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Abstract

We consider a general linear reaction-diffusion system in three dimensions
and time, containing diffusion (local interaction), jumps (nonlocal interac-
tion) and memory effects. We prove a maximum principle, and positivity of
the solution, and investigate its asymptotic behavior. Moreover, we give an
explicite expression of the limit of the solution for large times. In order to
obtain these results we use the following method: We construct a Riemannian
manifold with complicated microstructure depending on a small parameter.
We study the asymptotic behavior of the solution of a simple diffusion equa-
tion on this manifold as the small parameter tends to zero. It turns out that
the homogenized system coincides with the original reaction-diffusion system
what allows us to investigate its properties.
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1 Introduction

Linear reaction-diffusion systems play an important role in applied mathematics.
They describe, for instance, the transport of particles of various species in a random
medium and the transformation of the particles into each other, that means linear
reactions. The transport can be forced by local (diffusion) and nonlocal interaction
(jumps) of the particles with the medium. Moreover, the transport and the reactions
can be nonlocal in time (memory effects).

Let Ω be a bounded domain in R3 and [0,∞) the time interval. We consider m kinds
of species with concentrations uk = uk(x, t), for k = 1, ...,m, x ∈ Ω and t ∈ [0,∞).
In the following, we give every species a special color and call transformations of the
particles into each other “changing of color”.

We consider a general linear reaction-diffusion system in Ω× [0,∞), describing the
mentioned reactions and transport effects:

0 =
∂uk

∂t
−∆uk +

m∑
l=1|l 6=k

Akl(x)
(
uk(x, t)− ul(x, t)

)
+

m∑
l=1

∫
Ω

Bkl(x, y)
(
uk(x, t)− ul(y, t)

)
dy

+
∂

∂t

t∫
0

Ck(x)e
−Dk(x)(t−τ)uk(x, τ)dτ

+
m∑

l=1|l 6=k

∂

∂t

t∫
0

Ekl(x)e
−Fkl(x)(t−τ)

(
uk(x, τ) + ul(x, τ)

)
dτ

+
m∑

l=1

∫
Ω

∂

∂t

t∫
0

Gkl(x, y)e
−Hkl(x,y)(t−τ)

(
uk(x, τ) + ul(y, τ)

)
dτdy (1.1)

uk(x, 0) = fk(x), (1.2)

0 =
∂uk

∂~n
+

m∑
l=1

Ukl
∂ul

∂~n
, x ∈ ∂Ω. (1.3)

with k = 1, ...,m, a smooth function fk(x), nonnegative smooth functions Akl(x),
Bkl(x, y), ..., Hkl(x, y) satisfying the conditions

Akl(x) = Alk(x), Bkl(x, y) = Blk(y, x),
Ekl(x) = Elk(x), Fkl(x) = Flk(x),

Gkl(x, y) = Glk(y, x), Hkl(x, y) = Hlk(y, x),
Akl(x) ≥ Ekl(x), Bkl(x, y) ≥ Gkl(x, y),

(1.4)

and a symmetric matrix U = {Ukl, k, l = 1,m} consisting of zeros and unities with
one and only one unity in every line.
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From a physical point of view our system can be understood in the following way.
System (1.1) describe the diffusion of particles of m colors with concentrations uk,
which can change their coordinates and colors, in the following way in each point of
Ω:

• Change their color (this is described by the terms with Akl).

• Jump from one point of Ω to another one (described by the Bkk-terms).

• Jump and change its color simultaneously (described by the Bkl-terms with
k 6= l).

• Disappear and appear after some period of time in the same place without
change of color (this is described by the terms with Ck and Dk).

• Disappear and appear after some period of time in the same point of Ω, but
with another color (described by the terms with Ekl and Fkl).

• Disappear and appear after some period of time without change of color, but
in another point of Ω (described by the terms with Gkk and Hkk).

• Disappear and appear after some period of time with another color and in
another point (described by the terms with Gkl and Hkl for k 6= l).

The last three processes influence the terms with Akl and Bkl, too.

When a particle with the k-th color reaches the boundary of Ω, it is reflected and if
Ukl = 1 for some l 6= k, it changes to the l-th color.

Important for the positivity of the solution to our system is the absents of differential
operators on the off-diagonal of the main part. This problem was investigated in [19]
for general linear drift-diffusion systems without memory effects.

We analyze the system (1.1)-(1.3), transforming the analytical difficulties into geo-
metric ones but for a much simpler equation. The idea of this method comes from
the article [5], where the authors consider the diffusion equation on a Riemannian
manifold with a complicated microstructure. After homogenization they get a sys-
tem of equations, which describes nonlocal spatial and time interactions of a systems
of various species. In some sense we solve the inverse to this problem and that we
construct a special Riemannian manifold and homogenize the diffusion equation
(Theorem 3). As a result we obtain the desired system (1.1)-(1.3) and are able to
prove some of its important properties (Theorems 1 and 2).

The homogenization of the diffusion equation was studied by many authors (see, for
example, the monographs [2], [8], [10], [14], [16], [17], [21] and the references there).
The effect of the appearance of memory terms in the homogenized equation also was
investigated in many articles, see, in particular, [3], [4], [11], [13]. Homogenization
problems on manifolds with complicated microstructure were studied, except [5],
in [6], [7], [9], [12], [15].
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2 The ideas and main results

It is well known, that the solution u(x, t) of the initial-boundary value problem for
the simple diffusion equation

∂u

∂t
−∆u = 0, (2.1)

u(x, 0) = f(x), (2.2)

∂u

∂~n
= 0, x ∈ ∂Ω. (2.3)

satisfies the following properties

I. max
x∈Ω

max
t>0

u(x, t) = max
x∈Ω

f(x) (maximum principle),

II. If the function f(x) is nonnegative then u(x, t) is nonnegative for all t > 0
(conservation of positivity).

III. u(x, t) converges to the constant M =
1

|Ω|

∫
Ω

f(x)dx as t→∞, where |Ω| is the

volume of the domain Ω. M is the solution to the stationary equation.

IV.
∫
Ω

u(x, t)dx =
∫
Ω

f(x)dx for t > 0 (conservation of mass).

These properties are valid for general linear evolution problems, conserving positivity
(see, e.g., [1, 18]).

The goal of the present paper is to prove analogous statements for the problem
(1.1)-(1.3) except the statement IV and the tending of the solution to the stationary
solution. This properties are not fulfilled because of the memory effects.

Theorem 1. The system (1.1)-(1.3) has a unique solution u(x, t) = (u1(x, t), ..., um(x, t))
with the following properties.

1) If M := max
k

max
x∈Ω

fk(x) ≥ 0, we have

uk(x, t) ≤M for almost all (x, t) ∈ Ω× [0,∞), ∀k.

2) If m := min
k

min
x∈Ω

fk(x) ≤ 0, we have

m ≤ uk(x, t) for almost all (x, t) ∈ Ω× [0,∞), ∀k.

Moreover, if Ck(x) = Dk(x) = Ekl(x) = Fkl(x) = Gkl(x, y) = Hkl(x, y) ≡ 0, ∀k, l,
then the statements 1) and 2) are true even without the conditions M ≥ 0 and m ≤ 0.

Corollary. Let fk(x) ≥ 0, k = 1, ...,m. Then uk(x, t) ≥ 0 for almost all (x, t) ∈
Ω× [0,∞), ∀k.

4



Theorem 2. Let the functions Akl(x)...Hkl(x, y) be strictly positive and let u(x, t) =
(u1(x, t), ..., um(x, t)) be the solution to (1.1)-(1.3). Then, ∀k uk(x, t) converges in
L2(Ω) as t→∞ to the constant

L =

m∑
k=1

∫
Ω

fk(x)dx

m · |Ω|+
m∑

k=1

∫
Ω

Ck

Dk

dx+ 2
m∑

k,l=1|k 6=l

∫
Ω

Ekl

Fkl

dx+ 2
m∑

k,l=1

∫
Ω

∫
Ω

Gkl

Hkl

dxdy

.

In order to prove these theorems we use the following method. We construct a
special Riemannian manifold M̃ ε, called the main manifold, depending on a small
parameter ε. On M̃ ε we consider the initial-boundary problem for the usual diffusion
equation

∂uε

∂t
−∆εuε = 0, (x̃, t) ∈ M̃ ε × [0, T ], (2.4)

uε(x̃, 0) = f ε(x̃), (2.5)

∂uε

∂~n
= 0, x̃ ∈ ∂M̃ ε, (2.6)

where f ε is a smooth function, and ∆ε is the Laplace-Beltrami operator. We prove
that it is possible to choose such manifolds M ε and initial function f ε that the
solution of (2.4)-(2.6) uε(x̃, t) converges (in a certain sense) to the solution of (1.1)-
(1.3) u(x, t) = (u1(x, t), ..., um(x, t)) as ε→ 0. It is well known, that the statements
I-III are still true for the problem (2.4)-(2.6). Using the convergence of uε(x̃, t) to
u(x, t), we will extend the statements I-III to the problem (1.1)-(1.3).

Remark 1. It seems to be possible to prove Theorems 1, 2 directly analyzing
(1.1)-(1.3). This is done for some particular cases. Our method gives a microscopic
interpretation of the terms of the system as diffusing particles in different domains
and allows us to calculate the constant L explicitely.

At first, we give an idea how to choose the manifold M̃ ε (see Figures 1 and 2). Note
that all objects in the following are three dimensional. Because we cannot draw
them, we will use two dimensional figures and use two dimensional notations for the
objects like sheets, holes, tubes and bubbles.

Instead of particles of m colors moving in the domain Ω, we consider particles with
one color moving on m copies (sheets) of the domain Ω which are connected between
each other in a special manner. On the sheets are distributed holes Dεi

k . All holes
on all sheets are connected by special manifolds consisting of tubes, or bubbles and
tubes.

All kinds of interaction between the particles and the medium and between different
kinds of particles can be realized by a simple diffusion on explicitely constructed
manifolds. We call this manifolds A, B, CD, EF and GH-manifolds to show the un-
derlying connection with the term in the system (1.1)-(1.3), containing the functions
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Akl, Bkl, Ck and Dk, Ekl and Fkl, Gkl and Hkl resp. Note that the EF-manifolds
give a contribution to the terms with Akl and the GH-manifolds to the terms with
Bkl, too.

• Color change: diffusion through a thin tube connecting two points with the
same coordinate in Ω but on different sheets (see Figure 1: A-manifold),

B-manifold (k 6= l)

B
B
B
B
B
B
B
BN

B-manifold (k = l)
XXXXXXXz

A-manifold
������)

Ωε
k

Ωε
l

Gεij
kl

-

�
�	

Dεi
k Z

Z
Z~

�
�

�=

Figure 1: Manifolds without bubbles

GH-manifold (k = l) -

GH-manifold (k 6= l)

?

EF-manifold
PPPPPq

CD-manifold
������)

Ωε
k

Ωε
l

Bεi
k

�
��

T εi
k

-

T 1εij
kl

-

T 2εij
kl

-

Bεij
kl

-

Figure 2: Manifolds with bubbles

• Jump from one point to another: diffusion through a thin tube connecting two
points on the same sheet, but with different coordinates in Ω (see Figure 1:
B-manifold (k = l)),
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• Simultaneous change of color and jump from one point to another: diffusion
through a thin tube connecting two points with different coordinates in Ω and
on different sheets (see Figure 1: B-manifold (k 6= l)),

• Disappearance of a particle and appearance after some period of time: diffusion
in a bubble which is joined to the sheet by a thin tube (see Figure 2: CD-
manifold),

• Disappearance of a particle and appearance after some period of time with
another color and/or in another place: diffusion through a manifold connecting
two points with different coordinates in Ω and/or lying on the different sheets.
This manifold consists of bubble and two thin tubes (see Figure 2: EF/GH-
manifold).

• Behavior of particles on the boundary of the domain Ω can be realized by
connecting the external boundaries of the k-th and the l-th sheets if Ukl =
1, k 6= l.

3 The construction of the main manifold

Let Ω be a bounded domain in R3, {Dεi ⊂ Ω, i = 1..N(ε)} be a system of balls
(holes) of radius dε

i and centers xε
i and

Ωε = Ω\
N(ε)⋃
i=1

Dεi.

We consider m copies of the domain Ωε. We denote by Ωε
k the k-th copy and call it

the k-th sheet. By Dεi
k we denote the copy of the i-th ball on the k-th sheet.

We associate with each hole Dεi
k at most one hole Dεj

l (possibly, k = l, i = j)
and connect them via a manifold Gεij

kl with boundary αΓεij
kl , where α counts the

components of the boundary.

• If k = l and i = j we glue to ∂Dεi
k a 3-dimensional manifold Gεii

kk with a
boundary consisting of one component 0Γεi

k . More exactly, we suppose that
0Γεi

k is diffeomorphic to ∂Dεi
k , according to these diffeomorphism we glue the

manifold Gεii
kk to the sheet Ωε

k identifying 0Γεi
k and ∂Dεi

k (see Figure 2: CD-
manifold).

• If k 6= l or i 6= j we connect ∂Dεi
k and ∂Dεj

l by a 3-dimensional manifold Gεij
kl

with boundary consisting of the components 1Γεij
kl and 2Γεij

kl . More exactly,
we suppose that 1Γεij

kl is diffeomorphic to ∂Dεi
k , 2Γεij

kl is diffeomorphic to ∂Dεj
l ,

according to these diffeomorphisms we glue the manifold Gεij
kl to the sheets Ωε

k

and Ωε
l identifying 1Γεij

kl and ∂Dεi
k , 2Γεij

kl and ∂Dεj
l (see Figure 1,2: A, B, EF,

GH -manifolds).
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As a result we obtain a differentiable manifold M ε

M ε =

(⋃
k

Ωε
k

)
∪

( ⋃
k,l,i,j

Gεij
kl

)

Let U = {Ukl, k, l = 1,m} be the symmetric matrix described in the previous
section. If Ukl = 1 we identify the boundaries of the k-th and the l-th sheets. We
denote the obtained manifold by M̃ ε.

The boundary of M̃ ε consists of
⋃

k:Ukk=1

∂Ωk and the boundaries of holes Dεi
k which

do not have an associated hole Dεj
l .

We denote the points of M̃ ε by x̃. If x̃ ∈ Ωε
k, then we assign the pair (x, k) to x̃,

where x is the corresponding point in Ω.

We supposed that M̃ ε is equipped by the Riemannian metric gε
αβ(x̃), which coincides

with the Euclidian metric on the domains
⋃
k

Ωε
k.

Now, we specify the size of the holes Dεi and the form of the manifold Gεij
kl . We

consider two associated to each other holes Dεi
k and Dεj

l . We set

dε
i =

{
aε3, i = j,

aε6, i 6= j,
a > 0. (3.1)

Moreover, we suppose that

∃c1, c2 > 0, ∀i : c1 · rε
i
3 < dε

i < c2 · rε
i
3, ε < ε0, (3.2)

where rε
i = min

j

(
dist(xε

i , x
ε
j)
)
.

We introduce the set of smooth positive functions

qA
kl(x), q

B
kl(x, y), q

C
k (x), bDk (x), qE

kl(x), b
F
kl(x), q

G
kl(x, y), b

H
kl(x, y)

such that

qA
kl(x) = qA

lk(x), q
B
kl(x, y) = qB

lk(y, x), q
E
kl(x) = qE

lk(x), b
F
kl(x) = bFlk(x),

qG
kl(x, y) = qG

lk(y, x), b
H
kl(x, y) = bHlk(y, x). (3.3)

They will describe the metric on the manifolds Gεij
kl and the coefficients of (1.1) will

depend on these functions.

We describe the form of the manifolds Gεij
kl and the metric on them.

If k = l, i = j then

Gεij
kl = Bεi

k ∪ T εi
k (CD-manifold), (3.4)
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where

Bεi
k =

{
(ϕ, ψ, θ) : ϕ ∈ [0, 2π], ψ ∈ [0, π], θ ∈ [θεi

k , π]
}

(bubble), (3.5)

T εi
k =

{
(ϕ, ψ, z) : ϕ ∈ [0, 2π], ψ ∈ [0, π], z ∈ [0, 1]

}
(tube), (3.6)

so that 0Γi
k =

{
x̃ ∈ T εi

k |z = 0
}
, Bεi

k and T εi
k are connected in the points θ = θεi

k

and z = 1, correspondingly. The metric is defined by the formula for the
element of length

ds2 =

{
(qεi

k )2dz2 + (dε
i )

2(sin2 ψdϕ2 + dψ2), x̃ ∈ T εi
k ,

(bεik )2(sin2 θ sin2 ψdϕ2 + sin2 θdψ2 + dθ2), x̃ ∈ Bεi
k ,

where bεik = bDk (xε
i ) · 3
√
dε

i , q
εi
k = qC

k (xε
i ) · dε

i , sin θεi
k =

dε
i

bεik
.1

If k 6= l or i 6= j then two situations are possible

1.

Gεij
kl =

{
(ϕ, ψ, z) : ϕ ∈ [0, 2π], ψ ∈ [0, π], z ∈ [0, 1]

}
, (3.7)

so that 1Γij
kl =

{
x̃ ∈ Gεij

kl |z = 0
}
, 2Γij

kl =
{
x̃ ∈ Gεij

kl |z = 1
}
. The metric is

defined by the formula

ds2 = (qεij
kl )2dz2 + (dε

i )
2(sin2 ψdϕ2 + dψ2),

where qεij
kl =

{
qA
kl(x

ε
i ) · dε

i , i = j (A-manifold),

qB
kl(x

ε
i , x

ε
j) · dε

i , i 6= j (B-manifold);

2.

Gεij
kl = T 1εij

kl ∪Bεij
kl ∪ T

2εij
kl , (3.8)

where

Bεij
kl =

{
(ϕ, ψ, θ) : ϕ ∈ [0, 2π], ψ ∈ [0, π], θ ∈ [θεij

kl , π − θεij
kl ]
}
,

T 1εij
kl = T 2εij

kl =
{
(ϕ, ψ, z) : ϕ ∈ [0, 2π], ψ ∈ [0, π], z ∈ [0, 1]

}
,

so that 1Γij
kl =

{
x̃ ∈ T 1εij

kl |z = 0
}
, 2Γij

kl =
{
x̃ ∈ T 2εij

kl |z = 1
}
, Bεij

kl and T 1εij
kl are

joined in the points with θ = θεij
kl and z = 1, correspondingly, Bεij

kl and T 2εij
kl

are joined in the points with θ = π − θεij
kl and z = 0, correspondingly.

The metric is defined by the formula

ds2 =

{
(qεij

kl )2dz2 + (dε
i )

2(sin2 ψdϕ2 + dψ2), x̃ ∈ T 1εij
kl ∪ T 2εij

kl ,

(bεijkl )2(sin2 θ sin2 ψdϕ2 + sin2 θdψ2 + dθ2), x̃ ∈ Bεij
kl ,

1The metric on Bεi
k is the usual metric on the sphere S3 ⊂ R4 with radius bεi

k . The metric on
T εi

k is the usual metric on the cylinder S2 × [0, 1] with radius dε
i and length qεi

k .
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where bεijkl =

{
bFkl(x

ε
i ) · 3
√
dε

i , i = j,

bHkl(x
ε
i , x

ε
j) · 3
√
dε

i , i 6= j,

qεij
kl =

{
qE
kl(x

ε
i ) · dε

i , i = j (EF-manifold),

qG
kl(x

ε
i , x

ε
j) · dε

i , i 6= j (GH-manifold),
sin θεij

kl =
dε

i

bεijkl

.

4 Homogenization of the diffusion equation

We consider the following Cauchy problem on M̃ ε

∂uε

∂t
−∆εuε = 0, (x̃, t) ∈ M̃ ε × [0, T ], (4.1)

uε(x̃, 0) = f ε(x̃), (4.2)

∂uε

∂~n
= 0, x̃ ∈ ∂M̃ ε, (4.3)

where ∆ε is the Laplace-Beltrami operator which has the following form in local
coordinates

∆ε =
1√
Gε

3∑
α,β=1

∂

∂xα

(√
Gεgαβ

ε

∂

∂xβ

)
where Gε = det gε

αβ, gαβ
ε are the components of the tensor inverse to gε

αβ. f ε is a
smooth function, which coincides with fk(x) on the sheets and is equal to zero on
Gεij

kl (outside some small neighborhood of ∂Gεij
kl ). More exactly

f ε(x̃) =

{
fk(x), x̃ = (x, k) ∈ Ωε

k,

0, x̃ ∈ Gεij
kl \U

εij
kl (δ),

where

U εij
kl (δ) =



{
x̃ ∈ Gεij

kl |x̃ = (ϕ, ψ, z) ∈ T εi
k : |z| < δ

}
, if Gεij

kl is of type (3.4),{
x̃ ∈ Gεij

kl |x̃ = (ϕ, ψ, z) ∈ Gεij
kl : |z| < δ ∨ |1− z| < δ

}
,

if Gεij
kl is of type (3.7),{

x̃ ∈ Gεij
kl |x̃ = (ϕ, ψ, z) ∈ T 1εij

kl : |z| < δ ∨
∨ x̃ = (ϕ, ψ, z) ∈ T 2εij

kl : |1− z| < δ
}
, if Gεij

kl is of type (3.8)

is a δ-neighborhood ofGεij
kl . We also require f ε(x̃) ≤ max

k=1...m
max
x∈Ω

fk(x), x̃ ∈
⋃

k,l,i,j

U εij
kl (δ).

We set δ = ō(dε
i ).

Let L2(M̃
ε) be the Hilbert space of real-valued functions with the norm

‖uε‖0ε =


∫

fMε

(uε)2dx̃


1/2

,
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where dx̃ =
√
Gεdx1dx2dx3 is a volume element on M̃ ε; let H1(M̃ ε) be the Hilbert

space of real-valued functions with the norm

‖uε‖H1(Mε) = ‖uε‖0ε + ‖∇εuε‖0ε;

let L2(Ω)m be the Hilbert space of the real-valued m vector-functions with the norm

‖u‖0 =


∫
Ω

m∑
k=1

(uk)
2dx


1/2

.

It is well known that the system (4.1)-(4.3) has a unique generalized solution in
L2(0, T ;H1(M ε)) (see, e.g., [20]).

We say, that f ε ∈ L2(M̃
ε) converges to the function f ∈ L2(Ω)m if

lim
ε→0

‖Qεf ε − f‖L2(Ω)m = 0, (4.4)

where the operator Qε : L2(M̃
ε) → L2(Ω)m is defined by the equality

(
Qεuε

)
k
(x) =

u
ε(x̃), x̃ = (x, k), if x ∈ Ωε,

0, if x ∈
⋃
i

D
εi.

Similarly, we say that uε ∈ L2(M̃
ε × [0, T ]) converges to the function u ∈ L2(Ω ×

[0, T ])m if

lim
ε→0

T∫
0

‖Qεuε(·, t)− u(·, t)‖2
L2(Ω)mdt = 0, (4.5)

Theorem 3. Let Akl(x), Bkl(x, y)...Hkl(x, y) be an arbitrary set of smooth non-
negative functions which satisfy the conditions (1.4). Then there exist a number
a > 0, a distribution of the points xε

i , which satisfy (3.2) and a set of functions
qA
kl(x), ..., b

H
kl(x, y), which satisfies the condition (3.3), such that the solution uε(x̃, t)

of (4.1)-(4.3) converges in the sense (4.5) to the solution u(x, t) of the initial-
boundary value problem (1.1)-(1.3). Moreover, the following equalities are valid

Akl(x) = Ekl(x) +
4aπ

qA
kl(x) + 2

, Bkl(x) = Gkl +
4aπ

qB
kl(x, y) + 2

,

Ck(x) =
4aπ

qC
k (x) + 2

, Dk(x) =
2

π(bDk (x))3(qC
k (x) + 2)

,

Ekl(x) =
2aπ

qE
kl(x) + 2

, Fkl(x) =
4

π(bFkl(x))
3(qE

kl(x) + 2)
,

Gkl(x, y) =
2aπ

qG
kl(x, y) + 2

, Fkl(x, y) =
4

π(bHkl(x, y))
3(qG

kl(x, y) + 2)
.

(4.6)

11



5 Proof of Theorem 3

The asymptotic behavior of the solution of the diffusion equation on Riemannian
manifolds with the same form as in Section 3 (without additional assumptions about
the form of the manifolds Gεij

kl ) was investigated in [5]. We will use the results
obtained there.

We denote:

Rεi
k = {x̃ = (x, k) ∈ Ωε

k : dε
i ≤ |x− xε

i | ≤ rε
i /2},

Sεi
k = {x̃ = (x, k) ∈ Ωε

k : |x− xε
i | = rε

i /2},

G̃εij
kl =

{
Rεi

k ∪Gεii
kk , k = l ∧ i = j,

Rεi
k ∪G

εij
kl ∪R

εj
l , k 6= l ∨ i 6= j,

We consider the following boundary value problem in the domain G̃εij
kl :

−∆εv + λχεij
kl v = 0, x̃ ∈ G̃εij

kl , λ > 0, (5.1)

v = 1, x̃ ∈ Sεi
k , (5.2)

v = 0, x̃ ∈ Sεj
l (if k 6= l ∨ i 6= j). (5.3)

where χεij
kl is the characteristic function of Gεij

kl .

Let vεij
kl be the solution of the problem (5.1)-(5.3). We set

V εij
kl =

∫
g
Gεij

kl

3∑
a β=1

{
gαβ

ε

∂vεij
kl

∂xα

∂vεij
kl

∂xβ

+ λχεij
kl

(
vεij

kl

)2}
dx̃,

W εij
kl =

∫
g
Gεij

kl

3∑
a β=1

{
gαβ

ε

∂vεij
kl

∂xα

∂vεji
lk

∂xβ

+ λχεij
kl v

εij
kl v

εji
lk

}
dx̃,

(5.4)

and introduce the following m×m matrix-valued generalized functions

V ε(x, λ) =
{∑N(ε)

i=1 W εii
kl δ(x− xε

i ); k, l = 1, ..,m, k 6= l
}

+ diag
{∑N(ε)

i,j=1 V
εij
kl δ(x− xε

i ); k = 1, ..,m
}
,

W ε(x, λ) =
{∑N(ε)

i,j=1,i6=j W
εij
kl δ(x− xε

i )δ(y − xε
j); k, l = 1, ..,m

}
.

(5.5)

We suppose that ∀λ > 0 the following limits exist (in D′(Rn) and D′(Rn × Rn),
respectively)

lim
ε→0

V ε(x, λ) = V (x, λ), lim
ε→0

W ε(x, y, λ) = W (x, y, λ), (5.6)

where V (x, λ),W (x, y, λ) are continuous matrix-valued functions in Ω and Ω × Ω,
respectively.
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It is possible to show, that V (x, λ) and W (x, λ) have analytic continuation with
respect to the parameter λ to the domain C\{arg λ = π}, where the matrix-valued
functions λ−1V (x, λ) and λ−1W (x, λ) are the Laplace transforms of the matrix-
valued functions V(x, t) and W(x, t):

V(x, t) =
1

2πi

σ+i∞∫
σ−i∞

V (x, λ)

λ
eλtdλ,

W(x, t) =
1

2πi

σ+i∞∫
σ−i∞

W (x, y, λ)

λ
eλtdλ, σ > 0.

Now, we formulate the main result of [5].

Theorem 4. Let

(i) the condition (3.2) be fulfilled,

(ii) the limits (5.6) exist,

(iii) the function f ε(x̃) converges in the sense (4.4) to the vector-function f(x) =
(f1(x), .., fm(x)),

(iv) lim
ε→0

m∑
k,l=1

N(ε)∑
i,j=1

∫
Gεij

kl

(f ε(x̃))2dx̃ = 0,

Then the solution uε(x̃, t) of the problem (4.1)-(4.3) converges in the sense (4.5) to
the solution of the following problem

∂uk

∂t
−∆uk +

m∑
l=1

∂

∂t

t∫
0

Vkl(x, t− τ)ul(x, τ)dτ+

+
m∑

l=1

∫
Ω

∂

∂t

t∫
0

Wkl(x, y, t− τ)ul(y, τ)dτdy = 0, k = 1...m, (5.7)

uk(x, 0) = fk(x), (5.8)

∂uk

∂~n
+

m∑
l=1

Ukl
∂ul

∂~n
= 0, x ∈ ∂Ω. (5.9)

In the case, when Gεij
kl have a structure like (3.4), (3.7) or (3.8), then (with a

suitable distribution of the points xε
i ) the limits (5.6) exist and it is possible to find

the functions V(x, t) and W(x, t) explicitely.

At first we consider some typical cases of the manifold M̃ ε with different types of
Gεij

kl . We restrict ourself to the case of a manifold M̃ ε which consist of m = 2 sheets.
For the case m > 2 the Theorem is proved in a similar way.
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Since we use the same method as in [5], we do not replay all details in every case.
We explain in more detail the Case 3.

Case 1. We divide the domain Ω in cubes Kεi in such a way that they form a
periodic cubic lattice with side length ε. The number i counts the cubes, xε

i are the
centers of the cubes. Further, in the center of each cube Kεi, fully lying in Ω, we
cut out a ball Dεi with radius dε

i = aε3 and center xε
i (Figure 3). As before,

Ωε = Ω\
N(ε)⋃
i=1

Dεi, Ωε
1 and Ωε

2 are the

two copies of the domain Ω, Dεi
k is

the copy of the i-th ball on the k-
th sheet, k = 1, 2. We connect the
boundaries of Dεi

1 and Dεi
2 by the

manifold Gεij
12 which has the form

(3.7). Finally, we obtain the man-

ifold M̃ ε = Ωε
1 ∪ Ωε

2 ∪

(
N(ε)⋃
i=1

Gii
12

)
.

It is easy to see that the conditions
(i),(iii),(iv) of Theorem 4 hold.

Kεi
PPPPPPq
B
B
B
B
B
BN

Dεi
�������)

�
�

�
�

�
�
�


∂ΩH
H

HHY

Figure 3

We obtain

V εii
12 = V εii

21 = −W εii
12 = −W εii

21 =
4aπε3

qA
12(x

ε
i ) + 2

(1 + ō(1))

Let ϕ(x) ∈ C∞(Ω), then〈∑
i

V εii
12 δ(x− xε

i );ϕ(x)

〉
=
∑

i

V εii
12 ϕ(xε

i )(1 + ō(1)) =

=
∑

i

4aπϕ(xε
i )

qA
12(x

ε
i ) + 2

|Kεi|(1 + ō(1)) −−→
ε→0

∫
Ω

4aπϕ(x)dx

qA
12(x) + 2

,

i.e.

V12(x, λ) = V21(x, λ) = −W12(x, λ) = −W21(x, λ) =
4aπ

qA
12(x) + 2

=⇒

=⇒ V12(x, t) = V21(x, t) = −W12(x, t) = −W21(x, t) =
4aπ

qA
12(x) + 2

.

Thus, the homogenized system has the form
∂u1

∂t
−∆u1 +

4aπ

qA
12(x) + 2

(
u1(x, t)− u2(x, t)

)
= 0,

∂u2

∂t
−∆u2 +

4aπ

qA
12(x) + 2

(
u2(x, t)− u1(x, t)

)
= 0.
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This is a two species diffusion-reaction system.

Case 2. We divide the domain Ω in cubes Kεi in such a way that they form a
periodic cubic lattice with side length ε. Let n(ε) be the number of cubes which
fully lie in Ω. In each of such cubes we cut out n(ε) balls Dεi with radiuses dε

i = aε6

and centers xε
i . Thus, the total number of holes is equal to n2(ε). Moreover, we

distribute the balls in such a way that condition (3.2) holds (e.g., choosing the
centers of the balls in the knots of the periodic lattice with period ∼ cε2).

Again Ωε = Ω\
N(ε)⋃
i=1

Dεi, Ωε
1 and Ωε

2 are the two copies of Ω, Dεi
k is the copy of the

ball Dεi on the k-th sheet, k = 1, 2.

Within each cube Kεα we renumber the out-cut balls from 1 to n(ε). For each ball
Dεi we denote by α(i) the number of the cube containing the ball and by β(i) the
number of the balls inside this cube. If α(i) = β(j), a(j) = β(i) (and only in this
case) we join the boundaries of the balls Dεi

1 and Dεj
2 by manifolds Gεij

12 having form
(3.7). Figure 4 shows an example of two copies of Ω where some holes are connected
by tubes.

Ωε
k Ωε

l

Dεi
k

6
Dεj

l
@

@
@I

Figure 4

We obtain the manifold M̃ ε = Ωε
1 ∪ Ωε

2 ∪

(⋃
i,j

Gεij
12

)
. Conditions (i),(iii),(iv) of

Theorem 4 hold.

In this case we have

V εij
12 = V εji

21 = −W εij
12 = −W εji

21 =
4aπε6

qB
12(x

ε
i , x

ε
j) + 2

(1 + ō(1)).
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Let ϕ(x, y) ∈ C∞(Ω× Ω), then〈∑
i,j

W εij
12 δ(x− xε

i )δ(x− xε
j);ϕ(x)

〉
=
∑
i,j

W εij
12 ϕ(xε

i , x
ε
j)(1 + ō(1)) =

= −
∑
i,j

4aπϕ(xε
i , x

ε
j)

qB
12(x

ε
i , x

ε
j) + 2

|Kεα(i)| · |Kεα(j)|(1 + ō(1)), (5.10)

where the sum contains only the terms with pairs (i, j), which are connected by the
tube Gεij

kl . Since ∀Kεα1 , Kεα2 there exists a joining pair of the holes Dεi
1 and Dεj

2

such, that Dεi
1 ⊂ Kεα1 , Dεj

2 ⊂ Kεα2 (by the construction of the M̃ ε), the sum (5.10)

is an integral sum for the function
4πϕ(x, y)

qB
12(x, y) + 2

, i.e.,

W12(x, y, λ) = − 4aπ

qB
12(x, y) + 2

, W21(x, y, λ) = − 4aπ

qB
21(x, y) + 2

V12(x, λ) = −
∫
Ω

W12(x, y)dy, V21(x, λ) = −
∫
Ω

W21(x, y)dy.

Finally, the homogenized system has the form
∂u1

∂t
−∆u1 +

∫
Ω

4aπ

qB
12(x, y) + 2

(
u1(x, t)− u2(y, t)

)
dy = 0,

∂u2

∂t
−∆u2 +

∫
Ω

4aπ

qB
21(x, y) + 2

(
u2(x, t)− u1(y, t)

)
dy = 0.

This is a two species diffusion-reaction system with nonlocal spatial interaction.

Case 3. Let Ωε be the domain constructed in Case 1. To the boundary of the
i-th hole we glue a manifold Gii

11 of the form (3.4). So we obtain the manifold

M̃ ε = Ωε ∪
(⋃

i

Gii
11

)
.

Now, we calculate the function V11(x, λ). Let vε ≡ vεii
11 (x̃, λ) be the solution to

(5.1)-(5.3). We represent vε in the form vε = v̂ε + wε, where

v̂ε =


1− Aεi

2

dε

|x− xε
i |

Φ1(|x− xε
i |ε−1), x̃ = (x, 1) ∈ Ωε,

Aεiz +Bεi, x̃ = (ϕ, ψ, z) ∈ T εi
1 ,

Aεi
0 + Aεi

1

cot θ

cot θε
Φ2(θ), x̃ = (ϕ, ψ, θ) ∈ Bεi

1 ,

(5.11)

Φ1(r) is a smooth function equal to 1 when r < 1/4 and equal to 0 when r ≥ 1/2 and
Φ2(θ) is a smooth function equal to 1 when θ < π/3 and equal to 0 when θ ≥ 2π/3.
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We choose the constants Aεi
0 , A

εi
1 , A

εi
2 , A

εi, Bεi in such a way that the function v̂ε ∈
H2(G̃εij

kl ) satisfies the following condition∫
Gεii

11

(
−∆εv̂ε + λv̂ε

)
dx̃ = 0. (5.12)

As a result we obtain for ε→ 0 the asymptotic

Aεi
0 =

2

2 + (qC
1 (xε

i ) + 2)λπ(bD1 (xε
i ))

3
(1 + ō(1)),

Aεi
1 =

λπ(bD1 (xε
i ))

3

2 + (qC
1 (xε

i ) + 2)λπ(bD1 (xε
i ))

3
(1 + ō(1)),

Aεi
2 =

λπ(bD1 (xε
i ))

3

2 + (qC
1 (xε

i ) + 2)λπ(bD1 (xε
i ))

3
(1 + ō(1)),

Aεi = − λπ(bD1 (xε
i ))

3qC
1 (xε

i )

2 + (qC
1 (xε

i ) + 2)λπ(bD1 (xε
i ))

3
(1 + ō(1)),

Bεi = Aεi
0 + Aεi

1 − Aεi.

(5.13)

Estimating wε, we set

Iε[vε] =

∫
g
Gεij

kl

3∑
α,β=1

{
gαβ

ε

∂vε

∂xα

∂vε

∂xβ

+ λχε · (vε)2

}
dx̃,

where χε is the characteristic function of Gεii
11 .

Since vε minimizes the functional Iε in the class of functions in H1(G̃εij
kl ) equal to 1

on ∂G̃εij
kl ≡ Sεi

1 , wε minimizes the functional

Jε[wε] = Iε[wε]− 2

∫
g
Gεij

kl

(
∆εv̂ε − λχεv̂ε

)
wεdx̃

in the class H1
0 (G̃εij

kl ). Therefore J [wε] ≤ J [0] ≡ 0 and using (5.12) we have

Iε[wε] ≤ 2

∣∣∣∣∣∣∣
∫

Rεi
1

∆v̂εwεdx

∣∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣
∫

Gεii
11

(∆v̂ε − λv̂ε) · (wε − w̄ε)dx

∣∣∣∣∣∣∣ , (5.14)

where w̄ε is the average value of wε in Gεii
11 .
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It follows from Friedrich’s and Poincare’s inequalities that∫
Rεi

1

|wε|2dx̃ ≤ Cε2Iε[wε],

∫
Gεii

11

|wε − w̄ε|2dx̃ ≤ Cε2Iε[wε].
(5.15)

Moreover, from (5.11) and (5.13) we have∫
Rεi

1

|∆εv̂ε|2dx̃+

∫
Gεii

11

(
|∆εv̂ε|2 + λ|v̂ε|2

)
dx̃ ≤ C · ε3. (5.16)

Taking into account the inequalities (5.15), (5.16) and using Cauchy’s inequality,
from (5.14) we obtain the estimate

Iε[wε] ≤ C · ε5. (5.17)

On the other hand we get from (5.11) and (5.13)

Iε[v̂ε] =
4aπ2

(
bD(xε

i )
)3
λ

2 + λπ
(
bD1 (xε

i )
)3(

qC
1 (xε

i ) + 2)
)ε3 · (1 + ō(1)). (5.18)

Therefore from (5.17)-(5.18) we have

V εii
11 =

4aπ2
(
bD(xε

i )
)3
λ

2 + λπ
(
bD1 (xε

i )
)3(

qC
1 (xε

i ) + 2)
)ε3 · (1 + ō(1)).

In the same way as in Cases 1 we obtain

V11(x, λ) =
4aπ2

(
bD(x)

)3
λ

2 + λπ
(
bD1 (x)

)3(
qC
1 (x) + 2)

) ,
hence

V11(x, t) =
4aπ

qC
1 (x) + 2

exp

(
−2t

π
(
bD1 (x)

)3(
qC
1 (x) + 2

)) .
The homogenized equation has the form

∂u

∂t
−∆u+

∂

∂t

t∫
0

4aπ

qC
1 (x) + 2

exp

(
−2(t− τ)

π
(
bD1 (x)

)3(
qC
1 (x) + 2

))u(x, τ)dτ = 0.
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This is a one-species diffusion equation with memory.

Case 4. We construct the manifold M̃ ε in the same way as in Case 1, but Gεii
12 we

choose in the form (3.8). In this case we obtain

V12(x, λ) = V21(x, λ) = 4aπ
2 + λπ

(
bF12(x)

)3(
qE
12(x) + 2

)(
qE
12(x) + 2

)
·
(
4 + λπ

(
bF12(x)

)3(
qE
12(x) + 2

)) ,
W12(x, λ) = W21(x, λ) = −4aπ

2(
qE
12(x) + 2

)
·
(
4 + λπ

(
bF12(x)

)3(
qE
12(x) + 2

)) .
Further we get

V12(x, t) = V21(x, t) =
2aπ

qE
12(x) + 2

{
1 + exp

(
−4t

λπ
(
bF12(x)

)3(
qE
12(x) + 2

))} ,
W12(x, t) = W21(x, t) = − 2aπ

qE
12(x) + 2

{
1− exp

(
−4t

λπ
(
bF12(x)

)3(
qE
12(x) + 2

))} .
The homogenized system has the form

∂u1

∂t
− ∆u1 +

2aπ

qE
12(x) + 2

(
u1(x, t)− u2(x, t)

)
+

+
∂

∂t

t∫
0

2aπ

qE
12(x) + 2

exp

(
−4(t− τ)

π
(
bF12(x)

)3(
qE
12(x) + 2

)) (u1(x, τ) + u2(x, τ)
)
dτ = 0,

∂u2

∂t
− ∆u2 +

2aπ

qE
12(x) + 2

(
u2(x, t)− u1(x, t)

)
+

+
∂

∂t

t∫
0

2aπ

qE
12(x) + 2

exp

(
−4(t− τ)

π
(
bF12(x)

)3(
qE
12(x) + 2

)) (u2(x, τ) + u1(x, τ)
)
dτ = 0.
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Case 5. Finally, we construct the manifold M̃ ε in the same way as in Case 2, but
Gεij

12 we choose in the form (3.8). In this case the homogenized system has the form

∂u1

∂t
− ∆u1 +

∫
Ω

2aπ

qG
12(x, y) + 2

(
u1(x, t)− u2(y, t)

)
dy +

+

∫
Ω

∂

∂t

t∫
0

2aπ

qG
12(x, y) + 2

exp

(
−4(t− τ)

π
(
bH12(x, y)

)3(
qG
12(x, y) + 2

)) ·
·
(
u1(x, τ) + u2(y, τ)

)
dτdy = 0,

∂u2

∂t
− ∆u2 +

∫
Ω

2aπ

qG
21(x, y) + 2

(
u2(x, t)− u1(y, t)

)
dy +

+

∫
Ω

∂

∂t

t∫
0

2aπ

qG
21(x, y) + 2

exp

(
−4(t− τ)

π
(
bH21(x, y)

)3(
qG
21(x, y) + 2

)) ·
·
(
u2(x, τ) + u1(y, τ)

)
dτdy = 0.

Let us combine the results of Cases 1-5. We divide the domain Ω in cubes Kεi in
such a way that they form a periodic cubic lattice with side length ε. In each cube
we pick out 7 disjoint cubes KSεα, s = 1..7, such that diamKsεα ∼ cε. We call them
sub-cubes. In the sub-cubes K1ε, K2ε, K3ε we cut out a single hole - a ball with
radius aε3, whereas in the sub-cubes K4ε, K5ε, K6ε, K7ε we cut out n(ε) holes - balls
with radius aε6 (we require the condition (3.2) holds - see Case 2). We obtain a

system of balls Dεi, i = 1..N(ε) = 3n(ε)+4n2(ε). As before, Ωε = Ω\
N(ε)⋃
i=1

Dεi. Now,

we consider two copies (sheets) of the domain Ωε - Ωε
1 and Ωε

2. We denote by Dεi
k

the copy of the i-th ball on the k-th sheet (k = 1, 2). We can write the index i
in the form i = iα,s,β, where α is the number of the cube containing the ball, s is
the number of the sub-cube, and index β appears only in the case s = 4, 5, 6, 7 and
denote the number of the ball within the sub-cube.

Now, we connect the manifolds Gεij
kl with the sheets by the following rules:

1. Via the manifold G
εiα,1iα,1

12 of the form (3.7) (see Case 1) we join the boundaries

of the holes D
εiα,1

1 and D
εiα,1

2 .

2. Via the manifoldG
εiα,2iα,2

12 of the form (3.8) (see. Case 4) we join the boundaries

of the holes D
εiα,2

1 and D
εiα,2

2 .

3. We glue the manifold G
εiα,3iα,3

11 of the form (3.4) to the boundary of the hole

D
εiα,3

1 and glue the manifold G
εiα,3iα,3

22 of the form (3.4) to the boundary of the

hole D
εiα,3

2 (see. Case 3).

4. Via the manifold G
εiα,4,βiβ,4,α

12 of the form (3.7) (see. Case 2) we join the bound-

aries of the holes D
εiα,4,β

1 and D
εiβ,4,α

2 .
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5. Via the manifold G
εiα,5,βiβ,5,α

12 of the form (3.8) (see. Case 5) we join the bound-

aries of the holes D
εiα,5,β

1 and D
εiβ,5,α

2 .

6. Via the manifold G
εiα,6,βiβ,6,α

11 of the form (3.7) we join the boundaries of the

hole D
εiα,6,β

1 and D
εiβ,6,α

1 and via the manifold G
εiα,6,βiβ,6,α

22 of the form (3.7) we

join the boundaries of the holes D
εiα,6,β

2 and D
εiβ,6,α

2 . This is analogously to
Case 2, but here the tube starts and ends on the same sheet.

7. Via the manifold G
εiα,7,βiβ,7,α

11 of the form (3.8) we join the boundaries of the

holes D
εiα,7,β

1 and D
εiβ,7,α

1 and via the manifold G
εiα,7,βiβ,7,α

22 of the form (3.8)

we join the boundaries of the holes D
εiα,7,β

2 and D
εiβ,7,α

2 . This is analogously to
Case 5, but as before the tube starts and ends on the same sheet.

As a result we obtain the manifold M̃ ε as a combination of the Cases 1-5. In this
case the homogenized system has the form

∂uk

∂t
− ∆uk +

∑
l 6=k

(
4aπ

qA
kl(x) + 2

+
2aπ

qE
kl(x) + 2

)(
uk(x, t)− ul(x, t)

)
+

+
2∑

l=1

∫
Ω

(
4aπ

qB
kl(x, y) + 2

+
2aπ

qG
kl(x, y) + 2

)(
uk(x, t)− ul(y, t)

)
dy +

+
∂

∂t

t∫
0

4aπ

qC
k (x) + 2

exp

(
−2(t− τ)

π
(
bDk (x)

)3(
qC
k (x) + 2

))uk(x, τ)dτ +

+
∑
l 6=k

∂

∂t

t∫
0

2aπ

qE
kl(x) + 2

exp

(
−4(t− τ)

π
(
bFkl(x)

)3(
qE
kl(x) + 2

)) (uk(x, τ) + ul(x, τ)
)
dτ +

+
2∑

l=1

∫
Ω

∂

∂t

t∫
0

2aπ

qG
kl(x, y) + 2

exp

(
−4(t− τ)

π
(
bHkl(x, y)

)3(
qG
kl(x, y) + 2

)) ·
·
(
uk(x, τ) + ul(y, τ)

)
dτdy = 0, k = 1, 2. (5.19)

Note, that the introduced metric gε
ij has a discontinuous part on the boundary of

the manifolds Gεij
kl , but it is possible to approximate it by a smooth metric gε

ij(δ).

This metric differ from gε
ij in a small δ = δ(ε)-neighborhood of ∂Gεij

kl . If δ = δ(ε)
tends to zero sufficiently fast as ε → 0, then the functions Vkl(x, λ) = Vkl(x, λ, δ)
and Wkl(x, y, λ) = Wkl(x, y, λ, δ), calculated by the formulas (5.4)-(5.6) with metric
gεij

kl (δ), are equal to the functions Vkl(x, λ) andWkl(x, y, λ) calculated with the metric
gεij

kl .
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We set

qA
kl(x) =

4aπ

Akl(x)− Ekl(x)
− 2, qB

kl(x) =
4aπ

Bkl(x, y)−Gkl(x, y)
− 2,

qC
k (x) =

4aπ

Ck(x)
− 2, bDk (x) = 3

√
Ck(x)

2aπ2Dk(x)
,

qE
kl(x) =

2aπ

Ekl(x)
− 2, bFkl(x) = 3

√
2Ekl(x)

aπ2Fkl(x)
,

qG
kl(x, y) =

2aπ

Gkl(x, y)
− 2, bHkl(x, y) = 3

√
2Gkl(x,y)

aπ2Hkl(x,y)
.

(5.20)

The functions (5.20) satisfy the conditions (3.3) and are positive, if a is sufficiently
large. Then the system (5.19) has the form (1.1). In the same way the proof can be
done for m > 2 sheets . Theorem 3 is proved.

6 Proofs of the main theorems

P r o o f of Theorem 1. Using the same methods as in [7] it is easy to show
that (1.1)-(1.3) has the unique solution u(·, t) ∈ C(0, T ;H1(Ω)m) with d

dt
u(·, t) ∈

L2(0, T ;L2(Ω)m), ∀T > 0.

We construct the manifold M̃ ε in the same way as in Theorem 3. Moreover, we
require that the point xmax, providing the maximum to max

k
max
x∈Ω

fk(x), does not

lie in any out-cut ball Dεi. This can be done, because of the construction of the
manifold M̃ ε. Let the function f ε(x̃) be the same as in the proof of Theorem 3, i.e.,
it coincides with fk(x) if x̃ = (x, k) ∈ Ωε

k and is equal to zero in Gεij
kl , except of a

small neighborhoods of 0Γεi
k , 1Γεij

kl and 2Γεij
kl . In these neighborhoods we construct f ε

in such a way that f ε(x̃) ≤ max
k=1...m

max
x∈Ω

fk(x). Then, maxfMε

f ε(x̃) is reached on some

sheet and, therefore, maxfMε

f ε(x̃) = max
l

max
x∈Ω

fl(x) ≡M .

In view of the maximum principle (see, e.g., [20]) we have

uε(x̃, t) ≤ maxfMε

f ε(x̃) = M,

where uε is a solution of the problem (4.1)-(4.3). We get(
Qεuε

)
k
(x, t) ≤M, x ∈ Ω, t > 0, ∀k.

By Theorem 3
(
Qεuε

)
k

converges to uk in L2(Ω× [0, T ]), ∀T > 0. Therefore, there
exists a sequence ε = εn such that for almost all x ∈ Ω, t > 0(

Qεuε
)

k
(x, t) → uk(x, t), ε = εn → 0.

Then, for almost all x ∈ Ω, t > 0,∀k : uk(x, t) ≤M .

In the same way the minimum principle can be proved.
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Finally, we consider the case Ck(x) = Dk(x) = Ekl(x) = Fkl(x) = Gkl(x, y) =

Hkl(x, y) ≡ 0, ∀k, l. Again, we construct the manifold M̃ ε so, that the point
xmax does not lie in any ball Dεi. Let the function f ε(x̃) coincides with fk(x) if
x̃ = (x, k) ∈ Ωε

k, while in Gεij
kl we set f ε(x̃) equal to the constant C (except some

small neighborhood of ∂Gεij
kl ), such that C < M (Theorem 3 is still true, because

N(ε)∑
i,j=1

m∑
k,l=1

|Gεij
kl | → 0 for ε → 0). Then again maxfMε

f ε(x̃) = M (i.e. the maximum of

f ε(x̃) is reached on the sheets). Further, the proof is done in the same way. Theorem
1 is proved.

Remark 2. We give an example which shows that the condition max
k

max
x∈Ω

fk(x) ≥ 0

is necessary for the maximum principle.

We consider a particular case of the problem (1.1)-(1.3):

∂u

∂t
−∆u+

∂

∂t

t∫
0

Ce−D(t−τ)u(x, τ)dτ = 0, (6.1)

u(x, 0) = f,
∂u

∂~n
= 0, (6.2)

where C, D and f are constant.

It is easy to see that the function u(x, t) =
f

C +D

(
D + C · e−(C+D)t

)
is a solution

of (6.1)-(6.2). If f < 0 then, obviously, the maximum principle is not fulfilled.

P r o o f of Theorem 2. We construct the manifold M̃ ε in the same way as in
Theorem 3. Let uε(x̃, t) be the solution of the problem (4.1)-(4.3). In order to
estimate uε(x̃, t) we prove the following uniform Poincare inequality

Lemma. For all uε ∈ H1(M̃ ε) such that ūε ≡ 1

|M̃ ε|

∫
fMε

uε(x̃)dx̃ = 0 the following

inequality holds ∫
fMε

(
uε(x̃)

)2
dx̃ ≤ cp

∫
fMε

3∑
α,β=1

gαβ
ε

∂uε

∂xα

∂uε

∂xβ

dx̃, (6.3)

where the constant cp does not depend on ε.

P r o o f. We prove the Lemma for two special cases of the manifold M̃ ε. For the
general case it can be proved in a similar way.

10. Suppose that our manifold M̃ ε has the same form as in Case 3 in the proof of
Theorem 3.

M̃ ε = Ωε
1 ∪

N(ε)⋃
i=1

Gεii
11


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Remind, that Gεii
11 = Bεi

1 ∪ T εi
1 , Bεi

1 and T εi
1 are defined by the formulas (3.5), (3.6).

Proving the lemma indirectly, we assume the opposite, i.e., (6.3) does not holds.

Then a sequence (still denoted by ε) and functions uε(x̃) ∈ H1(M̃ ε) exist such that∫
fMε

(
uε(x̃)

)2
dx̃ = 1,

ūε ≡ 1

|M̃ ε|

∫
fMε

uε(x̃)dx̃ = 0,

∫
fMε

3∑
α,β=1

gαβ
ε

∂uε

∂xα

∂uε

∂xβ

dx̃→ 0, ε→ 0.

(6.4)

Then, it follows from (6.4) that Qεuε converges in L2(Ω) to some constant C0.
Denote by Cε

i the average value of uε in the domain Bεi
1 , i.e.,

Cε
i =

1

|Bεi
1 |

∫
Bεi

1

uε(x̃)dx̃.

We represent uε in the form uε = vε + wε, where

vε =


C0 +

N(ε)∑
i=1

αε
i

dε
i

|x− xε
i |

Φ1

(
|x− xε

i |
ε

)
, x̃ = (x, 1) ∈ Ωε

1

Aε
iz +Bε

i , x̃ = (ϕ, ψ, z) ∈ T εi
1

Cε
i + βε

i

cot θ

cot θε
Φ2(θ), x̃ = (ϕ, ψ, θ) ∈ Bεi

1

and

αε
i =

Cε
i − C0

1 + cos θεi
1 + qC

1 (xε
i )
, βε

i = −αε
i · cos θεi

1 , A
ε
i = αε

i · qC
1 (xε

i ), B
ε
i = C0 + αε

i ,

Φ1(r) is a smooth function equal to 1 when r < 1/4 and equal to 0 when r ≥ 1/2,
Φ2(θ) is a smooth function equal to 1 when θ < π/3 and equal to 0 when θ ≥ 2π/3.

The coefficients αε
i , β

ε
i , A

ε
i , B

ε
i are taken in such a way that vε ∈ H1(M̃ ε) and

∆εvε = 0, x̃ ∈
⋃
i

[
Bεi

1 ∪
{
x̃ = (x, 1) ∈ Ωε : dε

i < |x− xε
i | < dε

i + rε
i /4
}]
.

We have

‖∇εuε‖2
0ε ≥ ‖∇εvε‖2

0ε + 2(∇εvε,∇εwε)0ε = ‖∇εvε‖2
0ε − 2(∆εvε, wε)0ε (6.5)
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From the explicit form of the function vε and Poincare’s inequality for the domain
Bεi

1 , we obtain the following inequalities

M1

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 | ≤ ‖∇εvε‖2

0ε ≤M2

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 |,

‖∆εvε‖2
0ε ≤M3

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 |,

‖wε‖2
L2(Ωε) ≤ 2‖uε − C0‖2

L2(Ωε) +M4ε
4

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 |,

N(ε)∑
i=1

‖wε‖2
L2(Bεi

1 ) ≤ ε2M5

N(ε)∑
i=1

‖∇εwε‖2
L2(Bεi

1 ) +

N(ε)∑
i=1

1

|Bεi
1 |

∫
Biε

1

(
Cε

i − vε)dx̃


2

≤

≤ 2ε2M5(‖∇εvε‖2
0ε + ‖∇εuε‖2

0ε) + ε4M6

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 |,

(6.6)

where Mi, i = 1..6 are positive constants.

Further, we prove that

∃c1, c2, > 0 : c1 <

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 | < c2. (6.7)

From the inequalities (6.6), (6.7), using Cauchy’s inequality, we have

‖∇εvε‖2
0ε ≥ c1 ·M1 > 0,

|(∆εvε, wε)0ε| ≤ ‖∆εvε‖L2(Ωε) · ‖∆εwε‖L2(Ωε)

+

N(ε)∑
i=1

‖∆εvε‖2
L2(Bεi

1 )

 1
2

·

N(ε)∑
i=1

‖wε‖2
L2(Bεi

1 )

 1
2

−→
ε→0

0.

Then, from (6.5) we have lim
ε→0

‖∇uε‖0ε > 0 – a contradiction.

Now, we prove the inequalities (6.7). The right-hand inequality follows from ‖uε‖0ε =
1. Now, suppose that the left-hand inequality does not hold. Then, there exists a
sequence (again denoted by ε) such that

lim
ε→0

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 | = 0. (6.8)
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From (6.8) we obtain the inequalitiesN(ε)∑
i=1

(C0 − Cε
i )|Bεi

1 |

2

≤ N(ε)

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 |2 ≤

≤ c

N(ε)∑
i=1

(C0 − Cε
i )

2|Bεi
1 |, c > 0 (6.9)

Using Poincare’s inequality for the domain Bεi
1 we have

0 ≤
N(ε)∑
i=1


∫

Bεi
1

(uε(x̃))2dx̃− (Cε
i )

2|Bεi
1 |

 ≤ ε2

N(ε)∑
i=1

‖∇εuε‖2
L2(Bεi

1 ) −→ε→0
0.

Hence,

1 = lim
ε→0

‖uε‖2
0ε = C2

0 |Ω|+ lim
ε→0

N(ε)∑
i=1

(Cε
i )

2|Bεi
1 | (6.10)

Further, we get

0 = lim
ε→0

∫
fMε

uε(x̃)dx̃ = C0|Ω|+ lim
ε→0

N(ε)∑
i=1

Cε
i |Bεi

1 | =

= C0 lim
ε→0

|M̃ ε|+ lim
ε→0

N(ε)∑
i=1

(Cε
i − C0)|Bεi

1 |. (6.11)

It follows from (6.9) and (6.11) that C0 = 0. But this, together with (6.8) contradicts
(6.10). Thus, the right-hand inequality of (6.7) is true.

20. Suppose that our manifold M̃ ε has the same form as in Case 1 in the proof of
Theorem 3:

M̃ ε = Ωε
1 ∪

N(ε)⋃
i=1

Gεii
12

 ∪ Ωε
2

Remind that the manifolds Gεii
12 are defined by the formulas (3.7).

We suppose the opposite: (6.3) does not hold. Then, there exist functions uε(x̃) ∈
H1(M̃ ε) such that ∫

fMε

(
uε(x̃)

)2
dx̃ = 1,

ūε =
1

|M̃ ε|

∫
fMε

uε(x̃)dx̃ = 0,

∫
fMε

3∑
α,β=1

gαβ
ε

∂uε

∂xα

∂uε

∂xβ

dx̃→ 0, ε→ 0.

(6.12)
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It follows from (6.12) that (Qεuε)1 converges in L2(Ω) to some constant C1 and
(Qεuε)2 converges in L2(Ω) to some constant C2. Later we prove that C1 6= C2.

Again, we represent uε in the form uε = vε + wε, where

vε =



C1 +

N(ε)∑
i=1

αε
i

dε
i

|x− xε
i |

Φ

(
|x− xε

i |
ε

)
, x̃ = (x, 1) ∈ Ωε

1

Aε
iz +Bε

i , x̃ = (ϕ, ψ, z) ∈ Gεii
12

C2 +

N(ε)∑
i=1

βε
i

dε
i

|x− xε
i |

Φ

(
|x− xε

i |
ε

)
, x̃ = (x, 2) ∈ Ωε

2

(6.13)

and

αε
i =

C2 − C1

2 + qA
12(x

ε
i )
, βε

i = −αε
i , A

ε
i = αε

i · qA
12(x

ε
i ), B

ε
i = C1 + αε

i , (6.14)

Φ(r) is a smooth function equal to 1 for r < 1/4 and equal to 0 for r ≥ 1/2. The

coefficients αε
i , β

ε
i , A

ε
i , B

ε
i are taken in such a way that vε ∈ H1(M̃ ε).

We have

‖∇εuε‖2
0ε ≥ ‖∇εvε‖2

0ε + 2(∇εvε,∇εwε)0ε = ‖∇εvε‖0ε − 2(∆εvε, wε)0ε (6.15)

From the explicit form of the function vε it is easy to obtain the following inequalities

M1(C1 − C2)
2 ≤ ‖∇εvε‖2

0ε ≤M2(C1 − C2)
2,

‖∆εvε‖2
0ε ≤M3,

‖wε‖2
L2(Ωε

k) ≤ 2‖uε − Ck‖2
L2(Ωε

k) +M4ε
4

N(ε)∑
i=1

|Bεi
1 |, k = 1, 2,

(6.16)

where Mi, i = 1..4 are positive constants.

From the inequalities (6.16) we have

‖∇εvε‖0ε ≥ (C1 − C2)
2 ·M1 > 0,

|(∆vε, wε)0ε| ≤
2∑

k=1

‖∆vε‖L2(Ωε
k) · ‖wε‖L2(Ωε

k) −→
ε→0

0.

and from (6.15) we have lim
ε→0

‖∇uε‖2
0ε > 0. We obtain a contradiction, i.e., (6.3)holds.

Now, let’s prove that C1 6= C2. It is easy to prove that lim
ε→0

N(ε)∑
i=1

‖uε‖2
L2(Gεii

12 ) = 0.

Then we have

1 = lim
ε→0

‖uε‖2
0ε = (C2

1 + C2
2)|Ω|, (6.17)

0 = lim
ε→0

∫
fMε

uε(x̃)dx̃ = (C1 + C2)|Ω|. (6.18)
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(6.17) and (6.18) imply C1 6= C2.

The lemma is proved.

We continue the proof of Theorem 2.

From Gronwall’s lemma we get that the solution of (4.1)-(4.3) satisfies the inequality

‖uε − Lε‖2
0ε ≤ ‖f ε − Lε‖2

0ε · exp

[
−2t

cp

]
, Lε =

1

|M̃ ε|

∫
fMε

f ε(x̃)dx̃. (6.19)

It is clear, that the norms ‖f ε − Lε‖0ε are uniformly bounded with respect to ε.
Therefore ∃ c1 > 0 :

‖uε − Lε‖2
0ε ≤ c1 · exp

[
−2t

cp

]
, (6.20)

hence,

‖Qεuε − Lε‖2
0 ≤ c1 · exp

[
−2t

cp

]
+ (Lε)2

m∑
k=1

N(ε)∑
i=1

|Dε
i |. (6.21)

By the construction of M̃ ε we have

|M̃ ε| = m · |Ωε|+
m∑

k=1

N(ε)∑
i=1

|Gεii
kk |+

1

2

m∑
k,l=1|k 6=l

N(ε)∑
i=1

|Gεii
kl |+

1

2

m∑
k,l=1

N(ε)∑
i,j=1|i6=j

|Gεij
kl |. (6.22)

From the formulas (3.3), (4.6) and (6.22) it follows that

|M̃ ε| −−→
ε→0

m · |Ω|+ 2π2

 m∑
k=1

∫
Ω

a
(
bDk (x)

)3
dx+

1

2

m∑
k,l=1|k 6=l

∫
Ω

a
(
bFkl(x)

)3
dx+

+
m∑

k,l=1

1

2

∫
Ω

∫
Ω

a
(
bHkl(x, y)

)3
dxdy

 =

= m · |Ω|+
m∑

k=1

∫
Ω

Ck(x)

Dk(x)
dx+ 2

m∑
k,l=1|k 6=l

∫
Ω

Ekl(x)

Fkl(x)
dx+ 2

m∑
k,l=1

∫
Ω

∫
Ω

Gkl(x, y)

Hkl(x, y)
dxdy,

∫
fMε

f ε(x̃)dx̃ −−→
ε→0

m∑
k=1

∫
Ω

fk(x)dx,

i.e.,

lim
ε→0

Lε = L. (6.23)
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The formula (6.22) give a heuristic idea to obtain the constant L.

Let δ > 0 be an arbitrary number, let’s fix t. We have

‖u(·, t)− L‖2
0 ≤ 3 ·

{
‖Qεuε(·, t)− u(·, t)‖2

0 + ‖Qεuε(·, t)− Lε‖2
0 + ‖Lε − L‖2

0

}
(6.24)

From Theorem 3 and (6.23) it follows, that there exists such ε > 0 that

‖Qεuε(·, t)− u(·, t)‖2
0 + ‖Lε − L‖2

0 + (Lε)2

m∑
k=1

N(ε)∑
i=1

|Dεi
k | ≤ δ.

Then

‖u(·, t)− L‖2
0 ≤ 3δ + 3 · c1 · exp

[
−2t

cp

]
.

Passing to the limit as δ → 0 we have

‖u(·, t)− L‖2
0 ≤ 3 · c1 · exp

[
−2t

cp

]
.

Theorem 2 is proved.
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