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Via Carlo Alberto 10, I-10123 Torino, Italy
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WeierstraB-Institut fir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafle 39, D-10117 Berlin, Germany

Abstract.

This paper is concerned with singular Stefan problems in which the heat flux is proportional
to the gradient of the inverse absolute temperature. Both the standard interphase equili-
brium conditions and phase relaxations are considered. These problems turn out to be the
natural limiting cases of a thermodynamically consistent model for diffusive phase transi-
tions proposed by Penrose and Fife. By supplying the systems of equations with suitable
initial and boundary conditions, a rigorous asymptotic analysis is performed, and the unique
solutions to the different Stefan problems are derived as asymptotic limits of the solutions
to the Penrose-Fife phase—field problem.

1. INTRODUCTION

It is well-known that a weak formulation for the Stefan problem is based on the pair of
equations

Bi(co + Lx) + div(l?:(ﬂ)V(%)) —g Q=0 x (0,T), (1.1)

X € H(0 — bc) inQ, (1.2)
for the absolute temperature 6 : @ — R and the phase variable x : @ — [0,1]. Here,
Q0 C R3 denotes a smooth bounded domain with boundary I'; T > 0 stands for a final
time, and 0;,div,V indicate time derivative, spatial divergence and gradient operators,
respectively. The datum g : @ — R gives the heat supply, the constants co and L are
referred to as specific heat and latent heat, and & : (0, + c0) — R is a positive function
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depending on the thermal conductivity of the material. It is worth recalling that the variable
x usually represents the local concentration of one of the two phases, for instance of water
in a water—ice system. Thus, with 6¢ being the critical temperature of phase change and
H denoting the Heaviside graph, the inclusion (1.2) postulates that x = 0 where 6 < ¢
(solid region), x = 1 where 6 > ¢ (liquid region), and x € [0, 1] where 8 = 0¢ (mushy
region).

The equations (1.1), (1.2) can be derived following the usual approach of thermodynamics
(see [8]). Thus, (1.2) is a constitutive relation complying with the second principle, and (1.1)
results from the balance of internal energy with the heat flux ¢ given by

7= E(G)V(%). (1.3)

The classical Stefan problem has been widely investigated (cf., e.g., [7] and the references
therein) in the framework of the Fourier law which corresponds to the choice k(8) = k62
in (1.3), for some constant £ > 0. On the contrary, this paper is characterized by the
alternative assumption that kisa constant,

k(@) =k >0. (1.4)

In fact, we study the system (1.1)-(1.2) and some perturbations thereof within the above
setting. Let us note that (1.4) arises quite naturally as a first choice in (1.3) and has the
advantage that the consequent heat flux law keeps the absolute temperature away from the
singular value § = 0, as one expects from the physical point of view.

In this connection, we point out that very recently some effort has been directed towards
the analysis (see [9-15, 20, 22]) of the phase~field model proposed by Penrose and Fife [18,
19} including the position (1.4). In the case when the order parameter x is not conserved
(for the other case we refer to [1, 2, 18]), a general version of the Penrose-Fife system reads

8,(c08 — A(x) + kA (5) =5 =@, (1.5)

Sx— eAx+B(x) 3 () + 28 ing, (16)

with smooth functions A,o and a maximal monotone graph 3 from R to R . Here, § and ¢
are small positive parameters governing the dissipation terms of (1.6). To realize that also
(1.5)—(1.6) is thermodynamically consistent, the interested reader can find a rigorous justifi-
cation in [2], where various phase transition models are studied. In particular, the standard
phase—field model [5] can be recovered from (1.5)-(1.6) by suitably fixing 8,0, and line-
arizing with respect to 8§ — 8¢ (see also [19]).

Let us return to (1.1)~(1.2). In view of (1.4), a comparison between (1.1) and (1.5) shows
that the equation

B (cof + Lx) + kA(%) =g inQ - (7)

can be regarded as a reduction of (1.5) to the simple situation A(x) = —Lx. Moreo-
ver, we may equivalently rewrite the law (1.2) as H~'(x) 3 0 — 8¢ or (multiplying by
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L(6c6)"' > 0)as

-1 11y .
HY(x) 3 L(% - 5) inQ, (1.8)
so that (1.8) corresponds to (1.6) for o(x) = Lx/6c and 8 = H~', provided that § =
e =0. ' ' -

Owing to this relationship, our idea was to study an initial-boundary value problem for the
system (1.7)-(1.8) by approximating it with the analogous problem for § > 0,
e > 0, and then letting 6 and € tend to zero. Such a procedure looks somewhat opportune.
Indeed, one can use the smooth solutions already found for the general situation (1.5)-(1.6)
in the works of Laurencot [13-15] and Kenmochi-Niezgédka [12], who extended techniques
originally developed in [20] and [22]. In addition, the successive asymptotic analysis of the
Penrose-Fife initial-boundary value problem seems to be, by itself, interesting and allows us
to discuss the intermediate cases 6 > 0, ¢ = 0 and § = 0, € > 0, which can be viewed
‘as Stefan problems with just one form of dissipation. The former may be compared with the
relaxed Stefan model considered in [21], and it has already been investigated in the paper
[6] (but in a different framework, including the nonlinearities A,o of (1.5)~(1.6), and with
the aid of regularity results not exploited here).

In order to make the above statements more precise, let us first provide boundary and
initial conditions to (1.7)-(1.8). We choose a boundary condition linear with respect to 1/8,
namely

k%(g) =~,(%—%) in¥®:=T x (0,T), (1.9)

where 0/0n denotes the outward normal derivative, v : £ — Rand 6r : & — R are given
positive functions. In particular, fr represents the outside temperature. Thus (1.9) asserts
that the heat flux is proportional, by the factor «, to the difference of the inverse absolute
temperatures between the exterior and the interior of the body (for other possible right
hand sides in (1.9), see [6, Section 5] and the later Remark 4.8). Next, letting eg : @ —» R
measure the initial enthalpy, we prescribe that (cf. (1.7))

(o8 + Lx)(-,0) = e in Q. (1.10)

Besides the initial-boundary value problem (1.7)—(1.10), we also consider its two variations
obtained by substituting (1.8) with either '

§x: + H Y (x) > L(b‘lg - %) in Q (L.11)
or
s 11y,
—eAx + H Y (x) 3 L(%—E) in Q. (1.12)

The formulations of the two additional problems have to be completed by setting either an
initial condition or a boundary condition, respectively, for x. Therefore we add

x(+,0) = xo inQ (1.13)
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to (1.11) and, according to [18], we couple (1.12) with the no—flux condition

Ox

B =0 inX. (1.14)

Summarizing, we are concerned with the three problems (1.7)—(1.10) (pure Stefan); (1.7),
(1.9)-(1.11), (1.13) (Stefan relaxed in time); (1.7), (1.9)-(1.10), (1.12), (1.14) (Stefan relaxed
in space). We approximate them by the following system of equations and conditions

| 1
8 (cof + Lx) + kA(b—) =gs5. nQ, (1.15)
-1 . 1 1 . o
§x: — eAx + H Y (x) 3 L(—OE - 5) inQ, (1.16)

=0 in%, ALY

QJIQ)
S |x -

d /1y 1 1
’“5;(5) ‘“/(g"g‘)a

(009+LX)('70)=60657 X('70)=X0651 (1'18)

where {gs.},{eosc},{X0s:} are sequences of data with suitable smoothness and convergence
properties. Obviously, one needs that gs.,eos.,X0se approach g,ep, X0, respectively, as
g or 6 or both £ and § tend to 0.

Forany § > 0, £ > 0, under suitable assumptions, the problem (1.15)—-(1.18) has a unique
solution (s.,xse) (cf. [12]). Then the asymptotic analysis can start. The crucial step
consists in deriving global estimates, independent of § and ¢, for 5. and xs.. Owing to
these estimates, we will be able to pass to the limit in (1.15)—(1.16) by compactness and
monotonicity arguments. We perform three limit procedures, letting first ¢ N\, 0, then
8§ \\ 0, and finally both € and §, without any order relation between the two parameters,
tend to 0. We find that all Weak—sta.r limits 6,x of subsequences of {6;s.}, {xg,} must
vield a weak solution to the following Stefan problem

e (1.7), (1.9)~(1.11), (1.13) in the first case (e \, 0),
e (1.7), (1.9)-(1.10), (1.12), (1.14) in the second case (§ \, 0),

o (1.7)-(1.10) in the third case (¢ \, 0, § \, 0).

As aconsequence of this analysis, we will establish three results of global existence. Moreover,
since we can show that each of the three limit problems admits only one solution, the
convergences 05, — 6, xs. — x hold for the whole sequences in any limit procedure.
Concerning the uniqueness proof, we should point out that an essential role is played by the
special form of the boundary condition in (1.9).

Precise formulations of the problems are provided in Section 2, along with statements of the
main results, which will be proved in the subsequent sections. Section 3 contains the proof
of the uniform estimates, Section 4 is devoted to the passages to the limit, and Section 5
brings the details of the uniqueness argument.
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2. MAIN RESULTS

First, we fix some notation. Set V := H*(Q) and identify H := L*(Q) with its dual space
H',so that V. ¢ H C V' with dense and compact injections. Let (-, -) represent either
- the duality pairing between V' and V or the scalar product in H. The norms in both
L*(2) and (L?*(£2))® are simply denoted by || - ||, while || -||r stands for the norm in L2(T').
The trace of a function v € H'(Q) on the boundary T is indicated by v, € H**(T) or,
if no confusion can arise, just by v.

From now on, let 8 coincide with the maximal monotone graph H~!, namely

—0,0] i r=0
B(r) = { {0} if 0<r<1 . (2.1)
0,400) if r=1

Therefore, B acts from [0, 1] to R. Setting u¢ = 1/8¢ and v/r = ( (cf. (1.8) and
(1.9)), let us recall that co,L,k,uc are known positive constants and that g,v,(,e0,%0
are given functions defined on @, %, ), respectively.

For the sake of convenience, the Stefan problems outlined in (1.7)—(1.14) will be formulated
in terms of four unknowns. Besides the absolute temperature  and the phase density x,
we make use of the auxiliary variables v and ¢, related to § and x by the conditions
u = 1/6 and ¢ € B(x). However, before stating the variational formulations, we prescribe
the common assumptions on the data. It is required that

g € L¥(Q), (2.2)
v € L=(%), ¥y>c¢ ae ink, v € L=(X), (2.3)
CeL®E), (>0 aein®, €I, (2.4)
€y = Coeo + LXO ‘ (25)
for some positive constant ¢ and for two initial values 6y, xo fulfilling
8, € HY(Q), 0o >0 ae mnQ, In(6o) € L*=(Q), (2.6)
xo € H'(Q), 0<x <1 ae in. (2.7)

Note that (2.6) yields 6, € H*(Q) N L®(Q) for any r € R. In particular, there are two
positive constants a,b such that

Uy 1= % e HY(Q), a<u <b ae in. (2.8)

" Then, letting § > 0 and ¢ > 0, we can define precisely the three singular Stefan problems
we deal with in this paper.

Problem (P;). Find a quadruple (8,u,X,¢§) satisfying
8 € L=(0,T;L*Q)), u € L*(0,T;H(Q)), (2.9)



x € L=(Q), ¢ € L=(0,T;L*(%))

g >0, u=% a.e. in @,

0<x<1, £€B(x) aeing,

0 + Lx € Wh(0,T; V"),

(B + Lx)(+,8),0) = b [ Vu(,8) - Vo + [(ru = O(-, 1)

+(g(.,t),'u) YVveV, forae t e (0,7),

(08 + Lx)(+,0) = e inV’,
and such that '
x € Wh=(0,T; L*(Q)),

§xt + £ = L(uc — u) ae. in@,

x(+,0) = xo ae in Q.

Problem (P.). Find a quadruple (8,u,x,¢) satisfying (2.9)-(2.15) and
x € L=(0,T; H*(Q)),

—eAx + & = L(ugc — u) ae in @,

=0 ae. inX.

QJ|Q>
S (X

Problem (P). Find (0,u,x,¢) satisfying (2.9)~(2.15) and
¢ = L(uc —u) ae in@.

(2.10)
(2.11)
(‘2'.12)

(2.13)

- (2.14)

(2.15)

(2.16)
(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Remark 2.1. Observe that (2.14) provides a weak formulation of (1.7) coupled with the
boundary condition (1.9) (where v/6r = (). The initial condition (2.15) makes sense even
in the space L*(Q) (and consequently a.e. in ): in fact, due to (2.9)-(2.10) and (2.13),
cod + Lx is a weakly continuous function from [0,7] into L*(?). Regarding (2.12), we
notice that the statement 0 < x < 1 could be omitted since this information is already
contained in the inclusion ¢ € B(x) (cf. (2.1)). Also (2.11) can be presented in terms of



maximal monotone operators, as done in [12]. Indeed, it suffices to introduce the maximal
monotone graph

1
p(r):—;, 0<r<+oo, (2.23)
and to set —u € p(f) a.e. in Q.

For each one of the problems we have an existence and uniqueness result.

Theorem 2.2. Under the assumptions (2.1)-(2.8), there ezists one and only one solution
(0,u,x,&) of Problem (Ps). Moreover, u and x fulfil

u € HY0,T; I¥*(Q)), (2.24)

x € L®(0,T; H'(R)). (2.25)

Theorem 2.3. Assume that (2.1)-(2.8) and

5 ‘
xo € H¥(Q), X2 =0 ae inT, (2.26)
on
—eAxo + B(xo) O L(uc — uo) a.e. in - (2.27)
hold. Then Problem (P,) admits a unique solution (8 ,u,x,¢ ) satisfying (2.24) and
x € H0,T; H'(Q)). (2.28)

Theorem 2.4. Assume that (2.1)-(2.8) and
B(xo) 3 L(uc — uo) a.e. in (2.29)
" hold. Then Problem (P) has one and only one solution (6 ,u, x,f ) fulfilling (2.24).

Remark 2.5. The additional assumptions (2.26)—(2.27) and (2.29) force the initial values
Xo,%o (see (2.5)-(2.8)) to be suitably compatible in the problems where the phase rela-
tionship takes a stationary form (compare (2.20) and (2.22) with (2.17)). However, let us
emphasize the space and time smoothness properties (2.16), (2.25) and (2.19), (2.28) of the
‘phase variable x in the relaxed problems (Ps) and (P.), respectively. In particular, (2.19)
and (2.28) ensure that x € C°(Q) for the solution to Problem (P.).

Next, we consider the approximating system (1.15)-(1.18). Let the sequences gsc,€ose , Xose
satisfy

g5e, atg&: € LOO(Q), (230)
eose = Cobose + LXose, (2.31)
bos. € H(Q) N L=(9Q), bosc > 0 ae. in 2, (2.32)
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1

Uoge = 5 € HY(Q) n L=(Q), (2.33)
Oée
Xose € HZ(Q), %‘L‘. =0 ae. inl, (2.34)
on
0 < xo06e <1 ae inQ (2.35)

forall § > 0, > 0. Combining the results of [12] with those of [13, 14], it is not difficult
to establish the following existence and uniqueness theorem.

Proposition 2.6. Under the assumptions (2.3)-(2.4), (2.30)—(2.85) there is one and only
one quadruple (05, ,Use , Xs¢c, &5 ) fulfilling

85. € H'(0,T; L*(Q)) n L=(0,T; H(Q)) N L=(Q), (2.36)
use € HY(0,T; L*(Q)) N L*0,T; H*(Q)) N L=(Q), (2.37)

xse € WH(0,T; L3(Q)) N HY(0,T; HY(Q)) N L=(0,T; H(Q)), (2.38)

& € L=(0,T; L*(Q)), (2.39)
05, > 0, Use = 7 a.e. in Q, (2.40)

. Sz .
0 < x50 <1, €se € B(xse) a.e. in@, (2.41)
Oi(cobse + Lxse) + kAus. = gs. a.e. in @, (2.42)
80 xse — €Axse + &se = L(uc — us.) a.e. in @, (2.43)
kau&c + yuse = (€, Oxse =0 ae inX, (2.44)

on on

Os5:(-, 0) = Bose, xsg(-, 0) = xo06c a.e. in () (2.45)

forany § > 0 and any € > 0.

Remark 2.7. Note that (2.42) and (2.44) allow us to deduce the variational eqﬁality (cf.
(2.14))

(at(co%, + Lx.s,)(-,t),v) = k/nVugz(-,t) - Vv
+ [ruse = O, ) + (g5, 1), v)

YveV, forae t e (0,T), (2.46)

whence it is easy to verify the regularity (2.13) for ¢o 05, + L Xs.. Besides, (2.45) and (2.31) |
entail the initial condition analogous to (2.15). Actually, owing to (2.31)-(2.33) one could
equivalently prescribe initial values of us. and xs. in place of (1.18) or (2.45).
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Henceforth the problem (2.36)—(2.45) will be obviously named (Ps.). By investigating the
asymptotic behaviour of (Ps.) as one or both of the parameters ¢ and § tend to zero, we
can show that subsequences of the approximating solutions ( 6s.,us. , X5 ,&se ) converge (in
the sense specified below) to solutions (8 ,u,x,¢) of the problems (Ps), (P.), (P), thus
proving the existence parts of Theorems 2.2-2.4. Moreover, because of uniqueness, the whole
sequences will converge. In order to carry out the asymptotic analysis, we need, of course,
that the approximating data gs.,f0sc,X0se Satisfy some boundedness and convergence pro-
perties in addition to (2.30)-(2.35). Instead of detailing our requirements here, we prefer
to select appropriate sequences of data and afterwards check them and infer the wanted
conditions.

Therefore, in all the arguments we take

1/t
gse(z,t) = ;5—;/0 e'(t—")/(h)g(z, rydr, (z,t) € Q, | (2.47)

while the other choices are expressed in the following statements.

Theorem 2.8. Assume that (2.1)-(2.8), (2.80)-(2.85), (2.47), and
bose = bo, (2.48)

Xose — €AXose = Xo a.e. in Q | : (2.49)

hold. Let (8,u,x,¢) and (05.,usc,Xs5¢:,E5c) be the solutions to the problems (Ps) and
(Ps.), respectively. Then, as € tends to 0, we have

bs5c — 0, & — & weakly star in L=(0, T L¥(Q)), (2.50)
use — u weakly star i H'(0, T; L¥3(Q)) n L=(0, T; H(Q)), (2.51)
xse — X weakly star in W>(0,T; L*(Q)) N L=(0,T; H()). (2.52)

Theorem 2.9. Assume that (2.1)—(2.8),’(2.26')—(2.27), (2.80)-(2.85), (2.47)-(2.48), and

Xoée = Xo (253)

hold. Let (8,u,x,¢) and (85 ,Usec,Xs5¢,E5c) be the solutions to the problems (P.) and
(Ps. ), respectively. Then, as & tends to 0, we have the convergences (2.50), (2.51), and

xse — X weakly star in H*(0,T; HY(Q)) N L*=(0,T; H*()). (2.54)

Theorem 2.10. Assume that (2.1)-(2.8), (2.29)-(2.35), (2.47), and

a a o,
Uose — ‘Z'Xosz = Ug — EXO: ‘ (2~55)
—eAxose + ﬁ(XO&e) 3> L(uc — uoh) a.e. 1 (2.56)
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hold (the constant a being defined in (2.8)). Let (8 ,u,x,€) and (05, ,us.,Xsc,&5. ) denote
the solutions to the problems (P) and (P;s.), respectively. Then, as € and § go to 0, we
have the convergences (2.50), (2.51), and

Xse — X weakly star in L=(Q). (2.57)

Remark 2.11. Thanks to (2.41), (2.57) is also fulfilled in the previous two cases. As far as
problem (P) is concerned, one could wonder whether the assumption xo € H(f2) is really
necessary to get the thesis of Theorems 2.4 and 2.10. In fact, (2.7), coupled with (2.8) and
(2.29) (which seem to be essential for the outcome), prevents the interphase set {z € Q :
uo(z) = uc} to be a smooth bi-dimensional surface. Our belief is that xo € H*(Q) is
rather a technical condition (at least for the conclusion of Theorem 2.4), whereas xo should
be allowed to jump. For this matter and other possible generalizations of the results, we
refer the reader to the remarks of Section 4.

3. UNIFORM ESTIMATES

In this section we derive estimates, independent of § and ¢, for the solutions (5., use , Xse
&s. ) to the problem (Ps.) defined by Proposition 2.6. More precisely, our estimates may
depend on § (resp. ¢) if such a parameter is fixed, like in Theorem 2.8 (resp. Theorem
2.9), but then and there we make distinctions. Anyway, in the sequel let § and & represent
two positive upper bounds for § and ¢,

0<6§<4§, 0<e<e, (3.1)
and let C;,: € N, denote uniform constants not varying with § or €.

We start by pointing out some useful properties of the sequences approximating the data.

Lemma 3.1. The functions gs. introduced in (2.47) satisfy (2.30) and

9sllz=(@) < C1, (3.2)

gse — g strongly in L*(Q) ase \, 0 or§ \, 0. (3.3)

Proof. This is quite elementary. Recalling (2.2), we just note that, for instance,
C1 = ||gllze(e) - O

Lemma 3.2. Forany § > 0 and any € > 0 the initial values Oy, ,U05., X065, €052 CON-
sidered in the statements of Theorems 2.8-2.10 are uniquely determined and satisfy (2.31)-
(2.35). Moreover, if &5 € L*(Q),

6065 € ﬂ(xob'c) a.e. in Q‘, (34)
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is defined by o5 = 0 if (Ps) is concerned (see Theorem 2.8) and by fos. = € Axose +
L(uc — uos.) otherwise (see Theorem 2.9-2.10), then it holds

lluosell ey < Ca, g < ugs, < b+ g— a.e. in ), (3.5)
(8 + €)lIxosellzngay < O, A (3.6)

1 . ’
5 lle Axose — éose + L(uc — wose)||* < Ca, (3.7
eose — €0 weakly in L*(Q) ase N\, 0 or§ \, 0, (3.8)

where the constants a,b are specified in (2.8) and C; depends on 1/§ if (Ps) is intended
as limit problem. In this case it is also required that

Xose — Xo Strongly in Lz(Q) ase \, 0. (3.9)

Proof. We first examine the situation in Theorem 2.8. Due to (2.48), (2.6), and (2.8),
fose and ugs. fulfil (2.32)-(2.33) and (3.5). In view of (2.49) and (2.34), it turns out that
Xose is the only solution of the elliptic variational equality

(XOEea‘U) + e /{; vXOﬁc - Vv = (XO,'U) Yove Hl(Q)

Since xo attains values between 0 and 1 (cf. (2.7)), a standard maximum principle ar-
gument enables us to deduce (2.35). Taking v = xps. above and comparing the terms in
(2.49), we easily obtain a '

£ [Vxosel? + lle Axosel? < 219, (3.10)

with |Q| denoting the Lebesgue measure of the domain . Hence, it is straightforward to
recover (3.7). The convergence (3.9) (which implies (3.8) because of (2.48), (2.31), and (2.5))
~can be inferred via singular perturbation techniques (see [17]). As § is fixed, to get (3.6)
we must exploit the further condition xo € H(Q). Multiplying (2.49) by —Axos. and
integrating by parts, it results that

1. 1
’2"||VX06=||2 + e[| Axose|® < 5 IVxoll® (3.11)

and consequently (3.6) follows from (2.7). Next, let us consider the frameworks of Theorems
2.9 and 2.10. Note that (cf. (2.48), (2.53), (2.26)-(2.27)) in both cases ugs. and xos. solve
the system (2.55)—(2.56) supplied with (2.34). Owing to the suitable definition of &ys., (3.7)
is certainly fulfilled. On the other hand, besides showing (3.5)—(3.6) and (3.8), we have to
check that there is a unique pair (uose, Xose ) satisfying (2.34), (2.55)—(2.56). To this end,
it suffices to prove that the nonlinear elliptic problem (2.34),

L a .
{Xose — €Axosec + B(xo0s:) O L(ugc — uo + 5)(0) a.e. in (3.12)

admits one and only one solution Xos., ﬁndking Uos. subsequently from (2.55). The unique-
ness of Xos. is entailed by the monotonicity of 8 and can be verified by contradiction. The
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existence proof is based on standard methods of the theory of maximal monotone operators
(see, e.g., [4] or [3]). Thus, one replaces in (3.12) the graph 3 by its Yosida approximation,

mr if r<0
Bm(r)=3 0 if 0<r<1, me€eN, (3.13)
m(r—1) if r>1
and denotes by xo.,» the solution to
La v a .
TXOm — €Axom + Bm (XOm) = L(uc — uo + §Xo) a.e. in (2, (3.14)

subjected to the conditions in (2.34). In order to derive uniform estimates, we multiply
(3.14) by Xom — AXom and integrate by parts. Observe that

[ B (xom) (xom = Axom) = [ (B(xom)xom + B'(Xom) [Vx0m[?) 2 0
because of (3.13). As the right hand side of (3.14) belongs to H(Q) (cf. (2.7)-(2.8)),

applications of the elementary Young inequality allow us to conclude that

La
2 Itomliscay + € 1Vx0ml? + € |AXoml?

L a
< luc — uo + §X0||Ht(n)-

Then, setting om = Bm(Xom) and comparing the terms in (3.14), also by (3.1) one can
easily calculate a constant C, (independent of §,e, and m ) satisfying

xomllzay + € 1A%0ml* + [léoml® < Ca (3.15)

for any m € N. Thanks to (3.15), there are two elements xo5. € H*(Q), &s. € L*(Q)
such that, possibly taking subsequences, Xom — Xose and éom — €os. weakly in the
respective spaces, as m /" oco. Hence, by compactness we have that

Xom — Xose strongly in L*(Q) (3.16)

and consequently (éom,Xom) — (€06c,Xo0sc) as m /' oo. Therefore, recalling (3, Prop.
1.1, p. 42] and passing to the limit in (3.14), we infer that os.,x0s. fulfil (3.4) and
Xos. actually gives the unique solution to (3.12), (2.34). The above convergences hold
for the whole sequences and, on account of the weak semicontinuity of norms, the esti-
mate (3.10) is still valid for xose and &s.. Then, letting ugs. = uo + a(Xose — X0)/2,
in view of (2.7)~(2.8) and (3.1) it is straightforward to deduce (3.5)~(3.6) and to check
that {os. just coincides with £ Axose + L{uc — uose). Now, (3.8) is trivially satisfied
if (P.) is concerned (see (2.31), (2.48), (2.53)), else it follows from a passage to the li-
mit in (2.55)-(2.56) as ¢ \, 0. Indeed, it turns out that (cf. (3.15), (3.5), and (2.29))
€ Axose — 0 strongly in L?(Q) and ugse — %o, Xose — Xo weakly in H(Q) (and stron-
glyin L?*(Q)), the limits uo and xo being uniquely found by reason of (2.55) and (2.29). Due
to (3.5), (2.31)-(2.33), and (2.5), one recovers weak convergences of o5, to 8 = 1/ug, and
thus of eps. to o, even in H(Q2). By achieving the proof of the lemma, let us point out
that in all three cases we have obtained something more than (3.6) and (3.8) (||xose| = (a)
uniformly bounded and egs. — eg strongly in L?(Q2)), but the statement of the lemma
expresses what we actually need in the further analysis and, at the same time, it yields the
essential requirements for alternative regularizing sequences. t

12



After discussing the properties of approximating data, we are going to treat the problem
(Ps.) and prepare some inequalities fulfilled by xs. and us.. For the moment, we work
(first) on (2.43) and (then) on (2.42) separately.

Lemma 3.3. For any §,¢ obeying (3.1) the solution (65, ,usc, Xse,E5¢ ) of Problem (Ps.)
satisfies

“oxse (I + ¢ [ 1V @oxse) (-, TP dr

< %’: 1 [ [(Gus) @) forac.t € (0,T), (3.17)

lés(-5 )P < 20|L(uc — use( -, 1))[” + 26Cs
_4L6§ /Ot /n (atua,)(atxg,) for se te(0,T), (3.18)
S19x6. (07 + € [ 18 (-, 7ldr

02 t ;
< = - .
5 L/o /n Vus, VXse Vie [O,T], (3.19)

where the constants Cy,Cs are characterized in Lemma 3.2.

Proof. In order to show (3.17)-(3.19) rigorously, we use again the Yosida regularization
(3.13) of the graph B. Therefore, for m € N let X be the solution to the system

60t Xm — €AXm + Bm(xm) = L(uc — us.) ae. in@Q, (3.20)
%X—T:"— = a.e. in %, (3.21)
Xm(+,0) = Xom ae. inQ, (3.22)

with Xom fulfilling (2.34) and (3.14) under the setting of Theorems 2.9 and 2.10, or Xom =
Xosc in the framework of Theorem 2.8. Owing to (3.20) and (3.13), Xm is smoother than
Xsc - Namely, for any m € N we have that (see, e.g., [12, Lemma 4.1])

xm € H*(s,T; L*(Q)) n H'(s,T; H}(Q)) V s € (0,7),
xm € C([0,T]; L*(Q)) n C*([0,T]; H*(Q))

besides (2.38). By exploiting the above regularity, we can get the a priori estimate leading to
(3.17). In fact, we differentiate (3.20) with respect to time, multiply by 8; xm , and integrate
over ! X (s,t) for 0 < s <t < T. Since B, > 0 a.e. in R, thanks to (3.21) we infer
that

218, O + & [ 19 (@) (-, PP

< SN0 (o N = L [ [ (Beuse) (Buxm), (323)
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and then take the limit in this inequality as s \, 0. Moreover, note that (cf. (3.20), (3.22),
(2.45), (2.33)~(2.35), and (3.13))

1
Bexom (+50) = £ (e Axose + L(uo — wose))
if Xom = Xose is given by (2.49), and that (cf. also (3.14) and (2.55))

L
atXm(', 0) - 2_;(X0m - XOG:)

if xom solves (2.34), (3.14). In any case, accounting for Lemma 3.2 it is not difficult to see
that

: 2 2

Wm0 < 2+ - o ~ ol (3.24)
where the last term goes to 0 asm ,” oo because of (3.16). Next, let us just outline the
deduction of estimates like (3.18)—(3.19) for xm and &én = Bm(xm). Concerning (3.18), it
suffices to test (3.20) by &, and integrate only in space, using (3.21) and the positiveness of
B... Then one applies the Young inequality and the bound already found for ||8;xm (-, t)||?
(i.e., (3.23) with s = 0 plus (3.24)). To obtain (3.19) we multiply (3.20) by — Axm and
integrate by parts in space and time. The constant in the right hand side is due to (3.6) (cf.
the proof of Lemma 3.2). In conclusion, the earlier estimates and (2.37) (us. is fixed in such
argument) enable us to pass to the limit in (3.20)~(3.22) as m " co by compactness, and
to establish that the weak star limits xs.,{s. of the sequences xm,&m satisfy (3.17)—(3.19)
(this last part is more detailed in [6, Lemma 3.1}). a

Lemma 3.4. There are two constants Cs and Cs, independent of the parameters & and €
in (8.1), such that the solution (0s.,us.,Xse,Esc) of Problem (Ps.) fulfils

Y Oius. 2  k 3 , C 2
//l + 5 IVus(, B + 7 llusel -, B

< G (1 + /:(“V”&('a T + Jluse(-, T)H%)d»r)

+L ‘/:/n(atxa,) (at'u,g,)k for a,.e‘. te (0,7), (3.25)

the constant c being introduced in (2.3), and

// lV'u.ae SHA/; u,(~,'r)d'r”2
sa@+£@m@ﬂ%ﬂM[w¢@hMM)
+L‘[JtAVX5, Vus. Vitel0,T]. (3.26)

Proof. A precise derivation of the inequality (3.25) needs some preliminary regularization
of (Ps.) or, at least, of (2.42). Referring to [20] or [14] for this matter, let us proceed

14



formally. Testing (2.42) by — 0, use, integrating, and applying formal Green formulas, with
the help of {2.40), (2.44)—(2.45), (2.3)-(2.4), and (2.32)—(2.33) we get the identity

o [ L1221 2 v, 0P + 1 [ (0
= S IVwoscl® + [[(Cus) (9 + 5 (10, O)udk = 26, Oposs)
5 [ i = 260 ~ [ [ o500,

t
+L/0 '/n(at Xse) (Oruse) for ae. t € 0,T7). (3.27)
Thanks to (2.3)-(2.4) and (3.2) we have that *
1 c
5 [ud) (- 8) 2 Slhus(, DIR,

1 c
JCus) (1 8) < ZIClEmo ooy + 5 lusel- DI
’ ¢ ¢ 6tu5e
—/(;/ngscatuse “96=HL°°(Q)/ /’ .

Bt Uge |2 012 ¢ 2
e[ & Lo
Then, recalling also (3.5) and lettmg w denote a constant such that

ol < w(IVel? + [0]E) Yo e BYQ), (3.28)

from (3.27) it is straightforward to deduce (3.25), where Cs depends only upon k,c,cq,w,Cy,
Cz,a,b, [¥llz=z), Iellze(zy » I¢|| 20,75 22(r)) » @nd on the bi-dimensional surface measure
H?(T') of the boundary I'. At this point, it remains to show (3.26), which does not require
any regularization of (2.42). In view of (2.36)—(2.37), (2.45), and (2.31), we remark that

(0095¢+LX55)(,3)+I€A./0‘ uﬁz('yT)dT:606c+[)965('3T)dT

IN

Use

a.e. in Q, Vsel0,T]. (3.29)

Multiplying (3.29) by Aus. (-, s) and integrating over Q x (0, t) , from (2.40) and (2.44)
it results that

60_[) q |V;:&: ||A/ use (-, T)d7|)? + /Ot‘/rgah
- E/:_/P(CO'Y + Lxse (Yuse — C))
+(€05¢+Lt95=(°,T)dT,AAtuge(-,T)dT)

t - )
~ [oseCom) A [ wse(,5)ds) dr
+L/0t_/nVX5e'Vwe Vtelo,T].
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Hence, since (cf. (2.40)—(2.41), (2.3)~(2.4), and (2.31))

t
s /4.66:207
o JI
1 rt t oy
o | [ (eor + Dxoe(vuse = 0) < [ [ F(eo + Lusd),

(6063 + At 955('7T)dTyA/0t U5¢(',T)dT>

1 t 2k ¢ 2
< zleose + [ gseComyar]’ + Z]A [us (-, myar
and eos. = cobos. + LXosc, owing to (2.3), (2.33), (2.35), (3. 2) and (3.5) it is not difficult

to determine a constant Cs, depending juston L,k,co,a,Cy, H*(T), |[7]lz2x), [, and T,
such that (3.26) holds. Therefore the lemma is completely proved. D

By combining the inequalities (3.17)-(3.19) with (3.25)-(3.26), we finally obtain global esti-
mates for the sequences of functions 6s.,us.,Xsc,¢5. considered in Theorems 2.8-2.10.
From now on, let us omit specifications in the statements, being understood that 6 and ¢

satisfy (3.1).

Lemma 3.5. There ezists a constant C7 such that

||1n(“6e)||§f1(o,T;L2(n)) + |[uselZooo,mm(ay + 6 x5 €[50 (0,7;23(0))

+ eIVl z o iz + xscllze@) + llcobse + Lxsellwre(ozivy < Cr. (3.30)

Proof. Take the sum of (3.17) and (3. 25) then apply Gronwall’s lemma. As (0, us.)/us. =
0 In(us.) a.e. in @ and ||In(uos.)||z=(a) is uniformly bounded because of (3.5), to achieve
(3.30) it suffices to recall (3.28), (3.6), (2.41) and to make use of (2.46) along with (2.3)—(2. 4)
and (3.2).

Lemma 3.6. There is a constant Cg such that

||fse||L°°(o,T;L2(n)) + ¢ ||X:“L°°(0,T;H2(ﬂ)) < Cs. (3-31)

Proof. Multiply (3.25) by 46 and add it to (3.18). Due to (3.30) and (3.1), the right hand
side of the resulting inequality is bounded independently of § and €. Next, a comparison
of the terms in (2.43) allows us to control |le Axs.||p=(0,7;z2()), Whence (3.31) follows by
virtue of the boundary condition in (2.44). O

Lemma 3.7. There ezists a constant Cy such that
| ln(use )| Z2o,rsrcay + 186l zeo.mizacay)
+ 8 |xscl|Feo,imray + € IX6ellZ2(0,rm2(a)) < Co- (3.32)
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Proof. The sum of (3.19) and (3.26), the proof of (3.30)—(3.31), and the Gronwall lemma
lead to (3.32). Indeed, the boundedness of

t
A-/l; use( -, T)dT

sup
0<t<T

implies the boundedness of

sup {|Gs.( -, s)
0<s<T

via (3.29). | | a
Lemma 3.8. There is a constant Cyo such that

lus el go,mzorz(ay) + 110sello,rsziay) < Cho- (3.33)

Proof. Recall that in three space dimensions we have the continuous embedding H*(2) C
L%(9). Since ‘

4/3

T
Bl asmay = [ 1] e 00 taus )

< [C1f wel” [ 18 1n(ue)p

< Nlusellzoorizecay 16: 1n(use)l|Z2(oy »
In(6s.) = — In(us.) a.e. in @ (see (2.40)), and |

182 85 |72 o7z )y < N166ellZogo,rizaay 119: In(use)||Z2(q) »

(3.33) is a straightforward consequence of (3.30) and (3.32). | O

Lemma 3.9. There is a constant Cy1 such that

e | xsellin oy < Cu- (3.34)

Proof. Picking v = 1 in (2.46), by (2.3)~(2.4) and (3.2) we realize that
L| [ Bexsel-, )] < eo18e8se(-, Blluxcor

F7lleomiza@y luse( 5 e + Cllzerzrry + C1 9.
Then (3.34) results from (3.30), (3.33), and (3.1), using Poincaré’s inequality. O
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4. PASSAGE TO THE LIMIT AND EXISTENCE

This section is devoted to pursue the proof of Theorems 2.8-2.10 and together prove the
existence of solutions to the problems (Ps), (P.), (P). Moreover, we make some comments
about possible extensions of the results in several directions.

Thanks to the estimates (3.30)-(3.33), within all three frameworks there exist functions
6,u,€,x such that, in principle for subsequences, the convergences (2.50)—(2.51), (2.57),
and

cobse + Lxse = cof + Ly  weakly star in W>=(0,T; V') (4.1)

hold as €, or §, or both £ and §, go to 0. From (2.51) and the Aubin compactness lemma
(see, e.g., [16, p. 58]) we also get

use — u strongly in L*(0,T; H'~"(Q))  foranyr > 0, (4.2)
which implies (if r < 1/2) that ‘ |
Uselp — U strongly in L*(E). (4.3)

Therefore, recalling (3.3), (2.46), and (3.8), it is easy to verify that 6,u,&,x fulfil (2.9)-
(2.10), (2.24), and (2.13)-(2.15). The condition (2.11) follows from (2.40), (2.50), (4.2),
entailing that

1 = Os.use — 6u weakly in L(Q).

The strong convergence of us. plays a role here, as well as in the next derivation of (2.12),
at least for Problem (P). Owing to (2.41) and (2 1), to show (2.12) it is enough to check
that (cf., e.g., [3, Lemma 1.3, p. 42])

limsup/(;T\/.Q EseXse < /OT/‘;fx.’ (4.4)

Let us now examine the three different cases of passage to the limit separately.

Lemma 4.1. Under the assumptions of Theorem 2.8, let 0 ,u,x,¢ be weak star limits of

O5c,Use , X5e €5 for some subsequence of ¢ \, 0. Then (9 u,x,€) yields a solutzon to
Problem (P;).

Proof. Since § is fixed and ¢ tends to 0, (3.30) and (3.32) give (2.52) and
exse — 0 strongly in L*(0,T; H*(Q)), (4.5)

to join with (2.50)—(2.51). Hence, accounting for (2.43), (2.45), and (3.9), it turns out that
(2.16)-(2.18) and (2.25) are satisfied. From (2.52), by the Ascoli theorem, we infer that
Xse — X strongly in C°([0,T]; L*(Q)), which plainly ensures (4.4). But (4.4) can be
recovered without using the last property, just exploiting the weak lower semicontinuity of
norms. Indeed, observe that (see (2.43)—(2.45))

T T 5 ,
/; _/nfath = L/O _/n(uc — Use) Xse + §||X05=|[
5 2 T 2
—5 e DI = [ ] 9%,
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and consequently
limsu/T/.f <L/T/(u — Wy + Sl? = Lk TP
c\‘OP o Ja §eXbe = o Ja uc X 2 Xo - 2[X( ’ )H
because of (4.2), (2.52), and (3.9). Thus, due to (2.17)-(2.18) we easily obtain (4.4).

Lemma 4.2. Under the assumptions of Theorem 2.9, let 0 ,u,x,¢ be weak star limits of

O5e s Use , Xse,E5c for some subsequence of 6§ \, 0. Then (0,u,x,¢) yields a solution to
Problem (P,).

Proof. Now besides (2.50), (2.51), (2.57) we have (cf. (3.30)~(3.31) and (3.34))
§xse — 0 strongly in W (0, T; L3(Q)), (4 6)

and (2.54) as 6 N\, 0, so that (2.20) and (2.21) result from (2.43) and (2.44). By (2.54) it is
straightforward to deduce a strong convergence for xs., whence (4.4) is certainly fulfilled.
d

Lemma 4.3. Under the assﬁmptions of Theorem 2.10, let 8,u,x,¢ be weak star limits
of Osec,Usc, X585 for some subsequence of € \, 0 and § \, 0. Then (0,u,x,¢) yields
a solution to Problem (P). -

Proof. In this case both (4.5) and (4.6) hold in addition to (2.50)—(2.51) and (2.57).
Therefore, taking the limit in (2.43) as € and 6 tend to 0, we find (2.22). Moreover, since

£se = L(uc — use) — 60ixsc + € Axse — L{uc — u) = £ strongly in LZ(Q),
by virtue of (4.2), we get readily (4.4). : O

Having proved Lemmas 4.1-4.3, at the present level it remains to show that the three pro-
blems (Ps), (P.), (P) possess only one solution, so to achieve the proof of Theorems 2.2-2.4
and 2.8-2.10. The uniqueness being accomplished in the next section under very few hy-
potheses on the data, let us discuss here some questions related to the results already set
out.

Remark 4.4. Concerning Problem (P;), the estimates (3.30)-(3.31), (3. 33)—(3 34) can be
replaced by the weaker ones

||96=||L°°(0;T;L1(0)) + ”7"‘56”%2(0,T;H1(Q)) + 5||X6c||§11(o,T;Lz(n))

+elxselliommeay t IXsellze@) + llcobse + Lixsellorvy < Cha,

€sellz2(q) < Chs,

where the former is obtained festing (2.42) by —us. + 1 and (2.43) by 8: xs., integrating,
adding, etc., and the latter comes, for instance, from (3.32) and (2.43). Then it is however
possible to pass to the limit by compactness, on the basis of the strong convergences xs. —
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x in C°([0,T]; L*(Q)) and co 5. + Lxsc — cof+ L in C°([0,T]; V') as e \, 0. In fact,
~ note that . I
95:“5: = —(0095.: + LXSc)ub'z — — X&eUse a.C. in Q;
Co , Co .

and us. — u weaklyin L?(0,T; V). Further, (4.3) is not needed to take the limit in (2.46)
(the boundary integral is linear with respect to wus.|, ). Obviously, this approach leads to
a solution not so regular as in Theorem 2.2, but it permits to weaken the assumptions on
g,7,¢ and uo (the details of the alternative formulation are left to the reader).

Remark 4.5. It is addressed still to Problem (Ps). The condition xo € H'(Q) is not
necessary to achieve Theorem 2.2. Actually, letting xo € L™(Q) lie between 0 and 1,
we can reach the same conclusion (without (2.25)) by avoiding the estimate (3.19) (what
happens is that (3.6) is no longer true with respect to §). Thus, after the deduction of
(3.30)-(3.31) one simply chooses v = 85, in (2.46), integrates in time, and uses the uniform
boundedness of ||0; xs.||z2(g) stated in (3.30). The validity of (3.32) is then restricted to
the first two terms and

Xse — X weakly star in W1(0,T; L*(Q)) (4.7)

instead of (2.52), although (2.50)—(2.51) and (4.7) are sufficient to identify the limit problem
(cf. the proof of Lemma 4.1). Indeed, a strong convergence for xs. can be inferred from
(2.43) and (4.2) by a direct argument. This is precisely done in the paper [6] (see Lemma
4.1 therein), where the nonlinearities A and o of (1.5)~(1.6) are included in (Ps) (and the
strong convergence of xs. becomes very important).

Remark 4.6. Regarding Problem (P.) and the regularity of its solution (see also Remark
2.5), the claim is that 6,w fulfil (2.36)-(2.37) as in the extended problem (Ps.). Indeed,
the point is proving that 6,u € L*(Q) and, since (cf. (2.28)) x: € L*(0,T; L8(R)),
Lemmas 2.3-2.4 of [13] should fit with minor changes. The technique, already employed in
[20], is based on Moser iteration procedures. A more delicate question is about the possibility
of generalizing Theorem 2.3 and Theorem 2.9 to the Penrose-Fife system (1.5)—-(1.6) with
8§ = 0. Apparently, the analysis of Section 3 (cf. especially Lemma 3.3) works only if
o’ and X' are strictly decreasing functions, while, at least for o', we do not expect (cf., e.g.,
[18, 19]) monotonicity properties.

Remark 4.7. Let us come back to the issue raised in Remark 2.11. We would like to
discard the assumption xo € H*({) in Problem (P). On the other hand, the approximating
sequences of initial data must satisfy (3.5)—(3.8) in order to find solutions of (P) by our
- asymptotics. For example, in the case when uo # uc a.e. in  (thus admitting sharp initial
interfaces) we can give a positive answer and construct sequences ugs. , Xos. complying with
(3.5)~(3.8). In such a framework, since the condition (2.29) uniquely determines xo, we can
take uos. = up and xos. solving (2.34) and

\/SXOE.: — €Axose + B(xo0se) @ L{ug — uo) a.e. in (4.8)
forall 6 > 0, e > 0. It is a choice different from (2.55)—-(2.56), though (2.35), (3.4),
(3.5), and (3.7) still hold with &s. = —Véxo0sc + £ Axose + L(uc — uo). To verify
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(3.6) it suffices to test (a regularized version of) (4.8) by xos. and by — v/§ Axos., here
integrating by parts and exploiting (3.5) and the Young inequality. Passing to the limit in
(4.8) as € \, 0 and § \, 0, and arguing like in (4.4), we easily recover (2.29) and then (cf.
(2.31), (2.33), (2.5), (2.8)) also (3.8) is fulfilled. Therefore, the existence and convergence
results in Theorems 2.4 and 2.10 remain valid even if xo ¢ H(Q), provided that the
(three-dimensional) Lebesgue measure of the set {x € Q : uo(z) = uc} is zero.

Remark 4.8. It is a general remark concerning alternative boundary conditions to couple
with (1.7). Referring to [6, Section 5], where the various approaches of [9-15, 20, 22] are
discussed, one could wonder whether Theorems 2.2-2.4 and 2.8-2.10 extend to boundary
conditions of the form

ou g S '
—-kan_—'yu (u? inX (4.9)

with p > 1,9 > 0,p > q. We do not know anything about uniqueness and, in this case,
Proposition 2.6 only states the existence of a smooth solution to Problem (Ps.) for any
§ > 0 and any € > 0. But the convergences in Theorems 2.8-2.10 turn out for subsequences
of such solutions, thus assuring that there exist solutions of (Ps), (P.), (P) even when
p and ¢ are different from 1 and 0, respectively. To justify our assertion, let us point out
the few modifications in the proofs. By handling the estimate (3.25), Lemma 3.5 yields

lls el ||L°°(0,T;LP+ yry) < Cra / (4.10)

in addition to (3.30), so that one can easily control the actual right hand side of (3.26) to get

(3.32). Moreover, (3.34) still follows. In view of (4.10) and (4.3), we deduce that, at least
for a subsequence,

Uselr — U weakly in LP*Y(%) and a.e. in .

Hence, with the help of the Egorov theorem it is not difficult to conclude that us., —
uj. strongly in L*(%), which enables us to pass to the limit in the variational equality
corresponding to (2.46). Note that now the space V of test functions must be restricted in
order that the boundary term have a meaning. For instance, we can choose V = H?(Q)
and consequently v, € L®(T) forv € V.

5. UNIQUENESS
Finaliy, we show the uniqueness properties stated in Theorems 2.2-2.4.

Lemma 5.1 Under the assumptions (2.1) and (2. 3), each one of the three problems (Ps),
(P.), (P) admits at most one solution.

Proof. Letting ¢ and § be zero or not, according to the cases, we try to unify the
matter. Suppose that there are two solutions ( 6y ,u1,x1,61) and (62,u2,X2,&2 ). Setting
0 =6, —0,u =u —uz, X =X1— X2, & = & — & and integrating the two equations
(2.14) with respect to time, we realize that (see (2.15) and (2.17) or (2.20) or (2.22))

Co(a(: s),'U) + L(X('Js)7v) = k_/{;v/;u(°77')d7- - Vv
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+ AL’(WU)(’: Tdrv VYwveV, forae se€ (0,T), - (5.1)

Sxt —elAx + ¢ = —Lu a.e. in Q. (5.2)
Since (2.11) and (2.12) hold for both 8;,u;,x:i,&,2 = 1,2, observe that

|ul? |ul? : |
—0u = > a.e. in @, 5.3
Uty 1+ |ug us| 9 (5:3)

as well as £€x > 0 because of the monotonicity of 8. Then, multiplying (5.2) by x, and
possibly using (2.18) or (2.21), the integration gives

S0+ e [IVa( T < <L [ [ux Vie, 1. (4

On the other hand, taking v = —u(-, s) in (5.1) and integrating over  x (0,t), owing
to (5.3) and (2.3) we obtain ‘

oLl e
¢ Lyl one ot < [ [l [oac sefs

iy /Otfnxu Vitelo,T]. (55)

Adding (5.5) to (5.4), noting that

1 .
—# < “%“Lm(z:)ﬂ a.e. in X,

and applying the Gronwall lemma, we infer that the sum of the left hand sides (of (5.4)-
(5.5)) is equal to 0 for any ¢ € [0,T]. Therefore it follows that u = 0 a.e. in @, whence
u; = ug and 6 = 1/u; = 1/u; = 6. At this point, (5.1) implies x = 0 so that { = 0
by (5.2), and the lemma is completely proved. O

Remark 5.2. A global revision of the proof of Theorems 2.2-2.4 and 2.8-2.10 allows us
to decide that the assumption (2.4) can be weakened. Actually, the requirement

¢ € HY(0,T; I*(T)), ¢ >0 ae. in % (5.6)

serves our purposes (cf. especially Lemma 3.4). However, aséuming (5.6) involves some
regularization of { within Problem (Pjs.), in order to exploit Proposition 2.6.

Remark 5.3. Thanks to Lemma 5.1, the convergences (2.50)—(2.52), (2.54), and (2.57)
regard the whole sequences. On account of the convergence results, it would be interesting to
investigate possible error estimates between the solutions to (Ps.) and to the limit problem.
One method could be that developed in (5.1)-(5.5), but the expected outcome seems quite
unsatisfactory. Then we let the question open.
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