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Abstra
tWe 
onsider transient one-dimensional random walks in random environmentwith zero asymptoti
 speed. An aging phenomenon involving the generalizedAr
sine law is proved using the lo
alization of the walk at the foot of �valleysöfheight log t. In the quen
hed setting, we also sharply estimate the distributionof the walk at time t.1 Introdu
tionOne-dimensional random walks in random environment have been the subje
t of 
on-stant interest in physi
s and mathemati
s for the last thirty years sin
e they naturallyappear in a great variety of situations in physi
s and biology.In 1975, Solomon gives, in a seminal work [26℄, a 
riterion of transien
e-re
urren
e forsu
h walks moving to the nearest neighbours, and shows that three di�erent regimes
an be distinguished: the random walk may be re
urrent, or transient with a positiveasymptoti
 speed, but it may also be transient with zero asymptoti
 speed. This lastregime, whi
h does not exist among usual random walks, is probably the one whi
his the less well understood and its study is the purpose of the present paper.Let us �rst remind the main existing results 
on
erning the other regimes. In hispaper, Solomon 
omputes the asymptoti
 speed of transient regimes. In 1982, Sinaistates, in [25℄, a limit theorem in the re
urrent 
ase. It turns out that the motionin this 
ase is unusually slow. Namely, the position of the walk at time n has to benormalized by (log n)2 in order to present a non trivial limit. In 1986, the limitinglaw is 
hara
terized independently by Kesten [22℄ and Golosov [19℄. Let us noti
ehere that, beyond the interest of his result, Sinai introdu
es a very powerful andintuitive tool in the study of one-dimensional random walks in random environment.This tool is the potential, whi
h is a fun
tion on Z 
anoni
ally asso
iated to therandom environment. It turns out to be an usual random walk when the transitionprobabilities at ea
h site are independent and identi
ally distributed (i.i.d.).The proof by Sinai of an annealed limit law in the re
urrent 
ase is based on a quen
hedlo
alization result. Namely, a notion of valley of the potential is introdu
ed, as wellas an order on the set of valleys. It is then proved that the walk is lo
alized at time t,with a probability 
onverging to 1, around the bottom of the smallest valley of depthbigger than log t surrounding the origin. An annealed 
onvergen
e in law of this sitenormalized by (log t)2 implies the annealed limiting law for the walk.In the 
ase of transient random walks in random environment with zero asymptoti
speed, the proof of the limiting law by Kesten, Kozlov and Spitzer [23℄ does not followthis s
heme. Therefore an analogous result to Sinai's lo
alization in the quen
hedsetting was missing. As we will see, the answer to this question is more 
ompli
atedthan in the re
urrent 
ase but still very expli
it.1



In the setting of sub-ballisti
 transient random walks, the valleys we introdu
e are,like in [15℄ and [24℄, related to the ex
ursions of the potential above its past minimum.Now, the key observation is that with a probability 
onverging to 1, the parti
le reliesat time t at the foot of a valley having depth and width of order log t. Therefore,sin
e the walk spends a random time of order t inside a valley of depth log t, it is notsurprising that this random walk exhibits an aging phenomenon.What is usually 
alled aging is a dynami
al out-of-equilibrium physi
al phenomenonobserved in disordered systems like spin-glasses at low temperature, de�ned by theexisten
e of a limit of a given two-time 
orrelation fun
tion of the system as bothtimes diverge keeping a �xed ratio between them; the limit should be a non-trivialfun
tion of the ratio. It has been extensively studied in the physi
s literature, see [9℄and therein referen
es.More pre
isely, in our setting, Theorem 2.1 expresses, for ea
h given ratio h > 1, theprobability that the parti
le remains 
on�ned within the same valley during the timeinterval [t, th]. This probability is expressed in terms of the generalized Ar
sine law,whi
h 
on�rms the status of universality as
ribed to this law by Ben Arous and �ernýin their study of aging phenomena arising in trap models [4℄.Let us remind that the trap model is a model of random walk that was �rst proposedby Bou
haud and Dean [8, 10℄ as a toy model for studying this aging phenomenon.In the mathemati
s litterature, mu
h attention has re
ently been given to the trapmodel, and many aging result were derived from it, on Z in [17℄ and [3℄, on Z
2 in [7℄,on Z

d (d ≥ 3) in [5℄, or on the hyper
ube in [1, 2℄. A 
omprehensive approa
h toobtaining aging results for the trap model in various settings was later developed in[6℄.Let us �nally mention that Theorem 2.1 generalizes the aging result obtained byheuristi
al methods of renormalization by Le Doussal, Fisher and Monthus in [13℄ inthe limit 
ase when the bias of the random walk de�ning the potential tends to 0 (the
ase when this bias is 0 
orresponding to the re
urrent regime for the random walk inrandom environment). The re
urrent 
ase leading also to an aging phenomenon wastreated in the same arti
le and rigorous arguments were later presented by Dembo,Guionnet and Zeitouni in [12℄.The se
ond aspe
t of our work 
on
erns lo
alization properties of the walk and 
an be
onsidered as the analog of Sinai's lo
alization result in the transient setting. Unlikethe re
urrent 
ase, the random walk is not lo
alized near the bottom of a singlevalley. Nevertheless, if one introdu
es a 
on�den
e threshold α, one 
an say that,asymptoti
ally, at time t, with a probability 
onverging to 1 on the environment,the walk is lo
alized with probability bigger than α around the bottoms of a �nitenumber of valleys having depth of order log t. This number depends on t and on theenvironment, but is not 
onverging to in�nity with t. Moreover, in Theorem 2.3 andCorollary 2.4 we sharply estimate the probability for the walk of being at time t inea
h of these valleys.
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2 Notations and main resultsLet ω := (ωi, i ∈ Z) be a family of i.i.d. random variables taking values in (0, 1)de�ned on Ω, whi
h stands for the random environment. Denote by P the distributionof ω and by E the 
orresponding expe
tation. Conditioning on ω (i.e. 
hoosing anenvironment), we de�ne the random walk in random environment X = (Xn, n ≥ 0)on Z
N as a nearest-neighbor random walk on Z with transition probabilities given by

ω: (Xn, n ≥ 0) is the Markov 
hain satisfying X0 = 0 and for n ≥ 0,

Pω (Xn+1 = x + 1 |Xn = x) = ωx,

Pω (Xn+1 = x − 1 |Xn = x) = 1 − ωx.We denote by Pω the law of (Xn, n ≥ 0) and Eω the 
orresponding expe
tation. Wedenote by P the joint law of (ω, (Xn)n≥0). We refer to Zeitouni [27℄ for an overviewof results on random walks in random environment. Let us introdu
e
ρi :=

1 − ωi

ωi

, i ∈ Z.Our �rst main result is the following theorem whi
h shows aging phenomenon in thetransient sub-ballisti
 regime.Theorem 2.1. Let ω := (ωi, i ∈ Z) be a family of independent and identi
ally dis-tributed random variables su
h that(a) there exists 0 < κ < 1 for whi
h E [ρκ
0 ] = 1 and E

[
ρκ

0 log+ ρ0

]
< ∞,(b) the distribution of log ρ0 is non-latti
e.Then, for all h > 1 and all η > 0, we have

lim
t→∞

P(|Xth − Xt| ≤ η log t) =
sin(κπ)

π

∫ 1/h

0

yκ−1(1 − y)−κ dy.Let us make some 
omments about the 
on
entration of the parti
le inside a regionof size η log t in Theorem 2.1. Let us �rst mention that a 
onvergen
e of the pro
esses
(n−κXnt; t ≥ 0) towards the inverse of a stable subordinator of index κ, when n goesto in�nity, is proved in [15℄. Conjugating this result with standard fa
ts about thejumps of a stable subordinator, one 
an get a weaker version of Theorem 2.1, wherethe term η log t is repla
ed by ηtκ. As we will see, the proof of a 
on�nement inside aregion of order log t whi
h 
orresponds to the width of the trapping valley at time t,requires a �ner analysis. Finally, in the trap models 
onsidered in [6℄, the 
on�nemento

urs on a single attra
ting site, but this 
omes from the nature of this model, and inour setting the role of the attra
ting site of the trap model is played by the attra
tingvalley.Let us now remind some basi
 result about Xn : under the same assumptions (a)-(b),Kesten, Kozlov and Spitzer [23℄ proved that Xn/n

κ 
onverges in law to C( 1
Sca

κ
)κ where
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C is a positive parameter and Sca
κ is the normalized positive stable law of index κ, i.e.with Lapla
e transform

E[e−λSca
κ ] = e−λκ

, ∀λ > 0.In [14, 15℄ we gave a di�erent proof of this result and we were able to give an expli
itexpression for the 
onstant C.The proof was based on a pre
ise analysis of the potential asso
iated with the en-vironment, as it was de�ned by Sinai for its analysis of the re
urrent 
ase, see [25℄.In this paper, we use the te
hni
s developed in [14, 15℄ to prove Theorem 2.1. Thispotential, denoted by V = (V (x), x ∈ Z), is a fun
tion of the environment ω. It isde�ned as follows:
V (x) :=






∑x
i=1 log ρi if x ≥ 1,

0 if x = 0,

−
∑0

i=x+1 log ρi if x ≤ −1.Furthermore, we 
onsider the weak des
ending ladder epo
hs for the potential de�nedby e0 := 0 and
ei := inf{k > ei−1 : V (k) ≤ V (ei−1)}, i ≥ 1,whi
h play a 
ru
ial role in our proof. Observe that the sequen
e (ei − ei−1)i≥1 is afamily of i.i.d. random variables. Moreover, 
lassi
al results of �u
tuation theory (see[16℄, p. 396), tell us that, under assumptions (a)-(b) of Theorem 2.1,

E[e1] < ∞. (2.1)Now, observe that the sequen
e ((ei, ei+1])i≥0 stands for the set of ex
ursions of thepotential above its past minimum. Let us introdu
e Hi, the height of the ex
ur-sion [ei, ei+1] de�ned by Hi := maxei≤k≤ei+1
(V (k) − V (ei)) , for i ≥ 0. Note that the

(Hi)i≥0's are i.i.d. random variables.For t ∈ N, we introdu
e the 
riti
al height
ht := log t − log log t. (2.2)As in [15℄ we de�ne the deep valleys from the ex
ursions whi
h are higher than the
riti
al height ht. Let (σ(j))j≥1 be the su

essive indexes of ex
ursions, whose heightsare greater than ht. More pre
isely,

σ(1) := inf{i ≥ 0 : Hi ≥ ht},
σ(j) := inf{i > σ(j − 1) : Hi ≥ ht}, j ≥ 2.We 
onsider now some random variables depending only on the environment, whi
hde�ne the deep valleys.
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De�nition 2.2. For all j ≥ 1, let us introdu
e
bj := eσ(j),

aj := sup{k ≤ bj : V (k) − V (bj) ≥ Dt},
T ↑

j := inf{k ≥ bj : V (k) − V (bj) ≥ ht},
dj := eσ(j)+1,

cj := inf{k ≥ bj : V (k) = max
bj≤x≤dj

V (x)},

dj := inf{k ≥ dj : V (k) − V (dj) ≤ −Dt}.where Dt := (1 + 1
κ
) log nt. We 
all (aj, bj , cj, dj) a deep valley and denote by H (j) theheight of the j-th deep valley.Moreover, let us introdu
e the index of the last visited deep valley at time t, denotedby

ℓt := sup{n ≥ 0 : τ(bn) ≤ t}.Before stating the quen
hed lo
alization result, re
all that X is de�ned on the sampleprobability spa
e Z
N. Then, let us introdu
e e = (ei, i ≥ 1) a sequen
e of i.i.d.exponential random variables with parameter 1, independent of X. We de�ne e on aprobability spa
e Ξ and denote its law by P (e). In order to express the independen
ebetween X and e, we 
onsider for ea
h environment ω, the probability spa
e (ZN ×

Ξ, Pω × P (e)) on whi
h we de�ne (X, e).Furthermore, let us de�ne the weight of the k-th deep valley by
Wk(ω) :=

∑

ak≤m≤n

bk≤n≤dk

eVω(n)−Vω(m).Moreover, let us introdu
e the following integer, for any t ≥ 0,

ℓ
(e)
t,ω := sup

{
i ≥ 0 :

i∑

k=1

Wk(ω)ek ≤ t
}
.We are now able to state our se
ond main result.Theorem 2.3. Under assumptions (a)-(b) of Theorem 2.1, we have,(i) for all η > 0,

lim
t→∞

P(|Xt − bℓt| ≤ η log t) = 1,(ii) for all δ > 0,

lim
t→∞

P
(
dTV (ℓt, ℓ

(e)
t,ω + 1) > δ

)
= 0,where dTV denotes the distan
e in total variation.Observe that we 
an easily dedu
e the following quen
hed lo
alization result by as-sembling part (i) and part (ii) of Theorem 2.3.5



Corollary 2.4. Under assumptions (a)-(b) of Theorem 2.1, we have, for all δ, η > 0,that
P

(
∑

i≥1

∣∣∣∣∣P0,ω(|Xt − bi| ≤ η log t) − P (e)

( i−1∑

k=1

Wk(ω)ek ≤ t <

i∑

k=1

Wk(ω)ek

)∣∣∣∣∣ > δ

)
onverges to 0, when t tends to ∞.The 
ontent of this result is twofold. It �rst says that, with a probability 
onvergingto 1, the pro
ess at time t is 
on
entrated near the bottom of a valley of depth oforder log t. It also determines, for ea
h of these valleys, the probability that, at time
t, the parti
le lies at the bottom of it. This probability is driven by a renewal Poissonpro
ess whi
h is skewed by the weights of ea
h of these valleys.This result may be of big interest when trying to get informations on the environmenton the basis of the observation of a sample of traje
tories of the parti
le, like it isdone, in this setting, in re
ent works about DNA re
onstru
tion, see [11℄.3 NotationsA result of Iglehart [21℄ whi
h will be of 
onstant use, says that, under assumptions
(a)-(b) of Theorem 2.1, the tail of the height Hi of an ex
ursion above its past minimumis given by

P (H1 > h) ∼ CI e−κh, h → ∞, (3.1)for a positive 
onstant CI (we will not need its expli
it value).The analysis done in [14, 15℄ shows that on the interval [0, t], t ∈ N, the walk Xn spendsasymptoti
ally all its time trying to 
limb ex
ursions of height of order log t + C fora real C. Let us now introdu
e the integer
nt := ⌊tκ log log t⌋.The integer nt will be use to bound the number of ex
ursions the walk 
an 
ross beforetime t. The strategy will be to show that we 
an negle
t the time spent between twoex
ursions of size smaller than ht, and to show that at time t the walk Xt is 
losed tothe foot of an ex
ursion of height larger than ht.3.1 The deep valleysLet us de�ne the number of deep valleys in the nt �rst ex
ursions by

Kt := sup{j ≥ 0 : σ(j) ≤ nt},whi
h is the number of ex
ursions higher than the 
riti
al height ht in the nt �rstex
ursions.Remark. This de�nition 
orresponds to the de�nition of deep valleys introdu
ed in[15℄ with n = nt, but with a di�erent 
riti
al height. In [15℄ the 
riti
al heightwas hn = 1−ε
κ

log n, for ε su
h that 0 < ε < 1. Here, we see that hnt would beequal to (1 − ε) log t + 1−ε
κ

log log log t whi
h is smaller than our 
riti
al height ht =
log t− log log t. This means that the deep valleys are higher and less numerous in thepresent paper than in [15℄. 6



3.2 The ∗-valleysLet us �rst de�ne the maximal variations of the potential before site x by:
V ↑(x) := max

0≤i≤j≤x
(V (j) − V (i)), x ∈ N,

V ↓(x) := min
0≤i≤j≤x

(V (j) − V (i)), x ∈ N.By extension, we introdu
e
V ↑(x, y) := max

x≤i≤j≤y
(V (j) − V (i)), x < y,

V ↓(x, y) := min
x≤i≤j≤y

(V (j) − V (i)), x < y.The deep valleys de�ned above are not ne
essarily made of disjoint portions of theenvironment. To over
ome this di�
ulty we de�ned another type of valleys, 
alled
∗-valleys, whi
h form a subsequen
e of the previous valleys, whi
h by 
onstru
tion aremade of disjoint portions of environment, and whi
h will 
oin
ide with high probabilitywith the previous valleys on the portion of the environment visited by the walk beforetime t.

γ∗
1 := inf{k ≥ 0 : V (k) ≤ −Dt},

T ∗
1 := inf{k ≥ γ∗

1 : V ↑(γ∗
1 , k) ≥ ht},

b∗1 := sup{k ≤ T ∗
1 : V (k) = min

0≤x≤T ∗
1

V (x)},

a∗
1 := sup{k ≤ b∗1 : V (k) − V (b∗1) ≥ Dt},

d
∗

1 := inf{k ≥ T ∗
1 : V (k) ≤ V (b∗1)},

c∗1 := inf{k ≥ b∗1 : V (k) = max
b∗1≤x≤d

∗
1

V (x)},

d∗
1 := inf{k ≥ d

∗

1 : V (k) − V (d
∗

1) ≤ −Dt}.Let us de�ne the following sextuplets of points by iteration
(γ∗

j , a
∗
j , b

∗
j , T

∗
j , c∗j , d

∗

j , d
∗
j) := (γ∗

1 , a
∗
1, b

∗
1, T

∗
1 , c∗1, d

∗

1, d
∗
1) ◦ θd∗j−1

, j ≥ 2,where θi denotes the i-shift operator.De�nition 3.1. We 
all a ∗-valley any quadruplet (a∗
j , b

∗
j , c

∗
j , d

∗
j) for j ≥ 1. Moreover,we shall denote by K∗

t the number of su
h ∗-valleys before ent , i.e. K∗
t := sup{j ≥ 0 :

T ∗
j ≤ ent}.It will be made of independent and identi
ally distributed portions of potential (upto some translation).
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4 Preliminary estimates4.1 Introdu
ing good environmentsAs in [15℄, we introdu
e the following series of events, whi
h will o

ur with highprobability when t tends to in�nity.
A1(t) := {ent ≤ C ′nt} ,

A2(t) :=
{
Kt ≤ (log t)

1+κ
2

}
,

A3(t) := ∩Kt

j=0

{
σ(j + 1) − σ(j) ≥ tκ/2

}
,

A4(t) := ∩Kt+1
j=1 {dj − aj ≤ C ′′ log t} ,where σ(0) := 0 (for 
onvenien
e of notation) and C ′, C ′′ stand for positive 
onstantswhi
h will be spe
i�ed below.Lemma 4.1. Let A(t) := A1(t) ∩ A2(t) ∩ A3(t) ∩ A4(t), then
lim
t→∞

P (A(t)) = 1.Proof. Con
erning A2(t), we know that the number of ex
ursions higher than ht in the�rst nt ex
ursions is a binomial with parameter (nt, qt) where qt := P (H1 ≥ ht). Sin
e(3.1) implies qt ∼ CIe
−κht , t → ∞, we have that E [Kt] = ntqt ∼ CI log log t(log t)κ.Using Markov inequality we get that P (A2(t)) tends to 1. The fa
t that P (A1(t) ∩

A3(t) ∩ A4(t)) 
onverges to 1 is a 
onsequen
e of Lemma 1, Lemma 3 and Lemma
4 of [15℄ sin
e the deep valleys with ht are less numerous than with hnt (
f Remark3.1).The following lemma tells us that the ∗-valleys 
oin
ide with the sequen
e of deepvalleys with an overwhelming probability when t goes to in�nity.Lemma 4.2. If A∗(t) := {Kt = K∗

t ; (aj , bj , cj, dj) = (a∗
j , b

∗
j , c

∗
j , d

∗
j), 1 ≤ j ≤ K∗

t },then we have that the probability P (A∗(t)) 
onverges to 1, when t goes to in�nity.Proof. By de�nition, the ∗-valleys 
onstitute a subsequen
e of the deep valleys, and
A∗(t) o

urs as soon as the valleys (aj , bj, cj , dj) are disjoint for 1 ≤ j ≤ Kt. Hen
e,we see that A3(t) ∩ A4(t) ⊂ A∗(t). Then, Lemma 4.2 is a 
onsequen
e of Lemma4.1.4.2 Dire
ted trapsLet us introdu
e, for any x, y ∈ Z,

τ(x, y) := inf{k ≥ 0 : Xτ(x)+k = y}.We re
all from [15℄ the following lemmas.
8



Lemma 4.3. De�ning DT (t) := A(t) ∩
⋂Kt

j=1

{
τ(dj , bj+1) < τ(dj, dj)

}
, we have

P (DT (t)) → 1, t → ∞.Proof. The proof is exa
tly the same as in [15℄, but easier sin
e the deep valleys with
ht are less numerous than with hnt (
f Remark 3.1).Lemma 4.4. De�ning DT ∗(t) :=

⋂K∗
t

j=1

{
τ(b∗j , d

∗
j) < τ(b∗j , a

∗
j)
}

, we have
P(DT ∗(t)) → 1, t → ∞.Proof. The proof is 
lose to be the same as in [15℄, ex
ept that the deep valleys with htare still less numerous than with hnt and that the γi's are rempla
ed by the ai's. Thisdoes not modify the proof of [15℄ sin
e we only have to 
he
k that V (ai)−V (bi) ≥ Dt,whi
h is true by de�nition of the ai's (see De�nition 2.2).Finally, we need to know that the time spent between the deep valleys is small. Thisa 
onsequen
e of Lemma 7 in [15℄.Lemma 4.5. Let us introdu
e the following event

IA(t) := A(t) ∩
{

τ(b1) +

Kt∑

j=1

τ(dj, bj+1) <
t

log log t

}

.Then, we have
P(IA(t)) → 1, t → ∞.Proof. The arguments are the same as in the proof of Lemma 10 in [15℄. The maintool is Lemma 7 of [15℄, whi
h says that there exists C > 0, su
h that for all h ≥ 0,

E|0

[
τ(T ↑(h) − 1)

]
≤ Ceh,where E|0 denotes the expe
tation under the annealed law P|0 asso
iated with therandom walk in random environment re�e
ted at 0.4.3 Lo
alization in trapsIn a �rst step, we give a te
hni
al result, whi
h will be very useful to 
ontrol thelo
alization of the parti
le in a valley.Lemma 4.6. If Fγ(t) :=

{
max{V ↑(a1, b1) ; −V ↓(b1, c1) ; V ↑(c1, d1)} ≤ γ log t

}
, thenwe have, for any γ > 0 and any 0 < ε < γ,

P (Fγ(t)) = 1 − o(t−κε), t → ∞.In words, Fγ(t) ensures that the potential does not have ex
essive �u
tuations in atypi
al box.Proof. The arguments are the same as in the proof of Lemma 13 in [15℄.9



For ea
h deep valley, let us introdu
e the position ci

ci := inf{n ≥ ci : V (n) ≤ V (ci) − ht/3}.We �rst need to know that during its sojourn time inside a deep valley, the randomwalk spends almost all its time inside the interval (ai, ci). This is a 
onsequen
e ofthe following lemma.Lemma 4.7. Let LT (t) be the event
LT (t) :=

Kt⋂

i=1

{
τ(ci, di) ≤

t

log t

}
.Then,

P(LT (t)) → 1, t → ∞.This result just means that at the time s
ale t, if the walk meet ci, then soon after itexits the deep valley (ai, di).Proof. Sin
e P (Kt ≤ (log t)
1+κ

2 ) → 1, when t → ∞, we only have to prove that
P

(
τ(c1, d1) >

t

log t

)
= o((log t)−

1+κ
2 ), t → ∞.Now, applying the strong Markov property at τ(c1), we get

P

(
τ(c1, d1) >

t

log t

)
≤ E

[
P c1

ω,|c1
(τ(d1) > t/ log t)

]
+ E

[
P c1

ω (τ(c1) < τ(d1))
]
.Considering the �rst term, using the fa
t that Ec1

ω,|c1
[τ(d1)] ≤

∑
c1≤i≤j≤d1

eV (j)−V (i)(see (A1) in [18℄) and Cheby
hev inequality, we obtain
P c1

ω,|c1
(τ(d1) > t/ log t) ≤ log t

t

∑

c1≤i≤j≤d1

eV (j)−V (i) ≤ log t

t
(d1 − c1)e

γ log t,on Fγ(t). Sin
e the proof of Lemma 4 in [15℄ 
ontains the fa
t that P{d1 − c1 ≥
C log t} = o((log t)−

1+κ
2 ), when t → ∞, we only have to 
hoose γ < 1, whi
h implies

E
[
P c1

ω,|c1
(τ(d1) > t/ log t)

]
= o((log t)−

1+κ
2 ), t → ∞.In order to treat the se
ond term, by (Zeitouni [27℄, formula (2.1.4)), we get

P c1
ω (τ(c1) < τ(d1)) ≤

∑d1−1
k=c1

eV (k)

∑d1−1
k=c1

eV (k)
≤ (d1 − c1)e

V (c1)+γ log t−V (c1) ≤ (d1 − c1)e
γ log t−

ht
3 ,on Fγ(t). Now, let us 
hoose γ < 1/3.Re
alling Lemma 4.6, and sin
e we have P (d1 − c1 ≥ C log t) = o((log t)−

1+κ
2 ), when

t → ∞, we get
E
[
P c1

ω (τ(c1) < τ(d1))
]

= o((log t)−
1+κ

2 ), t → ∞,whi
h 
on
ludes the proof of Lemma 4.7.10



Now, we need to be sure that the bottom of the deep valleys are sharp. For η > 0,we introdu
e the following subsets of the deep valleys
Oi := [ai + 1, ci − 1] \ (bi − η log t + 1, bi + η log t − 1), i ∈ N,and the event

A5(t) :=
Kt⋂

i=1

{
min

k∈Oi∩Z

(V (k) − V (bi)) ≥ C ′′′η log t

}
,for a 
onstant C ′′′ (small enough) to be de�ned later. Then, we have the followingresult.Lemma 4.8. For all η > 0,

lim
t→∞

P (A5(t)) = 1.Proof. Observe �rst that if η > C ′′, then the sets (Oi, 1 ≤ i ≤ Kt) are empty on A4(t).Therefore, Lemma 4.8 is a 
onsequen
e of Lemma 4.1.Now, let us assume η ≤ C ′′. The de�nition of ci implies thatminci≤k<ci
(V (k)−V (bi)) ≥

2
3
ht. Then, 
hoosing C ′′′ su
h that C ′′′C ′′ < 2/3 implies that C ′′′η log t < 2

3
ht for alllarge t, whi
h yields

P

(
Kt⋂

i=1

{
min

ci≤k<ci

(V (k) − V (bi)) ≥ C ′′′η log t

})
= 1, (4.1)for all large t. Then, let us introdu
e the sets

O′
i := Oi ∩ [bi, ci], O′′

i := Oi ∩ [ai, bi], i ∈ Z,and the events
A′

5(t) :=
Kt⋂

i=1

{
min

k∈O′
i∩Z

(V (k) − V (bi)) ≥ C ′′′η log t

}
,

A′′
5(t) :=

Kt⋂

i=1

{
min

k∈O′′
i ∩Z

(V (k) − V (bi)) ≥ C ′′′η log t

}
.Now, re
alling (4.1), the proof of Lemma 4.8 boils down to showing that

lim
t→∞

P (A′
5(t)) = 1, (4.2)

lim
t→∞

P (A′′
5(t)) = 1. (4.3)Let us �rst prove (4.2). Sin
e P (Kt ≤ (log t)

1+κ
2 ) → 1, when t → ∞, we only have toprove that it is possible to 
hoose C ′′′ small enough su
h that

P

(
min

k∈O′
1∩Z

(V (k) − V (b1)) < C ′′′η log t

)
= o((log t)−

1+κ
2 ), t → ∞. (4.4)

11



Re
alling assumption (a) of Theorem 2.1 and denoting by µ the law of log ρ0, we 
ande�ne the law µ̃ = ρκ
0µ, and the law P̃ = µ̃⊗Z whi
h is the law of a sequen
e of i.i.d.random variables with law µ̃. The de�nition of κ implies that ∫ log ρ µ̃(dρ) > 0. Now,observe that the probability term in (4.4) 
an be written

P

(
min

⌊η log t⌋≤k≤TH

V (k) < C ′′′η log t|H ≥ ht

)

≤ CeκhtP

(
min

⌊η log t⌋≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)

≤ CẼ
[
e−κ(V (TH)−ht)

1{min⌊η log t⌋≤k≤TH
V (k)<C′′′η log t ;H≥ht}

]

≤ CP̃

(
min

⌊η log t⌋≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)
, (4.5)the �rst inequality being a 
onsequen
e of (3.1) and the se
ond dedu
ed from Girsanovproperty. Now, let us introdu
e α = α(η) := cη with 0 < c < min{Ẽ [V (1)] ; 1/C ′′}and γ = γ(η) := cη/2. Observe that α log t < ht for all large t, su
h that Tα log t ≤

Tht ≤ TH < ∞ on {H ≥ ht}. Now sin
e c < Ẽ [V (1)] , we obtain from Cramer'stheory, see [20℄, that P̃ (V (⌊η log t⌋) < α log t) ≤ C exp{−ηĨ(c) log t} = o((log t)−
1+κ
2 ),where Ĩ(·) denotes the 
onvex rate fun
tion asso
iated with V under P̃ . This yields

P̃ (Tα log t ≤ ⌊η log t⌋) = 1− o((log t)−
1+κ
2 ), when t tends to in�nity. Therefore, we getthat

P

(
min

⌊η log t⌋≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)

≤ P

(
min

Tα log t≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)
+ o((log t)−

1+κ
2 ). (4.6)Then, re
alling that Lemma 4.6 implies that P (Fγ(t)) = 1 − o((log t)−
1+κ

2 ), t → ∞,let us write
P

(
min

Tα log t≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht

)

= P

(
min

Tα log t≤k≤TH

V (k) < C ′′′η log t ; H ≥ ht ; Fγ(t)

)
+ o((log t)−

1+κ
2 ). (4.7)Furthermore, observe that on Fγ(t), we have minTα log t≤k≤TH

V (k) ≥ (α−γ) log t, whi
hyields minTα log t≤k≤TH
V (k) ≥ C ′′′η log t, if we 
hoose C ′′′ smaller than c/2. Therefore,for C ′′′ small enough (independently of η ≤ C ′′), we get that the probability term in(4.7) is null for all large t. Now, assembling (4.5) , (4.6) and (4.7) implies (4.4) and
on
ludes the proof of (4.2) .The proof of (4.3) is similar but easier. Indeed, we do not have to use Girsanovproperty to study the potential on [ai, bi].5 Two versions of a Dynkin type renewal resultWe de�ne the sequen
e of random times (τ ∗

i )i≥1 as follows: 
onditioning on the en-vironment ω, (τ ∗
i )i≥1 is de�ned as an independent sequen
e of random variables with12



the law of τ(d∗
i ) under P

b∗i
ω,|a∗

i
, where τ(d∗

i ) denotes the �rst hitting time of d∗
i and P

b∗i
ω,|a∗

iis the law of the Markov 
hain in environment ω, starting from b∗i and re�e
ted at a∗
i .Hen
e, under the annealed law P, (τ ∗

i )i≥1 is an i.i.d. sequen
e sin
e the ∗-valleys areindependent and identi
ally distributed. The �rst step in our proof is to derive thefollowing result.Proposition 5.1. Let ℓ∗t be the random integer de�ned by
ℓ∗t := sup{n ≥ 0 : τ ∗

1 + · · ·+ τ ∗
n ≤ t}.For all 0 ≤ x1 < x2 ≤ 1, we have

lim
t→∞

P(t(1 − x2) ≤ τ ∗
1 + · · ·+ τ ∗

ℓ∗t
≤ t(1 − x1)) =

sin(κπ)

π

∫ x2

x1

x−κ

(1 − x)κ−1
dx.For all 0 ≤ x1 < x2, we have

lim
t→∞

P(t(1 + x1) ≤ τ ∗
1 + · · ·+ τ ∗

ℓ∗t +1 ≤ t(1 + x2)) =
sin(κπ)

π

∫ x2

x1

dx

xκ(1 + x)
.Proof. Observe that the result would exa
tly be Dynkin's theorem (
f e.g. Feller,vol II, [16℄, p. 472) if the sequen
e (τ ∗

i )i≥1 was an independent sequen
e of randomvariables in the domain of attra
tion of a stable law with index κ. Here, the sequen
e
(τ ∗

i )i≥1 impli
itly depends on the time t, sin
e the ∗-valleys are de�ned from the 
riti
alheight ht. In [15℄, using [14℄, we obtained that the Lapla
e transform of τ ∗
1 satis�es

E

[
1 − e−λ

τ∗1
t

]
∼ P (H ≥ ht)

−1

t

πκ

sin(κπ)
2κCUλκ, t → ∞, (5.1)for all λ > 0. The 
onstant CU was made expli
it in [14℄ but we will not need thisvalue here.The proof is essentially the same as in [16℄. Let us introdu
e S∗

0 = 0 and S∗
n :=

∑n
i=1 τ ∗

i ,for n ≥ 1. Then, the inequality t(1−x2) ≤ τ ∗
1 + · · ·+ τℓ∗t

≤ t(1−x1) o

urs i� S∗
n = tyand τ ∗

n+1 > t(1−y) for some 
ombination n, y su
h that 1−x2 < y < 1−x1. Summingover all n and possible y we get
P(t(1 − x2) ≤ S∗

ℓ∗t
≤ t(1 − x1)) =

∫ 1−x1

1−x2

Gt(1 − y)

P (H ≥ ht)
Ut{dy}, (5.2)where Gt(x) := P (H ≥ ht)P(t−1τ ∗

1 ≥ x), and Ut{dx} denotes the measure asso
i-ated with Ut(x) :=
∑

n≥0 P(t−1S∗
n ≤ x). We introdu
e the measure dHt(u) su
h that∫∞

x
dHt(u) = Gt(x), for all x ≥ 0.Lemma 5.2. For any x > 0, we have

lim
t→∞

xκt Gt(x) = 2κΓ(1 + κ)CU . (5.3)Moreover, the 
onvergen
e is uniform on any 
ompa
t set.
13



Proof. In a �rst step, observe that E[1− e−λ
τ∗1
t ] = P (H ≥ ht)

−1
∫∞

0
(1− e−λu) dHt(u).Re
alling (5.1), we obtain

lim
t→∞

t

∫ ∞

0

(1 − e−λu) dHt(u) = 2κΓ(1 + κ)CUΓ(1 − κ)λκ.Sin
e Γ(1 − κ)λκ = λ
∫∞

0
e−λuu−κ du, this implies

lim
t→∞

t

∫ ∞

0

(1 − e−λu) dHt(u) = 2κΓ(1 + κ)CUλ

∫ ∞

0

e−λuu−κ du. (5.4)To the other hand, integrating by parts, we get, for any t ≥ 0,

∫ ∞

0

(1 − e−λu) dHt(u) = λ

∫ ∞

0

e−λuGt(u) du. (5.5)Combining (5.4) and (5.5) implies that the measure t Gt(u) du tends to the measurewith density 2κΓ(1 + κ)CUu−κ. Therefore, we have for all x ≥ 0,

lim
t→∞

t

∫ x

0

Gt(u) du = 2κΓ(1 + κ)CU
x1−κ

1 − κ
, (5.6)whi
h yields

lim
ε→0

lim
t→∞

∫ (1+ε)x

x
Gt(u) du

ε
∫ x

0
Gt(u) du

= 1 − κ. (5.7)Moreover, observe that the monotoni
ity of Gt(·) implies
xGt((1 + ε)x)∫ x

0
Gt(u) du

≤
∫ (1+ε)x

x
Gt(u) du

ε
∫ x

0
Gt(u) du

≤ xGt(x)∫ x

0
Gt(u) du

. (5.8)Now, 
ombining (5.7) and (5.8), we obtain
lim inf

t→∞

xGt(x)∫ x

0
Gt(u) du

≥ 1 − κ.Re
alling (5.6), this yields
lim inf

t→∞
xκt Gt(x) ≥ 2κΓ(1 + κ)CU . (5.9)Similarly, we obtain, for any ε > 0,

lim sup
t→∞

xκt Gt((1 + ε)x) ≤ 2κΓ(1 + κ)CU . (5.10)Assembling (5.9) and (5.10) 
on
ludes the proof of (5.3).Furthermore, observe that the uniform 
onvergen
e on any 
ompa
t set is a 
on-sequen
e of the monotoni
ity of x 7→ Gt(x), the 
ontinuity of the limit and Dini'stheorem. 14



Lemma 5.3. The measure P (H≥ht)−1

t
Ut{dx} 
onverges vaguely to the measure de�nedby 1

Γ(κ)Γ(1+κ)Γ(1−κ)2κCU
xκ−1dx.Proof. Observe �rst that the Lapla
e transform Ût(λ) :=

∫∞

0
e−λuUt{du} satis�es

Ût(λ) =
∑

n≥0 E[e−λ
S∗

n
t ] = (1 − E[e−λ

τ∗1
t ])−1. Therefore, (5.1) yields

lim
t→∞

P (H ≥ ht)
−1

t
Ût(λ) =

λ−κ

Γ(1 + κ)Γ(1 − κ)2κCU

.Furthermore, sin
e Γ(κ)λ−κ =
∫∞

0
e−λuuκ−1 du, we dedu
e the vague 
onvergen
e ofthe measure from the pointwise 
onvergen
e of the Lapla
e transforms.Now, re
alling (5.2), we observe that Lemma 5.2 together with Lemma 5.3 imply

lim
t→∞

P(t(1 − x2) ≤ S∗
ℓ∗t
≤ t(1 − x1)) =

1

Γ(κ)Γ(1 − κ)

∫ 1−x1

1−x2

(1 − y)−κyκ−1 dy,

=
sin(κπ)

π

∫ x2

x1

y−κ

(1 − y)κ−1
dy.This 
on
ludes the proof of the �rst part of Proposition 5.1. The se
ond part ofProposition 5.1 is obtained using similar arguments.Re
all Lemma 4.5 whi
h tells that the inter-arrival times are negligible. Now, we willprove that the results of Proposition 5.1 are still true if we 
onsider, in addition, theseinter-arrival times. Let δ1 := τ(b1), τ1 := τ(b1, d1) and

δk := τ(dk−1, bk), τk := τ(bk, dk), k ≥ 2.Moreover, we set
Tk := δ1 + τ1 + · · ·+ τk−1 + δk, k ≥ 1,the entering time in the k-th deep valley.Proposition 5.4. Re
all ℓt = sup{n ≥ 0 : τ(bn) ≤ t}. Then, we have
P(Tℓt ≤ t < Tℓt + τℓt) → 1, t → ∞.For all 0 ≤ x1 < x2 ≤ 1, we have

lim
t→∞

P(t(1 − x2) ≤ Tℓt ≤ t(1 − x1)) =
sin(κπ)

π

∫ x2

x1

x−κ

(1 − x)κ−1
dx.For all 0 ≤ x1 < x2, we have

lim
t→∞

P(t(1 + x1) ≤ Tℓt+1 ≤ t(1 + x2)) =
sin(κπ)

π

∫ x2

x1

dx

xκ(1 + x)
.

15



Proof. On the event A(t) ∩ DT ∗(t), we know that the random times (τi)1≤i≤K∗
t
havethe same law as the random times (τ ∗

i )1≤i≤K∗
t
de�ned in Se
tion 5. If we de�ne

ℓ̃t := sup{n ≥ 0 : τ1 + · · · + τn ≤ t}, then, using Proposition 5.1 and Lemma 4.3, weget that the result of Proposition 5.1 is true with τ and ℓ̃t in pla
e of τ ∗ and ℓ∗t . Now,using Lemma 4.5 we see that
lim inf

t→∞
P(ℓ̃t = ℓt − 1 ; Tℓt ≤ t < Tℓt + τℓt)

≥ lim inf
t→∞

P(IA(t) ; |t − (τ1 + · · ·+ τℓ̃t
)| ≥ ξt),for all ξ > 0. Thus, using Proposition 5.1 (for ℓ̃t and τi) and letting ξ tends to 0, weget that

lim
t→∞

P(ℓ̃t = ℓt − 1 ; Tℓt ≤ t < Tℓt + τℓt) = 1.We 
on
lude the proof by the same type of arguments.6 Proof of part (i) of Theorem 2.3: a lo
alizationresultWe follow the strategy developed by Sinai for the re
urrent 
ase. For ea
h valley wedenote by πi the invariant measure of the random walk on [ai, ci] in environment ω,re�e
ted at ai and ci and normalized so that πi(bi) = 1. Clearly, πi is the reversiblemeasure given, for k ∈ [bi + 1, ci − 1], by
πi(k) =

ωbi

1 − ωbi+1
· · · ωk−1

1 − ωk

= ωbi
ρ−1

bi+1 · · · ρ−1
k−1(ρ

−1
k + 1)

≤ e−(V (k)−V (bi)) + e−(V (k−1)−V (bi)).Similarly, πi(k) ≤ e−(V (k)−V (bi)) +e−(V (k+1)−V (bi)) for k ∈ [ai +1, bi −1]. Sin
e the walkis re�e
ted at ai and ci, we have πi(ai) = e−(V (ai+1)−V (bi)) and πi(ci) = e−(V (ci−1)−V (bi)).Hen
e on the event A5(t) we have
(πi)|[ai,ci]\(bi−η log t,bi+η log t) ≤ Ce−C′′′η log t = Ct−C′′′η.Moreover, sin
e πi is an invariant measure and sin
e πi(bi) = 1, we have, for all k ≥ 0,

P bi

ω,|ai,ci|
(Xk = x) ≤ πi(x).Hen
e, on the event A(t) ∩ A5(t) we have, for all k ≥ 0,

P bi

ω,|ai,ci|
(|Xk − bi| > η log t) ≤ C(log t)t−C′′′η. (6.1)Let ξ be a positive real, 0 < ξ < 1. Then, let us write

lim inf
t→∞

P(|Xt − bℓt| ≤ η log t)

≥ lim inf
t→∞

P(|Xt − bℓt| ≤ η log t ; ℓt = ℓt(1+ξ))

≥ lim inf
t→∞

P(ℓt = ℓt(1+ξ)) − lim sup
t→∞

P(|Xt − bℓt| > η log t ; ℓt = ℓt(1+ξ)).16



Considering the �rst term, we get by using Proposition 5.4,
lim inf

t→∞
P(ℓt = ℓt(1+ξ)) = lim inf

t→∞
P(Tℓt+1 > t(1 + ξ))

=
sin(κπ)

π

∫ ∞

ξ

dx

xκ(1 + x)
. (6.2)In order to estimate the se
ond term, let us introdu
e the event

TT (t) := A(t) ∩ A5(t) ∩ DT (t) ∩ DT ∗(t) ∩ A∗(t) ∩ IA(t) ∩ LT (t) ∩ IT (t),where IT (t) := {Tℓt ≤ t < Tℓt + τℓt}. Observe that the preliminary results obtainedin Se
tion 4 together with Proposition 5.4 imply that P(TT (t)) → 1, when t → ∞.Then, we have
lim sup

t→∞
P(|Xt − bℓt | > η log t ; ℓt = ℓt(1+ξ))

≤ lim sup
t→∞

P(TT (t) ; |Xt − bℓt| > η log t ; ℓt = ℓt(1+ξ))

≤ lim sup
t→∞

E

[
1TT (t)

Kt∑

i=1

1{|Xt−bi|>η log t ; ℓt=ℓt(1+ξ)=i}

]
.But on the event TT (t)∩{ℓt = ℓt(1+ξ) = i} we know that for all k ∈ [Ti, t] the walk Xkis in the interval [ai, ci−1]. (Indeed, on the event LT (t)∩DT (t)∩IA(t) we know thaton
e the position ci is rea
hed then within a time t/ log t the position bi+1 is rea
hedwhi
h would 
ontradi
t the fa
t that ℓt(1+ξ) = i. Hen
e, we obtain, for all i ∈ N,

P
(
TT (t) ; i ≤ Kt ; |Xt − bi| > η log t ; ℓt = ℓt(1+ξ) = i

)

≤ E

[
1{i≤Kt}1A(t)∩A5(t) sup

k∈[0,t]

P bi

ω,|ai,ci|
(|Xk − bi| > η log t)

]

≤ C(log t)t−C′′′η,where we used the estimate (6.1) on the event A(t)∩A5(t). Considering now that, onthe event A(t), the number K(t) of deep valleys is smaller than (log t)
κ+1
2 we get

lim sup
t→∞

P(|Xt − bℓt| > η log t ; ℓt = ℓt(1+ξ)) ≤ lim sup
t→∞

C(log t)
3+κ
2 t−C′′′η

= 0.Then, letting ξ tends to 0 in (6.2) 
on
ludes the proof of part (i) of Theorem 2.3.7 Part (ii) of Theorem 2.3: the quen
hed law of thelast visited valleyIn order to prove the proximity of the distributions of ℓt and ℓ
(e)
t,ω, we go through

ℓ∗t = sup{n ≥ 0, τ ∗
1 + · · · + τ ∗

n ≤ t} whose advantage is to involve independentrandom variables whose laws are 
learly identi�ed.
17



Proposition 7.1. Under assumptions (a)-(b) of Theorem 2.1, we have, for all δ > 0,

lim
t→∞

P
(
dTV (ℓ∗t , ℓ

(e)
t,ω) > δ

)
= 0,where dTV denotes the distan
e in total variation.Proof. The strategy is to build a 
oupling between ℓ∗t and ℓ

(e)
t,ω su
h that

lim
t→∞

P (P0,ω(ℓ∗t 6= ℓ
(e)
t,ω) > δ) → 0.Let us �rst asso
iate to the exponential variable ei the following geometri
 randomvariable

Ni :=
⌊(

− 1

log(pi(ω))

)
ei

⌋
,where 1− pi(ω) denotes the probability for the random walk starting at bi to go to dibefore returning to bi, whi
h is equal to ωb

eV (bi)

Pdi−1

x=bi
eV (x)

. The parameter of this geometri
law is now 
learly equal to 1 − pi(ω).Now one 
an introdu
e like in [15℄ two random variables F (i) (resp. S(i)) whose laware given by the time it takes for the random walk re�e
ted at ai, starting at bi, tohit bi (resp. di) 
onditional on the event that di (resp. bi) is not hitten in between.We introdu
e now a sequen
e of independent 
opies of F (i) we denote by (F
(i)
n )n≥0.The law of τ ∗

i is 
learly the same as F
(i)
1 + · · · + F

(i)
Ni

+ S(i) whi
h is going now to be
ompared with Eω[τ ∗
i ]ei.Let us now estimate, for a given ξ > 0 (small enough),

P

(
(1 − ξ)(F

(i)
1 + · · · + F

(i)
Ni

+ S(i)) ≤ Eω[τ ∗
i ]ei < (1 + ξ)(F

(i)
1 + · · ·+ F

(i)
Ni

+ S(i))
)

≥ P

(
(1 − ξ

2
)(F

(i)
1 + · · ·+ F

(i)
Ni

) ≤ Eω[τ ∗
i ]ei < (1 + ξ

2
)(F

(i)
1 + · · ·+ F

(i)
Ni

)
)

−P

(
S(i) >

ξ

3
(F

(i)
1 + · · ·+ F

(i)
Ni

)
)
. (7.1)Let us �rst treat the se
ond quantity of the rhs of (7.1). For this purpose, we need anupper bound for Eω[S(i)] whi
h is obtained exa
tly like in Lemma 13 of [15℄ and 
anbe estimated by 
ontrolling the size of the falls (resp. rises) of the potential during itsrises from V (bi) to V (ci) (resp. falls from V (ci) to V (di)), see Lemma 4.6. Indeed, therandom variable S(i) 
on
erns a
tually the random walk whi
h is 
onditioned to hit

di before bi. Therefore, this involves an h-pro
ess whi
h 
an be viewed as a randomwalk in a modi�ed potential between bi and di. This potential has a de
reasing trend(whi
h en
ourages the parti
le to go to the right), and the main 
ontribution to S(i)
omes from the small risings of this potential along its global fall whi
h are similar tothe �u
tuations of the original potential during its fall and similar to their oppositeduring its rise.This reasoning yields for δ small enough (one easily observes that the smaller δ, thestronger the result)
∀0 < ε < δ, P (Eω[S(i)] ≤ tδ) = 1 − o(t−κε).18



This implies, by Markov inequality, that
∀δ > 0, P

(
Pω(S(i) > t2δ) <

1

tδ

)
= 1 − o

( 1

(log t)2

)
.On the other hand, Pω(F

(i)
1 + · · · + F

(i)
Ni

< t2δ) ≤ Pω(Ni < t2δ) = 1 − pi(ω)⌊t
2δ⌋. But,obviously,

P
(
pi(ω) < 1 − 1√

t

)
= o
( 1

(log t)2

)
. (7.2)Hen
e, we have

P
(
Pω(F

(i)
1 + · · ·+ F

(i)
Ni

< t2δ) ≤ 1

t
1
2
−2δ

)
)

= 1 − o
( 1

(log t)2

)
.Gathering these two informations on S(i) and F

(i)
1 + · · ·+ F

(i)
Ni
, we obtain that, for all

ξ > 0,
P

(
S(i) >

ξ

3
(F

(i)
1 + · · ·+ F

(i)
Ni

)
)

= o
( 1

(log t)2

)
.The �rst quantity of (7.1) is treated by going through

P

(
(1 − ξ

4
)NiEω[F (i)] ≤ F

(i)
1 + · · · + F

(i)
Ni

≤ (1 +
ξ

4
)NiEω[F (i)]

)
,whi
h, for all δ > 0, is larger than

1−P

({∣∣∣∣∣
F

(i)
1 + · · ·+ F

(i)
Ni

Ni
− Eω[F (i)]

∣∣∣∣∣ >
ξ

4
Eω[F (i)]

}
∩ {Ni 6= 0} ∩ {Eω[(F (i))2] ≤ tδ}

)

−P (Eω[(F (i))2] ≥ tδ),whi
h is in turn, using Bienaimé-Chebi
he� inequality, larger than
1 − E

[
E(

tδ

Ni
1(Ni 6=0) |Ni)

16

ξ2Eω [F ]2

]
− P (Eω[(F (i))2] ≥ tδ)

≥ 1 − 16tδ

ξ2
E
[ 1

Ni
1(Ni 6=0)

]
− P (Eω[(F (i))2] ≥ tδ).Now, we use again the reasoning of [15℄ involving h-pro
esses to get an upper bound for

Eω[(F (i))2] (see Lemma 11 of [15℄), whi
h is, like for Eω[S(i)], estimated by 
ontrollingthe small �u
tuations of the potential inside the valleys, see Lemma 4.6. We are evenin a more favorable setting than in [15℄, sin
e the number of valleys we have to 
ontrolis mu
h smaller (see Remark 3.1). So, we get
∀δ > 0, P (Eω[(F (i))2] ≥ tδ) = o

( 1

(log t)2

)
.Moreover, using (7.2), we get

E
[ 1

Ni

1(Ni 6=0)

]
= E

[
− 1 − pi(ω)

pi(ω)
log(1 − pi(ω))

]
= o
( 1

t1/3

)
.19



As a result,
P

(
(1 − ξ

4
)NiEω[F (i)] ≤ F

(i)
1 + · · ·+ F

(i)
Ni

≤ (1 +
ξ

4
)NiEω[F (i)]

)
= 1 − o

( 1

(log t)2

)
.Now, the se
ond step in the estimation of the �rst quantity of the rhs of (7.1) is theexamination, for ξ > 0, of

P

(
(1 − ξ

4
)NiEω[F (i)] ≤ Eω[τi]ei ≤ (1 +

ξ

4
)NiEω[F (i)]

)i.e.
P

(
(1 − ξ

4
)NiEω[F (i)] ≤ (Eω[Ni]Eω[F (i)] + Eω[S(i)])ei ≤ (1 +

ξ

4
)NiEω[F (i)]

)
.Negle
ting again, like above, the 
ontribution of S(i) we are ba
k to prove that

P

(
(1−ξ

4
)
⌊
(− 1

log(pi(ω))
)ei

⌋
≤ pi(ω)

1 − pi(ω)
ei ≤ (1+

ξ

4
)
⌊
(− 1

log(pi(ω))
)ei

⌋)
= 1−o

( 1

(log t)2

)
,whi
h is a dire
t 
onsequen
e of (7.2) and the fa
t that, for all ε > 0,

P (e)
(
ei >

1

t1/2−ε

)
= 1 − o

( 1

(log t)2

)
.This 
on
ludes the proof that the lhs of (7.1) is 1 − o( 1

(log t)2
).Now, sin
e P (Kt ≤ (log t)

1+κ
2 ) → 1, when t → ∞, we dedu
e,

P

(
∀i ≤ Kt, (1−ξ)(F

(i)
1 +· · ·+F

(i)
Ni

+S(i)) ≤ Eω[τ ∗
i ]ei < (1+ξ)(F

(i)
1 +· · ·+F

(i)
Ni

+S(i))
)
→ 1.Hen
e,

P

(
∀i ≤ Kt, (1 − ξ)(τ ∗

1 + · · ·+ τ ∗
i ) ≤

i∑

k=1

Eω[τ ∗
k ]ek < (1 + ξ)(τ ∗

1 + · · ·+ τ ∗
i )
)
→ 1.Applying this, for i = ℓ∗t and i = ℓ

(e)
t,ω we get respe
tively that, for all ξ > 0,

P

(
ℓ∗t ≤ ℓ

(e)
t

1−ξ
,ω

)
→ 1 and P(ℓ

(e)
t,ω ≤ ℓ∗t(1+ξ)) → 1.We 
on
lude now the proof by reminding that limξ→0 P(ℓ∗t = ℓ∗(1+ξ)t) = 1 as well as

limξ→0 P(ℓ
(e)
t,ω = ℓ

(e)
(1+ξ)t,ω) = 1.Proof of part (ii) of Theorem 2.3. The passage from Proposition 7.1 to part (ii) ofTheorem 2.3 is of the same kind as the passage from Proposition 5.1 to Proposition5.4.
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8 Proof of Theorem 2.1We �x h > 1 and η > 0 (η was used to de�ne the event A5(t)). Let us introdu
e theevent
TT (t, h) := TT (t) ∩ {Xt − bℓt ≤

η

2
log t} ∩ {Xth − bℓth

≤ η

2
log t},whose probability tends to 1, when t tends to in�nity (it is a 
onsequen
e of Se
tion4 together with part (ii) of Theorem 2.3). Then, we easily have

({ℓth = ℓt} ∩ TT (t, h)) ⊂ ({|Xth − Xt| ≤ η log t} ∩ TT (t, h)) .Moreover, observe that on TT (t), ℓth > ℓt implies that |bℓth
− bℓt | ≥ tκ/2 (by de�nitionof A3(t)). Therefore, we get

({|Xth − Xt| ≤ η log t} ∩ TT (t, h)) ⊂ ({ℓth = ℓt} ∩ TT (t, h)) ,for all large t. Thus, sin
e Proposition 5.4 implies that limt→∞ P(ℓth = ℓt) exists, weobtain
lim
t→∞

P(|Xth − Xt| ≤ η log t) = lim
t→∞

P(ℓth = ℓt)

= lim
t→∞

P(Tℓt+1 ≥ th)

=
sin(κπ)

π

∫ ∞

h−1

dx

xκ(1 + x)

=
sin(κπ)

π

∫ 1/h

0

yκ−1(1 − y)−κ dy,whi
h 
on
ludes the proof of Theorem 2.1.Referen
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