q@ = Z = H(Q) with dissipation distance

D(qo: 1) = llar — qolli gy - (5.12)

The energy functional takes the form

e(t.q) = [ 5 IVa@)* + Gla(w) =~ Fit.0)a(o) da, (513

where the loading f satisfies f € C*([0, T]x€). The potential G € C?(R;R) has a bounded
second derivative G” and is coercive, i.e., there is C' > 0 such that G(q) > ¢*/C — C. Tt
is important to note that G may be nonconvex, such that also £(¢,.) : @ — R may be
nonconvex. Thus, in general, the energetic solutions for the functionals £ and D will not
be continuous in time (even for the L'-norm). Moreover, uniqueness of solutions under
an initial condition ¢(0) = gy cannot be expected, cf. |[Mie05].

The classical existence results apply (see [MiT04, MaMO05]) giving solutions
g € L=([0, T HY(Q)) N BV([0, T; L'(2))

for each stable initial datum ¢y € H'(Q). However, the stability condition ¢(t) € S(t)
gives the variational inequality

Aq—G'(q) + f(t,.) € 9Sign(0) = [-1,1].

We assume that the domain is a convex polytope and that f is bounded. Then, elliptic
regularity implies

q € L>=([0, T]; H*(€2)).

Our application of I'-convergence relates to a sequence of numerical approximations, as
is discussed in much greater detail in [MiR06]. For this we choose a sequences (7j); of
triangulations, such that the maximal diameters

hi = p(T,) with p(7T) := max { diam(T) : T €T }
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tend to 0. However, as our estimates are quantitative, we give estimates for all triangu-
lations. Thus, we simplify the notation by using the subscript + instead of .

Let V7 C Q = H'(Q) be a space of continuous, piecewise linear functions (finite-element
space) associated with 7. By Pr we denote the H!-orthogonal projection of Q onto Vi,
which satisfies

Prq — qin HY(Q)  forall p(T) — 0,
There exists C' > 0 such that for all ¢ € H*(Q) : || Prq — dllo < Co(T) [l -

For any given 7 we define

DT(qa qA) = D(Q> Cj)>

ertn) = [ 5194l dz+ZV°lT — Ft XT)g(XT)],

TeT

where (X]T) ,,,,, 4 are the vertices of the tetrahedron T' € 7. For ¢ € V7 one has

where the class of triangulations must be restricted in such a way that a(7) — 0 for

p(T) — 0. For instance, for quasi-uniform meshes one has a(7) < Cyup(7)?, where the
constant Cg, only depends on the lower bound of the interior angles.

Thus, (5.3) and (5.4) hold. Of course, (5.1) and (5.2) hold trivially. Moreover, d; in
Lemma 5.1 is given as
or =sup{ [[Prq(t) —q@®)| : t€[0,7]} < Cp(T)llqll=(orynz(e)-

As a result, we obtain the following reverse approximation result which can be seen as a
type of justification of a backward error analysis of space-time discretization.

Theorem 5.4. Let Q = H'(Q) and €, D be as given in (5.12) and (5.13) with G and f as
specified. Let q : [0, T] — Q solve the rate-independent energetic system (Q,E,D). Then,
there exists a constant C, such that the following holds: If 11 = (0 = tg,ty,...,txn =T) isa
partition of [0, T with ﬁnenme ||| and T is a triangulation on with | 11||4+p(T)+a(7T) <

.....

with e = C, (||| +p(T )+a(’T)) and 9atzeﬁ€9 Hq] < Cup(T) forj=0,1, ,N

HQ

6 Regularization and relaxation

6.1 An example with a regularized functional

Let the state space Q be the Sobolev space H(0,1) equipped with its weak topology.
Consider the functionals

Er(t, 2) == / 1( "(2))* + W (2 (x) + G(2(x)) — f(t,2)z(x) de, (6.1)
Lt 2) = / W (2 (2)) + G(=(x)) — f(t,2)2(x) da, (6.2)
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where f:[0,7] — R is a prescribed loading G is as in the previous section. The double-
well potential is given via W (s) := min{(s — 1)?, (s + 1)?} and has the convexification
W** with W**(s) = W(s) for |s| > 1 and W**(s) = 0 on [—1,1]. In order to apply &, we
need twice (weak) differentiability of z, which is only given in the subspace H?(0,1). We
therefore set &, := +oo on H'(0,1) \ H*(0,1). Hence, & can be seen as a regularization
of £ given via

Et,z):= /0 W (' (x)) + G(z(x)) — f(t,z)z(x) du, (6.3)

which is not weakly lower semi-continuous on H*(0, 1). All the &, have closed and bounded

sublevels in H2(0,1). Owing to the compact embedding H2(0,1) <> H'(0,1), these sub-
levels are compact in the weak topology of H'(0,1).

Further, for all & we use the L'(0, 1)-norm as dissipation distance, i.e. D(u,v) := |lv — ul];.
Thus, solutions to the rate-independent energetic system (Q, &, D) exist by the standard
results of the theory [MaMO05, Mie05, FrM06] and satisfy the differential inclusion

0 € Sign(0;2) + %0;12 — 0,(DW(0,2)) + G'(2) — f(¢,.) a.e. in (t,x) € [0,T] x Q

together with a smooth stable initial condition z(0,.) = 2o € H?(0,1). Similarly, solutions
to the problem associated with £, and D satisfy

0 € Sign(d;2) — 0, (DW**(9,2)) + G'(2) — f(t,.)  ae. in (t,x) € [0,T] x Q.

It is well-known that the &, I'-converge to £, and all assumptions on the &, are also
easily seen to hold for adequately chosen loadings f [Miil93, Dac89]. Further, as noted
in Example 4.1, the constant sequence of dissipation distances converges in the required
sense.

From the results in [MRS07] we know that solutions to the incremental problem (IP})
for the kth problem admit a subsequence converging to a solution of (Sw) & (Ex). Now,
the results of Section 4 imply that every solution to (Sy) & (Ew) can be approximated
by solutions to (AIP}!).

6.2 An example for relaxation

We might encounter energy functionals £ : Q@ — R for which an infimizing sequence
converges, but the limit is no minimizer of £. Such functionals £ cannot have closed
sublevels, i.e. they are not lower semicontinuous. In applications, this situation is caused
by the development of microstructure [Miil93,Miil99|. In order to analyze the macroscopic
behavior of minimizers of such functionals, we can “relax” £ to its lower semicontinuous
envelope £ : Q@ — R, and study the problem associated with the new functional £**.
The framework of I'-convergence is designed in such a way that if we take the I'-limit of
the constant sequence (&), we arrive at the relaxation £ of £ [Dal93, Bra02|. Thus, we
can apply the methods developed above in order to understand the connection between
the original and the relaxed problem.
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In [MRS07] it is shown that the relaxed problem is not “too small”, i.e. a sequence of so-
lutions to the approximate incremental problem (AIPI) for the original energy functional
£ admits a limit point, which is an energetic solution to (S™) & (E**) for the relaxed
functional £**. In this work, we have shown that the relaxed problem also is not “too

big”, i.e. for every solution of (S**) & (E**) we can find an associated sequence of solutions
to (AIPI).

Concretely, one can examine the energies £ and &, from the last subsection (see (6.3) and
(6.2)) once again to realize that £ is the relaxation of £. Again, our results are applicable
and show reverse approximability of the relaxed problems by approximate solutions to the
non-relaxed problems.

In the terminology of the relaxation theory for rate-independent problems as introduced
in |Mie03, Mie04|, we have shown the lower incremental relazation condition. Such a
conditions has previously been seen to hold in the special case of the theory of phase-
transitions in elastic solids [The02]. See also [MiR03,KMRO05| for models where a gradient
Young-measure relaxation is employed.
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