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AbstratWe onsider transient one-dimensional random walks in random environmentwith zero asymptoti speed. An aging phenomenon involving the generalizedArsine law is proved using the loalization of the walk at the foot of �valleysöfheight log t. In the quenhed setting, we also sharply estimate the distributionof the walk at time t.1 IntrodutionOne-dimensional random walks in random environment have been the subjet of on-stant interest in physis and mathematis for the last thirty years sine they naturallyappear in a great variety of situations in physis and biology.In 1975, Solomon gives, in a seminal work [26℄, a riterion of transiene-reurrene forsuh walks moving to the nearest neighbours, and shows that three di�erent regimesan be distinguished: the random walk may be reurrent, or transient with a positiveasymptoti speed, but it may also be transient with zero asymptoti speed. This lastregime, whih does not exist among usual random walks, is probably the one whihis the less well understood and its study is the purpose of the present paper.Let us �rst remind the main existing results onerning the other regimes. In hispaper, Solomon omputes the asymptoti speed of transient regimes. In 1982, Sinaistates, in [25℄, a limit theorem in the reurrent ase. It turns out that the motionin this ase is unusually slow. Namely, the position of the walk at time n has to benormalized by (log n)2 in order to present a non trivial limit. In 1986, the limitinglaw is haraterized independently by Kesten [22℄ and Golosov [19℄. Let us notiehere that, beyond the interest of his result, Sinai introdues a very powerful andintuitive tool in the study of one-dimensional random walks in random environment.This tool is the potential, whih is a funtion on Z anonially assoiated to therandom environment. It turns out to be an usual random walk when the transitionprobabilities at eah site are independent and identially distributed (i.i.d.).The proof by Sinai of an annealed limit law in the reurrent ase is based on a quenhedloalization result. Namely, a notion of valley of the potential is introdued, as wellas an order on the set of valleys. It is then proved that the walk is loalized at time t,with a probability onverging to 1, around the bottom of the smallest valley of depthbigger than log t surrounding the origin. An annealed onvergene in law of this sitenormalized by (log t)2 implies the annealed limiting law for the walk.In the ase of transient random walks in random environment with zero asymptotispeed, the proof of the limiting law by Kesten, Kozlov and Spitzer [23℄ does not followthis sheme. Therefore an analogous result to Sinai's loalization in the quenhedsetting was missing. As we will see, the answer to this question is more ompliatedthan in the reurrent ase but still very expliit.1



In the setting of sub-ballisti transient random walks, the valleys we introdue are,like in [15℄ and [24℄, related to the exursions of the potential above its past minimum.Now, the key observation is that with a probability onverging to 1, the partile reliesat time t at the foot of a valley having depth and width of order log t. Therefore,sine the walk spends a random time of order t inside a valley of depth log t, it is notsurprising that this random walk exhibits an aging phenomenon.What is usually alled aging is a dynamial out-of-equilibrium physial phenomenonobserved in disordered systems like spin-glasses at low temperature, de�ned by theexistene of a limit of a given two-time orrelation funtion of the system as bothtimes diverge keeping a �xed ratio between them; the limit should be a non-trivialfuntion of the ratio. It has been extensively studied in the physis literature, see [9℄and therein referenes.More preisely, in our setting, Theorem 2.1 expresses, for eah given ratio h > 1, theprobability that the partile remains on�ned within the same valley during the timeinterval [t, th]. This probability is expressed in terms of the generalized Arsine law,whih on�rms the status of universality asribed to this law by Ben Arous and �ernýin their study of aging phenomena arising in trap models [4℄.Let us remind that the trap model is a model of random walk that was �rst proposedby Bouhaud and Dean [8, 10℄ as a toy model for studying this aging phenomenon.In the mathematis litterature, muh attention has reently been given to the trapmodel, and many aging result were derived from it, on Z in [17℄ and [3℄, on Z
2 in [7℄,on Z

d (d ≥ 3) in [5℄, or on the hyperube in [1, 2℄. A omprehensive approah toobtaining aging results for the trap model in various settings was later developed in[6℄.Let us �nally mention that Theorem 2.1 generalizes the aging result obtained byheuristial methods of renormalization by Le Doussal, Fisher and Monthus in [13℄ inthe limit ase when the bias of the random walk de�ning the potential tends to 0 (thease when this bias is 0 orresponding to the reurrent regime for the random walk inrandom environment). The reurrent ase leading also to an aging phenomenon wastreated in the same artile and rigorous arguments were later presented by Dembo,Guionnet and Zeitouni in [12℄.The seond aspet of our work onerns loalization properties of the walk and an beonsidered as the analog of Sinai's loalization result in the transient setting. Unlikethe reurrent ase, the random walk is not loalized near the bottom of a singlevalley. Nevertheless, if one introdues a on�dene threshold α, one an say that,asymptotially, at time t, with a probability onverging to 1 on the environment,the walk is loalized with probability bigger than α around the bottoms of a �nitenumber of valleys having depth of order log t. This number depends on t and on theenvironment, but is not onverging to in�nity with t. Moreover, in Theorem 2.3 andCorollary 2.4 we sharply estimate the probability for the walk of being at time t ineah of these valleys.
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2 Notations and main resultsLet ω := (ωi, i ∈ Z) be a family of i.i.d. random variables taking values in (0, 1)de�ned on Ω, whih stands for the random environment. Denote by P the distributionof ω and by E the orresponding expetation. Conditioning on ω (i.e. hoosing anenvironment), we de�ne the random walk in random environment X = (Xn, n ≥ 0)on Z
N as a nearest-neighbor random walk on Z with transition probabilities given by

ω: (Xn, n ≥ 0) is the Markov hain satisfying X0 = 0 and for n ≥ 0,

Pω (Xn+1 = x + 1 |Xn = x) = ωx,

Pω (Xn+1 = x − 1 |Xn = x) = 1 − ωx.We denote by Pω the law of (Xn, n ≥ 0) and Eω the orresponding expetation. Wedenote by P the joint law of (ω, (Xn)n≥0). We refer to Zeitouni [27℄ for an overviewof results on random walks in random environment. Let us introdue
ρi :=

1 − ωi

ωi

, i ∈ Z.Our �rst main result is the following theorem whih shows aging phenomenon in thetransient sub-ballisti regime.Theorem 2.1. Let ω := (ωi, i ∈ Z) be a family of independent and identially dis-tributed random variables suh that(a) there exists 0 < κ < 1 for whih E [ρκ
0 ] = 1 and E

[
ρκ

0 log+ ρ0

]
< ∞,(b) the distribution of log ρ0 is non-lattie.Then, for all h > 1 and all η > 0, we have

lim
t→∞

P(|Xth − Xt| ≤ η log t) =
sin(κπ)

π

∫ 1/h

0

yκ−1(1 − y)−κ dy.Let us make some omments about the onentration of the partile inside a regionof size η log t in Theorem 2.1. Let us �rst mention that a onvergene of the proesses
(n−κXnt; t ≥ 0) towards the inverse of a stable subordinator of index κ, when n goesto in�nity, is proved in [15℄. Conjugating this result with standard fats about thejumps of a stable subordinator, one an get a weaker version of Theorem 2.1, wherethe term η log t is replaed by ηtκ. As we will see, the proof of a on�nement inside aregion of order log t whih orresponds to the width of the trapping valley at time t,requires a �ner analysis. Finally, in the trap models onsidered in [6℄, the on�nementours on a single attrating site, but this omes from the nature of this model, and inour setting the role of the attrating site of the trap model is played by the attratingvalley.Let us now remind some basi result about Xn : under the same assumptions (a)-(b),Kesten, Kozlov and Spitzer [23℄ proved that Xn/n

κ onverges in law to C( 1
Sca

κ
)κ where
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C is a positive parameter and Sca
κ is the normalized positive stable law of index κ, i.e.with Laplae transform

E[e−λSca
κ ] = e−λκ

, ∀λ > 0.In [14, 15℄ we gave a di�erent proof of this result and we were able to give an expliitexpression for the onstant C.The proof was based on a preise analysis of the potential assoiated with the en-vironment, as it was de�ned by Sinai for its analysis of the reurrent ase, see [25℄.In this paper, we use the tehnis developed in [14, 15℄ to prove Theorem 2.1. Thispotential, denoted by V = (V (x), x ∈ Z), is a funtion of the environment ω. It isde�ned as follows:
V (x) :=






∑x
i=1 log ρi if x ≥ 1,

0 if x = 0,

−
∑0

i=x+1 log ρi if x ≤ −1.Furthermore, we onsider the weak desending ladder epohs for the potential de�nedby e0 := 0 and
ei := inf{k > ei−1 : V (k) ≤ V (ei−1)}, i ≥ 1,whih play a ruial role in our proof. Observe that the sequene (ei − ei−1)i≥1 is afamily of i.i.d. random variables. Moreover, lassial results of �utuation theory (see[16℄, p. 396), tell us that, under assumptions (a)-(b) of Theorem 2.1,

E[e1] < ∞. (2.1)Now, observe that the sequene ((ei, ei+1])i≥0 stands for the set of exursions of thepotential above its past minimum. Let us introdue Hi, the height of the exur-sion [ei, ei+1] de�ned by Hi := maxei≤k≤ei+1
(V (k) − V (ei)) , for i ≥ 0. Note that the

(Hi)i≥0's are i.i.d. random variables.For t ∈ N, we introdue the ritial height
ht := log t − log log t. (2.2)As in [15℄ we de�ne the deep valleys from the exursions whih are higher than theritial height ht. Let (σ(j))j≥1 be the suessive indexes of exursions, whose heightsare greater than ht. More preisely,

σ(1) := inf{i ≥ 0 : Hi ≥ ht},
σ(j) := inf{i > σ(j − 1) : Hi ≥ ht}, j ≥ 2.We onsider now some random variables depending only on the environment, whihde�ne the deep valleys.
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De�nition 2.2. For all j ≥ 1, let us introdue
bj := eσ(j),

aj := sup{k ≤ bj : V (k) − V (bj) ≥ Dt},
T ↑

j := inf{k ≥ bj : V (k) − V (bj) ≥ ht},
dj := eσ(j)+1,

cj := inf{k ≥ bj : V (k) = max
bj≤x≤dj

V (x)},

dj := inf{k ≥ dj : V (k) − V (dj) ≤ −Dt}.where Dt := (1 + 1
κ
) log nt. We all (aj, bj , cj, dj) a deep valley and denote by H (j) theheight of the j-th deep valley.Moreover, let us introdue the index of the last visited deep valley at time t, denotedby

ℓt := sup{n ≥ 0 : τ(bn) ≤ t}.Before stating the quenhed loalization result, reall that X is de�ned on the sampleprobability spae Z
N. Then, let us introdue e = (ei, i ≥ 1) a sequene of i.i.d.exponential random variables with parameter 1, independent of X. We de�ne e on aprobability spae Ξ and denote its law by P (e). In order to express the independenebetween X and e, we onsider for eah environment ω, the probability spae (ZN ×

Ξ, Pω × P (e)) on whih we de�ne (X, e).Furthermore, let us de�ne the weight of the k-th deep valley by
Wk(ω) :=

∑

ak≤m≤n

bk≤n≤dk

eVω(n)−Vω(m).Moreover, let us introdue the following integer, for any t ≥ 0,

ℓ
(e)
t,ω := sup

{
i ≥ 0 :

i∑

k=1

Wk(ω)ek ≤ t
}
.We are now able to state our seond main result.Theorem 2.3. Under assumptions (a)-(b) of Theorem 2.1, we have,(i) for all η > 0,

lim
t→∞

P(|Xt − bℓt| ≤ η log t) = 1,(ii) for all δ > 0,

lim
t→∞

P
(
dTV (ℓt, ℓ

(e)
t,ω + 1) > δ

)
= 0,where dTV denotes the distane in total variation.Observe that we an easily dedue the following quenhed loalization result by as-sembling part (i) and part (ii) of Theorem 2.3.5



Corollary 2.4. Under assumptions (a)-(b) of Theorem 2.1, we have, for all δ, η > 0,that
P

(
∑

i≥1

∣∣∣∣∣P0,ω(|Xt − bi| ≤ η log t) − P (e)

( i−1∑

k=1

Wk(ω)ek ≤ t <

i∑

k=1

Wk(ω)ek

)∣∣∣∣∣ > δ

)onverges to 0, when t tends to ∞.The ontent of this result is twofold. It �rst says that, with a probability onvergingto 1, the proess at time t is onentrated near the bottom of a valley of depth oforder log t. It also determines, for eah of these valleys, the probability that, at time
t, the partile lies at the bottom of it. This probability is driven by a renewal Poissonproess whih is skewed by the weights of eah of these valleys.This result may be of big interest when trying to get informations on the environmenton the basis of the observation of a sample of trajetories of the partile, like it isdone, in this setting, in reent works about DNA reonstrution, see [11℄.3 NotationsA result of Iglehart [21℄ whih will be of onstant use, says that, under assumptions
(a)-(b) of Theorem 2.1, the tail of the height Hi of an exursion above its past minimumis given by

P (H1 > h) ∼ CI e−κh, h → ∞, (3.1)for a positive onstant CI (we will not need its expliit value).The analysis done in [14, 15℄ shows that on the interval [0, t], t ∈ N, the walk Xn spendsasymptotially all its time trying to limb exursions of height of order log t + C fora real C. Let us now introdue the integer
nt := ⌊tκ log log t⌋.The integer nt will be use to bound the number of exursions the walk an ross beforetime t. The strategy will be to show that we an neglet the time spent between twoexursions of size smaller than ht, and to show that at time t the walk Xt is losed tothe foot of an exursion of height larger than ht.3.1 The deep valleysLet us de�ne the number of deep valleys in the nt �rst exursions by

Kt := sup{j ≥ 0 : σ(j) ≤ nt},whih is the number of exursions higher than the ritial height ht in the nt �rstexursions.Remark. This de�nition orresponds to the de�nition of deep valleys introdued in[15℄ with n = nt, but with a di�erent ritial height. In [15℄ the ritial heightwas hn = 1−ε
κ

log n, for ε suh that 0 < ε < 1. Here, we see that hnt would beequal to (1 − ε) log t + 1−ε
κ

log log log t whih is smaller than our ritial height ht =
log t− log log t. This means that the deep valleys are higher and less numerous in thepresent paper than in [15℄. 6



3.2 The ∗-valleysLet us �rst de�ne the maximal variations of the potential before site x by:
V ↑(x) := max

0≤i≤j≤x
(V (j) − V (i)), x ∈ N,

V ↓(x) := min
0≤i≤j≤x

(V (j) − V (i)), x ∈ N.By extension, we introdue
V ↑(x, y) := max

x≤i≤j≤y
(V (j) − V (i)), x < y,

V ↓(x, y) := min
x≤i≤j≤y

(V (j) − V (i)), x < y.The deep valleys de�ned above are not neessarily made of disjoint portions of theenvironment. To overome this di�ulty we de�ned another type of valleys, alled
∗-valleys, whih form a subsequene of the previous valleys, whih by onstrution aremade of disjoint portions of environment, and whih will oinide with high probabilitywith the previous valleys on the portion of the environment visited by the walk beforetime t.

γ∗
1 := inf{k ≥ 0 : V (k) ≤ −Dt},

T ∗
1 := inf{k ≥ γ∗

1 : V ↑(γ∗
1 , k) ≥ ht},

b∗1 := sup{k ≤ T ∗
1 : V (k) = min

0≤x≤T ∗
1

V (x)},

a∗
1 := sup{k ≤ b∗1 : V (k) − V (b∗1) ≥ Dt},

d
∗

1 := inf{k ≥ T ∗
1 : V (k) ≤ V (b∗1)},

c∗1 := inf{k ≥ b∗1 : V (k) = max
b∗1≤x≤d

∗
1

V (x)},

d∗
1 := inf{k ≥ d

∗

1 : V (k) − V (d
∗

1) ≤ −Dt}.Let us de�ne the following sextuplets of points by iteration
(γ∗

j , a
∗
j , b

∗
j , T

∗
j , c∗j , d

∗

j , d
∗
j) := (γ∗

1 , a
∗
1, b

∗
1, T

∗
1 , c∗1, d

∗

1, d
∗
1) ◦ θd∗j−1

, j ≥ 2,where θi denotes the i-shift operator.De�nition 3.1. We all a ∗-valley any quadruplet (a∗
j , b

∗
j , c

∗
j , d

∗
j) for j ≥ 1. Moreover,we shall denote by K∗

t the number of suh ∗-valleys before ent , i.e. K∗
t := sup{j ≥ 0 :

T ∗
j ≤ ent}.It will be made of independent and identially distributed portions of potential (upto some translation).

7



4 Preliminary estimates4.1 Introduing good environmentsAs in [15℄, we introdue the following series of events, whih will our with highprobability when t tends to in�nity.
A1(t) := {ent ≤ C ′nt} ,

A2(t) :=
{
Kt ≤ (log t)

1+κ
2

}
,

A3(t) := ∩Kt

j=0

{
σ(j + 1) − σ(j) ≥ tκ/2

}
,

A4(t) := ∩Kt+1
j=1 {dj − aj ≤ C ′′ log t} ,where σ(0) := 0 (for onveniene of notation) and C ′, C ′′ stand for positive onstantswhih will be spei�ed below.Lemma 4.1. Let A(t) := A1(t) ∩ A2(t) ∩ A3(t) ∩ A4(t), then
lim
t→∞

P (A(t)) = 1.Proof. Conerning A2(t), we know that the number of exursions higher than ht in the�rst nt exursions is a binomial with parameter (nt, qt) where qt := P (H1 ≥ ht). Sine(3.1) implies qt ∼ CIe
−κht , t → ∞, we have that E [Kt] = ntqt ∼ CI log log t(log t)κ.Using Markov inequality we get that P (A2(t)) tends to 1. The fat that P (A1(t) ∩

A3(t) ∩ A4(t)) onverges to 1 is a onsequene of Lemma 1, Lemma 3 and Lemma
4 of [15℄ sine the deep valleys with ht are less numerous than with hnt (f Remark3.1).The following lemma tells us that the ∗-valleys oinide with the sequene of deepvalleys with an overwhelming probability when t goes to in�nity.Lemma 4.2. If A∗(t) := {Kt = K∗

t ; (aj , bj , cj, dj) = (a∗
j , b

∗
j , c

∗
j , d

∗
j), 1 ≤ j ≤ K∗

t },then we have that the probability P (A∗(t)) onverges to 1, when t goes to in�nity.Proof. By de�nition, the ∗-valleys onstitute a subsequene of the deep valleys, and
A∗(t) ours as soon as the valleys (aj , bj, cj , dj) are disjoint for 1 ≤ j ≤ Kt. Hene,we see that A3(t) ∩ A4(t) ⊂ A∗(t). Then, Lemma 4.2 is a onsequene of Lemma4.1.4.2 Direted trapsLet us introdue, for any x, y ∈ Z,

τ(x, y) := inf{k ≥ 0 : Xτ(x)+k = y}.We reall from [15℄ the following lemmas.
8



Lemma 4.3. De�ning DT (t) := A(t) ∩
⋂Kt

j=1

{
τ(dj , bj+1) < τ(dj, dj)

}
, we have

P (DT (t)) → 1, t → ∞.Proof. The proof is exatly the same as in [15℄, but easier sine the deep valleys with
ht are less numerous than with hnt (f Remark 3.1).Lemma 4.4. De�ning DT ∗(t) :=

⋂K∗
t

j=1

{
τ(b∗j , d

∗
j) < τ(b∗j , a

∗
j)
}

, we have
P(DT ∗(t)) → 1, t → ∞.Proof. The proof is lose to be the same as in [15℄, exept that the deep valleys with htare still less numerous than with hnt and that the γi's are remplaed by the ai's. Thisdoes not modify the proof of [15℄ sine we only have to hek that V (ai)−V (bi) ≥ Dt,whih is true by de�nition of the ai's (see De�nition 2.2).Finally, we need to know that the time spent between the deep valleys is small. Thisa onsequene of Lemma 7 in [15℄.Lemma 4.5. Let us introdue the following event

IA(t) := A(t) ∩
{

τ(b1) +

Kt∑

j=1

τ(dj, bj+1) <
t

log log t

}

.Then, we have
P(IA(t)) → 1, t → ∞.Proof. The arguments are the same as in the proof of Lemma 10 in [15℄. The maintool is Lemma 7 of [15℄, whih says that there exists C > 0, suh that for all h ≥ 0,

E|0

[
τ(T ↑(h) − 1)

]
≤ Ceh,where E|0 denotes the expetation under the annealed law P|0 assoiated with therandom walk in random environment re�eted at 0.4.3 Loalization in trapsIn a �rst step, we give a tehnial result, whih will be very useful to ontrol theloalization of the partile in a valley.Lemma 4.6. If Fγ(t) :=

{
max{V ↑(a1, b1) ; −V ↓(b1, c1) ; V ↑(c1, d1)} ≤ γ log t

}
, thenwe have, for any γ > 0 and any 0 < ε < γ,

P (Fγ(t)) = 1 − o(t−κε), t → ∞.In words, Fγ(t) ensures that the potential does not have exessive �utuations in atypial box.Proof. The arguments are the same as in the proof of Lemma 13 in [15℄.9



For eah deep valley, let us introdue the position ci

ci := inf{n ≥ ci : V (n) ≤ V (ci) − ht/3}.We �rst need to know that during its sojourn time inside a deep valley, the randomwalk spends almost all its time inside the interval (ai, ci). This is a onsequene ofthe following lemma.Lemma 4.7. Let LT (t) be the event
LT (t) :=

Kt⋂

i=1

{
τ(ci, di) ≤

t

log t

}
.Then,

P(LT (t)) → 1, t → ∞.This result just means that at the time sale t, if the walk meet ci, then soon after itexits the deep valley (ai, di).Proof. Sine P (Kt ≤ (log t)
1+κ

2 ) → 1, when t → ∞, we only have to prove that
P

(
τ(c1, d1) >

t

log t

)
= o((log t)−

1+κ
2 ), t → ∞.Now, applying the strong Markov property at τ(c1), we get

P

(
τ(c1, d1) >

t

log t

)
≤ E

[
P c1

ω,|c1
(τ(d1) > t/ log t)

]
+ E

[
P c1

ω (τ(c1) < τ(d1))
]
.Considering the �rst term, using the fat that Ec1

ω,|c1
[τ(d1)] ≤

∑
c1≤i≤j≤d1

eV (j)−V (i)(see (A1) in [18℄) and Chebyhev inequality, we obtain
P c1

ω,|c1
(τ(d1) > t/ log t) ≤ log t

t

∑

c1≤i≤j≤d1

eV (j)−V (i) ≤ log t

t
(d1 − c1)e

γ log t,on Fγ(t). Sine the proof of Lemma 4 in [15℄ ontains the fat that P{d1 − c1 ≥
C log t} = o((log t)−

1+κ
2 ), when t → ∞, we only have to hoose γ < 1, whih implies

E
[
P c1

ω,|c1
(τ(d1) > t/ log t)

]
= o((log t)−

1+κ
2 ), t → ∞.In order to treat the seond term, by (Zeitouni [27℄, formula (2.1.4)), we get

P c1
ω (τ(c1) < τ(d1)) ≤

∑d1−1
k=c1

eV (k)

∑d1−1
k=c1

eV (k)
≤ (d1 − c1)e

V (c1)+γ log t−V (c1) ≤ (d1 − c1)e
γ log t−

ht
3 ,on Fγ(t). Now, let us hoose γ < 1/3.Realling Lemma 4.6, and sine we have P (d1 − c1 ≥ C log t) = o((log t)−

1+κ
2 ), when

t → ∞, we get
E
[
P c1

ω (τ(c1) < τ(d1))
]

= o((log t)−
1+κ

2 ), t → ∞,whih onludes the proof of Lemma 4.7.10



Now, we need to be sure that the bottom of the deep valleys are sharp. For η > 0,we introdue the following subsets of the deep valleys
Oi := [ai + 1, ci − 1] \ (bi − η log t + 1, bi + η log t − 1), i ∈ N,and the event

A5(t) :=
Kt⋂

i=1

{
min

k∈Oi∩Z

(V (k) − V (bi)) ≥ C ′′′η log t

}
,for a onstant C ′′′ (small enough) to be de�ned later. Then, we have the followingresult.Lemma 4.8. For all η > 0,

lim
t→∞

P (A5(t)) = 1.Proof. Observe �rst that if η > C ′′, then the sets (Oi, 1 ≤ i ≤ Kt) are empty on A4(t).Therefore, Lemma 4.8 is a onsequene of Lemma 4.1.Now, let us assume η ≤ C ′′. The de�nition of ci implies thatminci≤k<ci
(V (k)−V (bi)) ≥

2
3
ht. Then, hoosing C ′′′ suh that C ′′′C ′′ < 2/3 implies that C ′′′η log t < 2

3
ht for alllarge t, whih yields

P

(
Kt⋂

i=1

{
min

ci≤k<ci

(V (k) − V (bi)) ≥ C ′′′η log t

})
= 1, (4.1)for all large t. Then, let us introdue the sets

O′
i := Oi ∩ [bi, ci], O′′

i := Oi ∩ [ai, bi], i ∈ Z,and the events
A′

5(t) :=
Kt⋂

i=1

{
min

k∈O′
i∩Z

(V (k) − V (bi)) ≥ C ′′′η log t

}
,

A′′
5(t) :=

Kt⋂

i=1

{
min

k∈O′′
i ∩Z

(V (k) − V (bi)) ≥ C ′′′η log t

}
.Now, realling (4.1), the proof of Lemma 4.8 boils down to showing that

lim
t→∞

P (A′
5(t)) = 1, (4.2)

lim
t→∞

P (A′′
5(t)) = 1. (4.3)Let us �rst prove (4.2). Sine P (Kt ≤ (log t)

1+κ
2 ) → 1, when t → ∞, we only have toprove that it is possible to hoose C ′′′ small enough suh that

P

(
min

k∈O′
1∩Z

(V (k) − V (b1)) < C ′′′η log t

)
= o((log t)−

1+κ
2 ), t → ∞. (4.4)

11



Realling assumption (a) of Theorem 2.1 and denoting by µ the law of log ρ0, we ande�ne the law µ̃ = ρκ
0µ, and the law P̃ = µ̃⊗Z whih is the law of a sequene of i.i.d.random variables with law µ̃. The de�nition of κ implies that ∫ log ρ µ̃(dρ) > 0. Now,observe that the probability term in (4.4) an be written

P

(
min

⌊η log t⌋≤k≤TH

V (k) < C ′′′η log t|H ≥ ht

)

≤ CeκhtP

(
min

⌊η log t⌋≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)

≤ CẼ
[
e−κ(V (TH)−ht)

1{min⌊η log t⌋≤k≤TH
V (k)<C′′′η log t ;H≥ht}

]

≤ CP̃

(
min

⌊η log t⌋≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)
, (4.5)the �rst inequality being a onsequene of (3.1) and the seond dedued from Girsanovproperty. Now, let us introdue α = α(η) := cη with 0 < c < min{Ẽ [V (1)] ; 1/C ′′}and γ = γ(η) := cη/2. Observe that α log t < ht for all large t, suh that Tα log t ≤

Tht ≤ TH < ∞ on {H ≥ ht}. Now sine c < Ẽ [V (1)] , we obtain from Cramer'stheory, see [20℄, that P̃ (V (⌊η log t⌋) < α log t) ≤ C exp{−ηĨ(c) log t} = o((log t)−
1+κ
2 ),where Ĩ(·) denotes the onvex rate funtion assoiated with V under P̃ . This yields

P̃ (Tα log t ≤ ⌊η log t⌋) = 1− o((log t)−
1+κ
2 ), when t tends to in�nity. Therefore, we getthat

P

(
min

⌊η log t⌋≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)

≤ P

(
min

Tα log t≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)
+ o((log t)−

1+κ
2 ). (4.6)Then, realling that Lemma 4.6 implies that P (Fγ(t)) = 1 − o((log t)−
1+κ

2 ), t → ∞,let us write
P

(
min

Tα log t≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)

= P

(
min

Tα log t≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht ; Fγ(t)

)
+ o((log t)−

1+κ
2 ). (4.7)Furthermore, observe that on Fγ(t), we have minTα log t≤k≤TH

V (k) ≥ (α−γ) log t, whihyields minTα log t≤k≤TH
V (k) ≥ C ′′′η log t, if we hoose C ′′′ smaller than c/2. Therefore,for C ′′′ small enough (independently of η ≤ C ′′), we get that the probability term in(4.7) is null for all large t. Now, assembling (4.5) , (4.6) and (4.7) implies (4.4) andonludes the proof of (4.2) .The proof of (4.3) is similar but easier. Indeed, we do not have to use Girsanovproperty to study the potential on [ai, bi].5 Two versions of a Dynkin type renewal resultWe de�ne the sequene of random times (τ ∗

i )i≥1 as follows: onditioning on the en-vironment ω, (τ ∗
i )i≥1 is de�ned as an independent sequene of random variables with12



the law of τ(d∗
i ) under P

b∗i
ω,|a∗

i
, where τ(d∗

i ) denotes the �rst hitting time of d∗
i and P

b∗i
ω,|a∗

iis the law of the Markov hain in environment ω, starting from b∗i and re�eted at a∗
i .Hene, under the annealed law P, (τ ∗

i )i≥1 is an i.i.d. sequene sine the ∗-valleys areindependent and identially distributed. The �rst step in our proof is to derive thefollowing result.Proposition 5.1. Let ℓ∗t be the random integer de�ned by
ℓ∗t := sup{n ≥ 0 : τ ∗

1 + · · ·+ τ ∗
n ≤ t}.For all 0 ≤ x1 < x2 ≤ 1, we have

lim
t→∞

P(t(1 − x2) ≤ τ ∗
1 + · · ·+ τ ∗

ℓ∗t
≤ t(1 − x1)) =

sin(κπ)

π

∫ x2

x1

x−κ

(1 − x)κ−1
dx.For all 0 ≤ x1 < x2, we have

lim
t→∞

P(t(1 + x1) ≤ τ ∗
1 + · · ·+ τ ∗

ℓ∗t +1 ≤ t(1 + x2)) =
sin(κπ)

π

∫ x2

x1

dx

xκ(1 + x)
.Proof. Observe that the result would exatly be Dynkin's theorem (f e.g. Feller,vol II, [16℄, p. 472) if the sequene (τ ∗

i )i≥1 was an independent sequene of randomvariables in the domain of attration of a stable law with index κ. Here, the sequene
(τ ∗

i )i≥1 impliitly depends on the time t, sine the ∗-valleys are de�ned from the ritialheight ht. In [15℄, using [14℄, we obtained that the Laplae transform of τ ∗
1 satis�es

E

[
1 − e−λ

τ∗1
t

]
∼ P (H ≥ ht)

−1

t

πκ

sin(κπ)
2κCUλκ, t → ∞, (5.1)for all λ > 0. The onstant CU was made expliit in [14℄ but we will not need thisvalue here.The proof is essentially the same as in [16℄. Let us introdue S∗

0 = 0 and S∗
n :=

∑n
i=1 τ ∗

i ,for n ≥ 1. Then, the inequality t(1−x2) ≤ τ ∗
1 + · · ·+ τℓ∗t

≤ t(1−x1) ours i� S∗
n = tyand τ ∗

n+1 > t(1−y) for some ombination n, y suh that 1−x2 < y < 1−x1. Summingover all n and possible y we get
P(t(1 − x2) ≤ S∗

ℓ∗t
≤ t(1 − x1)) =

∫ 1−x1

1−x2

Gt(1 − y)

P (H ≥ ht)
Ut{dy}, (5.2)where Gt(x) := P (H ≥ ht)P(t−1τ ∗

1 ≥ x), and Ut{dx} denotes the measure assoi-ated with Ut(x) :=
∑

n≥0 P(t−1S∗
n ≤ x). We introdue the measure dHt(u) suh that∫∞

x
dHt(u) = Gt(x), for all x ≥ 0.Lemma 5.2. For any x > 0, we have

lim
t→∞

xκt Gt(x) = 2κΓ(1 + κ)CU . (5.3)Moreover, the onvergene is uniform on any ompat set.
13



Proof. In a �rst step, observe that E[1− e−λ
τ∗1
t ] = P (H ≥ ht)

−1
∫∞

0
(1− e−λu) dHt(u).Realling (5.1), we obtain

lim
t→∞

t

∫ ∞

0

(1 − e−λu) dHt(u) = 2κΓ(1 + κ)CUΓ(1 − κ)λκ.Sine Γ(1 − κ)λκ = λ
∫∞

0
e−λuu−κ du, this implies

lim
t→∞

t

∫ ∞

0

(1 − e−λu) dHt(u) = 2κΓ(1 + κ)CUλ

∫ ∞

0

e−λuu−κ du. (5.4)To the other hand, integrating by parts, we get, for any t ≥ 0,

∫ ∞

0

(1 − e−λu) dHt(u) = λ

∫ ∞

0

e−λuGt(u) du. (5.5)Combining (5.4) and (5.5) implies that the measure t Gt(u) du tends to the measurewith density 2κΓ(1 + κ)CUu−κ. Therefore, we have for all x ≥ 0,

lim
t→∞

t

∫ x

0

Gt(u) du = 2κΓ(1 + κ)CU
x1−κ

1 − κ
, (5.6)whih yields

lim
ε→0

lim
t→∞

∫ (1+ε)x

x
Gt(u) du

ε
∫ x

0
Gt(u) du

= 1 − κ. (5.7)Moreover, observe that the monotoniity of Gt(·) implies
xGt((1 + ε)x)∫ x

0
Gt(u) du

≤
∫ (1+ε)x

x
Gt(u) du

ε
∫ x

0
Gt(u) du

≤ xGt(x)∫ x

0
Gt(u) du

. (5.8)Now, ombining (5.7) and (5.8), we obtain
lim inf

t→∞

xGt(x)∫ x

0
Gt(u) du

≥ 1 − κ.Realling (5.6), this yields
lim inf

t→∞
xκt Gt(x) ≥ 2κΓ(1 + κ)CU . (5.9)Similarly, we obtain, for any ε > 0,

lim sup
t→∞

xκt Gt((1 + ε)x) ≤ 2κΓ(1 + κ)CU . (5.10)Assembling (5.9) and (5.10) onludes the proof of (5.3).Furthermore, observe that the uniform onvergene on any ompat set is a on-sequene of the monotoniity of x 7→ Gt(x), the ontinuity of the limit and Dini'stheorem. 14



Lemma 5.3. The measure P (H≥ht)−1

t
Ut{dx} onverges vaguely to the measure de�nedby 1

Γ(κ)Γ(1+κ)Γ(1−κ)2κCU
xκ−1dx.Proof. Observe �rst that the Laplae transform Ût(λ) :=

∫∞

0
e−λuUt{du} satis�es

Ût(λ) =
∑

n≥0 E[e−λ
S∗

n
t ] = (1 − E[e−λ

τ∗1
t ])−1. Therefore, (5.1) yields

lim
t→∞

P (H ≥ ht)
−1

t
Ût(λ) =

λ−κ

Γ(1 + κ)Γ(1 − κ)2κCU

.Furthermore, sine Γ(κ)λ−κ =
∫∞

0
e−λuuκ−1 du, we dedue the vague onvergene ofthe measure from the pointwise onvergene of the Laplae transforms.Now, realling (5.2), we observe that Lemma 5.2 together with Lemma 5.3 imply

lim
t→∞

P(t(1 − x2) ≤ S∗
ℓ∗t
≤ t(1 − x1)) =

1

Γ(κ)Γ(1 − κ)

∫ 1−x1

1−x2

(1 − y)−κyκ−1 dy,

=
sin(κπ)

π

∫ x2

x1

y−κ

(1 − y)κ−1
dy.This onludes the proof of the �rst part of Proposition 5.1. The seond part ofProposition 5.1 is obtained using similar arguments.Reall Lemma 4.5 whih tells that the inter-arrival times are negligible. Now, we willprove that the results of Proposition 5.1 are still true if we onsider, in addition, theseinter-arrival times. Let δ1 := τ(b1), τ1 := τ(b1, d1) and

δk := τ(dk−1, bk), τk := τ(bk, dk), k ≥ 2.Moreover, we set
Tk := δ1 + τ1 + · · ·+ τk−1 + δk, k ≥ 1,the entering time in the k-th deep valley.Proposition 5.4. Reall ℓt = sup{n ≥ 0 : τ(bn) ≤ t}. Then, we have
P(Tℓt ≤ t < Tℓt + τℓt) → 1, t → ∞.For all 0 ≤ x1 < x2 ≤ 1, we have

lim
t→∞

P(t(1 − x2) ≤ Tℓt ≤ t(1 − x1)) =
sin(κπ)

π

∫ x2

x1

x−κ

(1 − x)κ−1
dx.For all 0 ≤ x1 < x2, we have

lim
t→∞

P(t(1 + x1) ≤ Tℓt+1 ≤ t(1 + x2)) =
sin(κπ)

π

∫ x2

x1

dx

xκ(1 + x)
.

15



Proof. On the event A(t) ∩ DT ∗(t), we know that the random times (τi)1≤i≤K∗
t
havethe same law as the random times (τ ∗

i )1≤i≤K∗
t
de�ned in Setion 5. If we de�ne

ℓ̃t := sup{n ≥ 0 : τ1 + · · · + τn ≤ t}, then, using Proposition 5.1 and Lemma 4.3, weget that the result of Proposition 5.1 is true with τ and ℓ̃t in plae of τ ∗ and ℓ∗t . Now,using Lemma 4.5 we see that
lim inf

t→∞
P(ℓ̃t = ℓt − 1 ; Tℓt ≤ t < Tℓt + τℓt)

≥ lim inf
t→∞

P(IA(t) ; |t − (τ1 + · · ·+ τℓ̃t
)| ≥ ξt),for all ξ > 0. Thus, using Proposition 5.1 (for ℓ̃t and τi) and letting ξ tends to 0, weget that

lim
t→∞

P(ℓ̃t = ℓt − 1 ; Tℓt ≤ t < Tℓt + τℓt) = 1.We onlude the proof by the same type of arguments.6 Proof of part (i) of Theorem 2.3: a loalizationresultWe follow the strategy developed by Sinai for the reurrent ase. For eah valley wedenote by πi the invariant measure of the random walk on [ai, ci] in environment ω,re�eted at ai and ci and normalized so that πi(bi) = 1. Clearly, πi is the reversiblemeasure given, for k ∈ [bi + 1, ci − 1], by
πi(k) =

ωbi

1 − ωbi+1
· · · ωk−1

1 − ωk

= ωbi
ρ−1

bi+1 · · · ρ−1
k−1(ρ

−1
k + 1)

≤ e−(V (k)−V (bi)) + e−(V (k−1)−V (bi)).Similarly, πi(k) ≤ e−(V (k)−V (bi)) +e−(V (k+1)−V (bi)) for k ∈ [ai +1, bi −1]. Sine the walkis re�eted at ai and ci, we have πi(ai) = e−(V (ai+1)−V (bi)) and πi(ci) = e−(V (ci−1)−V (bi)).Hene on the event A5(t) we have
(πi)|[ai,ci]\(bi−η log t,bi+η log t) ≤ Ce−C′′′η log t = Ct−C′′′η.Moreover, sine πi is an invariant measure and sine πi(bi) = 1, we have, for all k ≥ 0,

P bi

ω,|ai,ci|
(Xk = x) ≤ πi(x).Hene, on the event A(t) ∩ A5(t) we have, for all k ≥ 0,

P bi

ω,|ai,ci|
(|Xk − bi| > η log t) ≤ C(log t)t−C′′′η. (6.1)Let ξ be a positive real, 0 < ξ < 1. Then, let us write

lim inf
t→∞

P(|Xt − bℓt| ≤ η log t)

≥ lim inf
t→∞

P(|Xt − bℓt| ≤ η log t ; ℓt = ℓt(1+ξ))

≥ lim inf
t→∞

P(ℓt = ℓt(1+ξ)) − lim sup
t→∞

P(|Xt − bℓt| > η log t ; ℓt = ℓt(1+ξ)).16



Considering the �rst term, we get by using Proposition 5.4,
lim inf

t→∞
P(ℓt = ℓt(1+ξ)) = lim inf

t→∞
P(Tℓt+1 > t(1 + ξ))

=
sin(κπ)

π

∫ ∞

ξ

dx

xκ(1 + x)
. (6.2)In order to estimate the seond term, let us introdue the event

TT (t) := A(t) ∩ A5(t) ∩ DT (t) ∩ DT ∗(t) ∩ A∗(t) ∩ IA(t) ∩ LT (t) ∩ IT (t),where IT (t) := {Tℓt ≤ t < Tℓt + τℓt}. Observe that the preliminary results obtainedin Setion 4 together with Proposition 5.4 imply that P(TT (t)) → 1, when t → ∞.Then, we have
lim sup

t→∞
P(|Xt − bℓt | > η log t ; ℓt = ℓt(1+ξ))

≤ lim sup
t→∞

P(TT (t) ; |Xt − bℓt| > η log t ; ℓt = ℓt(1+ξ))

≤ lim sup
t→∞

E

[
1TT (t)

Kt∑

i=1

1{|Xt−bi|>η log t ; ℓt=ℓt(1+ξ)=i}

]
.But on the event TT (t)∩{ℓt = ℓt(1+ξ) = i} we know that for all k ∈ [Ti, t] the walk Xkis in the interval [ai, ci−1]. (Indeed, on the event LT (t)∩DT (t)∩IA(t) we know thatone the position ci is reahed then within a time t/ log t the position bi+1 is reahedwhih would ontradit the fat that ℓt(1+ξ) = i. Hene, we obtain, for all i ∈ N,

P
(
TT (t) ; i ≤ Kt ; |Xt − bi| > η log t ; ℓt = ℓt(1+ξ) = i

)

≤ E

[
1{i≤Kt}1A(t)∩A5(t) sup

k∈[0,t]

P bi

ω,|ai,ci|
(|Xk − bi| > η log t)

]

≤ C(log t)t−C′′′η,where we used the estimate (6.1) on the event A(t)∩A5(t). Considering now that, onthe event A(t), the number K(t) of deep valleys is smaller than (log t)
κ+1
2 we get

lim sup
t→∞

P(|Xt − bℓt| > η log t ; ℓt = ℓt(1+ξ)) ≤ lim sup
t→∞

C(log t)
3+κ
2 t−C′′′η

= 0.Then, letting ξ tends to 0 in (6.2) onludes the proof of part (i) of Theorem 2.3.7 Part (ii) of Theorem 2.3: the quenhed law of thelast visited valleyIn order to prove the proximity of the distributions of ℓt and ℓ
(e)
t,ω, we go through

ℓ∗t = sup{n ≥ 0, τ ∗
1 + · · · + τ ∗

n ≤ t} whose advantage is to involve independentrandom variables whose laws are learly identi�ed.
17



Proposition 7.1. Under assumptions (a)-(b) of Theorem 2.1, we have, for all δ > 0,

lim
t→∞

P
(
dTV (ℓ∗t , ℓ

(e)
t,ω) > δ

)
= 0,where dTV denotes the distane in total variation.Proof. The strategy is to build a oupling between ℓ∗t and ℓ

(e)
t,ω suh that

lim
t→∞

P (P0,ω(ℓ∗t 6= ℓ
(e)
t,ω) > δ) → 0.Let us �rst assoiate to the exponential variable ei the following geometri randomvariable

Ni :=
⌊(

− 1

log(pi(ω))

)
ei

⌋
,where 1− pi(ω) denotes the probability for the random walk starting at bi to go to dibefore returning to bi, whih is equal to ωb

eV (bi)

Pdi−1

x=bi
eV (x)

. The parameter of this geometrilaw is now learly equal to 1 − pi(ω).Now one an introdue like in [15℄ two random variables F (i) (resp. S(i)) whose laware given by the time it takes for the random walk re�eted at ai, starting at bi, tohit bi (resp. di) onditional on the event that di (resp. bi) is not hitten in between.We introdue now a sequene of independent opies of F (i) we denote by (F
(i)
n )n≥0.The law of τ ∗

i is learly the same as F
(i)
1 + · · · + F

(i)
Ni

+ S(i) whih is going now to beompared with Eω[τ ∗
i ]ei.Let us now estimate, for a given ξ > 0 (small enough),

P

(
(1 − ξ)(F

(i)
1 + · · · + F

(i)
Ni

+ S(i)) ≤ Eω[τ ∗
i ]ei < (1 + ξ)(F

(i)
1 + · · ·+ F

(i)
Ni

+ S(i))
)

≥ P

(
(1 − ξ

2
)(F

(i)
1 + · · ·+ F

(i)
Ni

) ≤ Eω[τ ∗
i ]ei < (1 + ξ

2
)(F

(i)
1 + · · ·+ F

(i)
Ni

)
)

−P

(
S(i) >

ξ

3
(F

(i)
1 + · · ·+ F

(i)
Ni

)
)
. (7.1)Let us �rst treat the seond quantity of the rhs of (7.1). For this purpose, we need anupper bound for Eω[S(i)] whih is obtained exatly like in Lemma 13 of [15℄ and anbe estimated by ontrolling the size of the falls (resp. rises) of the potential during itsrises from V (bi) to V (ci) (resp. falls from V (ci) to V (di)), see Lemma 4.6. Indeed, therandom variable S(i) onerns atually the random walk whih is onditioned to hit

di before bi. Therefore, this involves an h-proess whih an be viewed as a randomwalk in a modi�ed potential between bi and di. This potential has a dereasing trend(whih enourages the partile to go to the right), and the main ontribution to S(i)omes from the small risings of this potential along its global fall whih are similar tothe �utuations of the original potential during its fall and similar to their oppositeduring its rise.This reasoning yields for δ small enough (one easily observes that the smaller δ, thestronger the result)
∀0 < ε < δ, P (Eω[S(i)] ≤ tδ) = 1 − o(t−κε).18



This implies, by Markov inequality, that
∀δ > 0, P

(
Pω(S(i) > t2δ) <

1

tδ

)
= 1 − o

( 1

(log t)2

)
.On the other hand, Pω(F

(i)
1 + · · · + F

(i)
Ni

< t2δ) ≤ Pω(Ni < t2δ) = 1 − pi(ω)⌊t
2δ⌋. But,obviously,

P
(
pi(ω) < 1 − 1√

t

)
= o
( 1

(log t)2

)
. (7.2)Hene, we have

P
(
Pω(F

(i)
1 + · · ·+ F

(i)
Ni

< t2δ) ≤ 1

t
1
2
−2δ

)
)

= 1 − o
( 1

(log t)2

)
.Gathering these two informations on S(i) and F

(i)
1 + · · ·+ F

(i)
Ni
, we obtain that, for all

ξ > 0,
P

(
S(i) >

ξ

3
(F

(i)
1 + · · ·+ F

(i)
Ni

)
)

= o
( 1

(log t)2

)
.The �rst quantity of (7.1) is treated by going through

P

(
(1 − ξ

4
)NiEω[F (i)] ≤ F

(i)
1 + · · · + F

(i)
Ni

≤ (1 +
ξ

4
)NiEω[F (i)]

)
,whih, for all δ > 0, is larger than

1−P

({∣∣∣∣∣
F

(i)
1 + · · ·+ F

(i)
Ni

Ni
− Eω[F (i)]

∣∣∣∣∣ >
ξ

4
Eω[F (i)]

}
∩ {Ni 6= 0} ∩ {Eω[(F (i))2] ≤ tδ}

)

−P (Eω[(F (i))2] ≥ tδ),whih is in turn, using Bienaimé-Chebihe� inequality, larger than
1 − E

[
E(

tδ

Ni
1(Ni 6=0) |Ni)

16

ξ2Eω [F ]2

]
− P (Eω[(F (i))2] ≥ tδ)

≥ 1 − 16tδ

ξ2
E
[ 1

Ni
1(Ni 6=0)

]
− P (Eω[(F (i))2] ≥ tδ).Now, we use again the reasoning of [15℄ involving h-proesses to get an upper bound for

Eω[(F (i))2] (see Lemma 11 of [15℄), whih is, like for Eω[S(i)], estimated by ontrollingthe small �utuations of the potential inside the valleys, see Lemma 4.6. We are evenin a more favorable setting than in [15℄, sine the number of valleys we have to ontrolis muh smaller (see Remark 3.1). So, we get
∀δ > 0, P (Eω[(F (i))2] ≥ tδ) = o

( 1

(log t)2

)
.Moreover, using (7.2), we get

E
[ 1

Ni

1(Ni 6=0)

]
= E

[
− 1 − pi(ω)

pi(ω)
log(1 − pi(ω))

]
= o
( 1

t1/3

)
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As a result,
P

(
(1 − ξ

4
)NiEω[F (i)] ≤ F

(i)
1 + · · ·+ F

(i)
Ni

≤ (1 +
ξ

4
)NiEω[F (i)]

)
= 1 − o

( 1

(log t)2

)
.Now, the seond step in the estimation of the �rst quantity of the rhs of (7.1) is theexamination, for ξ > 0, of

P

(
(1 − ξ

4
)NiEω[F (i)] ≤ Eω[τi]ei ≤ (1 +

ξ

4
)NiEω[F (i)]

)i.e.
P

(
(1 − ξ

4
)NiEω[F (i)] ≤ (Eω[Ni]Eω[F (i)] + Eω[S(i)])ei ≤ (1 +

ξ

4
)NiEω[F (i)]

)
.Negleting again, like above, the ontribution of S(i) we are bak to prove that

P

(
(1−ξ

4
)
⌊
(− 1

log(pi(ω))
)ei

⌋
≤ pi(ω)

1 − pi(ω)
ei ≤ (1+

ξ

4
)
⌊
(− 1

log(pi(ω))
)ei

⌋)
= 1−o

( 1

(log t)2

)
,whih is a diret onsequene of (7.2) and the fat that, for all ε > 0,

P (e)
(
ei >

1

t1/2−ε

)
= 1 − o

( 1

(log t)2

)
.This onludes the proof that the lhs of (7.1) is 1 − o( 1

(log t)2
).Now, sine P (Kt ≤ (log t)

1+κ
2 ) → 1, when t → ∞, we dedue,

P

(
∀i ≤ Kt, (1−ξ)(F

(i)
1 +· · ·+F

(i)
Ni

+S(i)) ≤ Eω[τ ∗
i ]ei < (1+ξ)(F

(i)
1 +· · ·+F

(i)
Ni

+S(i))
)
→ 1.Hene,

P

(
∀i ≤ Kt, (1 − ξ)(τ ∗

1 + · · ·+ τ ∗
i ) ≤

i∑

k=1

Eω[τ ∗
k ]ek < (1 + ξ)(τ ∗

1 + · · ·+ τ ∗
i )
)
→ 1.Applying this, for i = ℓ∗t and i = ℓ

(e)
t,ω we get respetively that, for all ξ > 0,

P

(
ℓ∗t ≤ ℓ

(e)
t

1−ξ
,ω

)
→ 1 and P(ℓ

(e)
t,ω ≤ ℓ∗t(1+ξ)) → 1.We onlude now the proof by reminding that limξ→0 P(ℓ∗t = ℓ∗(1+ξ)t) = 1 as well as

limξ→0 P(ℓ
(e)
t,ω = ℓ

(e)
(1+ξ)t,ω) = 1.Proof of part (ii) of Theorem 2.3. The passage from Proposition 7.1 to part (ii) ofTheorem 2.3 is of the same kind as the passage from Proposition 5.1 to Proposition5.4.
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8 Proof of Theorem 2.1We �x h > 1 and η > 0 (η was used to de�ne the event A5(t)). Let us introdue theevent
TT (t, h) := TT (t) ∩ {Xt − bℓt ≤

η

2
log t} ∩ {Xth − bℓth

≤ η

2
log t},whose probability tends to 1, when t tends to in�nity (it is a onsequene of Setion4 together with part (ii) of Theorem 2.3). Then, we easily have

({ℓth = ℓt} ∩ TT (t, h)) ⊂ ({|Xth − Xt| ≤ η log t} ∩ TT (t, h)) .Moreover, observe that on TT (t), ℓth > ℓt implies that |bℓth
− bℓt | ≥ tκ/2 (by de�nitionof A3(t)). Therefore, we get

({|Xth − Xt| ≤ η log t} ∩ TT (t, h)) ⊂ ({ℓth = ℓt} ∩ TT (t, h)) ,for all large t. Thus, sine Proposition 5.4 implies that limt→∞ P(ℓth = ℓt) exists, weobtain
lim
t→∞

P(|Xth − Xt| ≤ η log t) = lim
t→∞

P(ℓth = ℓt)

= lim
t→∞

P(Tℓt+1 ≥ th)

=
sin(κπ)

π

∫ ∞

h−1

dx

xκ(1 + x)

=
sin(κπ)

π

∫ 1/h

0

yκ−1(1 − y)−κ dy,whih onludes the proof of Theorem 2.1.Referenes[1℄ Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamis of therandom energy model. I. Metastable motion on the extreme states. Comm. Math.Phys. 235, 379�425.[2℄ Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamis of therandom energy model. II. Aging below the ritial temperature. Comm. Math.Phys. 236, 1�54.[3℄ Ben Arous, G. and �erný, J. (2005). Bouhaud's model exhibits two aging regimesin dimension one. Ann. Appl. Probab. 15, 1161�1192.[4℄ Ben Arous, G. and �erný, J. (2006). Dynamis of trap models, Eole d'Étede Physique des Houhes, Session LXXXIII �Mathematial Statistial Physis�,pp. 331�394. Elsevier.[5℄ Ben Arous, G. and �erný, J. (2007). Saling limit for trap models on Z
d. Ann.Probab. 35, 2356�2384.

21



[6℄ Ben Arous, G. and �erný, J. (2007). The arsine law as a universal aging shemefor trap models. To appear inCommuniations on Pure and Applied Mathematis.ArXiv:math/0603340.[7℄ Ben Arous, G., �erný, J. and Mountford, T. (2006). Aging for Bouhaud's modelin dimension two. Probab. Theory Related Fields 134, 1�43.[8℄ Bouhaud, J.-P. (1992). Weak ergodiity breaking and aging in disordered sys-tems. J. Phys. I (Frane) 2, 1705�1713.[9℄ Bouhaud, J.-P., Cugliandolo, L., Kurhan, J. and Mézard, M. (1998). Out ofequilibrium dynamis in spin-glasses and other glassy systems. Spin-glasses andRandom Fields (A.P. Young, Ed.), World Sienti�.[10℄ Bouhaud, J.-P. and Dean, D. S. (1995). Aging on Parisi's tree. J. Phys. I(Frane) 5, 265�286.[11℄ Coo, S. and Monasson, R. (2007). Reonstruting a random potential from itsrandom walks. To appear in Europhysis Letters. ArXiv:0704.2539.[12℄ Dembo, A., Guionnet, A. and Zeitouni, O. (2004). Aging properties of Sinai'smodel of random walk in random environment. In St. Flour summer shool 2001leture notes by O. Zeitouni. ArXiv:math/0105215.[13℄ Le Doussal, P., Fisher, D.S. and Monthus, C. (1999). Random walkers in one-dimensional random environments: Exat renormalization group analysis. Phys.Rev. E 59, 4795�4840.[14℄ Enriquez, N., Sabot, C. and Zindy, O. (2007). A probabilisti representation ofonstants in Kesten's renewal theorem. Preprint. ArXiv:math/0703648.[15℄ Enriquez, N., Sabot, C. and Zindy, O. (2007). Limit laws for transient randomwalks in random environment on Z. Preprint. ArXiv:math/0703660.[16℄ Feller, W. (1971). An Introdution to Probability Theory and its Appliations,Vol. II. (2nd ed.). Wiley, New York.[17℄ Fontes, L. R., Isopi, M. and Newman, C. M. (2002). Random walks with stronglyinhomogeneous rates and singular di�usions: onvergene, loalization and agingin one dimension. Ann. Probab. 30, 579�604.[18℄ Golosov, A.O. (1984). Loalization of random walks in one-dimensional randomenvironments. Comm. Math. Phys. 92, 491�506.[19℄ Golosov, A. O. (1986). Limit distributions for random walks in random environ-ments. Soviet Math. Dokl. 28, 18�22.[20℄ den Hollander, F. (2000). Large Deviations. Fields Institute Monographs 14.AMS, Providene, RI.[21℄ Iglehart, D.L. (1972). Extreme values in the GI/G/1 queue. Ann. Math. Statist.43, 627�635.
22



[22℄ Kesten, H. (1986). The limit distribution of Sinai's random walk in random en-vironment. Physia A 138, 299�309.[23℄ Kesten, H., Kozlov, M.V. and Spitzer, F. (1975). A limit law for random walk ina random environment. Compositio Math. 30, 145�168.[24℄ Peterson, J. and Zeitouni, O. (2007). Quenhed limits for transient,zero speed one-dimensional random walk in random environment. Preprint.ArXiv:0704.1778.[25℄ Sinai, Ya.G. (1982). The limiting behavior of a one-dimensional random walk ina random medium. Th. Probab. Appl. 27, 256�268.[26℄ Solomon, F. (1975). Random walks in a random environment. Ann. Probab. 3,1�31.[27℄ Zeitouni, O. (2004). Random Walks in Random Environment, XXXI summershool in probability, St Flour (2001), Leture Notes in Math. 1837, pp. 193�312. Springer, Berlin.

23


