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Abstract

We consider transient one-dimensional random walks in random environment
with zero asymptotic speed. An aging phenomenon involving the generalized
Arcsine law is proved using the localization of the walk at the foot of “valleysof
height logt. In the quenched setting, we also sharply estimate the distribution
of the walk at time ¢.

1 Introduction

One-dimensional random walks in random environment have been the subject of con-
stant interest in physics and mathematics for the last thirty years since they naturally
appear in a great variety of situations in physics and biology.

In 1975, Solomon gives, in a seminal work [26], a criterion of transience-recurrence for
such walks moving to the nearest neighbours, and shows that three different regimes
can be distinguished: the random walk may be recurrent, or transient with a positive
asymptotic speed, but it may also be transient with zero asymptotic speed. This last
regime, which does not exist among usual random walks, is probably the one which
is the less well understood and its study is the purpose of the present paper.

Let us first remind the main existing results concerning the other regimes. In his
paper, Solomon computes the asymptotic speed of transient regimes. In 1982, Sinai
states, in 25|, a limit theorem in the recurrent case. It turns out that the motion
in this case is unusually slow. Namely, the position of the walk at time n has to be
normalized by (logn)? in order to present a non trivial limit. In 1986, the limiting
law is characterized independently by Kesten [22] and Golosov [19]. Let us notice
here that, beyond the interest of his result, Sinai introduces a very powerful and
intuitive tool in the study of one-dimensional random walks in random environment.
This tool is the potential, which is a function on Z canonically associated to the
random environment. It turns out to be an usual random walk when the transition
probabilities at each site are independent and identically distributed (i.i.d.).

The proof by Sinai of an annealed limit law in the recurrent case is based on a quenched
localization result. Namely, a notion of valley of the potential is introduced, as well
as an order on the set of valleys. It is then proved that the walk is localized at time ¢,
with a probability converging to 1, around the bottom of the smallest valley of depth
bigger than logt¢ surrounding the origin. An annealed convergence in law of this site
normalized by (logt)? implies the annealed limiting law for the walk.

In the case of transient random walks in random environment with zero asymptotic
speed, the proof of the limiting law by Kesten, Kozlov and Spitzer |23| does not follow
this scheme. Therefore an analogous result to Sinai’s localization in the quenched
setting was missing. As we will see, the answer to this question is more complicated
than in the recurrent case but still very explicit.



In the setting of sub-ballistic transient random walks, the valleys we introduce are,
like in |15] and [24], related to the excursions of the potential above its past minimum.
Now, the key observation is that with a probability converging to 1, the particle relies
at time ¢ at the foot of a valley having depth and width of order logt. Therefore,
since the walk spends a random time of order t inside a valley of depth logt, it is not
surprising that this random walk exhibits an aging phenomenon.

What is usually called aging is a dynamical out-of-equilibrium physical phenomenon
observed in disordered systems like spin-glasses at low temperature, defined by the
existence of a limit of a given two-time correlation function of the system as both
times diverge keeping a fixed ratio between them; the limit should be a non-trivial
function of the ratio. It has been extensively studied in the physics literature, see 9]
and therein references.

More precisely, in our setting, Theorem 2.1 expresses, for each given ratio h > 1, the
probability that the particle remains confined within the same valley during the time
interval [¢,th]. This probability is expressed in terms of the generalized Arcsine law,
which confirms the status of universality ascribed to this law by Ben Arous and Cerny
in their study of aging phenomena arising in trap models [4].

Let us remind that the trap model is a model of random walk that was first proposed
by Bouchaud and Dean [8, 10] as a toy model for studying this aging phenomenon.
In the mathematics litterature, much attention has recently been given to the trap
model, and many aging result were derived from it, on Z in [17] and |3|, on Z? in |7],
on Z* (d > 3) in [5], or on the hypercube in |1, 2|. A comprehensive approach to
obtaining aging results for the trap model in various settings was later developed in
[6]-

Let us finally mention that Theorem 2.1 generalizes the aging result obtained by
heuristical methods of renormalization by Le Doussal, Fisher and Monthus in [13] in
the limit case when the bias of the random walk defining the potential tends to 0 (the
case when this bias is 0 corresponding to the recurrent regime for the random walk in
random environment). The recurrent case leading also to an aging phenomenon was
treated in the same article and rigorous arguments were later presented by Dembo,
Guionnet and Zeitouni in [12].

The second aspect of our work concerns localization properties of the walk and can be
considered as the analog of Sinai’s localization result in the transient setting. Unlike
the recurrent case, the random walk is not localized near the bottom of a single
valley. Nevertheless, if one introduces a confidence threshold «, one can say that,
asymptotically, at time ¢, with a probability converging to 1 on the environment,
the walk is localized with probability bigger than a around the bottoms of a finite
number of valleys having depth of order log¢. This number depends on ¢ and on the
environment, but is not converging to infinity with ¢. Moreover, in Theorem 2.3 and
Corollary 2.4 we sharply estimate the probability for the walk of being at time ¢ in
each of these valleys.



2 Notations and main results

Let w := (w;, ¢ € Z) be a family of i.i.d. random variables taking values in (0, 1)
defined on 2, which stands for the random environment. Denote by P the distribution
of w and by E the corresponding expectation. Conditioning on w (i.e. choosing an
environment), we define the random walk in random environment X = (X,,, n > 0)
on ZN as a nearest-neighbor random walk on Z with transition probabilities given by
w: (X,, n > 0) is the Markov chain satisfying Xy = 0 and for n > 0,

P,(Xpm=2z+1|X,=2) = w,
Pw(Xn+1:x_1|Xn:$) = 1—(4)96.

We denote by P, the law of (X,,, n > 0) and E,, the corresponding expectation. We
denote by P the joint law of (w, (X,)n>0). We refer to Zeitouni |27| for an overview
of results on random walks in random environment. Let us introduce

o 1— W;

Pi ‘= y 1 € 7.
Wi

Our first main result is the following theorem which shows aging phenomenon in the
transient sub-ballistic regime.

Theorem 2.1. Let w := (w;, @ € Z) be a family of independent and identically dis-
tributed random variables such that

(a) there exists 0 < k < 1 for which E [p§] =1 and E [p§log™ po] < o0,

(b) the distribution of log po is non-lattice.

Then, for all h > 1 and all n > 0, we have

; sin(km) [Y*
lim (| Xy, — X, < ylogt) = #/ 1L — g dy.

Let us make some comments about the concentration of the particle inside a region
of size nlogt in Theorem 2.1. Let us first mention that a convergence of the processes
(n™"X,; t > 0) towards the inverse of a stable subordinator of index , when n goes
to infinity, is proved in |15|. Conjugating this result with standard facts about the
jumps of a stable subordinator, one can get a weaker version of Theorem 2.1, where
the term nlogt is replaced by nt*. As we will see, the proof of a confinement inside a
region of order logt which corresponds to the width of the trapping valley at time ¢,
requires a finer analysis. Finally, in the trap models considered in [6], the confinement
occurs on a single attracting site, but this comes from the nature of this model, and in
our setting the role of the attracting site of the trap model is played by the attracting
valley.

Let us now remind some basic result about X,, : under the same assumptions (a)-(b),

Kesten, Kozlov and Spitzer [23] proved that X,,/n" converges in law to C(gx)" where




C'is a positive parameter and S¢* is the normalized positive stable law of index &, i.e.
with Laplace transform

Ele™" ] =™, VA > 0.

In [14, 15] we gave a different proof of this result and we were able to give an explicit
expression for the constant C.

The proof was based on a precise analysis of the potential associated with the en-
vironment, as it was defined by Sinai for its analysis of the recurrent case, see [25].
In this paper, we use the technics developed in [14, 15] to prove Theorem 2.1. This
potential, denoted by V' = (V(z), = € Z), is a function of the environment w. It is
defined as follows:

Sor log p; if v >1,
V(z):=¢ 0 if z =0,
— Z?:Hl logp; if x < —1.

Furthermore, we consider the weak descending ladder epochs for the potential defined
by ey := 0 and

€; == ll'lf{]{? > €1 V(l{?) < V(ei_1>}, 1> 1,

which play a crucial role in our proof. Observe that the sequence (e; — €;—1);>1 is a
family of i.i.d. random variables. Moreover, classical results of fluctuation theory (see
[16], p. 396), tell us that, under assumptions (a)-(b) of Theorem 2.1,

Ele1] < oo. (2.1)

Now, observe that the sequence ((e;, €;11])i>0 stands for the set of excursions of the
potential above its past minimum. Let us introduce H;, the height of the excur-
sion [e;, €;41] defined by H; := maxc,<p<c,,, (V(k) — V(e;)), for i > 0. Note that the
(H;)i>0’s are i.i.d. random variables.

For t € N, we introduce the critical height

h;y :==logt — loglogt. (2.2)

As in [15] we define the deep valleys from the excursions which are higher than the
critical height h,. Let (0(j));>1 be the successive indexes of excursions, whose heights
are greater than h;. More precisely,

o(1) := inf{i >0: H; > h},
o(j) == inf{i>a(j—1): H; > I}, Jj>2.

We consider now some random variables depending only on the environment, which
define the deep valleys.



Definition 2.2. For all 7 > 1, let us introduce

bj = ()

a; = sup{k <b;: V(k)—V(b;) > D},
7! inf{k > b; : V(k) — V(b;) > h},
dj = es(j+1,

¢; = inf{k>0b;: V(k)= max V(x)},

d; = inf{k>d,: V(k)—V(d;) < —D,}.

where D; := (14 %) logn:. We call (aj,b;, c;,d;) a deep valley and denote by HU) the
height of the j-th deep valley.

Moreover, let us introduce the index of the last visited deep valley at time ¢, denoted
by
Uy :=sup{n >0: 7(b,) < t}.

Before stating the quenched localization result, recall that X is defined on the sample
probability space ZY. Then, let us introduce e = (e;, ¢ > 1) a sequence of i.i.d.
exponential random variables with parameter 1, independent of X. We define e on a
probability space = and denote its law by P®). In order to express the independence

between X and e, we consider for each environment w, the probability space (ZN x
=, P, x P®) on which we define (X, e).

Furthermore, let us define the weight of the k-th deep valley by

Wi (w) = Z Ve () =Vo(m)
ap<m<n

b <n<dy,

Moreover, let us introduce the following integer, for any ¢t > 0,

EE? = sup {Z >0: ZWk(w)ek < t}.

k=1

We are now able to state our second main result.

Theorem 2.3. Under assumptions (a)-(b) of Theorem 2.1, we have,

(i) for alln >0,
tlim P(|X; — by, | < nlogt) =1,

(i1) for all § > 0,
lim P(dTV(et,egij 1) > 5) —0,

where dry denotes the distance in total variation.

Observe that we can easily deduce the following quenched localization result by as-
sembling part (¢) and part (ii) of Theorem 2.3.



Corollary 2.4. Under assumptions (a)-(b) of Theorem 2.1, we have, for all §,n > 0,

that
i—1 i
P(Z Pyo(| X, — b;| < nlogt) — P(e)(ZWk(w)ek <t < ZWk(w)ek) > 5)
i>1 k=1 k=1

converges to 0, when t tends to .

The content of this result is twofold. It first says that, with a probability converging
to 1, the process at time t is concentrated near the bottom of a valley of depth of
order logt. It also determines, for each of these valleys, the probability that, at time
t, the particle lies at the bottom of it. This probability is driven by a renewal Poisson
process which is skewed by the weights of each of these valleys.

This result may be of big interest when trying to get informations on the environment
on the basis of the observation of a sample of trajectories of the particle, like it is
done, in this setting, in recent works about DNA reconstruction, see [11].

3 Notations

A result of Iglehart |21] which will be of constant use, says that, under assumptions
(a)-(b) of Theorem 2.1, the tail of the height H; of an excursion above its past minimum
is given by

P(Hl > h) ~ C; e_“h, h — 0, (31)
for a positive constant C; (we will not need its explicit value).

The analysis done in [14, 15| shows that on the interval [0, ¢], ¢ € N, the walk X, spends
asymptotically all its time trying to climb excursions of height of order logt + C for
a real C. Let us now introduce the integer

ny = |t"loglogt].
The integer n; will be use to bound the number of excursions the walk can cross before
time ¢. The strategy will be to show that we can neglect the time spent between two

excursions of size smaller than h;, and to show that at time ¢ the walk X, is closed to
the foot of an excursion of height larger than h,.

3.1 The deep valleys

Let us define the number of deep valleys in the n; first excursions by
K;:=sup{j >0: o(j) <mn},

which is the number of excursions higher than the critical height h; in the n; first
excursions.

Remark. This definition corresponds to the definition of deep valleys introduced in
[15] with n = n;, but with a different critical height. In [15] the critical height
was h, = %Elogn, for € such that 0 < ¢ < 1. Here, we see that h,, would be
equal to (1 —¢)logt + 1—;‘3 logloglogt which is smaller than our critical height h, =
logt —loglogt. This means that the deep valleys are higher and less numerous in the
present paper than in [15].



3.2 The x-valleys
Let us first define the maximal variations of the potential before site = by:
T i )
Vie) = max (V(j)-V()), z€N,
! L N .
Vi(@)i= min (V()- V(@) zeN
By extension, we introduce
Viwy) = max (V(j)-V(@), z<y,
Viz,y) = min (V(j) = V(). z<y.

EASAS AN

The deep valleys defined above are not necessarily made of disjoint portions of the
environment. To overcome this difficulty we defined another type of valleys, called
x-valleys, which form a subsequence of the previous valleys, which by construction are
made of disjoint portions of environment, and which will coincide with high probability
with the previous valleys on the portion of the environment visited by the walk before
time t.

v o= inf{k >0: V(k) < —-D;},
T = int{k > VIR > b,
by = sup{k <T7:V(k)= mm V( )}

0 = sp{k<bi: V() - V() > D,
dy = inf{k>T7: V(k) <V(})},
¢ = inf{k>0b]: V(k)= max V(x)},

by <x<d1

df = inf{k>d, : V(k)=V(d,) < —D;}.
Let us define the following sextuplets of points by iteration

(vp a5, b0, 17, ¢,y df) o= (7, a7, T oy dyyd) o B, 5> 2,

AR R A R R
where 60; denotes the i-shift operator.

Definition 3.1. We call a *-valley any quadruplet (a7, b, c}, dj) for j > 1. Moreover,
we shall denote by K the number of such x-valleys before e,,, i.e. K/ :=sup{j >0:

T;'k S ent}’

It will be made of independent and identically distributed portions of potential (up
to some translation).



4 Preliminary estimates

4.1 Introducing good environments

As in |15], we introduce the following series of events, which will occur with high
probability when ¢ tends to infinity.

Ai(t) = {en, <C'ny},

() = {K < (log)F* ],

As(t) = Ny {o(i+1)—o(j) =1},
A4(t> ﬂ]K:ti‘rl {d] —aj < C// lOg t} >

where ¢(0) := 0 (for convenience of notation) and C’, C” stand for positive constants
which will be specified below.

Lemma 4.1. Let A(t) := A1 (t) N Aa(t) N As(t) N Ay(t), then

tliglo P(A(t)) = 1.
Proof. Concerning As(t), we know that the number of excursions higher than h; in the
first n; excursions is a binomial with parameter (n;, ¢;) where ¢, := P(H; > h;). Since
(3.1) implies ¢; ~ Cre™" t — oo, we have that E [K;] = nyq; ~ Crloglogt(logt)~.
Using Markov inequality we get that P(As(t)) tends to 1. The fact that P(A;(t) N
As(t) N A4(t)) converges to 1 is a consequence of Lemma 1, Lemma 3 and Lemma
4 of [15] since the deep valleys with h; are less numerous than with h,, (cf Remark
3.1). O

The following lemma tells us that the x-valleys coincide with the sequence of deep
valleys with an overwhelming probability when ¢ goes to infinity.

Lemma 4.2. If A*(t) = {K; = K} (a;,bj,¢;,dj) = (a5,b5,¢t,d¥), 1 < 5 < K[},

3773071070

then we have that the probability P(A*(t)) converges to 1, when t goes to infinity.
Proof. By definition, the x-valleys constitute a subsequence of the deep valleys, and
A*(t) occurs as soon as the valleys (a;, b;, ¢;,d;) are disjoint for 1 < j < K. Hence,
we see that As(t) N A4(t) C A*(t). Then, Lemma 4.2 is a consequence of Lemma
4.1. U
4.2 Directed traps

Let us introduce, for any z,y € Z,

T(x,y) == inf{k > 0: X;m)4r = ¥}

We recall from [15] the following lemmas.



Lemma 4.3. Defining DT'(t) := {7’ bj+1) < 7(dj,d;)} , we have
P(DT(t)) — 1, t — oo.

Proof. The proof is exactly the same as in |15], but easier since the deep valleys with
hy are less numerous than with h,, (cf Remark 3.1). O

Lemma 4.4. Defining DT*(t ﬂj AT, dy) < (b7 an) ), we have

P(DT*(t)) — 1, ¢ — oo.

Proof. The proof is close to be the same as in [15], except that the deep valleys with h;
are still less numerous than with h,, and that the +;’s are remplaced by the a;’s. This
does not modify the proof of [15] since we only have to check that V(a;) =V (b;) > Dy,
which is true by definition of the a;’s (see Definition 2.2). O

Finally, we need to know that the time spent between the deep valleys is small. This
a consequence of Lemma 7 in [15].

Lemma 4.5. Let us introduce the following event

t
TA(t) = A(?) { (b1) +Z 7(dj, bj41) < m}-

Then, we have
P(IA(t)) — 1, t — oo.

Proof. The arguments are the same as in the proof of Lemma 10 in |[15]. The main
tool is Lemma 7 of |15, which says that there exists C' > 0, such that for all h > 0,

B [7(11(h) - 1)] < Ce',

where o denotes the expectation under the annealed law Py associated with the
random walk in random environment reflected at 0. O

4.3 Localization in traps

In a first step, we give a technical result, which will be very useful to control the
localization of the particle in a valley.

Lemma 4.6. If F,(t) := {max{V(as,b1); =V (b1, c1); V(c1,di)} < ~logt}, then
we have, for any v > O and any 0 < & <7,

P(F,(t) =1—o(t™), t— oo

In words, F,(t) ensures that the potential does not have excessive fluctuations in a
typical box.

Proof. The arguments are the same as in the proof of Lemma 13 in [15]. O



For each deep valley, let us introduce the position ¢;
¢ :=inf{n >¢: V(n) <V(¢g)— h/3}.

We first need to know that during its sojourn time inside a deep valley, the random
walk spends almost all its time inside the interval (a;,¢;). This is a consequence of
the following lemma.

Lemma 4.7. Let LT(t) be the event

K

Lr(t) =) {T(a,.,di) < @} |

i=1
Then,
P(LT(t)) — 1, t — 0.

This result just means that at the time scale t, if the walk meet ¢;, then soon after it
exits the deep valley (a;, d;).

Proof. Since P(K, < (logt)"2") — 1, when t — oo, we only have to prove that
P (rlend) > ) = ol(log)5), 1
7(c — | =o((lo — 00.
1,41 logt g )
Now, applying the strong Markov property at 7(¢;), we get

P (T(El,dl) > é) <FE |:P571‘01 (T(d1> > t/ logt)] + B [Pfl (T(Cl> < T(dl))} .

Considering the first term, using the fact that Efj'q [T(d1)] < X <icj<d, eV)-v
(see (A1) in [18]) and Chebychev inequality, we obtain

_ log ¢ N vy logt
PO (r(dy) > t/logt) < —o2 N7 V0V < DB geriost,
t c1<i<j<d: t
on F.,(t). Since the proof of Lemma 4 in [15] contains the fact that P{d; —¢; >
C'logt} = o((log t)_HTN), when ¢t — oo, we only have to choose v < 1, which implies
C1 — 1t
E P2, (7(d) > t/logt)] = o((logt) " ¥*), ¢ — o0,
In order to treat the second term, by (Zeitouni [27|, formula (2.1.4)), we get
- dl—_l eV(k) - ho

P (r(c1) < 7(d1)) < S50 < (dy —¢p)eV@Flost=Vien < (g — ¢))er 8T

— di—-1 vk
e, © (k)

on F,(t). Now, let us choose v < 1/3.

Recalling Lemma 4.6, and since we have P(d; — ¢; > C'logt) = o((logt)~"%"), when
t — 0o, we get

E [PZ (t(e1) < 7(dh))] = o((logt)™*"),  t— oo,

which concludes the proof of Lemma 4.7. O

10



Now, we need to be sure that the bottom of the deep valleys are sharp. For n > 0,
we introduce the following subsets of the deep valleys

O; = [ai—l—l,Ei— 1] \ (bz —nlogt—i—l,bi—l—nlogt— 1), 1€ N,

and the event

As(t) = ﬂ { min (V (k) — V(b)) > C" logt} :

keO;NZ

1=

for a constant C" (small enough) to be defined later. Then, we have the following
result.

Lemma 4.8. For alln >0,
lim P(As5(t)) = 1.

t—o0

Proof. Observe first that if n > C”, then the sets (O;,1 < i < K}) are empty on Ay(t).
Therefore, Lemma 4.8 is a consequence of Lemma 4.1.

Now, let us assume 7 < C”. The definition of ¢; implies that min., <<z (V (k)=V (b;)) >
%ht. Then, choosing C" such that C"”C” < 2/3 implies that C"'nlogt < %ht for all
large ¢, which yields

c; <k<g;

P <ﬁ{ min (V (k) — V(b)) > C"n logt}) =1, (4.1)

1=1

for all large ¢. Then, let us introduce the sets
O; == 0;N [bi, ci, 07 = 0; N [ay, bil, i€ Z,

and the events
K
AL(t) = ﬂ { min (V(k) = V(b)) > C’”’nlogt} :
i=1

AL(t) = ﬁ{ min (V(k) — V(b)) > C””nlogt} :

1=1

Now, recalling (4.1), the proof of Lemma 4.8 boils down to showing that

Jim P(A5(1) = 1, (4.2
lim P(AZ(1) = 1. (4.3)

Let us first prove (4.2). Since P(K; < (logt)™=") — 1, when ¢ — oo, we only have to
prove that it is possible to choose C" small enough such that

P ( min (V (k) — V(b)) < C”'nlogt) = o((logt)™ "), t — oo. (4.4)

keO1NZ
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Recalling assumption (a) of Theorem 2.1 and denoting by u the law of log pg, we can
define the law 1 = pjp, and the law P = i®% which is the law of a sequence of i.i.d.
random variables with law fi. The definition of x implies that [ log p fi(dp) > 0. Now,
observe that the probability term in (4.4) can be written

P ( min  V(k) < C"nlogt/H > ht)

[nlog t| <k<Ty

< Cep ( min _ V(k) < C"nlogt; H > ht)

[nlogt|<k<Tw

[ —k(V(Tyg)—h
< CE [e T i 1o ) bty V(k><c”’nlogt;H2ht}}

. "
< CP (mlogItIJHSIIIcSTH V(k) < C"nlogt; H > ht) : (4.5)
the first inequality being a consequence of (3.1) and the second deduced from Girsanov
property. Now, let us introduce o = a(n) := en with 0 < ¢ < min{E [V (1)];1/C"}
and v = ~(n) := cn/2. Observe that alogt < h; for all large ¢, such that T, 0 <
Ty, < Ty < 0o on {H > h;}. Now since ¢ < E[V(1)], we obtain from Cramer’s
theory, see [20], that P (V(|nlogt]) < alogt) < Cexp{—nl(c)logt} = o((logt)~ =),
where f() denotes the convex rate function associated with V under P. This yields
P (Tarog: < |nlogt]) =1 —o((log £)="%"), when t tends to infinity. Therefore, we get
that

P (L min _ V(k) < C"nlogt; H > ht)

nlogt) <k<Tg

i m . 14k

s P (Talo;?%%gTH V(k) < C"nlogt; H > ht) +o((logt)™2"). (4.6)
Then, recalling that Lemma 4.6 implies that P(F,(t)) = 1 — o((log t)_HTK), t — oo,
let us write

P < min _ V(k) < C"nlogt; H > ht)

Ta log tSkSTH

= P < min  V(k) < C"nlogt; H > hy; Fﬁ,(t)) +o((logt)™"=). (4.7)
Tatogt<k<TH

Furthermore, observe that on F,(t), we have ming, ,  <k<71;; V (k) > (a—7)logt, which

yields ming,,, _,<r<1y; V (k) > C""nlogt, if we choose C" smaller than c¢/2. Therefore,

for C" small enough (independently of n < C”), we get that the probability term in

(4.7) is null for all large t. Now, assembling (4.5) , (4.6) and (4.7) implies (4.4) and

concludes the proof of (4.2) .

The proof of (4.3) is similar but easier. Indeed, we do not have to use Girsanov
property to study the potential on [a;, b;]. O

5 Two versions of a Dynkin type renewal result

*

We define the sequence of random times (7;°);>; as follows: conditioning on the en-

)i>1 is defined as an independent sequence of random variables with

*

vironment w, (7
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the law of 7(d}) under Pja?, where 7(d}) denotes the first hitting time of d} and Pziﬁ
is the law of the Markov chain in environment w, starting from b; and reflected at a;.

*

Hence, under the annealed law P, (7;);>; is an i.i.d. sequence since the *-valleys are

independent and identically distributed. The first step in our proof is to derive the
following result.

Proposition 5.1. Let ¢ be the random integer defined by
; =sup{n>0: 77 +---+7 <t}

For all 0 < x1 < 29 < 1, we have

3 2 —K
lim P(H(1 — ) <7 + -+ 7 <t(1— 1)) = sin(w) / ( T da
x1

t—oo T

For all 0 < 21 < x9, we have

lm P(t(1+21) <77+ + 70 S UL +a9)) =

t—o0

sin(km) / 2 dx

™ L oaf(l4x)

Proof. Observe that the result would exactly be Dynkin’s theorem (cf e.g. Feller,
vol II, |16], p. 472) if the sequence (7;);>1 was an independent sequence of random
variables in the domain of attraction of a stable law with index . Here, the sequence
(77)i>1 implicitly depends on the time ¢, since the *-valleys are defined from the critical

height h;. In [15], using [14], we obtained that the Laplace transform of 7 satisfies

P(H>h) ' 7k
t sin(k)

E[l - e—VT] ~ MCUNS, T — o0, (5.1)
for all A > 0. The constant Cy was made explicit in [14] but we will not need this
value here.

The proof is essentially the same as in [16]. Let us introduce Sj = 0and S} := >"" | 77,
for n > 1. Then, the inequality ¢(1 —22) < 7§ +- - -+ 75 < t(1—x1) occurs iff S =ty
and 7,5, > t(1—y) for some combination n, y such that 1 —z, <y < 1—x1. Summing

over all n and possible y we get

1o Gy(1—y)

P((1 =) < 55 <1 —m1)) = / P(H > hy)

1—zo

U{dy}, (5.2)

where Gy(z) := P(H > h)P(t~'77 > x), and U;{dx} denotes the measure associ-
ated with Uy(z) := > o P(t7"S; < x). We introduce the measure dH,(u) such that
[ dH,(u) = Gy(z), for all z > 0.

Lemma 5.2. For any x > 0, we have

lim 2"t Gy(x) = 2"T'(1 + k) Cy. (5.3)

t—o0

Moreover, the convergence is uniform on any compact set.

12



Proof. In a first step, observe that E[1 —e™ 7] = P(H > hy)~ L@ “)dH(u).
Recalling (5.1), we obtain

lim t/ (1 —e)dH,(u) = 2°T(1 + Kk)Cyl (1 — K) A"
0

t—o0
Since D(1 — k)A" = A [77 e 4" du, this implies
tlim t/ (1 —e™)dH,(u) = 2°T'(1 + K)CU)\/ e My~ du. (5.4)
To the other hand, integrating by parts, we get, for any ¢ > 0,

/0 T (1= e dH () = A /0 MG, (u) du. (5.5)

Combining (5.4) and (5.5) implies that the measure ¢t G;(u) du tends to the measure
with density 2°T'(1 + k)Cyu~". Therefore, we have for all z > 0,

z 1-k
tlim t/ Gi(u) du =2"T'(1 + KJ)CUf (5.6)
—00 0 —
which yields
(1+e)x
| u) du
lim lim =% =1—k. 5.7
P R N Gt )du " (5:1)
Moreover, observe that the monotonicity of G(-) implies
2Gy((1+e)x) _ [0+ Gy (w) du __2Gy(x) (5.5)
Jy Gi(w)du = e [T Gy(u)du ~ [ Gy(u)du
Now, combining (5.7) and (5.8), we obtain
liminf —————— 2Gi(2) >1—k
t—o00 fO u) du
Recalling (5.6), this yields
li{n inf 2"t Gy(z) > 2"T'(1 + k) Cy. (5.9)
Similarly, we obtain, for any ¢ > 0,
limsup 2"t Gi((1 +¢)x) < 2°I'(1 + k)Cy. (5.10)

t—o00

Assembling (5.9) and (5.10) concludes the proof of (5.3).

Furthermore, observe that the uniform convergence on any compact set is a con-
sequence of the monotonicity of x — Gi(z), the continuity of the limit and Dini’s
theorem. H

14



P(H>ht)~
t

Lemma 5.3. The measure ! U{dx} converges vaguely to the measure defined

1 k—1
by TR (+m)(1—r)2~Cy * dz.

Proof. Observe first that the Laplace transform Uy(\) = Jo e U{du} satisfies
0i(N) = 3,20 Ele %] = (1 — E[e>%])~L. Therefore, (5.1) yields

lim

t—o00

P(H > hy)™* ~ A
=Y U0\ = .
t i) T(1+ #)T(1 — k)2:Cy

Furthermore, since T(k)A™" = [* e 4"~ du, we deduce the vague convergence of
the measure from the pointwise convergence of the Laplace transforms. O

Now, recalling (5.2), we observe that Lemma 5.2 together with Lemma 5.3 imply

1 1—z1
lim P(¢(1 — < S <t(l- = —— 1—y)"y*td
Jim Bi(1 ) € 5 <0 -2)) = s [ 0-p)
] x2 —K
_ sm(mr)/ Yy _ay.
™ 1 (1 - y>n
This concludes the proof of the first part of Proposition 5.1. The second part of
Proposition 5.1 is obtained using similar arguments. O

Recall Lemma 4.5 which tells that the inter-arrival times are negligible. Now, we will
prove that the results of Proposition 5.1 are still true if we consider, in addition, these
inter-arrival times. Let 01 := 7(by), 71 := 7(b1,d;) and

5k = T(dk_l,bk), Tk — T(bk,dk), k‘ 2 2.

Moreover, we set
Tk3:51+7—1+"'+7—k—1+5k7 ]{321,

the entering time in the k-th deep valley.

Proposition 5.4. Recall {; = sup{n > 0: 7(b,) <t}. Then, we have
P(T,, <t<Ty,+m,)—1, t — o0.

For all 0 < x1 < 29 < 1, we have

lim P(t(l — ,’L‘Q) < ﬂt < t(l o 1’1)) _ Sln(mr) / (L .

t—oo T

For all 0 < x1 < x9, we have

t—o00 m

I
i B0+ 1) < T < 60 +2)) = 20 [7 G
1

15



Proof. On the event A(t) N DT*(t), we know that the random times (7;)1<;<x; have
the same law as the random times (7;")1<i<x; defined in Section 5. If we define

ly:=sup{n >0: 7 +---+ 7, < t}, then, using Proposition 5.1 and Lemma 4.3, we
get that the result of Proposition 5.1 is true with 7 and ¢, in place of 7% and ¢;. Now,
using Lemma 4.5 we see that

liminfP(l, =0, —1; T, <t <T) + )

t—o0

> lignianP(IA(t) Dt = (AT > 6,

for all € > 0. Thus, using Proposition 5.1 (for /, and 7;) and letting ¢ tends to 0, we
get that .
thrn P(gt :gt_17 Tgt §t<ﬂt +Tgt> =1.

We conclude the proof by the same type of arguments. O

6 Proof of part (i) of Theorem 2.3: a localization
result

We follow the strategy developed by Sinai for the recurrent case. For each valley we
denote by m; the invariant measure of the random walk on [a;, ;] in environment w,
reflected at a; and ¢; and normalized so that m;(b;) = 1. Clearly, ; is the reversible
measure given, for k € [b; + 1,¢ — 1], by
Why,:
(k) = i
7T(> 1—(4)(,2.4_1 1—wk

= Wbyt P (o 1)

< o Vk)=V(E) 4 o= (V(k=1)=V (b))

Wk—1

Similarly, 7;(k) < e”(V®)=V®)) o= (VEHD=V®) for | € [a; +1,b; — 1]. Since the walk
is reflected at a; and ¢;, we have m;(a;) = e~(V(@+D=V®) and m;(¢;) = e~ (VE-D=V(b)),
Hence on the event As(t) we have

—C'"'nlog t el
(7Ti)\[ai,éi}\(bi—nlogt,bi—i-nlogt) <Ce Tost = Ct .
Moreover, since 7; is an invariant measure and since m;(b;) = 1, we have, for all £ > 0,

pbi

w,|ai,Ei|(Xk =z) < m(x).
Hence, on the event A(t) N A5(t) we have, for all k£ > 0,

pb

2 an (1 Xk = bi| > nlogt) < C(logt)t=<". (6.1)
Let & be a positive real, 0 < £ < 1. Then, let us write
li%n inf P(| X, — by,| < nlogt)

lil{n inf P(| X; — by, | < nlogt; €y = ly14e))

v

> lig(i)lgﬂ[”(ft = ly14¢)) — limsup P(| Xy — by,| > nlogt; b = lya1e)).

o t—o0

1R



Considering the first term, we get by using Proposition 5.4,

liminf P(6; = ly11e)) = li{n inf P(Tp, 41 > t(1 +€))

- _ osin(km) [ dx
B 7r /5 (14 ) (6.2)

In order to estimate the second term, let us introduce the event
TT(t) :=A{t) NAs(t) N DT ()N DT*(t) N A*(t) N TA(t) N LT(t) N IT(1),

where IT(t) := {T,, <t < Ty, + 7,}. Observe that the preliminary results obtained
in Section 4 together with Proposition 5.4 imply that P(TT(t)) — 1, when t — oc.
Then, we have

limsup P(|X; — by, | > nlogt; € = lyte))

t—oo
< limsup P(TT(t); [X; — be,| > nlogt; £y = lyare))
t—oo
K
< limsupE |:1TT(t) Z 1{|Xt—bi|>nlogt;Zt:Zt(1+5):i}] .
=00 i=1

But on the event TT(t) N {{; = ly1+¢) = i} we know that for all k € [T;,t] the walk X,
is in the interval [a;, ¢, —1]. (Indeed, on the event LT(t)N DT (t)N1A(t) we know that
once the position ¢; is reached then within a time ¢/logt the position b;y; is reached
which would contradict the fact that £,;4¢) = 7. Hence, we obtain, for all i € N,

P (TT(t); i < Ki5 | Xe = bi| > nlogt; by = biayey = i)
S E[l{igKt}lA(t)ﬂAg.(t) sup Pﬁf\ai,éi\ (|Xk — bz| > nlog t)]
ke[0,t]
< C(logt)t=¢",

where we used the estimate (6.1) on the event A(¢) N A5(¢). Considering now that, on
1l

the event A(t), the number K (t) of deep valleys is smaller than (logt) = we get

limsup P(|X; — by,| > nlogt; £, = ft(1+§)) < limsup C(log t)HTNt_C'”W

t—o0 t—o0

= 0.

Then, letting £ tends to 0 in (6.2) concludes the proof of part (i) of Theorem 2.3. O

7 Part (i7) of Theorem 2.3: the quenched law of the
last visited valley

In order to prove the proximity of the distributions of ¢; and ﬁ,ﬁjﬂ, we go through
; = sup{n > 0, 7+ ---+ 75 < t} whose advantage is to involve independent

random variables whose laws are clearly identified.
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Proposition 7.1. Under assumptions (a)-(b) of Theorem 2.1, we have, for all § > 0,
lim P(dTv(e;, () > 5) — 0,
where dry denotes the distance in total variation.

Proof. The strategy is to build a coupling between ¢; and Eﬁ)j such that
lim PPy (6 # 412) > 6) = 0.

Let us first associate to the exponential variable e; the following geometric random
variable

1
(]
log(pi(w))
where 1 — p;(w) denotes the probability for the random walk starting at b; to go to d;
oV (by)
it V(@)

Nz’ =

before returning to b;, which is equal to wy The parameter of this geometric

law is now clearly equal to 1 — p;(w).

Now one can introduce like in |15] two random variables F@ (resp. S®) whose law
are given by the time it takes for the random walk reflected at a;, starting at b;, to
hit b; (resp. d;) conditional on the event that d; (resp. ;) is not hitten in between.

We introduce now a sequence of independent copies of F we denote by (Fr(zi))nzo-
The law of 7 is clearly the same as Fl(z) 4+ 4 F](\;i) + S@ which is going now to be
compared with E,[7/]e;.

Let us now estimate, for a given £ > 0 (small enough),

P((l —O(F + -+ FY +89) < Bulrfles < 1+ O)(F + -+ Fy + SU)))

> P(A-HED++ FY) < Bulrlen < (1+H(FD + -+ FY))
—IP(S(“ > g(Ff") +oot Fﬁj)). (7.1)

Let us first treat the second quantity of the rhs of (7.1). For this purpose, we need an
upper bound for E,[S®] which is obtained exactly like in Lemma 13 of [15] and can
be estimated by controlling the size of the falls (resp. rises) of the potential during its
rises from V' (b;) to V(¢;) (resp. falls from V(¢;) to V(d;)), see Lemma 4.6. Indeed, the
random variable S® concerns actually the random walk which is conditioned to hit
d; before b;. Therefore, this involves an h-process which can be viewed as a random
walk in a modified potential between b; and d;. This potential has a decreasing trend
(which encourages the particle to go to the right), and the main contribution to S
comes from the small risings of this potential along its global fall which are similar to
the fluctuations of the original potential during its fall and similar to their opposite
during its rise.

This reasoning yields for § small enough (one easily observes that the smaller §, the
stronger the result)

Y0 <e<d, P(EJSYI<t)=1—o0t").

1R



This implies, by Markov inequality, that

Vo > 0, P(Pw(S(i) > %) < tl5> =1- 0(@).

On the other hand, P,(F" + -+ F{ < 1) < P,(N; < %) = 1 — p;(w) "], But,
obviously,

P(pi(w) <1l- %) = O((loglt)2>' (7.2)

Hence, we have

. . 1 1
P(Pw FO 4o p FO <42y < ):1— <7>

Gathering these two informations on S® and Fl(i) 4+ -+ F](\fi), we obtain that, for all
§>0,

3! Na (logt)?/
The first quantity of (7.1) is treated by going through

P((l - %)NiEw[F@] <FO+. .4 F) <@+ %)NiEw[F(i)D,

i

which, for all § > 0, is larger than

I—p ({
~PE(FOY) 2 1)

which is in turn, using Bienaimé-Chebicheff inequality, larger than

FO 4. v FY

~ §
N;

> —EW[F@]} N{N; # 0} N {E[(F)?] < t5}>

—E, [F(i)] :

= B[ 1y | V) o] — PO > £)
Ni (N;#0) t £2Ew [F]2 w —
16t° 1 .
> 1= B lovso)| — PUBL(FOY) 2 1),

Now, we use again the reasoning of [15| involving h-processes to get an upper bound for
EL[(F)?] (see Lemma 11 of [15]), which is, like for £,[S®], estimated by controlling
the small fluctuations of the potential inside the valleys, see Lemma 4.6. We are even
in a more favorable setting than in [15], since the number of valleys we have to control
is much smaller (see Remark 3.1). So, we get

W >0, PEJFVV] > 1) = of (10;)2)‘

Moreover, using (7.2), we get

1

E[ﬁil(NﬁﬁO)] — E[— 1= pi(w)

2 g1 - )] = ()

10



As a result,

| Z. Z. 1
1@((1 - %)NiEw[FW <FO 4 4 FY) <1+ i)NE [F@]) —1- 0(7)2)

Now, the second step in the estimation of the first quantity of the rhs of (7.1) is the
examination, for £ > 0, of

§ i § i
P((1 - HNEFO] < Bfrle; < (1+ H)NE[FO])
P((1- %)NZEW[F(“] < (EL[NJEL[FY] + E,[SV))e; < (1+ i)N,.Ew[F@)]).

Neglecting again, like above, the contribution of S we are back to prove that

(-9 gl = 2 < gy = o)

which is a direct consequence of (7.2) and the fact that, for all € > 0,

1 1
P(e)<z>—):1— <7>
©i e ¢ (logt)?

This concludes the proof that the lhs of (7.1) is 1 — o

1
( (logt)? )-

Now, since P(K, < (logt)™ ") — 1, when t — oo, we deduce,
IP)(W < Kpy (1=6)(F+ - 4+ FP4+59) < B, [rf]e; < (146) (K +-- ~+FJ(VZ'Z_)+S(“)) — 1.
Hence,
P(W <Ky, =90+ +7) < ) Eurler <+ +--- +7'i*)> — L
k=1

Applying this, for ¢ = ¢ and © = EE?) we get respectively that, for all £ > 0,
P(ﬁ: <9 w) —1 and P9 < L) — 1.
i—&

We conclude now the proof by reminding that lim¢ o P(¢; = 6*1+§ ) =1 as well as
lime_o P69 = (7)) = 1. O

(1+6)tw

Proof of part (it) of Theorem 2.3. The passage from Proposition 7.1 to part (ii) of
Theorem 2.3 is of the same kind as the passage from Proposition 5.1 to Proposition
5.4. O
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8 Proof of Theorem 2.1

We fix h > 1 and n > 0 ( was used to define the event As(t)). Let us introduce the
event
TT(t, h) == TT(t) N {X; — by, < glogt} N { X — by, < glogt},

whose probability tends to 1, when ¢ tends to infinity (it is a consequence of Section
4 together with part (iz) of Theorem 2.3). Then, we easily have

({lw = LY N TT(t, 1)) © ({|Xin — Xi| < nlogt} NTT(t, h)).

Moreover, observe that on TT(t), £y, > {; implies that |by,, — b, | > t*/? (by definition
of As(t)). Therefore, we get

({| X — X¢| < nmlogt}NTT(t,h)) C ({lx, =0L}NTT(t,h)),

for all large ¢. Thus, since Proposition 5.4 implies that lim, .., P(¢;, = ;) exists, we
obtain

lim P(| Xy, — X, < plogt) = lim P(ly, = 0,)
= lim P(Ty41 2 th)

_ sin(km) /°° dz
h

T (1 +x)
: 1/h
sin(km _ _R
_ oinl )/ Y1l —y) " dy,
T 0
which concludes the proof of Theorem 2.1. O
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