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Weierstra:B-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
MohrenstraBe 39, D-10117 Berlin, Germany 

Abstract. 

This paper is concerned with singular Stefan problems in which the heat flux is proportional 
to the gradient of the inverse absolute temperature. Both the standard interphase equili-
brium conditions and phase relaxations are considered. These problems turn out to be the 
natural limiting cases of a thermodynamically consistent model for diffusive phase transi-
tions proposed by Penrose and Fife. By supplying the systems of equations with suitable 
initial and boundary conditions, a rigorous asymptotic analysis is performed, and the unique 
solutions to the different Stefan problems are derived as asymptotic limits of the solutions 
to the Penrose-Fife phase-field problem. . 

1. INTRODUCTION 

It is well-known that a weak formulation for the Stefan problem is based on the pair of 
equations 

8t(eo9 + Lx) + div(k(O)V(~)) = g in Q := n x (O,T), 

X E H ( fJ - Be) in Q , 

(1.1) 

(1.2) 
for the absolute temperature () : Q ~ lR and the phase variable x : Q ~ [O, 1] . Here, 
n ~ lR.3 denotes a smooth bounded domain with boundary r, T > 0 stands for a final 
time, and at' div' '\/ indicate time derivative, spatial divergence and gradient operators, 
respectively. The datum g : Q ~ lR gives the heat supply, the constants c0 and L are 
referred to as specific heat and latent heat, and k : (0, + oo) ~ lR is a positive function 
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depending on the thermal conductivity of the material. It is worth recalling that the variable 
x usually represents the local concentration of one of the two phases, for instance of water 
in a water-ice system. Thus, with Be being the critical temperature of phase change and 
H denoting the Heaviside graph, the inclusion (1.2) postulates that x = 0 where B < Be 
(solid region), x = 1 where B > Be (liquid region), and x E [O, 1] where B = Be (mushy 
region). 

The equations (1.1), (1.2) can be derived following the usual approach of thermodynamics 
(see [8]). Thus, (1.2) is a constitutive relation complying with the second principle, and (1.1) 
results from the balance of internal energy with the heat flux if given by 

ij= k(B)Y'(~). (1.3) 

The classical Stefan problem has been widely investigated ( cf., e.g., [7] and the references 
therein) in the framework of the Fourier law which corresponds to the choice k ( B) = k 82 

in (1.3), for some constant k > 0. On the contrary, this paper is characterized by the 
alternative assumption that k is a constant, 

k (B) = k > 0. (1.4) 

In fact, we study the system (1.1 )-(1.2) and some perturbations thereof within the above 
setting. Let us note that (1.4) arises quite naturally as a first choice in (1.3) and has the 
advantage that the consequent heat flux law keeps the absolute temperature away from the 
singular value B = 0, as one expects from the physical point of view. 

In this connection, we point out that very recently some effort has been directed towards 
the analysis (see [9-15, 20, 22]) of the phase-field model proposed by Penrose and Fife [18, 
19] including the position (1.4). In the case when the order parameter x is not conserved 
(for the other case we refer to [1, 2, 18]), a general version of the Penrose-Fife system reads 

(1.5) 

).' (x) 
S Xt - c: !:ix + /3 (x) 3 u' (x) + - 8- in Q, (1.6) 

with smooth functions A , u and a maximal monotone graph /3 from JR. to JR. . Here, 8 and c; 
are small positive parameters governing the dissipation terms of (1.6). To realize that also 
(1.5)-(1.6) is thermodynamically consistent, the interested reader can find a rigorous justifi-
cation in [2], where various phase transition models are studied. In particular, the standard 
phase-field model [5] can be recovered from (1.5)-(1.6) by suitably fixing /3, u,). and line-
arizing with respect to B - Be (see also [19]). 

Let us return to (1.1)-(1.2). In view of (1.4), a comparison between (1.1) and (1.5) shows 
that the equation 

8,(eo8 + Lx) +kb.(~) = g in Q (1.7) 

can be regarded as a reduction of (1.5) to the simple situation ). (x) = - L x. Moreo-
ver, we may equivalently rewrite the law (1.2) as H- 1 (x) 3 B - Be or (multiplying by 
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L (Be Bt 1 > 0 ) as 

H- 1(x) 3 L ( 8
1 

- -
8
1

) in Q, 
c (1.8) 

so that (1.8) corresponds to (1.6) for a(x) = Lx/Bc and {3 = H- 1 , provided that 8 == 
c = 0. 

Owing to this relationship, our idea was to study an initial-boundary value problem for the 
system (1. 7)-(1.8) by approximating it with the analogous problem for 5 > O, 
c > 0, and then letting 5 and c tend to zero. Such a procedure looks somewhat opportune. 
Indeed, one can use the smooth solutions already found for the general situation (1.5)-(1.6) 
in the works of Laurenc;ot [13-15] and Kenmochi-Niezg6dka [12], who extended techniques 
originally developed in [20] and [22]. In addition, the successive asymptotic analysis of the 
Penrose-Fife initial-boundary value problem seems to be, by itself, interesting and allows us 
to discuss the intermediate cases 5 > 0, c = 0 and 8 == 0, c > 0, which can be viewed 
as Stefan problems with just one form of dissipation. The former may be compared with the 
relaxed Stefan model considered in [21], and it has already been investigated in the paper 
[6] (but in a different framework, including the nonlinearities A, a of (1.5)-(1.6), and with 
the aid of regularity results not exploited here). 

In order to make the above statements more precise, let us first provide boundary and 
initial conditions to (1.7)-(1.8). We choose a boundary condition linear with respect to 1/B, 
namely 

in ~ := r x ( 0, T) , (1.9) 

where a Ian denotes the outward normal derivative, 'Y : ~ ~ JR. and Br ~ ~ JR. are given 
positive functions. In particular, Br represents the outside temperature. Thus (1.9) asserts 
that the heat flux is proportional, by the factor 'Y , to the difference of the inverse absolute 
temperatures between the exterior and the interior of the body (for other possible right 
hand sides in (1.9), see [6, Section 5] and the later Remark 4.8). Next, letting ea : n ~ JR. 
measure the initial enthalpy, we prescribe that ( cf. (1. 7)) 

(Co B + L x)( · , 0) = ea in n . (1.10) 

Besides the initial-boundary value problem (1.7)-(1.10), we also consider its two variations 
obtained by substituting (1.8) with either 

Oxt + W 1(x) 3 L ( 8~ - ~) in Q (1.11) 

or 

(1.12) 

The formulations of the two additional problems have to be completed by setting either an 
initial condition or a boundary condition, respectively, for X. Therefore we add 

X( · , 0) = Xa in n (1.13) 
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to (1.11) and, according to [18], we couple (1.12) with the no-flux condition 

Bx= 0 . "'"' Ill L.J. 
Bn (1.14) 

Summarizing, we are concerned with the three problems (1.7)-(1.10) (pure Stefan); (1.7), 
(1.9)-(1.11), (1.13) (Stefan relaxed in time); (1.7), (1.9)-(1.10), (1.12), (1.14) (Stefan relaxed 
in space). We approximate them by the following system of equations and conditions 

(1.15) 

(1.16) 

Bx= 0 E Bn in ' (1.17) 

(Co fJ + L X )( · , 0) = eo s e , x( · , 0) = Xo s e , (1.18) 

where {gse}, {ease}, {xose} are sequences of data with suitable smoothness and convergence 
properties. Obviously, one needs that 9oe, eose, Xooe approach g, eo, Xo, respectively, as 
e or 8 or both e and 8 tend to 0. 

For any 8 > 0, e > 0, under suitable assumptions, the problem (1.15)-(1.18) has a unique 
solution ( IJ0 e, Xo e) ( cf. [12]). Then the asymptotic analysis can start. The crucial step 
consists in deriving global estimates, independent of 8 and e , for IJ0 e and xs e • Owing to 
these estimates, we will be able to pass to the limit in (1.15)-(1.16) by compactness and 
monotonicity arguments. We perform three limit procedures, letting first e ~ 0, then 
8 ~ 0, and finally ·both e and 8, without any order relation between the two parameters, 
tend to 0. We find that all weak-star limits fJ, x of subsequences of {Bse}, {Xse} must 
yield a weak solution to the following Stefan problem 

• (1. 7), (1.9)-(1.11 ), (1.13) in the first case ( e ~ 0), 

• (1.7), (1.9)-(1.10), (1.12), (1.14) in the second case (8 ~ 0), 

• (1. 7)-(1.10) in the third case (e ~ 0, 8 ~ 0). 

As a ·consequence of this analysis, we will establish three results of global existence. Moreover, 
since we can show that each of the three limit problems admits only one solution, the 
convergences Bse ~ (), Xoe ~ x hold for the whole sequences in any limit procedure. 
Concerning the uniqueness proof, we should point out that an essential role is played by the 
special form of the boundary condition in (1.9). 

Precise formulations of the problems are provided in Section 2," along with statements of the 
main results, which will be proved in the subsequent sections. Section 3 contains the proof 
of the uniform estimates, Section 4 is devoted to the passages to the limit, and Section 5 
brings the details of the uniqueness argument. 
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2. MAIN RESULTS 

First, we fix some notation. Set V := H 1 (0.) and identify H := 1 2 (0.) with its dual space 
H', so that V C H C V' with dense and compact injections. Let ( · , · ) represent either 
the duality pairing between V' and V or the scalar product in H. The norms in both 
L2(0) and (L2(0.))3 are simply denoted by II· II, while 11 · llr stands for the norm in L2(r). 
The trace of a function v E H 1 (0.) on the boundary r is indicated by v1r E H 112(r) or, 
if no confusion can arise, just by v. 

From now on, let (3 coincide with the maximal monotone graph n- 1 , namely 

{ 

(-oo,O] 
(3(r) = {O} 

[O, +oo) 

if r = 0 
if 0 < r < 1 
if r = 1 

(2.1) 

Therefore, (3 acts from [O, 1] to lR.. Setting uc = 1/Bc and 1/Br = ( (cf. (1.8) and 
(1.9) ), let us recall that Co, L, k, uc are known positive constants and that g, 'Y, (, e0 , Xo 
are given functions defined on Q ':E 'n' respectively. 

For the sake of convenience, the Stefan problems outlined in (1.7)-(1.14) will be formulated 
in terms of four unknowns. Besides the absolute temperature B and the phase density x, 
we make use of the auxiliary variables u and e' related to B and x by the conditions 
u = 1 I B and e E (3 (x). However' before stating the variational formulations, we prescribe 
the common assumptions on the data. It is required that 

/ E L 00(:E), 

( E L00 (:E), 

gEL00(Q), 

'Y ~ c a. e. in :E , 

( ~ 0 a.e. in :E , 

eo = Co Bo + L Xo 

/t E L00 (:E), 

(t E L 00 (:E), 

for some positive constant c and for two initial values Bo, Xo fulfilling 

80 > 0 a.e. in n , ln (Bo) E L00 (il), 

0 ::; Xo ::; 1 a.e. in 0, . 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Note that (2.6) yields ()OT E H1(il) n 1 00 (0.) for any r E JR.. In particular, there are two 
positive constants a, b such that 

Uo := ;o E H1(n)' a ~ Uo ~ b a.e. in n. (2.8) 

Then, letting S > 0 and e > 0, we can define precisely the three singular Stefan problems 
we deal with in this paper. 

Problem (P8). Find a quadruple ( 8, u, x, e) satisfying 

() E 1 00 (0, T; 1 2(0.)), u E 1 00 (0, T; H1 (il)), (2.9) 
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X E L00
( Q), e E L00 (0, T; L 2 (!1)) 

() 1 . Q > 0 , u = (j a.e. 1n , 

0 ::; X ::; 1 , e E f3 (x) a.e. in Q , 

(2.10) 

(2.11) 

(2.12) 

Co() + L x E W1 
•
00 (0, T; V'), (2.13) 

( 8t (ea fJ + L x) ( · , t) , v) = k lo V' u ( · , t) · V' v + fr ( 7 u - ()( · , t) v 

and such that 

+(g(-,t),v) \:/ v E V, for a.e. t E (0, T), 

(Co () + L x) ( . ' 0) = eo in V' ' 

(2.14) 

(2.15) 

x E W1 ' 00 (0, T; L 2 (!1)), (2.16) 

bXt + e = L(uc - u) a.e. in Q, (2.17) 

X ( ·, 0) = Xo a.e. in !1. (2.18) 

Problem (P !';). Find a quadruple ( (), u, x, e) satisfying (2.9)-(2.15) and 

x E L00 (0, T; H2(!l)), (2.19) 

- c: ~X + e = L ( uc - u) a.e. in Q, (2.20) 

Bx= 0 8n a.e. in :E. 

Problem (P). Find ( B, u, x, e) satisfying (2.9)-(2.15) and 

e = L ( uc - u) a.e. in Q . 

(2.21) 

(2.22) 

Remark 2.1. Observe that (2.14) provides a weak formulation of (1.7) coupled with the 
boundary condition ( 1. 9) (where 1 / Br = ( ) . The initial condition ( 2.15) makes sense even 
in the space L2(!1) (and consequently a.e. in n ): in fact, due to (2.9)-(2.10) and (2.13), 
Co B + L x is a weakly continuous function from [O, T] into L2(!1). Regarding (2.12), we 
notice that the statement 0 ::; x ::; 1 could be omitted since this information is already 
contained in the inclusion e E f3(x) (cf. (2.1)). Also (2.11) can be presented in terms of 

6 



maximal monotone operators, as done in [12]. Indeed, it suffices to introduce the maximal 
monotone graph 

1 
p(r)=--, 

r 

and to set - u E p(B) a.e. in Q. 

O<r<+oo, 

For each one of the problems we have an existence and uniqueness result. 

(2.23) 

Theorem 2.2. Under the assumptions {2.1)-(2.8), there exists one and only one solution 
{B, u, x, e) of Problem (Ps}. Moreover, u and x fulfil 

u E H1 (0, T; L312(f2)), (2.24) 

x E 1 00 (0' T; H1(f2)). 

Theorem 2.3. Assume that {2.1)-(2.8) and 

Bxo = 0 an a.e. in r' 

(2.25) 

(2.26) 

- c ~Xo + f3(xo) 3 L (uc - uo) a.e. inn (2.27) 
hold. Then Problem (Pe:} admits a unique solution (B, u, x, e) satisfying {2.24) and 

X E H1(0, T; H1(n)). (2.28) 

Theorem 2.4. Assume that {2.1)-(2.8) and 

f3(xo) 3 L(uc - uo) a.e. inn (2.29) 
hold. Then Problem (P} has one and only one solution {B, u, x, e) fulfilling {2.24). 

Remark 2.5. The additional assumptions (2.26)-(2.27) and (2.29) force the initial values 
Xo, u0 (see (2.5)-(2.8)) to be suitably compatible in the problems where the phase rela-
tionship takes a stationary form (compare (2.20) and (2.22) with (2.17) ). However, let us 
emphasize the space and time smoothness properties (2.16), (2.25) and (2.19), (2.28) of the 
phase variable x in the relaxed problems (Ps) and (Pe:), respectively. In particular, (2.19) 
and (2.28) ensure that x E C0 ( Q) for the solution to Problem {P e:)· 

Next, we consider the approximating system (1.15)-(1.18). Let the sequences 9Se:, eose:, Xose: 
satisfy 

eose: = co Bose: + Lxose, 

Bose: > 0 a.e. inn, 
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uo6. := f- E H 1(!1) n L""(!l), 
Ooe 

(2.33) 

axoae . r an = 0 a.e. Ill ' (2.34) 

0 ::; Xoo e ::; 1 a.e. in n (2.35) 

for all E > 0, e > 0. Combining the results of [12] with those of [13, 14], it is not difficult 
to establish the following existence and uniqueness theorem. 

Proposition 2.6. Under the assumptions {2.3)-(2.4), {2.30)-(2.35) there is one and only 
one quadruple (Bae 'Ua e 'Xo e 'ea e) fulfilling 

Bae E H1 (0, T; L2(i1)) n L 00 (0, T; H1(n)) n L 00 (Q), (2.36) 

u6 e E H1 (0, T; L2(n)) n L2(0, T; H 2(n)) n L00 (Q), (2.37) 

Xae E W1100(0, T; L2(i1)) n H1 (0, T; H 1(n)) n L 00 (0, T; H 2 (n)), (2.38) 

ese E L00 (0, T; L 2(n)), (2.39) 

Ll 0 1 . Q US e > , Use = n a. e. in , 
USe 

Eat Xoe - e D..xae + ese = L (uc - Uae) a.e. in Q' 

axse . {i-:;;: = 0 a.e. in~, 

Bse( ·, 0) = Booe, Xse( ·, 0) = Xose a.e. inn 
for any E > 0 and any e > 0 . 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

Remark 2. 7. Note that (2.42) and (2.44) allow us to deduce the variational equality ( cf. 
(2.14)) 

(at (Co B s e + L Xo e )( . ' t) ' v) = k lo \7 Uo e ( . ' t) . \7 v 
+£(ruse - ()( ·, t)v + (9se(-, t), v) 

V v E V, for a.e. t E (0, T), (2.46) 

whence it is easy to verify the regularity (2.13) for Co Boe+ L Xse. Besides, (2.45) and (2.31) , 
entail the initial condition analogous to (2.15). Actually, owing to (2.31 )-(2.33) one could 
equivalently prescribe initial values of use and Xse in place of (1.18) or (2.45). 
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Henceforth the problem (2.36)-(2.45) will be obviously named (P 0 ~:). By investigating the 
asymptotic behaviour of (P 0 t:) as one or both of the parameters e and S tend to zero, we 
can show that subsequences of the approximating solutions ( Bs t: 'Uo t: 'Xo t: 'est:) converge (in 
the sense specified below) to solutions ( B, u, x, e) of the problems (P6), (Pt:), (P), thus 
proving the existence parts of Theorems 2.2-2.4. Moreover, because of uniqueness, the whole 
sequences will converge. In order to carry out the asymptotic analysis, we need, of course, 
that the approximating data g0 t: , Boot: , Xoo t: satisfy some boundedness and convergence pro-
perties in addition to (2.30)-(2.35). Instead of detailing our requirements here, we prefer 
to select appropriate sequences of data and afterwards check them and infer the wanted 
conditions. 

Therefore, in all the arguments we take 

g5, (x, t) = 
5
1
e l e-<•--r)/(5•) g(x, T )dr, (x,t) E Q, 

while the other choices are expressed in the following statements. 

Theorem 2.8. Assume that (2.1}-(2.8}, (2.30)-(2.35}, (2.47), and 

Bost: = Bo, 

Xoot: - e .6.xooe = Xo a.e. in !1 

(2.47) 

(2.48) 

(2.49) 

hold. Let (0 'u 'x 'e) and (Bot:' Uot: 'Xot: 'eat:) be the solutions to the problems (Ps) and 
( P 0 e), respectively. Then, as e tends to 0 , we have 

Ose --7 8, est: --7 e weakly star in L00 (0, T; L2(!"1)), (2.50) 

u6 e --7 u weakly star in H1(0, T; L312(!1)) n L00 (0, T; H1(!1)), (2.51) 

(2.52) 

Theorem 2.9. Assume that (2.1}-(2.8}, {2.26)-(2.27}, (2.30)-(2.35}, (2.41)-(2.48}, and 

Xoo e = Xo (2.53) 

hold. Let (B,u,x,eJ and (Bse,ust:,Xot:,est:) be the solutions to the problems (Pt:) and 
(Pst:), respectively. Then, as S tends to 0, we have the convergences {2.50}, (2.51}, and 

xse --7 x weakly star in H 1 (0, T; H 1 (!1)) n L00 (0, T; H 2(!1)). (2.54) 

Theorem 2.10. Assume that (2.1}-(2.8}, (2.29)-(2.35}, {2.41), and· 
a a 

Uoo t: - 2 Xoo e = uo - 2 Xo , (2.55) 

-e .6.xoot: + /3(xooe) 3 L(uc - Uooe) a.e. inn (2.56) 
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hold {the constant a being defined in (2. 8)). Let ( () 'u ' x ' e) and ( () 8 t: 'U8 t: 'X8 t: ' e8 t:) denote 
the solutions to the problems (P} and (P8t:}, respectively. Then, as c and 6 go to 0, we 
have the convergences (2.50), (2.51), and 

Xot: ~ X weakly star in L 00 (Q). (2.57) 

Remark 2.11. Thanks to (2.41), (2.57) is also fulfilled in the previous two cases. As far as 
problem (P) is concerned, one could wonder whether the assumption xo E H 1 (f2) is really 
necessary to get the thesis of Theorems 2.4 and 2.10. In fact, (2. 7), coupled with (2.8) and 
(2.29) (which seem to be essential for the outcome), prevents the interphase set {x E f2 : 
uo( x) = Uc} to be a smooth bi-dimensional surface. Our belief is that Xo E H 1 ( n) is 
rather a technical condition (at least for the conclusion of Theorem 2.4), whereas Xo should 
be allowed to jump. For this matter and other possible generalizations of the results, we 
refer the reader to the remarks of Section 4. 

3. UNIFORM ESTIMATES 

In this section we derive estimates, independent of 5 and c, for the solutions ( ()8 t: , us t: , X8 t: , 
est: ) to the problem (P 8 t:) defined by Proposition 2.6. More precisely, our estimates may 
depend on 6 (resp. c) if such a parameter is fixed, like in Theorem 2.8 (resp. Theorem 
2.9), but then and there we make distinctions. Anyway, in the sequel let 8 and e represent 
two positive upper bounds for 5 and e, 

(3.1) 

and let Ci, i E N, denote uniform constants not varying with 5 or c. 

We start by pointing out some useful properties of the sequences approximating the data. 

Lemma 3.1. The functions g8t: introduced in {2.47) satisfy {2.30} and 

(3.2) 

98t: ~ g strongly in L 2(Q) as c ~ 0 or 6 ~ 0. (3.3) 

Proof. This is quite elementary. Recalling (2.2), we just note that, for instance, 
C1 = ll9llL00 (Q) · D 
Lemma 3.2. For any 5 > 0 and any e > 0 the initial values 80 8 t: , Ua8 t:, Xos t: , east: con-
sidered in the statements of Theorems 2.8-2.10 are uniquely determined and satisfy (2.31)-
(2.35}. Moreover, if east: E L 2(f2), 

east: E /3(xast:) a.e. in f2, (3.4) 
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is defined by fos e == 0 if (Ps) is concerned (see Theorem 2.8) and by fo 0 e == e LlXoo e + 
L(uc - Uooe) otherwise (see Theorem 2.9-2.10}, then it holds 

a a - < Uo c. < b + - a. e. in !1 , 2- ri.._ 2 (3.5) 

(3.6) 

(3.7) 

eos e ~ eo weakly in L 2(!l) as e '\i 0 or S ~ 0, (3.8) 
where the constants a, b are specified in (2.8} and 0 3 depends on 1/ S if (P8) is intended 
as limit problem. In this case it is also required that 

Xoo e ~ Xo strongly in L2(!l) as e ~ 0. (3.9) 

Proof. We first examine the situation in Theorem 2.8. Due to (2.48), (2.6), and (2.8), 
Bose and Uooe fulfil (2.32)-(2.33) and (3.5). In view of (2.49) and (2.34), it turns out that 
Xoo e is the only solution of the elliptic variational equality 

(xo s., v) + e fo \1 Xo s. · \1 v = (xo , v) 

Since Xo attains values between 0 and 1 (cf. (2.7)), a standard maximum principle ar-
gument enables us to deduce (2.35). Taking v == Xoo e above and comparing the terms in 
(2.49), we easily obtain 

(3.10) 

with 1!11 d~noting the Lebesgue measure of the domain n. Hence, it is straightforward to 
recover (3.7). The convergence (3.9) (which implies (3.8) because of (2.48), (2.31), and (2.5)) 
can be inferred via singular perturbation technjques (see [17]). As S is fixed, to get (3.6) 
we must exploit the further condition Xo E H1(!1). Multiplying (2.49) by - LlXoo e and 
integrating by parts, it results that 

(3.11) 

and consequently (3.6) follows from (2.7). Next, let us consider the frameworks of Theorems 
2.9 and 2.10. Note that (cf. (2.48), (2.53), (2.26)-(2.27)) in both cases Uooe and Xooe solve 
the system (2.55)-(2.56) supplied with (2.34 ). Owing to the suitable definition of fo0 e , (3. 7) 
is certainly fulfilled. On the other hand, besides showing (3.5)-(3.6) and (3.8), we have to 
check that there is a unique pair ( Uoo e , Xoo e) satisfying (2.34 ), (2.55)-(2.56). To this end, 
it suffices to prove that the nonlinear elliptic problem (2.34), 

La Xooe - e!:l.xooe + f3(xooe) 3 L(uc - Uo + ~xo) a.e. inn (3.12) 2 . 2 

admits one and only one solution Xoo e, finding u00 e subsequently from (2.55). The unique-
ness of Xoo e is entailed by the monotonicity of {3 and can be verified by contradiction. The 
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existence proof is based on standard methods of the theory of maximal monotone operators 
(see, e.g., [4] or [3]). Thus, one replaces in (3.12) the graph f3 by its Yosida approximation, 

{ 

mr 

f3m(r) = 0 . 
m (r - 1) 

and denotes by Xom the solution to 

if r < 0 
if 0 ~ r ~ 1, m E N, 
if r > 1 

La a 2 Xom - e ~Xom + f3m (xom) = L (Uc - Uo + 2 xo) a.e. in n' 

(3.13) 

(3.14) 

subjected to the conditions in (2.34). In order to derive uniform estimates, we multiply 
(3.14) by Xom - ~Xom and integrate by parts. Observe that 

lo f3m (Xom)(Xom - ~Xom) = lo (f3m(Xom)Xom + f3'(Xom) 1Vxoml2
) ~ 0 

because of (3.13). As the right hand side of (3.14) belongs to H1(i1) (cf. (2.7)-(2.8)), 
applications of the elementary Young inequality allow us to conclude that 

La 2 I 2 2 4 llxomllH1(0) + e IVxomll + e ll~Xomll 

L a 2 
~ ~ lluc - Uo + 2 XollHl(O) · 

Then, setting earn = f3m (Xom) and comparing the terms in (3.14), also by (3.1) one can 
easily calculate a constant C4 (independent of S, e, and m) satisfying 

(3.15) 

for any m E N. Thanks to (3.15), there are two elements Xoh E H 2 (i1), fose E L2 (i1) 
such that, possibly taking subsequences, Xom ~ Xoo e and fom ~ fos e weakly in the 
respective spaces, as m / oo. Hence, by compactness we have that 

Xom ~ Xoo e strongly in L2(Q) (3.16) 
and consequently (eom, Xom) ~ (fose, Xooe) as m / oo. Therefore, recalling [3, Prop. 
1.1, p. 42] and passing to the limit in (3.14), we infer that fose, Xooe fulfil (3.4) and 
Xooe actually gives the unique solution to (3.12), (2.34). The above convergences hold 
for the whole sequences and, on account of the weak semicontinuity of norms, the esti-
mate (3.10) is still valid for Xooe and fose. Then, letting Uooe = uo + a(xose - Xo)/2, 
in view of (2. 7)-(2.8) and (3.1) it is straightforward to deduce (3.5)-(3.6) and to check 
that ease just coincides with e ~Xooe + L( Uc - Uose). Now, (3.8) is trivially satisfied 
if (Pe) is concerned (see (2.31), (2.48), (2.53)), else it follows from a passage to the .li-
mit in (2.55)-(2.56) as e ~ 0. Indeed, it turns out that ( cf. (3.15), (3.5), and (2.29)) 
e ~Xooe ~ 0 strongly in L2(i1) and Uooe ~ uo, Xooe ~ Xo weakly in H1 (i1) (and stron-
gly in L2(i1) ), the limits u0 and xo being uniquely found by reason of (2.55) and (2.29). Due 
to (3.5), (2.31)-(2.33), and (2.5), one recovers weak convergences of Booe to B0 = l/u0 , and 
thus of eos e to e0 , even in H 1(i1). By achieving the proof of the lemma, let us point out 
that in all three cases we have obtained something more than (3.6) and (3.8) ( llxoo e llH1(0) 
uniformly bounded and e00 e ~ e0 strongly in L2(Q)), but the statement of the lemma 
expresses what we actually need in the further analysis and, at the same time, it yields the 
essential requirements for alternative regularizing sequences. D 
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After discussing the properties of approximating data, we are going to treat the problem 
(P6e:) and prepare some inequalities fulfilled by X6e: and Uoe:. For the moment, we work 
(first) on (2.43) and (then) on (2.42) separately. 

Lemma 3.3. For any 8' c obeying (3.1) the solution (B6e: 'Uoe: 'X6e: 'e6e:) of Problem (Poe:) 
satisfies 

~ liih5o ( ·, t)ii 2 + I: fo' wv ( 8, X5o)( ·, T )11 2 dr 

< ~3 
- L la' lo (8, u5.)(8, X5o) for a.e. t E (0, T), 

lleoe:(-, t)ll 2
::; 2llL(uc - uae:(., t))ll 2 + 28C3 

-4 Lo fn' j (8, u5.)(8, X5o) for a.e. t E (0, T), 
o n . . 

~ ll'Vx5. ( ·, t)i1 2 + e fo' ii~X5• ( ·, r)ll 2dr 

< ~2 
- L fa' lo \7u5. · \7x5. V t E [O, T], 

where the constants C2 , C3 are characterized in Lemma 3.2. 

(3.17) 

(3.18) 

(3.19) 

Proof. In order to show (3.17)-(3.19) rigorously, we use again the Yosida regularization 
(3.13) of the graph f3. Therefore, for m E N let Xm be the solution to the system 

8 at Xm - c ~Xm + f3m(Xm) = L (uc - Ufie:) a.e. in Q' 

axm = 0 an a.e. in 'E, 

Xm( ·, 0) = Xom a.e. inn, 

(3.20) 

(3.21) 

(3.22) 

with Xom fulfilling (2.34) and (3.14) under the setting of Theorems 2.9 and 2.10, or Xom = 
Xooe: in the framework of Theorem 2.8. Owing to (3.20) and (3.13), Xm is smoother than 
Xfie:. Namely, for any m E N we have that (see, e.g., [12, Lemma 4.1]) 

Xm E H 2(s, T; L2(i1)) n H 1(s, T; H2 (i1)) V s E (0, T), 

Xm E C1([0, T]; L2(i1)) n C0([0, T]; H 2(i1)) 
besides (2.38). By exploiting the above regularity, we can get the a priori estimate leading to 
(3.17). In fact, we differentiate (3.20) with respect to time, multiply by at Xm, and integrate 
over n x (s, t) for 0 < s < t < T. Since f3:.n 2:'.: 0 a.e. in Iii, thanks to (3.21) we infer 
that 

~ ll8tXm( ·, t)11 2 + e [ ll\7 (8tXm)( ·, r)ll 2dr 

~ ~ ll8t Xm ( ·, s)ll 2 
- L [lo (8,u5.)(8tXm), 

13 
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and then take the limit in this inequality as s \.i 0. Moreover, note that ( cf. (3.20), (3.22), 
(2.45), (2.33)-(2.35), and (3.13)) 

8tXm ( ·, 0) = ~ (e Lixo5. + L (uc - uo5.)) 

if Xom = Xoat: is given by (2.49), and that ( cf. also (3.14) and (2.55)) 
La 

8tXm( ·, 0) = 26 (Xom - Xoat:) 

if Xom solves (2.34), (3.14). In any case, accounting for Lemma 3.2 it is not difficult to see 
that 

(3.24) 

where the last term goes to 0 as m /' oo because of (3.16). Next, let us just outline the 
deduction of estimates like (3.18)-(3.19) for Xm and em = f3m(Xm). Concerning (3.18), it 
suffices to test (3.20) by em and integrate only in space, using (3.21) and the positiveness of 
(3!,,,,. Then one applies the Young inequality and the bound already found for ll8t Xm ( ·, t)ll 2 

(i.e., (3.23) with s = 0 plus (3.24)). To obtain (3.19) we multiply (3.20) by - ~Xm and 
integrate by parts in space and time. The constant in the right hand side is due to (3.6) ( cf. 
the proof of Lemma 3.2). In conclusion, the earlier estimates and (2.37) ( u0 t: is fixed in such 
argument) enable us to pass to the limit in (3.20)-(3.22) as m /' oo by compactness, and 
to establish that the weak star limits Xc t:, eat: of the sequences Xm, em satisfy (3.17)-(3.19) 
(this last part is more detailed in [6, Lemma 3.1]). D 

Lemma 3.4. There are two c<mstants C5 and C6 , independent of the parameters 6 and£ 
in (3.1), such that the solution {Bat: ,u0 t: ,Xct: ,eat:) of Problem (Pat:) fulfils 

~ l fnl a:::· 12 
+ ~ JIVuo.( ·, t)ll 2 + i Jluo .( ·, t)llf 

~ Cs (i + l(J1\7u5,( ·, r)Jl 2 + lluo.( ·, r)Jlf )dr) 

+ L l lo (8,xo.)(8,u5.) for a.e. t E (0, T), (3.25) 

the constant c being introduced in (2. 3), and 

Col lo l\7~5:12 + ~ 11.!i l u. (.' r)drr 

~ C6 (i + l (Jluo.( ·, r)llf + 11.!i f uo.( ·, s)dsll 2)dr) 

\I t E [O, T]. (3.26) 

Proof. A precise derivation of the inequality (3.25) needs some preliminary regularization 
of (Pat:) or, at least, of (2.42). Referring to [20] or [14] for this matter, let us proceed 
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formally. ':Vesting (2.42) by - at Uo t: ' integrating, and applying formal Green formulas, with 
the help of {2.40), (2.44)-(2.45), (2.3)-(2.4), and (2.32)-(2.33) we get the identity 

r { I at Uo t: 12 k 2 1 { 2 
co Jo Jo --:;;;:- + 2 llVuse(-, t)ll + 2 Jr(!u8 e)( ·, t) 

= ~ i1'Vuo5.ll 2 +fr ((u5.)( ·, t) + i fr('YC, O)u0
25. - 2((-, O)uo5.) 

+ i l fr("!, ul. - 2 (, u5.) - l lo go. a, u5. 

+ L lo' lo ( 8, X5•)( 8, u5.) for a..e. t E (0, T). 

Thanks to (2.3)-(2.4) and (3.2) we have that 

i fr("! u/.)( ·' t) ~ ~ llu5 .( ·, t)llf. 

fr ( ( u5.) ( ·, t) '.'O ~ ll(ili=(o,T;L2(r)) + ~ llu5.(- , t)llf. 

- {' { 95<8tU5< '.'O ll95<11L=(Q) f' { l
8
'U5•1u5. Jo Jo lo Jo use 

:::; c2o {' f 18,u5.12 + 2Cr r lluse(-' r)ll2dr. 
Jo Jo use Co Jo 

Then, recalling also (3.5) and letting w denote a constant such that 

(3.27) 

(3.28) 

from (3.27) it is straightforward to deduce (3.25), where G5 depends only upon k, c, c0 , w, G1 , 

G2, a, b, llrll£co(E), lh'tll£co(E), ll(llH1(0,T;L2(r)), and on the bi-dimensional surface measure 
1-l2(r) of the boundary r. At this point, it remains to show (3.26), which does not require 
any regularization of (2.42). In view of (2.36)-(2.37), (2.45), and (2.31), we remark that 

(Co () 0 t: + L Xo t: )( • ' s) + k b.. r Uo t: ( • , T) d T = ea 0 t: + r 90 t: ( • ' T) d T - Jo Jo 

a.e. inn' V s E [O, T]. (3.29) 

Multiplying (3.29) by b..use ( ·, s) and integrating over n x (0, t), from (2.40) and (2.44) 
it results that 

Co r { IV~ael2 + ~2 llb.. r Uot: (-' r) drll2 + Cok r ' { (Bot: 
Jo Jo u8 e Jo Jo lr 

= i l fr (Co "I + L X5 • ("! u5 • - ()) 

+ ( eo5 • + lo' 95. ( · , r) d r , !::,. lo' u5 • ( · , r) d r) 

- lo' ( 95. ( · , r) , t::.. f u5. ( · , s) d s) d r 

V t E [O, T]. 
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Hence, since ( cf. (2.40)-(2.41), (2.3)-(2.4), and (2.31)) 

~ llr (Oo.?. 0, 

i l lr (Co 'Y + L Xo • ("! U5 • - ()) ~ l lr ~ (Co + L u5 •) , 

( eoo. + l 95. ( . ' T) d T ' D. l U5. ( . ' T) d T) 

~ ~lleoa. + fo' go.(·,r)drr + illb. fo' ua.(·,r)drlJ
2

, 

and e0 s e = c0 Bose + L xos e, owing to (2.3), (2.33), (2.35), (3.2), and (3.5) it is not difficult 
to determine a constant Cs, depending just on L, k, Co, a, C1 , 1i2(f), ll1llL2(E), lf21, and T, 
such that (3.26) holds. Therefore the lemma is completely proved. D 

By combining the inequalities (3.17)-(3.19) with (3.25)-(3.26), we finally obtain global esti-
mates for the sequences of functions Bs e, use, xs e, es 1: considered in Theorems 2.8-2.10. 
From now on, let us omit specifications in the statements, being understood that 6 and e 
satisfy (3.1 ). 

Lemma 3.5. There exists a constant C7 such that 

II ln( Use) llk1(0,T;L2(0)) + llus t: lliooco,T;Hl(O)) + 6 llxs t: ll~1. 00 co,T;L2(0)) 

+ e llY'x1:ll1"1co,T;(L2(0W') + llxs1:llL00 (Q) + Ilea Bse + L Xsellw1. 00 (0,T;V') ::; C1. (3.30) 

Proof. Take the sum of (3.17) and (3.25), then apply Gronwall's lemma. As (at Use)/ust: = 
8t ln(use) a.e. in Q and llln(uos1:)ll£00(0) is uniformly bounded because of (3.5), to achieve 
(3.30) it suffices to recall (3.28), (3.6), (2.41) and to make use of (2.46) along with (2.3)-(2.4) 
and (3.2). D 

Lemma 3.6. There is a constant C8 such that 

(3.31) 

Proof. Multiply (3.25) by 46 and add it to (3.18). Due to (3.30) and (3.1), the right hand 
side of the resulting inequality is bounded independently of 6 and e. Next, a comparison 
of the terms in (2.43) allows us to control lle ~Xs1:1l£oo(o,T;L2(o)), whence (3.31) follows by 
virtue of the boundary condition in (2.44). D 

Lemma 3. 7. There exists a constant C9 such that 

II ln(use)llhco,T;Hl(O)) + llBselli00 co,T;L2(0)) 

+ 6 llxse lli00 co,T;H1(0)) + e llxselli2co,T;H2(0)) ::; Cg · (3.32) 
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Proof. The sum of (3.19) and (3.26), the proof of (3.30)-(3.31 ), and the Gronwall lemma 
lead to (3.32). Indeed, the boundedness of 

sup Ill:::.. ft use:(·, T) dTll 
095T Jo 

implies the boundedness of 

via (3.29). D 

Lemma 3.8. There is a constant 0 10 such that 

(3.33) 

Proof. Recall that in three space dimensions we have the continuous embedding H 1 (f2) c 
L 6 (f2). Since 

~ llus e: lli00 co,T;£6(0)) II at ln( Use:) lli2(Q) ' 

ln(Bse:) = - ln(use:) a.e. in Q (see (2.40)), and. 

ll8t Bs e: lli2co,T;L1(n)) ~ II Bs e: lli00 co,T;L2(n)) ll8t ln( use:) lli2(Q) , 

(3.33) is a straightforward consequence of (3.30) and (3.32). 

Lemma 3.9. There is a constant 0 11 such that 

Proof. Picking v = 1 in (2.46), by (2.3)-(2.4) and (3.2) we realize that 

+ lh'llL00 (0,T;L2(r)) lluse:( ·, t)llr + ll(llL00 (0,T;L1(r)) + 01 lf21 · 

Then (3.34) results from (3.30), (3.33), and (3.1), using Poincare's inequality. 
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4. PASSAGE TO THE LIMIT AND EXISTENCE 

This section is devoted to pursue the proof of Theorems 2.8-2.10 and together prove the 
existence of solutions to the problems (Pa), (Pe), (P). Moreover, we make some comments 
about possible extensions of the results in several directions. 

Thanks to the estimates (3.30)-(3.33), within all three frameworks there exist functions 
(} 'u 'e 'x such that, in principle for subsequences, the convergences (2.50)-(2.51 ), (2.57), 
and 

weakly star in W 1 
'
00 

( 0 , T; V') ( 4.1) 
hold as c, or 5, or both c and 5, go to 0. From (2.51) and the Aubin compactness lemma 
(see, e.g., [16, p. 58]) we also get 

ua e --? u strongly in 1 2(0, T; H 1 -r(n)) 
which implies (if r < 1/2) that 

for any r > 0, 

Uae lr --? ulr strongly in 12 (~). 

(4.2) 

(4.3) 
Therefore, recalling (3.3), (2.46), and (3.8), it is easy to verify that B, u, e, x fulfil (2.9)-
(2.10), (2.24), and (2.13)-(2.15). The condition (2.11) follows from (2.40), (2.50), (4.2), 
entailing that 

1 = Bae Uoe --? B u weakly in 1 1
( Q). 

The strong convergence of Uoe plays a role here, as well as in the next derivation of (2.12), 
at least for Problem (P). Owing to (2.41) and (2.1), to show (2.12) it is enough to check 
that ( cf., e.g., [3, Lemma 1.3, p. 42]) 

limsup lT in eo. X6< s; lT in e X · ( 4.4) 

Let us now examine the three different cases of passage to the limit separately. 

Lemma 4.1. Under the assumptions of Theorem 2.8, let B, u, x, e be weak star. limits of 
Bs t: 'Uo t: 'Xo t: 'est: for some subsequence of c ~ 0 . Then ( (} 'u 'x' e) yields a solution to 
Problem (P0). 

Proof. Since 5 is fixed and c tends to 0, (3.30) and (3.32) give (2.52) and 

e Xor: --? 0 strongly in 1 2(0, T; H 2(n)), ( 4.5) 
to join with (2.50)-(2.51). Hence, accounting for (2.43), (2.45), and (3.9), it turns out that 
(2.16)-(2.18) and (2.25) are satisfied. From (2.52), by the Ascoli theorem, we infer that 
Xoe --? x strongly in C0([0, T]; 1 2(n)), which plainly ensures ( 4.4). But ( 4.4) can be 
recovered without using the last property, just exploiting the weak lower semicontinuity of 
norms. Indeed, observe that (see (2.43)-(2.45)) 

lT in eo.xo. = L f in(uc - uo.)xo. + ~ llxoo.11 2 

- ~ llxo.( ·, T)l1 2 
- e fin l'ii'xo.1 2

, 
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and consequently 

1Ti 1Ti 5 5 limsup eaeXae ~ L (uc - u)x + -llxoll 2 
- -llx(-, T)ll 2 

e'\.O 0 0 0 0 2 2 

because of ( 4.2), (2.52), and (3.9). Thus, due to (2.17)-(2.18) we easily obtain ( 4.4). 

Lemma 4.2. Under the assumptions of Theorem 2.91 let B, u, x, e be weak star limits of 
Bae 'Uc e 'Xo e 'ea e for some subsequence of 6 ~ 0 . Then ( B 'u 'x' e) yields a solution to 
Problem (Pe}· 

Proof. Now besides (2.50), (2.51), (2.57) we have (cf. (3.30)-(3.31) and (3.34)) 

5 Xae --7 0 strongly in W 1 
•
00 (0, T; L2(n)), ( 4.6) 

and (2.54) as 5 ~ 0, so that (2.20) and (2.21) result from (2.43) and (2.44). By (2.54) it is 
straightforward to deduce a strong convergence for Xo e , whence ( 4.4) is certainly fulfilled. 

D 

Lemma 4.3. Under the assumptions of Theorem 2.101 let B , u, x, e be weak star limits 
of Bae' Uae 'Xoe 'eae for some subsequence of e ~ 0 and 6 ~ 0. Then (B 'u 'x 'e) yields 
a solution to Problem (P ). 

Proof. In this case both ( 4.5) and ( 4.6) hold in addition to (2.50)-(2.51) and (2.57). 
Therefore, taking the limit in (2.43) as e and 5 tend to 0, we find (2.22). Moreover, since 

eae = L(uc-'- Uae) - 58tX6e + e~X6e --7 L(uc - u) = e strongly in L2 (Q), 

by virtue of ( 4.2), we get readily ( 4.4). D 

Having proved Lemmas 4.1-4.3, at the present level it remains to show that the three pro-
blems (P0), (P e), (P) possess only one solution, so to achieve the proof of Theorems 2.2-2.4 
and 2.8-2.10. The uniqueness being accomplished in the next section under very few hy-
potheses on the data, let us discuss here some questions related to the results already set 
out. 

Remark 4.4. Concerning Problem (P0), the estimates (3.30)-(3.31), (3.33)-(3.34) can be 
replaced by the weaker ones 

II Bae llL00 (0,T;L1(0)) + lluo e lli2co,T;Hl(O)) + Sllxa e ll~l(O,T;L2(0)) 

+ ellXaelliooco,T;H1(0)) + llXoellL00 (Q) + llco Boe + L XaellH1(0,T;V') ~ 012, 

11eo ellL2(Q) ~ 013' 
where the former is obtained testing (2.42) by - Ua e + 1 and (2.43) by at Xo e ' integrating, 
adding, etc., and the latter comes, for instance, from (3.32) and (2.43). Then it is however 
possible to pass to the limit by compactness, on the basis of the strong convergences Xo e --7 
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x in C0 ([0, T]; L2(i1)) and Co Boe+ L Xoe ~ Co B + L x in C0 ([0, T]; V') as e ~ 0. In fact, 
note that 

Boe Uoe = ~ (Co Boe + L Xoe)Uoe - !:_ Xoe Uoe a.e. in Q, 
Co Co . 

and u0 e ~ u weakly in L 2 (0, T; V). Further, ( 4.3) is not needed to take the limit in (2.46) 
(the boundary integral is linear with respect to u0 e lr ). Obviously, this approach leads to 
a solution not so regular as in Theorem 2.2, but it permits to weaken the assumptions on 
g, I , ( and u0 (the details of the alternative formulation are left to the reader). 

Remark 4.5. It is addressed still to Problem (P0 ). The condition xo E H 1 (f2) is not 
necessary to achieve Theorem 2.2. Actually, letting Xo E L00 (n) lie between 0 and 1, 
we can reach the same conclusion (without (2.25)) by avoiding the estimate (3.19) (what 
happens is that (3.6) is no longer true with respect to 8). Thus, after the deduction of 
(3.30)-(3.31) one simply chooses v = Boe in (2.46), integrates in time, and uses the uniform 
boundedness of ll8t XoellL2(Q) stated in (3.30). The validity of (3.32) is then restricted to 
the first two terms and 

Xot: ~ X weakly star in W1 '00 (0, T; L2(f2)) (4.7) 

instead of (2.52), although (2.50)-(2.51) and ( 4. 7) are sufficient to identify the limit problem 
( cf. the proof of Lemma 4.1). Indeed, a strong convergence for Xoe can be inferred from 
(2.43) and ( 4.2) by a direct argument. This is precisely done in the paper [6] (see Lemma 
4 .1 therein), where the nonlineari ties .\ and a of ( 1. 5)-(1. 6) are included in (P 0 ) (and the 
strong convergence of xs e becomes very important). 

Remark 4.6. Regarding Problem (Pt:) and the regularity of its solution (see also Remark 
2.5), the claim is that () ,u fulfil (2.36)-(2.37) as in the extended problem (Pot:)· Indeed, 
the point is proving that B, u E L00

( Q) and, since ( cf. (2.28)) Xt E L2(0, T; L 6 (i1)), 
Lemmas 2.3-2.4 of [13] should fit with minor changes. The technique, already employed in 
[20], is based on Moser iteration procedures. A more delicate question is about the possibility 
of generalizing Theorem 2.3 and Theorem 2.9 to the Penrose-Fife system (1.5)-(1.6) with 
8 = 0. Apparently, the analysis of Section 3 ( cf. especially Lemma 3.3) works only if 
a' and A' are strictly decreasing functions, while, at least for a', we do not expect ( cf., e.g., 
[18, 19]) monotonicity properties. 

Remark 4.7. Let us come back to the issue raised in Remark 2.11. We would like to 
discard the assumption xo E H1(i1) in Problem (P). On the other hand, the approximating 
sequences of initial data must satisfy (3.5)-(3.8) in order to find solutions of (P) by our 
asymptotics. For example, in the case when u0 -f. uc a.e. in n (thus admitting sharp initial 
interfaces) we can give a positive answer and construct sequences uose, Xooe complyingwith 
(3.5)-(3.8). In such a framework, since the condition (2.29) uniquely determines Xo, we can 
take Uo0t: = uo and Xooe solving (2.34) and . 

.Jixose - c:.6.xose + f3(xost:) 3 L(uc - uo) a.e. inn (4.8) 

for all 8 > 0, e > 0. It is a choice different from (2.55)-(2.56), though (2.35), (3.4), 
(3.5), and (3. 7) still hold with fos e = - .JS Xoo t: + e .6.xos e + L( uc - u0 ) • To verify 
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(3.6) it suffices to test (a regularized version of) ( 4.8) by Xoo e: and by - .JS .6.xoo e:, here 
integrating by parts and exploiting (3.5) and the Young inequality. Passing to the limit in 
( 4.8) as e ~ 0 and 5 ~ 0, and arguing like in ( 4.4), we easily recover (2.29) and then ( cf. 
(2.31 ), (2.33), (2.5), (2.8)) also (3.8) is fulfilled. Therefore, the existence and convergence 
results in Theorems 2.4 and 2.10 remain valid even if Xo t/:. H1(0), provided that the 
(three-dimensional) Lebesgue measure of the set {x E n : u0 (x) = uc} is zero. 

Remark 4.8. It is a general remark concerning alternative boundary conditions to couple 
with (1. 7). Referring to [6, Section 5], where the various approaches of [9-15, 20, 22] are 
discussed, one could wonder whether Theorems 2.2-2.4 and 2.8-2.10 extend to boundary 
conditions of the form 

OU - k - = 1 uP - ( uq in ~ on ( 4.9) 

with p ;:::: 1 , q > 0, p > q. We do not know anything about uniqueness and, in this case, 
Proposition 2.6 only states the existence of a smooth solution to Problem (P 0 e:) for any 
5 > 0 and any e > 0. But the convergences in Theorems 2.8-2.10 turn out for subsequences 
of such solutions, thus assuring that there exist solutions of (P0), (P e:), (P) even when 
p and q are different from 1 and 0, respectively. To justify our assertion, let us point out 
the few modifications in the proofs. By handling the estimate (3.25), Lemma 3.5 yields 

lluoe:lrllL00 (0,T;LP+1(r)) ::; 014 (4.10) 
in addition to (3.30), so that one can easily control the actual right hand side of (3.26) to get 
(3.32). Moreover, (3.34) still follows. In view of ( 4.10) and ( 4.3), we deduce that, at least 
for a subsequence, 

Uoe:lr ~ ulr weakly in LP+ 1 (~) and a.e. in~. 

Hence, with the help of the Egorov theorem it is not difficult to conclude that Uoe:lr ~ 
ulr strongly in LP(~), which enables us to pass to the limit in the variational equality 
corresponding to (2.46). Note that now the space V of test functions must be restricted in 
order that the boundary term have a meaning. For instance, we can choose V = H 2(0) 
and consequently vlr E L00(r) for v E V. 

5. UNIQUENESS 

Finally, we show the uniqueness properties stated in Theorems 2.2-2.4. 

Lemma 5.1 Under the assumptions (2.1) and (2.3), each one of the three problems (P0}, 

(P,), (P) admits at most one solution. 

Proof. Letting e and 5 be zero or not, according to the cases, we try to unify the 
matter. Suppose that there are two solutions ( 81 'U1 'X1 'el) and ( 82 'U2 'X2 '6 ). Setting 
() = 81 - 82 ' u = U1 - U2 ' x = X1 - X2 ' e = el - 6 and integrating the two equations 
(2.14) with respect to time, we realize that (see (2.15) and (2.17) or (2.20) or (2.22)) 

eo(B( ·, s),v) + L(x( ·, s),v) = k la V f u( ·, r)dr · 'Vv 
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+if ('Yu)(., r)dr v V v E V , for a.e. s E ( 0 , T) , (5.1) 

a.e. in Q. (5.2) 

Since (2.11) and (2.12) hold for both f)i 'Ui 'Xi 'ei 'i = 1, 2' observe that 

lul2 lul2 
-8u = -- > a.e. in Q, 

u1 u2 - 1 + I u1 u2 I (5.3) 

as well as ex 2:'.: 0 because of the monotonicity of (3. Then, multiplying (5.2) by x, and 
possibly using (2.18) or (2.21), the integration gives 

~ llx(-, t)ll 2 + e r llVx( ·, r)ll 2dr ~ -L r f ux V t E [O, T]. (5.4) 2 lo lo lo 
On the other hand, taking v = - u( ·, s) in (5.1) and integrating over n x (0, t), owing 
to (5.3) and (2.3) we obtain 

Col lo 1 /1~1 u2I + ~ [l'V {u(.' r)drll2 

+ { / ii ft(ru)(·,r)drl
2 ~ - r r ~(·,r),r(ru)(·,s)ds, 2dr lr 21 · , t lo lo lr 21 lo 

+L l lo xu V t E [O, T]. (5.5) 

Adding (5.5) to (5.4), noting that 

- .:!!_ < 11 't II __!_ a.e. in ~ ' 2,2 - I £OO(l:) 2, 

and applying the Gron wall lemma, we infer that the sum of the left hand sides (of ( 5.4 )-
( 5.5)) is equal to 0 for any t E (0, T]. Therefore it follows that u = 0 a.e. in Q, whence 
U1 = U2 and 81 = l/u1 = l/u2 = 82. At this point, (5.1) implies x = 0 so that e = 0 
by (5.2), and the lemma is completely proved. D 

Remark 5.2. A global revision of the proof of Theorems 2.2-2.4 and 2.8-2.10 allows us 
to decide that the assumption (2.4) can be weakened. Actually, the requirement 

( E H1(0, T; L2(I')), ( 2:'.: 0 a.e. in ~ (5.6) 

serves our purposes ( cf. especially Lemma 3.4). However, assuming (5.6) involves some 
regularization of ( within Problem (Poe), in order to exploit Proposition 2.6. 

Remark 5.3. Thanks to Lemma 5.1, the convergences (2.50)-(2.52), (2.54)~ and (2.57) 
regard the whole sequences. On account of the convergence results, it would be interesting to 
investigate possible error estimates between the solutions to (Poe) and to the limit problem. 
One method could be that developed in (5.1)-(5.5), but the expected outcome seems quite 
unsatisfactory. Then we let the question open. 
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